CHAPTER 8

ELECTROCHEMICAL SYSTEMS

§8.01 Electrically charged phases

In the previous chapter we saw how a solution containing ions can be treated
by means of the same formulae as one containing only electrically neutral
molecules. In particular the formula

dG=—SdT+VdP+Y pdn 8.01.1

from which follows
1i=(8G/[On;)r, p,n, 8.01.2

are applicable. The only significant difference in our treatment of ions was
the imposition of the condition for electrical neutrality

Z n;z;=0 8.01.3

where z; is the charge number of the ionic species i. We shall now consider
what happens if we try to relax the condition (3).

To obtain a clear picture of what happens it is useful to begin with some
simple numerical calculations. The charge e on a proton is given by

e=1.6021x10"!° C. 8.01.4

Consequently the proper electric charge, associated with an ionic species
having a charge number 1, called the Faraday constant and denoted by F is
given by

F=Le=0.96487 x 10° C mole ™ ". 8.01.5

Let us now consider a single phase surrounded by a vacuum and thus

electrically insulated. Let us further imagine that this phase, instead of

satisfying the condition of electrical neutrality (3), contains an excess of 10~ 10

moles of an ionic species with charge number + 1. Then most, if not all,

the excess electrical charge will accumulate at the surface of the phase.

For simplicity let us suppose that the phase is spherical with a radius one
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centimetre, The electrical potential y of a charged sphere of radius r in
vacuo is determined by

U=Q/dneyr 8.01.6

where Q is the charge on the sphere and ¢, is the rational permittivity of
a vacuum. Substituting the values

Q=10""" F mole=0.96x10"° C
4rgy=1.11x10"°CV ™ !'m™!
r=10"2m 8.01.7

into (6), we obtain
Y=(0.96x10"%/1.11 x 107 1°x 107 %)V=0.86 x 10" V. 8.01.8

From this example we have reached the striking conclusion that a departure
from the condition of electrical neutrality corresponding to a quantity of
ions far too small to be detected chemically corresponds to an electrostatic
potential which could be encountered only in specialized high tension labora-
tories. Any other numerical example would lead to the same conclusion.

§8.02 Phases of identical composition

The above general result leads to the use of the following terminology.
We speak of two phases having the same chemical content, but different
electrical potentials. Actually two such phases differ in chemical content
but the difference is too small to be detectable by chemical means, or any
other means, except electrical. For example suppose we mention two spheres
of copper each containing precisely one gramme differing in electrical
potential by 200 V. If this electrical potential difference is ascribed to an
excess of copper ions Cu?* with a charge number +2, then the amount of
this excess is about 3.5 x 107!® moles or 2 x 10™!* grammes. This excess
is so small as to be entirely negligible except in its electrical effect. Conse-
quently it is of no importance or interest whether the electrical charge is in
fact due to an excess of Cu?* ions or to an equivalent deficiency of electrons
or even to some extraneous kind of ion such as H;O %, present as an impurity.

Similar considerations apply to a pair of phases of different size but of the
same chemical composition.

§8.03  Electrochemical potentials

Having agreed as to what we mean when we speak of two phases having
the same chemical composition but different electrical potentials, we see
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that the u;s occurring in the formulae mentioned in §8.01 have values
depending on the electrical state of the phase as well as on its chemical
composition. To stress this fact we call the u, of an ionic species its electro-
chemical potential *

The difference of the electrochemical potential u; between two phases of
identical chemical composition will clearly be proportional to the proper
electrical charge z; I associated with the species in question but independent
of all its other individual characteristics. Hence for any two phases o and B
of identical chemical composition we may write for any ionic species i

ul—ui =2z, F(I* — ") 8.03.1

where # —y® is the electrical potential difference between the two phases.
Formula (1) may be regarded as the thermodynamic definition of the elec-
trical potential difference between two phases of identical chemical composi-
tion. The equilibrium condition for a given ionic species between two phases
of identical composition is that the two phases should be at the same electri-
cal potential. In fact the laws of mathematical electrostatics are applicable
to any ionic species, in particular to electrons, only in so far as differences
in chemical composition between several phases are excluded or ignored.

For the distribution of the ionic species i between two phases o, B of diffe-
rent chemical composition the equilibrium condition is equality of the
electrochemical potential u;, that is to say

uy=p. 8.03.2

Any splitting of uf—py? into a chemical part and an electrical part is in
general arbitrary and without physical significance.

As long ago as 1899 Gibbs wrote:' ‘Again, the consideration of the elec-
trical potential in the electrolyte, and especially the consideration of the
difference of potential in electrolyte and electrode, involve the consideration
of quantities of which we have no apparent means of physical measurement,
while the difference of potential in pieces of metal of the same kind attached
to the electrodes is exactly one of the things which we can and do measure.’
This principle was however ignored or forgotten until rediscovered and
reformulated thirty years later as follows:* “The electric potential difference
between two points in different media can never be measured and has not
yet been defined in terms of physical realities. It is therefore a conception
which has no physical significance.” The electrostatic potential difference

* Guggenheim, J. Phys. Chem. 1929 33 842.
* Gibbs, Collected Works, Longmans, vol. 1, p. 429.
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between two points is admittedly defined in electrostatics, the mathematical
theory of an imaginary fluid electricity, whose equilibrium or motion is
determined entirely by the electric field. Electricity of this kind does not
exist. Only electrons and ions have physical existence and these differ funda-
mentally from the hypothetical fluid electricity in that their equilibrium is
thermodynamic not electrostatic.

