
Chapter 5

Angular Momentum

5.1 Introduction

After treating one-dimensional problems in Chapter 4, we now should deal with three-dimensional

problems. However, the study of three-dimensional systems such as atoms cannot be under-

taken unless we first cover the formalism of angular momentum. The current chapter, therefore,

serves as an essential prelude to Chapter 6.

Angular momentum is as important in classical mechanics as in quantum mechanics. It

is particularly useful for studying the dynamics of systems that move under the influence of

spherically symmetric, or central, potentials, V r V r , for the orbital angular momenta of
these systems are conserved. For instance, as mentioned in Chapter 1, one of the cornerstones
of Bohr’s model of the hydrogen atom (where the electron moves in the proton’s Coulomb

potential, a central potential) is based on the quantization of angular momentum. Additionally,

angular momentum plays a critical role in the description of molecular rotations, the motion

of electrons in atoms, and the motion of nucleons in nuclei. The quantum theory of angular

momentum is thus a prerequisite for studying molecular, atomic, and nuclear systems.

In this chapter we are going to consider the general formalism of angular momentum. We

will examine the various properties of the angular momentum operator, and then focus on de-

termining its eigenvalues and eigenstates. Finally, we will apply this formalism to the determi-

nation of the eigenvalues and eigenvectors of the spin and orbital angular momenta.

5.2 Orbital Angular Momentum

In classical physics the angular momentum of a particle with momentum p and position r is
defined by

L r p ypz zpy i zpx xpz j xpy ypx k (5.1)

The orbital angular momentum operator L can be obtained at once by replacing r and p by the

corresponding operators in the position representation, R and P ih :

L R P ihR (5.2)
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The Cartesian components of L are

Lx Y Pz Z Py ih Y
z

Z
y

(5.3)

L y Z Px X Pz ih Z
x

X
z

(5.4)

L z X Py Y Px ih X
y

Y
x

(5.5)

Clearly, angular momentum does not exist in a one-dimensional space. We should mention that

the components Lx , L y , Lz , and the square of L ,

L
2

L2x L2y L2z (5.6)

are all Hermitian.

Commutation relations

Since X , Y , and Z mutually commute and so do Px , Py , and Pz , and since [X Px ] ih,

[Y Py] ih, [Z Pz] ih, we have

[Lx L y] [Y Pz Z Py Z Px X Pz]

[Y Pz Z Px ] [Y Pz X Pz] [Z Py Z Px ] [Z Py X Pz]

Y [Pz Z ]Px X [Z Pz]Py ih X Py Y Px

ihLz (5.7)

A similar calculation yields the other two commutation relations; but it is much simpler to infer

them from (5.7) by means of a cyclic permutation of the xyz components, x y z x :

[Lx L y] ihL z [L y Lz] ihLx [L z Lx ] ihL y (5.8)

As mentioned in Chapter 3, since Lx , L y , and Lz do not commute, we cannot measure them
simultaneously to arbitrary accuracy.

Note that the commutation relations (5.8) were derived by expressing the orbital angular

momentum in the position representation, but since these are operator relations, they must
be valid in any representation. In the following section we are going to consider the general

formalism of angular momentum, a formalism that is restricted to no particular representation.

Example 5.1

(a) Calculate the commutators [X Lx ], [X L y], and [X Lz].

(b) Calculate the commutators: [Px Lx ], [Px L y], and [Px Lz].