Although the above considerations seem almost obvious to anyone who
has thought about the matter, there has in the past been considerable
confusion due to misleading terminology. It therefore seems worth while
considering in more detail some simple examples. Consider a potentiometer
wire made of copper and in particular two sections of the wire o’ and o’
between which the electrical potential difference '’ —y’ is say 2'V. Since
o and a” are both in copper, there is no ambiguity in the meaning of
Y — ', If two pieces of copper wire are attached to o’ and o”’, then the
electrical potential difference between these two is also Y’ —y'=2V.
If instead of copper wire we attach two pieces of silver wire §’ and B” to
o' and o respectively, then the difference of electrical potential between
B’ and B is likewise 2 V. The electrical potential difference between a piece
of copper and a piece of silver is however not defined. The silver wire p’
and the copper wire o’ are in equilibrium with respect to electrons, so that

wo-=ub- 8.03.3
where the subscript .- denotes electrons. Likewise
Ha-=pb- . 8.03.4
Thus the situation is completely described by (3) or (4) together with
par- —par- =phi-—pli- = —F"' =y"). 8.03.5
Suppose further that the two pieces of silver wire §’, "’ be dipped respectively
into two solutions y’, y”” both having the same composition and both con-
taining a silver salt. Then between each piece of silver wire and the solution

with which it is in contact there will be equilibrium with respect to silver
ions Ag*. Hence

“Ks* =yg’g, 8.03.6
“Z\';,, =,;ﬁ';+ . 8.03.7

At the same time
Phg — Hhgs =Hg+ =g =F(Y''—y)=Fx2V. 8.03.8

If the two solutions y', "’ are contained in insulating vessels and the silver
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wires are removed without otherwise touching or disturbing the two solu-
tions then the relations (8) remain valid until one solution is touched by
some other electrically charged or electrically conducting body. From this
it is clear that the value of y15,+ in a solution of a silver salt depends not only
on the composition of the solution but also on its, usually accidentally
determined, electrical state. If the solutions also contain nitrate ions NO3
then, since both solutions have the same composition,

ﬂ%; —ﬂﬁo; =—F@y"'—y’). 8.03.9
Adding (8) and (9), we obtain

Phg+ + Hlos =phg+ +Ho; 8.03.10
the electrical terms cancelling. We accordingly speak of the chemical

potential of a salt, for example psgno, =Hag+ +Hno; > but of the electro-
chemical potentials of ions, for example p,,+ and uyo; -

§8.04 Absolute activities of ions

Since the absolute activity A; is related to u; by
‘ui= RT ln A"i 8.04.1

it is clear that the absolute activity of an ionic species contains a factor
depending on the, usually accidentally determined, electrical state of the
system. The same applies to the activity coefficient of an ionic species.
As already emphasized in the previous chapter all such indeterminacy dis-
appears in formulae relating to electrically neutral combinations of ions,
in particular to salts.

§8.05 Dilute solutions in common solvent

According to (7.09.1) the absolute activity A; of an ionic species i is related
to its molality m; and its activity coefficient y; by

A=A myy; 8.05.1

where A depends on the solvent and temperature and moreover contains a
partly undetermined factor, which however cancels in all applications to
processes not involving a net transfer of electric charge. Correspondingly
the electrochemical potential u; has the form

#;=RTIn AP +RT Inm;+RT Iny, 8.05.2
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and includes an undetermined additive term which cancels in all applications
to processes not involving a net transfer of electrical charge. We shall in-
vestigate this term in greater detail,

Let us formally write

wi=2z;Fy+RTInI7+RT Inm;+RT Iny, 8.05.3

where /7 is independent of the electrical state of the phase and y is the
electrical potential of the phase. Let us now apply (3) to two phases denoted
by a single and a double dash respectively and then subtract. We obtain

' = =2 F(Y" =)+ RT In(I"JI?")+ RT In(m{’/m{)+ RT In(y{'}y}).
8.05.4

We now re-examine the condition for the term containing '’ —y’ to be
physically defined.

The easiest case is when the two phases have the same chemical composi-
tion so that

127 =17 8.05.5
m;’ =m; 8.05.6
yi'=7i. 8.05.7
Formula (4) then reduces to
pi'—pi=z;F(y"" —y"). 8.05.8
Since u;’ —u; is always well defined, formula (8) in this special case defines

Y=y

We now consider the extreme opposite case of two solutions in different
solvents or two different pure phases. In this case there is no means of
distinguishing in (4) between the term containing ¢’ —’ and the term
containing In (/°"/I?"). The splitting into these two terms has in this case no
physical significance. These remarks merely repeat and confirm what has
already been stated in the preceding sections.

We have still to consider the intermediate case of two solutions of different
composition in the same solvent, of course at the same temperature. We then
have

o
L

=17 8.05.9
so that (4) reduces to
W' — i =2,F" =)+ RT In(m'/m])+ RT In(y{'jy}). ~ 8.05.10

Since pt;" — p; is well defined and m;’, m; are measurable, the question whether
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J'' — /' is determinate depends on our knowledge of y;'/y;. If both the solu-
tions are so dilute that we can evaluate y, by an explicit formula such as
(7.20.9), then we may consider that (10) defines ¢’ —y'. If on the other
hand either solution is so concentrated that our knowledge of the value
of y, is incomplete, then the value of Y’ —y' becomes correspondingly
indefinite.

§8.06 Volta potentials

It is outside the province of this book to consider thermionic phenomena.
In case however any reader may be puzzled by the fact that the so-called
Volta potential difference or contact potential difference between two metals
can be determined, it seems worth while stressing that the only measurable
potential difference of this kind is that between two regions in free space
immediately outside the two metals respectively.

§8.07 Membrane equilibrium (non-osmotic)

Suppose two solutions « and P at the same temperature and pressure in the
same solvent be separated by a membrane permeable to some ions, but not
to others, nor to the solvent. We call this a non-osmotic membrane equilib-
rium. Then for every permeant ion we have the equilibrium condition

pi=pb. 8.07.1
If for example one of the permeant ions is the Ag™ ion, we have
Hag+ =Higs - 8.07.2

If then we place in each of the two solutions a piece of silver wire since each
piece of wire is, with respect to Ag™®, in equilibrium with the solution in
which it dips, the equality of y,,+ also holds between the two pieces of silver
wire. Hence the two pieces of silver wire have equal electrical potentials,
as could be verified by connecting them to a potentiometer or electrometer.
We have yet to consider what, if anything, can be said concerning the
electrical potential difference between the two solutions. Since the solvent is
the same in both solutions, we may in accordance with (8.05.10) replace (2)
by
F(W®—y*)+RT In(mf,+ /ms, )+ RT In(y8,+ [73,+)=0.  8.07.3

Supposing that m, ;. has been measured in both solutions, the determination
of y®—y® reduces to that of the values of Yag+ in the two solutions. If the
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solutions are so dilute that accurate or at least approximate, formulae for
the activity coefficients y are available then the electrical potential difference
Y® —y* can be evaluated with greater or less accuracy as the case may be.
If either solution is so concentrated that y,,. cannot be evaluated, then no
more can yP—y°.

If there are several permeant ions, then the relations of the form (1)
can be combined into relations corresponding to processes involving no
net flow of electric charge. For example for a salt composed of v, cations
R of charge number z, and v_ anions X of charge number z_, both
permeant, the equilibrium condition is

Vo sV pk=v.pk+v_pd 8.07.4
which can be written in the equivalent form

(mR)"* (m%)" (%, x)"* "~ =(mR)*(m%) (R, x)"* "~ 8.07.5

§8.08 Osmotic membrane equilibrium

In the preceding section we assumed that the membrane was impermeable
to the solvent. The more usual case when the membrane is permeable to
the solvent, called osmotic membrane equilibrium, is less simple. In this case
equilibrium as regards the solvent between two phases separated by the
membrane, will generally require a pressure difference between the two
phases, the osmotic pressure difference, and this pressure difference complica-
tes the exact conditions of equilibrium for the solute ions. We shall consider
only the case of one and the same solvent on both sides of the membrane.

The conditions for membrane equilibrium can be written in the general

form
e =ub 8.08.1

for the solvent and
pi= M? 8.08.2

for each permeant ionic species.

We have now to take account of how each p depends on the pressure, but
for the sake of brevity we shall neglect the compressibility of the solutions.
We have then in accordance with (7.06.1)

Nl(P)=I~‘(1)(P)_RT¢ z ¥

=ﬂ‘l’e+PVf—RT¢Zri 8.08.3
i
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where uJ(P) is the value of y, for the pure solvent at the pressure P, while
u3° is the value for the pure solvent in the limit of zero pressure.
Similarly for each ionic species i we replace (8.05.3) by

ui=PVi+2z,Fy+RT In(I° myy,) 8.08.4

where [ is independent of the pressure.
Using (3) in (1) we obtain for the equilibrium value of the pressure
difference

P’ P*=RT(¢? Yri-¢t L )Ivy. 8.08.5
Using (4) in (2) we obtain
RT In(m?y8/miy?)+ z, F(YP —y*) = (P*— PP)V;. 8.08.6
Finally substituting (5) into (6) we have

In(m?y¥/miy)+ 2, FWP— ") RT=V(* Y. i —¢* ¥ )P, 8.08.7
Whether formula (7) by itself has any physical significance depends, as
explained in §8.05, on whether values of y; can be computed. If they can,
then from formula (7) the value of y*—y* can be computed, since all the
other quantities occurring in (7) are measurable. In any case the term
containing ® — /* can be eliminated by applying (7) to several ionic species
together forming an electrically neutral combination. Thus for the equilib-
rium distribution of a permeant electrolyte consisting of v, cations R
and v_ anions X we obtain

Byv+ By\v-(.B Vi tvo
O XV 2 (v Vet v- V9" 2 =00 T V)
(mg)"* (M%)~ (Ve x)"* i ;

8.08.8
At high dilutions when all r;<1 the quantity within the { } on the right side
of (8) may be so small that it can be neglected. Under such conditions (8)
reduces to

(mR)"*(m%) =GR x)* ** =(mR) (%) (e )T 8.08.9

of the same form as (8.07.5) for a non-osmotic membrane equilibrium.

The thermodynamic methods of Gibbs were first applied to osmotic mem-
brane equilibria by Donnan. Such an equilibrium is accordingly called a
Donnan membrane equilibrium.
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§8.09 Contact equilibrium

The most important and simplest example of non-osmotic equilibrium is that
of two phases with one common ion, the surface of separation being in
effect a membrane permeable to the common ion but impermeable to all
others. This may be called contact equilibrium.

We have already met several examples of contact equilibrium. For example,
for two metals say Cu and Ag in contact there is equilibrium between the
metals as regards electrons, but not as regards the positive ions Cu?* or
Ag™*. This equilibrium is expressed by

pat =pbt 8.09.1

the subscript .- denoting electrons and the superscripts denoting the two
phases.

Likewise for a piece of metal M of say Cu dipping into a solution S
containing ions of the metal, in this case Cu®”, the contact equilibrium is
completely described by

P+ =+ 8.09.2

the metal and solution being in mutual equilibrium as regards the metallic
ions only.

In neither of these cases is any contact electrical potential difference
thermodynamically definable.

§8.10 Examples of galvanic cell

We shall now introduce the subject of galvanic cells by the detailed study of
a simple example in terms of the electrochemical potentials. At a later stage
we shall proceed to derive more general formulae applicable to all galvanic
cells.

We describe a cell symbolically by writing down in order a number of
phases separated by vertical lines, each phase being in contact with the
phases written down immediately to its left and right. For example

. ! . ‘
' Solution [ Solution 11 . Ag|Cu £.10.1

|
Cul!Zn

=" containing Zn?>* | containing Ag

may be regarded as denoting a copper terminal attached to a zinc electrode
dipping into a solution I containing zinc ions; this solution is in contact
with another solution II containing silver ions in which there is dipping a
silver electrode attached to another copper terminal. We shall use the follow-
ing superscripts to denote the several phases:
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' the copper terminal on the left
Zn  the zinc electrode
T the solution on the left
' the solution on the right
A% the silver electrode
""" the copper terminal on the right.

In the metal phases, since there is equilibrium between electrons, metallic
ions, and the metal atoms, we have

ucur+ +pa- =das + - =H0c 8.10.2
Jugna+ +ust =4uz, 8.10.3
HAS+ + pt = k. 8.10.4
The contact equilibrium conditions are
P = pa- 8.10.5
Hznzs = Hzn2+ 8.10.6
uﬁf =uﬁ§+ 8.10.7
palt =i~ - 8.10.8
From (5) and (8) we deduce
Pai- = P~ = pE — pa- 8.10.9
and so using (3) and (4)
B~ — B~ = pAS— dpuFn — ulS s + duFea 8.10.10
and then using (6) and (7)
pii- — - = HAS — duZn — Hag+ +tizar+ 8.10.11
We may further write
Hei-—Ha-=—FQ@"' —y’) 8.10.12

where '’ —y’ denotes the electrical potential difference between the two
copper terminals. It is evident from relations (5) and (8) that the value of
(12) would be the same if both copper terminals were replaced by any
other metal provided both were of the same metal. Thus "’ — y is determined
by the nature of the two electrodes and of the two solutions. The electric
potential difference y" —y’ is called the electromotive force of the cell
and is denoted by E. We accordingly replace (12) by

i~ — piy- = —FE. 8.10.13
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Substituting (13) into (11) we then obtain
—FE=p{8—3uln— s oo + 3 . 8.10.14