(c) Use the results of (a) and (b) to calculate [X L2] and [Px L2].
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Solution

(a) The only nonzero commutator which involves X and the various components of Lx , L y ,

Lz is [X Px ] ih. Having stated this result, we can easily evaluate the needed commutators.
First, since Lx Y Pz Z Py involves no Px , the operator X commutes separately with Y , Pz ,

Z , and Py ; hence

[X Lx ] [X Y Pz Z Py] 0 (5.9)

The evaluation of the other two commutators is straightforward:

[X L y] [X Z Px X Pz] [X Z Px ] Z [X Px ] ihZ (5.10)

[X L z] [X X Py Y Px ] [X Y Px ] Y [X Px ] ihY (5.11)

(b) The only commutator between Px and the components of Lx , L y , L z that survives is

again [Px X] ih. We may thus infer

[Px Lx ] [Px Y Pz Z Py] 0 (5.12)

[Px L y] [Px Z Px X Pz] [Px X Pz] [Px X ]Pz ihPz (5.13)

[Px Lz] [Px X Py Y Px ] [Px X Py] [Px X]Py ihPy (5.14)

(c) Using the commutators derived in (a) and (b), we infer

[X L2] [X L2x ] [X L2y] [X L2z ]

0 L y[X L y] [X L y]L y Lz[X Lz] [X L z]Lz

ih L yZ ZL y LzY Y L y (5.15)

[Px L2] [Px L2x ] [Px L2y] [Px L2z ]

0 L y[Px L y] [Px L y]L y Lz[Px L z] [Px L z]Lz

ih L yPz PzL y LzPy PyL y (5.16)

5.3 General Formalism of Angular Momentum

Let us now introduce a more general angular momentum operator J that is defined by its three
components Jx Jy and Jz , which satisfy the following commutation relations:

[Jx Jy] ih Jz [Jy Jz] ih Jx [Jz Jx ] ih Jy (5.17)

or equivalently by

J J ih J (5.18)

Since Jx , Jy , and Jz do not mutually commute, they cannot be simultaneously diagonalized;
that is, they do not possess common eigenstates. The square of the angular momentum,

J2 J 2x J 2y J 2z (5.19)
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is a scalar operator; hence it commutes with Jx Jy and Jz:

[J2 Jk] 0 (5.20)

where k stands for x y, and z. For instance, in the the case k x we have

[J 2 Jx ] [J 2x Jx ] Jy[Jy Jx ] [Jy Jx ]Jy Jz[Jz Jx ] [Jz Jx ]Jz

Jy ih Jz ih Jz Jy Jz ih Jy ih Jy Jz

0 (5.21)

because [J2x Jx ] 0, [Jy Jx ] ih Jz , and [Jz Jx ] ih Jy . We should note that the

operators Jx , Jy , Jz , and J 2 are all Hermitian; their eigenvalues are real.

Eigenstates and eigenvalues of the angular momentum operator

Since J 2 commutes with Jx , Jy and Jz , each component of J can be separately diagonalized

(hence it has simultaneous eigenfunctions) with J 2. But since the components Jx , Jy and Jz
do not mutually commute, we can choose only one of them to be simultaneously diagonalized

with J2. By convention we choose Jz . There is nothing special about the z-direction; we can

just as well take J2 and Jx or J 2 and Jy .

Let us now look for the joint eigenstates of J 2 and Jz and their corresponding eigenvalues.

Denoting the joint eigenstates by and the eigenvalues of J 2 and Jz by h
2 and h ,

respectively, we have

J 2 h2 (5.22)

Jz h (5.23)

The factor h is introduced so that and are dimensionless; recall that the angular momentum

has the dimensions of h and that the physical dimensions of h are: [h] energy time. For

simplicity, we will assume that these eigenstates are orthonormal:

(5.24)

Now we need to introduce raising and lowering operators J and J , just as we did when
we studied the harmonic oscillator in Chapter 4:

J Jx i Jy (5.25)

This leads to

Jx
1

2
J J Jy

1

2i
J J (5.26)

hence

J 2x
1

4
J 2 J J J J J 2 J 2y

1

4
J 2 J J J J J2 (5.27)

Using (5.17) we can easily obtain the following commutation relations:

[J 2 J ] 0 [J J ] 2hJz [Jz J ] hJ (5.28)
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In addition, J and J satisfy

J J J 2x J 2y hJz J2 J2z hJz (5.29)

J J J2x J2y hJz J 2 J 2z hJz (5.30)