We shall now assume that there is at least one anion, say NO; present in
both solutions I and II so that

$pnze = i‘ﬂlzﬂ(No,)z - #Lo; 8.10.15
l‘Hw =ﬂggN03 —ﬂgo; . 8.10.16

Using (15) and (16) we can rewrite (14) as
FE={3uZs— $tzanos), +RT In myos }
+ {l‘:wo; —ﬂgo; +RT ln('"go;/m}qo;)}
— {A% — tagno, + RT In mio: ). 8.10.17

We have now a formula for E containing three terms in { } of which the
first relates only to the Zn electrode and the solution around this electrode
and the last relates only to the Ag electrode and the solution around this
electrode. The middle term on the other hand is independent of the nature
of the electrodes and relates to an anion present in both solutions. One
might be inclined to call the first of these three terms the electrode potential
of the Zn electrode, the second the liguid-liquid junction potential, and the
last the electrode potential of the silver. Such a procedure is harmless provided
it is realized that

(a) this decomposition of E into three terms is affected by our arbitrary
choice of the anion NOj for use in our formulae;

(b) other alternative decompositions of E into three terms can be obtained
by the arbitrary choice of some other ion instead of NOj3 in our for-
mulae;

(c) any such decomposition of E is no more nor less fundamental than
another;

(d) there is in general no means of decomposing E into three terms which
is less arbitrary than the one described.

In view of some inevitable arbitrariness in the decomposition of the
electromotive force of a cell into two electrode potentials and a liquid-
liquid junction potential, we shall for the most part abandon any attempt at
such a decomposition. We shall accordingly in the next section derive a
general formula for the electromotive force of any cell by a more powerful
method which makes no reference at all to the localization of separate
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terms in the electromotive force. Before proceeding to this general treatment,
we shall however draw attention to a special case where the arbitrariness
referred to above effectively disappears.

Reverting to formula (17), let us now consider the particular case where
the molalities of Zn** and Ag* in the two electrode solutions are extremely
small compared with the molalities of other ions in these solutions and the
compositions of the two electrode solutions are apart from their content
of Zn?* and Ag"* nearly identical. Under these particular conditions we
may regard the two electrode solutions as effectively identical except with
regard to the equilibrium between solution and electrode. We may accor-
dingly drop the superscripts ' and " so that (17) reduces to

FE= {%ﬂ%: - %llz,\(No,)z} - {I‘:g _#AgNos} 8.10.18

where the y’s without superscripts refer to the solution. We may then regard
the cell (1) under consideration as

Solution containing
Zn®* and Ag*

bearing in mind that in reality the Ag* must be kept away from the Zn
electrode to avoid irreversible dissolution of Zn with plating out of Ag.

It is usual to describe certain cells in this manner as if containing only
one solution, but in reality there must always be some real, though possibly
small difference between the composition of the two electrode solutions.
Consider for example the cell commonly described as

Pt, H, | Aqueous solution of HCl|AgCl|Ag | Pt 8.10.20

Cu|Zn

l
Ag ! Cu 8.10.19

This description implies that an electrode consisting of platinum in contact
with hydrogen and another electrode consisting of a mixture of AgCl and
Ag are dipping into the same solution. In fact the platinum dips into a solu-
tion saturated with H,, but containing no AgCl, while the silver is immersed
in a solution saturated with AgCl but containing no hydrogen. If in fact
any part of the solution contained both hydrogen and silver chloride, these
might* react irreversibly to give silver and hydrogen chloride. Thus the cell
is more accurately described by

] Solution I | Solution II ‘ }

|
{ Aqueous solution | Aqueous solution |
.10.21
of HCl saturated | of HCI saturated AgCl !Ag v 810
with H, with AgCl | b

* Actually in the case of this cell the irreversible process will usually be too slow to affect
the accuracy of the electromotive force measurements.

Pt, H2
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By an analysis of (21) similar to that applied to (1) it can be shown that the
electromotive force E is given accurately by

FE=4pg, — i+ + HASG — A — pcy- 8.10.22

where the superscript © denotes the gas phase. Since however as far as the
HCl is concerned we may regard the solutions I and I as essentially identical
we may drop these superscripts and (22) reduces to

FE=14ug, + uadci — was — tuci 8.10.23

where pyc denotes the chemical potential of HCI in the solution.

§8.11 General treatment of electromotive force

We now proceed to a more general treatment applicable to any galvanic cell.
We begin by describing the characteristics common to all such cells. In so
doing it is convenient to assume that the system to which we refer as the
cell is terminated at both ends by terminals of the same metal. The essential
characteristic of the galvanic cell is that a process involving ions can take
place in it in such a manner that the process is necessarily accompanied by
a transfer of electric charge from one terminal to the other without building
up any charge in any of the intermediate phases of the cell. Moreover the
charge which flows from the one terminal to the other is directly propor-
tional to the change in the extent of the process.
For example in the cell, already discussed in the previous section,

Pt, H, | Aqueous solution of HCI | AgClIAgI Pt 8.11.1

the process accompanying the flow of one mole of positive charge from the
left to the right is

1H,(g)+AgCl(s)~Ag(s) + HCl(aq) 8.11.2

where (g) denotes gas, (s) denotes solid, and (aq) denotes aqueous solution.

We now suppose the two terminals of the cell to be put into contact respec-
tively with two points of a potentiometer bridge so placed that the electric
potential of the right contact exceeds that of the left contact by an amount
E’. Then in general an electric current will flow through the cell and between
the two points of contact with the potentiometer bridge. If either of the points
of contact is moved along the bridge the current will increase or decrease
and it will change sign when E' has a certain value E. When E' is slightly
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less than E there will be a flow of current from left to right in the cell and from
right to left in the potentiometer bridge; this flow of current will be accom-
panied by a well-defined chemical change in the cell. When E’ is slightly
greater than E there will be a flow of current in the opposite direction and
the accompanying chemical change in the cell will also be reversed. When E’
is equal to E there will be no flow of current and no chemical change, but
by a small shift in the point of contact between cell terminal and potentio-
meter bridge a small current can be made to flow in either direction. This
is a typical and a particularly realistic example of a reversible process. The
value E of E’ at which the current changes sign is the electromotive force
of the cell. We note that a positive value of E means that the electrode on
the right is positive.

We now stipulate that E’=F so that the electromotive force of the cell
is balanced against the potential difference in the potentiometer bridge and
we consider the flow of one mole of positive charge from left to right in the
cell, the temperature being maintained constant throughout and the pressure
on every phase being kept constant. The pressures on different phases will
usually, but not necessarily always, be all equal. Then since, as we have
seen, this process is reversible and isothermal, it follows from (1.33.5) that
the work w done on the cell is equal to the increase in the Helmholtz
function, that is to say

w=AAH. 8.11.3

In the present case w consists of two distinct parts, namely

(a) the work —Z,P*AV* done by the pressures P* acting on the several
phases a,

(b) the electrical work — FE done by the potentiometer on the cell in trans-
ferring one mole of positive charge through a potential difference E.

We may therefore replace (3) by

—FE=AF+) P*AV*=AG. 8.11.4

It must be emphasized that the symbol A in both (3) and (4) denotes the
increase of a function when the process taking place is that associated
with the flow in the cell of one mole of positive charge from the left to
the right.

From (4) we sec that the electrical work obtainable from a reversible
isothermal process, at constant pressure on each phase, is equal to the de-
crease in the Gibbs function G.
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§8.12 Temperature dependence
By combining (8.11.4) with the Gibbs-Helmbholtz relation (1.49.5) we obtain*
F(E—TOE[0T)=—AH. 8.12.1
By subtracting (1) from (8.11.4), or by a more direct method, we obtain
F(OE[0T)=AS. 8.12.2

In both (1) and (2) the symbol A denotes increase when the chemical change
takes place which accompanies the flow of one mole of positive charge from
left to right in the cell.

It is perhaps worth while drawing attention to the physical meaning of
AH and AS. If the cell is kept in a thermostat and balanced against a potentio-
meter so that any flow of current is reversible, then when one mole of posi-
tive charge flows from left to right in the cell

(a) the work done on the cell by the potentiometer is —FE

(b) the work done on the cell by external pressures is —Z,P*AV*®

(c) the heat absorbed is TAS=FT(OE/OT)

(d) the increase in the energy of the cell is the sum of the above three terms
namely AU=—FE—-X, P*AV®+ FT(QE[0T)

(e) theincreaseintheenthalpy is AH=AU+ZX,P°AV*=—F{E—-T(QE/OT)}.

If, on the other hand, the cell is kept in a thermostat and short-circuited
so that the process takes place irreversibly without the performance of
electrical work, then when the process takes place to the same extent
as before,

(a) the electrical work done on the cell is zero
(b) the work done on the cell by external pressures is —X, P*AV*
(c) the heat absorbed is AH.

§8.13  Application of Nernst's heat theorem

The measurement of electromotive force provides a method of determining
AG for the accompanying chemical reaction; this can be combined with a
value of AH, determined calorimetrically, so as to obtain the value of AS.
Since however the magnitude of TAS is often small compared with those
of AG and AH, the relative error in AS determined in this way can be large.

* Although formula (1.49.5) is generally called the Gibbs-Helmholtz relation, it is in
fact due to Gibbs, while its corollary (8.12.1) was derived by Helmholtz.
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If on the other hand accurate measurements of electromotive force are
made over a range of temperatures so as to give an accurate value of the
temperature coefficient of the electromotive force, this provides directly
the value of AS for the cell reaction. Values of AS thus obtained for any
chemical reaction between only solid phases may be used to test Nernst’s
heat theorem, provided heat capacity data down to low temperatures are
available for each substance. The procedure is illustrated by the following
example.*
In the cell

Solution of Pb salt

(Hg)
Po saturated with Pbl,

Pt Pbl, | I Pt 8.13.1

where the superscript ®® denotes that the lead is in the form of an amalgam,
the chemical process when one mole of positive charge flows from left to
right is

1Pb™® 4 15 4PbI, . 8.13.2

For the cell at 25 °C it is found that

E=893.62 mV 8.13.3
OE[0T =(—0.042+0.005)mV K" 8.13.4

In the cell
Pt | Pb™® | Pbl, | Solution of KI|Agl|Ag]|Pt 8.13.5

where Pb®® denotes the same lead amalgam as in (1), the cell process
accompanied by the flow of one mole of positive charge from left to
right is

1Pb™M® 4 Agl»1PbI, +Ag. 8.13.6

For this cell at 25 °C it is found that!
E=(207.8£0.2)mV 8.13.7
OE/0T =(—0.188+0.002) mV K" 8.13.8

The data for neither of these cells can be used directly for testing Nernst’s
heat theorem owing to lack of calorimetric data for Pbl, down to low
temperatures. However by subtracting (7) from (3) and (8) from (4) we
obtain for a cell at 25 °C in which the cell process is

* Webb, J. Phys. Chem. 1925 29 827.
t Gerke, J. Amer. Chem. Soc. 1922 44 1703.
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Ag+I-Agl 8.13.9
E=(685.8+0.2)mV 8.13.10
OE[0T =(0.1464+0.004)mV K™*. 8.13.11

Multiplying (10) and (11) by

F=0.9649 x 10° C mole~*
=0.09649 k] mV ™! mole ™! 8.13.12

and using (8.11.4) and (8.12.2), we obtain for the process (9) at 298K

AG=—66.17 kJ mole ! (T=298K)  8.13.13
AS=(14.06+04)J K ' mole™! (T=298K). 8.13.14

From (13) and (14) we derive incidentally

AH=AG+TAS
=(—66.17+4.22) kJ mole ™!
=—61.95 kJ mole™*
= —14.81 kcal mole ™! 8.13.15

with which may be compared the calorimetrically measured value*
—14.97 kcal mole™!.

We must now convert the value of AS at 298 K given by (14) to the corre-
sponding value in the limit 7—0. The following calorimetric data are
available' for S(298 K)—S(0).

Agl  (1155+1.2)J K ' mole™! 8.13.16
Ag (42.54£0.4) J K™ ' mole ™! 8.13.17
1 58.4J K™ mole™". 8.13.18

Although accurate calorimetric data for Agl are available down to T=15K,

at this temperature C/R has the exceptionally high value 1.45 which leads

to the rather high uncertainty, due to the extrapolation to T=0, shown in (16).
Combining (16), (17), and (18) we obtain for the process (9)

AS(298 K)—AS(0)=(14.6+1.2) J K~ ! mole™". 8.13.19

* Webb, J. Phys. Chem. 1925 29 827.

t Agl, see Pitzer, J. Amer. Chem. Soc. 1941 63 516; Ag, :see Griffiths and Griffiths, Proc.
Roy. Soc. A 1914 90 557; I, see Lange, Z. Physik. Chem. 1924 110 343. Experimental data
for Ag and I recomputed by Kelley, U.S. Bureau of Mines 1932 Bulletin 350.
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Now comparing (19) with (14) we obtain
AS(0)=(—-0.5+1.3)J K™ ! mole™ . 8.13.20

so that within the experimental accuracy AS(0)=0 in agreement with
Nernst’s heat theorem.