These relations lead to

J2 J J J2z hJz (5.31)

which in turn yield

J 2
1

2
J J J J J 2z (5.32)

Let us see how J operate on . First, since J do not commute with Jz , the kets
are not eigenstates of J . Using the relations (5.28) we have

Jz J J Jz hJ h 1 J (5.33)

hence the ket (J ) is an eigenstate of Jz with eigenvalues h 1 . Now since Jz and

J2 commute, (J ) must also be an eigenstate of J 2. The eigenvalue of J 2 when acting

on J can be determined by making use of the commutator [J2 J ] 0. The state

(J is also an eigenstate of J 2 with eigenvalue h2 :

J2 J J J 2 h2 J (5.34)

From (5.33) and (5.34) we infer that when J acts on , it does not affect the first quantum

number , but it raises or lowers the second quantum number by one unit. That is, J
is proportional to 1 :

J C 1 (5.35)

We will determine the constant C later on.

Note that, for a given eigenvalue of J 2, there exists an upper limit for the quantum number

. This is due to the fact that the operator J 2 J2z is positive, since the matrix elements of

J2 J2z J 2x J 2y are 0; we can therefore write

J 2 J 2z h2 2 0 2 (5.36)

Since has an upper limit max , there must exist a state max which cannot be raised

further:

J max 0 (5.37)

Using this relation along with J J J 2 J2z hJz , we see that J J max 0 or

J2 J2z hJz max h2 2
max max max (5.38)
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hence

max max 1 (5.39)

After n successive applications of J on max , we must be able to reach a state min

which cannot be lowered further:

J min 0 (5.40)

Using J J J 2 J 2z hJz , and by analogy with (5.38) and (5.39), we infer that

min min 1 (5.41)

Comparing (5.39) and (5.41) we obtain

max min (5.42)

Since min was reached by n applications of J on max , it follows that

max min n (5.43)

and since min max we conclude that

max
n

2
(5.44)

Hence max can be integer or half-odd-integer, depending on n being even or odd.
It is now appropriate to introduce the notation j and m to denote max and , respectively:

j max
n

2
m (5.45)

hence the eigenvalue of J 2 is given by

j j 1 (5.46)

Now since min max , and with n positive, we infer that the allowed values of m lie
between j and j :

j m j (5.47)

The results obtained thus far can be summarized as follows: the eigenvalues of J 2 and Jz
corresponding to the joint eigenvectors j m are given, respectively, by h2 j j 1 and hm:

J2 j m h2 j j 1 j m and Jz j m hm j m (5.48)

where j 0, 1 2, 1, 3 2 andm j , j 1 , , j 1, j . So for each j there are 2 j 1

values of m. For example, if j 1 then m takes the three values 1, 0, 1; and if j 5 2 then

m takes the six values 5 2, 3 2, 1 2, 1 2, 3 2, 5 2. The values of j are either integer or

half-integer. We see that the spectra of the angular momentum operators J 2 and Jz are discrete.
Since the eigenstates corresponding to different angular momenta are orthogonal, and since the

angular momentum spectra are discrete, the orthonormality condition is

j m j m j j m m (5.49)
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Let us now determine the eigenvalues of J within the j m basis; j m is not an

eigenstate of J . We can rewrite equation (5.35) as

J j m C jm j m 1 (5.50)

We are going to derive C j m and then infer C j m . Since j m is normalized, we can use (5.50)

to obtain the following two expressions:

J j m † J j m C jm
2 j m 1 j m 1 C j m

2 (5.51)

C jm
2

j m J J j m (5.52)

But since J J is equal to J2 J 2z h Jz , and assuming the arbitrary phase of C j m to be
zero, we conclude that

C jm j m J2 J2z hJz j m h j j 1 m m 1 (5.53)

By analogy with C j m we can easily infer the expression for C j m :

C jm h j j 1 m m 1 (5.54)