§8.14 Cells without transference

When a galvanic cell contains only two solutions, one surrounding each
electrode, and these two solutions are so nearly alike in composition that
they may be regarded as identical except with respect to the reactions at the
electrodes, the cell is called a cell without transference. When a current
flows through the cell there is in fact necessarily transference of some elec-
trolyte from the one electrode to the other, but if the two electrode solutions
are of nearly identical composition the changes in the chemical potentials
of the electrolytes transferred are negligible and so this transference is with-
out importance.

As a typical example of a cell without transference we again consider
the cell

| Solution I Solution II l
Pt, H, | Aqueous HCI Aqueous HCI AgClAg' Pt 8.14.1
saturated with H, | saturated with AgCl

When one mole of positive charge flows from the left to the right, the
following changes take place:

(a) at the left electrode
H,(g)»H*(aq I) 8.14.2

(b) at the right electrode
AgCl(s)—»Ag(s)+Cl (aq II) 8.14.3

(c) there is a simultaneous transfer of some H™ ions from left to right and
of Cl™ ions from right to left such that the net transfer of charge from
left to right is one mole and that electrical neutrality is preserved in
both electrode solutions.

Since however we ignore the effect on the properties of the HCI of saturating
the solution with either H, or AgCl, we need not distinguish between the
two electrode solutions. We may therefore replace (1) by

Pt, H, | Aqueous HCl | AgCl | Ag| Pt 8.14.4
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Correspondingly (a) and (b) reduce to
(a)  3H,(g)»H"(aq) 8.14.5
(b)  AgCl(s)»Ag(s)+Cl (aq) 8.14.6

and (c) may be ignored. Thus the process accompanying the flow of one
mole of charge reduces to the chemical change

1H,(g)+AgCl(s)—»Ag(s)+ H ™ (ag)+ Ci™(aq) 8.14.7

for which
AG = pijb+ pnci— 31, — Hascl 8.14.8
where the superscript © denotes the gas phase and uyc, denotes the chemical

potential of HCI in the solution.
Substituting (8) into (8.11.4) we obtain

FE= — 38— pyci + hu, + A% 8.14.9

in agreement with (8.10.23).

Explicit formulae for all cells without transference can be obtained
similarly. We shall merely quote, without detailed derivation, one other
example

Solution containing | Solution containing |

Sn’* and Sn** Fe?* and Fe** Pt SaA410

Pt

Provided that both electrode solutions contain a preponderating excess of
other electrolytes and have nearly the same composition so that we may
regard them as a single solution, the process accompanying the flow of one
mole of positive charge from left to right is the chemical change

1Sn** + Fe**4Sn** + Fe?* 8.14.11
for which
AG=-};¢S,,4+ + Upez+ —&us,,u — UFe3+ - 8.14.12

Consequently
FE= %,uSnz ++ HFes+ — %ﬁuSn“ + ™ Upez+
=fHSnc12+#Fec1,—%#Sncu— HUreci, 8.14.13

provided there is some Cl~ ion in the solutions.

§8.15 Standard electromotive force

Let us return to the cell described by (8.14.4) and rewrite formula (8.14.9)
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for its electromotive force in terms of absolute activities. We have
FE[RT = —In A3—In Ay —In A- + 3 In A5, +1n A3, 8.15.1

where we have denoted the solid phase by the superscript 5, the gas phase by
the superscript ©, and the liquid phase by no superscript. Using (7.09.1) and
(3.17.1) we can rewrite (1) as

FE/RT=FEe/RT—ln(mH+ mCl—'}’%]. Cl)+% ln(sz/Pe) 8.15.2

where P° denotes the standard pressure, taken to be one atmosphere, and E°
is defined by

FE®|RT=—In A5, —InAg: —In A§-+3In A3, +In &5, 8.15.3

This quantity E° is independent of the composition of the solution and
independent of the pressure of the gaseous hydrogen and is called the
standard electromotive force of cells having the specified electrodes in the
specified solvent at a specified temperature.

Similarly the electromotive force of the cell described by (8.14.10) can be
expressed by the formula

S
FE _FE” 4 jpMsnteVsmts g Mress Veere 8.15.4
RT RT Mgn2 + Psn2+ MEez+ Yrez+

in which the standard electromotive force E€ is defined by

e o "9
UL A 1 8.15.5
RT Asn2+ A,Fe2+

It can readily be verified that in all these formulae only such combinations
of 4°’s and of y’s occur as satisfy the condition (7.04.17) with (7.04.18).

Formulae such as the above have two applications. Firstly by making
measurements of £ over a range of molalities as low as possible and extra-
polation with the help of formulae such as those of §7.20 we can obtain the
value of the standard electromotive force E°. Secondly having determined
the value of £° by extrapolation we can insert this value into the formulae
and so obtain information about certain combinations of activity coefficients
in solutions of given composition.

§8.16 Numerical example

We shall illustrate the procedure described in the previous section by an
example. We choose the cell
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Aqueous HCI

Pt, H, molality m

Hg 8.16.1

] HgCl

for which there exist measurements* at 25 °C of exceptionally high accuracy.
The electromotive force of this cell is given by

FE=FE® —2RTInm—2RTIny 8.16.2

where m is the molality and y the mean activity coefficient of HCl. We
assume that at sufficiently high dilutions y can be represented by

Iny=—am*(14+m*) "' +2pm 8.16.3

where o has the value determined by (7.17.10) arid f is an adjustable constant.
We now define the experimental quantity E°’ by

E®'=E+(2RT/F)In m—(2RT/F)am*(1 4+ m*)~ ' 8.16.4
Using (3) and (4) in (2) we obtain
E®' =E® —(4RT/F)pm. 8.16.5

If then we plot E°' against m, in so far as y can be represented by formula
(3), we shall obtain a straight line of slope —4RTB/F and of intercept at
m=0 equal to E®. This plot is shown in figure 8.1 from which we find that
E® =267.96 mV and f=0.270. We further see from the diagram that with
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Fig. 8.1. Determination of E® by extrapolation to m=0

* Hills and Ives, J. Chem. Soc. 1951 315.
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this value of f§ formula (3) is as accurate as the experimental measurements
for all values of m up to about 0.08.

§8.17 Standard electromotive force of half-cell

Let us consider the three cells

Solution Solution

Pt, H, containing H* | containing Ci~ AgCl]Ag.Pt 8.17.1
Solution Solution |
Pt, H, containing Pt 8.17.2

ntaining H*
contaiming Sn?* and Sn**

Solution
Pt containing
Sn?* and Sn*

In each cell we assume that the two electrode solutions have nearly the
same composition. The standard electromotive forces of the three cells
are given respectively by

FE®°|RT=%1InAg,—In A8+ +1In 23, —In 25, ~In 18- 8.17.4
FE®|RT=4%In 5, ~In A5. +3 In(ASe+/AS24) 8.17.5
FE®|RT=—}In(Agu+[Agpz+)+In B, —In 25, —In AS-  8.17.6

Solution

+ | containing CI~ AgCl | Ag Pt 8.17.3

and we observe that the value of E® for the third cell is equal to the difference
between the values of E® for the first and second cells. It is clear from this
example that if there are available n different kinds of electrodes, although
these can be paired to give 4n(n—1) different cells, only n—1 of these E°
values are independent. For example if we know the E€ values for all cells
in which one of the electrodes is the Pt, H, electrode, then the E° values of
all other:combinations can be obtained by adding and subtracting.

The E® value of a cell consisting of an electrode o and a Pt,H, electrode
is called the standard electromotive force of the half-cell o. We recall the
convention that a positive value of E means that the electrode on the right
is positive. We shall now illustrate by an example how this convention is
extended to the electromotive force of half-cells.

We may state that the right hand half-cell

Cl™ | AgCl | Ag 8.17.7

has the standard electromotive foice ES =222.5 mV at 25 °C. This means
that the cell
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Solution
containing Cl1™

Solution
containing H* Ag  8.17.8

Pt, H, 'AgCl

has E®=222.5mV with the electrode on the right positive. Alternatively
we may state that the left hand half-cell

Ag|Agcl|cl 8.17.9

has the standard electromotive force Ef = —222.5 mV at 25 °C. This means
that the cell

Solution
containing H*

Solution

containing CI~ Pt,H, 8.17.10

Ag l AgCl

has E° = —222.5 mV with the electrode on the right negative. These con-
ventions, which are unambiguous, have now been internationally agreed.*

§8.18 Cells with transference with two similar electrodes

Any cell which does not satisfy the conditions in the definition of a cell
without transference, is called a cell with transference. The detailed discussion
of a cell with transference is more involved than that of a cell without trans-
Sference. We shall initially restrict ourselves to the case that the two electro-
des are of the same chemical nature so that the chemical processes taking
place at the electrodes are the converse of each other. For example we may
consider the cell

| Solution I| o .. |Solution II
Ag | AgCl| containing . containing |AgCl |[Ag  8.18.1
ar- solutions ar-

We assume that the two electrode solutions I and 1I are connected by
bridge solutions in which the composition varies continuously. It is essential
to exclude any discontinuity of composition, for in that case the passage
of an infinitesimal current would not be reversible and it would not then be
possible to apply thermodynamic equations. Suppose for example in two
solutions in contact the cation Na* were present in that on the left but not
that on the right, while the cation K* were present in the solution on the
right but not that on the left. Then an infinitesimal current from left to right
would transfer Na* from the left solution to the right solution. Reversal
of the current would on the other hand transfer K* from the right solution
to the left solution. If however any two solutions in contact differ only

* LU.P.A.C,, C.R. XVII Conference 1953 p. 83; L.U.P.A.C. Manual of Physico-
chemical Symbols and Terminology, Butterworths 1959.
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infinitesimally in composition, the passage of current will be reversible. It is
true that simultaneously there is taking place an irreversible diffusion between
the two solutions tending to equalize their compositions.

This condition of continuity of composition is the only condition imposed
on the nature of the bridge solutions. In view of this condition the compo-
sitions of the outermost bridge solutions are identical respectively with
those of the electrode solutions. If the bridge solutions are formed by
natural mixing or interdiffusion of the two electrode solutions, then their
compositions throughout will be intermediate between those of the two
electrode solutions. On the other hand the middle portion of the bridge
solutions may consist of a solution of entirely different composition from
either electrode solution, but such solution must be connected to each
electrode solution through solutions of continuously varying composition.
The formulae which we are about to derive are applicable to all cases, but
we begin by considering the more elementary cell

| Solution Solution
]molalities m | molalities m+dm

Ag } AgCl AgCl 1 Ag 8.18.2
where the two electrode solutions differ only infinitesimally in composition.

Even in the elementary cell (2) there is not thermodynamic equilibrium
and there is inevitably a state of interdiffusion between the two solutions.
We are consequently compelled to introduce some assumption extraneous
to classical thermodynamics which applies strictly only to equilibrium
conditions. Initially we make the simplest, but not the least restrictive,
assumption leading to correct conclusions. In chapter 13 it will be shown
how the same conclusions can be reached by a less restrictive assumption.
We here assume that the flow J; per unit area per unit time of the ionic
species i is directly proportional to the gradient of its electrochemical
potential u;. We may, for simplicity and without any loss of generality in
our conclusions, assume that the gradients are in the y-direction. Our
assumption thus becomes

Ji=—Lidﬂi/dy 818.3
where L; may depend on the composition of the solution but is independent
of the gradient of the composition and independent of the flow. We consider
the condition of zero electric current which exists when the cell circuit is
open or alternatively when the cell is exactly balanced against a potentio-
meter bridge. At each electrode we have the equilibrium

Cl™ +Ag=AgCl+el” 8.18.4

where Cl~ denotes chloride ion in solution and el ~ denotes an electron in the
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silver. The condition for this equilibrium is
zgt dpg- = —dpy - 8.18.5

since the silver has the same chemical potential at both ends and likewise
the silver chloride. The charge number of the chloride ion is of course —1,
but we have deliberately displayed it as z.,- in order to facilitate generali-
zation to other cells having electrodes reversible with respect to ions other
than the chloride ion. The electromotive force dE of the cell (2) is then given
by

FdE= —dp, - =25 dpg - 8.18.6

which we may also write as
FdEjdy=z5dug-/dy. 8.18.7
The condition for zero electric current is

ZZ,'Ji=O. 8.18.8

Substituting (3) into (8) we have
Y z;L;du,/dy=0. 8.18.9

We now multiply (7) by Z;z2L,; and subtract (9) obtaining
Y 2L, FAE[dy=Y z2L(—z 'dw/dy+z& duc-/dy)  8.18.10

and consequently

FdE[dy=Y z}L(—z ‘du/dy+zq" dug-/dy)/y. z2L;.  8.18.11

Formulae (10) and (11) in contrast to the deceptively simpler formula (7)
contain only such linear combinations of dy;’s as satisfy the condition
for unambiguity (7.04.18).

Formula (11) is a complete and unambiguous formula for the electromotive
force in terms of the quantities L; defined in our assumption (3). We can
however transform the expression on the right of (11) into a more perspicuous
form by considering the different condition where the two electrode solutions
are identical and an external potential difference dE°® is applied across the
electrodes. Under these conditions we have

z7'dy=FdE*  (all i). 8.18.12
Hence according to (3)

J,'= _ziLleEe/dy (all i) 8-18'13
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and the electrical current per unit cross-section carried by the ionic species j
will be
z;FJ;= —z?L,F*dE*/dy. 8.18.14

The fraction of the total current carried by the ionic species i, called the
transport number t; of the species i is then given by

ti=z7L(Y z}L,. 8.18.15
i

Comparing (11) with (15) we deduce
FdE:Z t(—z; 'dp+zg- dpr-). 8.18.16

Returning now to cell (1) we see that this may always be regarded as several
cells of type (2) in series, all electrodes other than the two extreme ones
cancelling in pairs. We accordingly deduce from (16) for the electromotive
force E of cell (1)

FE= fz t(—z; 'dp+zgt dug-) 8.18.17

where the integration extends through all the bridge solutions from the left
electrode solution I to the right electrode solution II.
We can rewrite (17) in terms of absolute activities as

FE/RT=J.Zt,-(—z,.“d1n L+zaldin Ag-) 8.18.18

i

or in terms of molalities and activity coefficients as
FE/RT=JZti{—z,-"‘dln(miyi)+za’_dIn(mCl_yCl-)}. 8.18.19

We again stress that only such combinations of activity coefficients occur in
(19) as are, in accordance with the condition (7.04.18), unambiguously
defined.

§8.19 Cells containing single electrolytes

Formula (8.18.19) gives an explicit value of the electromotive force E, but to
apply it or test it we require to know the values of the transport numbers of
all cations, and all anions throughout the bridge solutions. This in turn
involves a knowledge of the compositions of all the continuous series of
solutions forming the bridge. Since this knowledge is usually not available,
formula (8.18.19) though exact is not of much use except in specially simple
cases.
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The simplest and the most useful example of a cell with transference is
that in which there is only one kind of cation and one kind of anion in the
whole cell. Let us consider for example the cell

Transition
layer

Aqueous MgCl,
at molality m,

Aqueous MgCl,

Ag‘ AgCl at molality m,

AgCl l Ag
8.19.1

We use the name transition layer to denote the naturally formed bridge
between the two electrode solutions consisting entirely of solutions of
MgCl, of intermediate compositions. For the cell (1) formula (8.18.19)
reduces to

m=mz
FE/RT= J‘ _ hand tMgzq-{%d ll'l(mMgz+ '}’Mgz+)+d ln(ma- '}’C|—)}
= —%f tMg2+d ln(m3 yl?rig, Cl) 8.19.2

where m denotes the molality and yy,, ¢, the mean activity coefficient of the
electrolyte MgCl,.

Since in solutions containing only the single electrolyte MgCl, the value of
tug2+ depends only on the molality, the integral in (2) is completely defined
and is independent of how the molality varies across the transition layer.
In particular it is independent of whether the transition layer has been formed
mainly by mixing of the two electrode solutions or mainly by interdiffusion
between them.

If the molalities of the two electrode solutions do not differ greatly from
each other, it may be legitimate to neglect the variation of #yg,.+ with compo-
sition. In this case (2) simplifies to

FE/RT=—%tM82+ ln(mz‘yz/mlyl) 8.19.3

where 7,, 7y, denote the mean activity coefficients of MgCl, in solutions of
molality m,, m, respectively.

If the values of yy,, ¢, are known either from measurements of the electro-
motive force of cells without transference or by freezing-point measurements
combined with use of the Gibbs-Duhem relation, then formula (2) can be
used to give information concerning the transport number .+ . Conversely
if there are independent measurements of this transport number, then for-
mula (2) may be used to give information about the dependence of the mean
activity coefficient yy, ¢ on the molality.
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§8.20 Cells with transference having two dissimilar electrodes

In §8.14 we discussed cells without transference and in §8.18 cells with
transference having two similar electrodes. We have still to consider cells
with transference having two dissimilar electrodes. These are most easily
disposed of by regarding them as a combination of the two types of cell
previously discussed. This will be made clear by a typical example. The cell

Solution II
containing HCI

Bridge
solutions

Solution I

Pt H, containing HCI

AgCl

Ag ‘ Pt 8.20.1

may be regarded as a combination of the two cells

Solution I

containing HCl Pt 8.20.2

! AgCl ’ Ag

Pt, H,

Solution II
containing HCI

Bridge

| Solution I
solutions

Pt icontaining HCl

AgCl

Ag{Pt 8.20.3

Ag !AgCl

i

Consequently the electromotive force of the cell (1) is the sum of those of
the cells (2) and (3). But cell (2) is without transference and, as shown in
§8.14, its electromotive force E, is given by

FE;= — pg8+3ug, + pasa — thci 8.20.4

where the superscript ' refers to the solution I. Cell (3) on the other hand has
two similar electrodes and its electromotive force E; is given by (8.18.17)

I
FE;=— l ;tk(zlzldﬂk—zal'dﬂcl')

1)

- fl ; tx(zx ' dpux—zgt dug-) 8.20.5
wherein we recall that z - = —1 and all the z, are negative integers. The
electromotive force E, of the cell 1 is then given by

E,=E,+E,. 8.20.6

The accurate expressions for the electromotive force of the most general
type of cell with transference were formulated by P. B. Taylor.*

* Taylor, J. Phys. Chem. 1927 31 1478; Cf. Guggenheim, J. Phys. Chem. 1930 34 1758.