Thus, the eigenvalue equations for J and J are given by

J j m h j j 1 m m 1 j m 1 (5.55)

or

J j m h j m j m 1 j m 1 (5.56)

which in turn leads to the two relations:

Jx j m
1

2
J J j m

h

2
j m j m 1 j m 1 j m j m 1 j m 1

(5.57)

Jy j m
1

2i
J J j m

h

2i
j m j m 1 j m 1 j m j m 1 j m 1

(5.58)

The expectation values of Jx and Jy are therefore zero:

j m Jx j m j m Jy j m 0 (5.59)

We will show later in (5.208) that the expectation values j m J2x j m and j m J 2y
j m are equal and given by

J2x J2y
1

2
j m J2 j m j m J2z j m

h2

2
j j 1 m2

(5.60)



290 CHAPTER 5. ANGULAR MOMENTUM

Example 5.2

Calculate [J2x Jy], [J 2z Jy], and [J 2 Jy]; then show j m J2x j m j m J 2y
j m .

Solution

Since [Jx Jy] ih Jz and [Jz Jx ] ih Jy , we have

[J 2x Jy] Jx [Jx Jy] [Jx Jy]Jx ih Jx Jz Jz Jx ih 2Jx Jz ih Jy (5.61)

Similarly, since [Jz Jy] ih Jx and [Jz Jx ] ih Jy , we have

[J 2z Jy] Jz[Jz Jy] [Jz Jy]Jz ih Jz Jx Jx Jz ih 2Jx Jz ih Jy (5.62)

The previous two expressions yield

[J2 Jy] [J2x J 2y J 2z Jy] [J2x Jy] [J 2z Jy]

ih 2Jx Jz ih Jy ih 2Jx Jz ih Jy 0 (5.63)

Since we have

J 2x
1

4
J2 J J J J J 2 J2y

1

4
J2 J J J J J 2 (5.64)

and since j m J2 j m j m J 2 j m 0, we can write

j m J2x j m
1

4
j m J J J J j m j m J 2y j m (5.65)

5.4 Matrix Representation of Angular Momentum

The formalism of the previous section is general and independent of any particular representa-

tion. There are many ways to represent the angular momentum operators and their eigenstates.

In this section we are going to discuss the matrix representation of angular momentum where

eigenkets and operators will be represented by column vectors and square matrices, respec-

tively. This is achieved by expanding states and operators in a discrete basis. We will see later

how to represent the orbital angular momentum in the position representation.

Since J 2 and Jz commute, the set of their common eigenstates j m can be chosen as a

basis; this basis is discrete, orthonormal, and complete. For a given value of j , the orthonormal-
ization condition for this base is given by (5.49), and the completeness condition is expressed

by
j

m j

j m j m I (5.66)

where I is the unit matrix. The operators J2 and Jz are diagonal in the basis given by their joint
eigenstates

j m J2 j m h2 j j 1 j j m m (5.67)

j m Jz j m hm j j m m (5.68)
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Thus, the matrices representing J 2 and Jz in the j m eigenbasis are diagonal, their diago-

nal elements being equal to h2 j j 1 and hm, respectively.
Now since the operators J do not commute with Jz , they are represented in the j m

basis by matrices that are not diagonal:

j m J j m h j j 1 m m 1 j j m m 1 (5.69)

We can infer the matrices of Jx and Jy from (5.57) and (5.58):

j m Jx j m
h

2
j j 1 m m 1 m m 1

j j 1 m m 1 m m 1 j j (5.70)

j m Jy j m
h

2i
j j 1 m m 1 m m 1

j j 1 m m 1 m m 1 j j (5.71)

Example 5.3 (Angular momentum j 1)

Consider the case where j 1.

(a) Find the matrices representing the operators J 2, Jz , J , Jx , and Jy .

(b) Find the joint eigenstates of J2 and Jz and verify that they form an orthonormal and
complete basis.

(c) Use the matrices of Jx , Jy and Jz to calculate [Jx Jy], [Jy Jz], and [Jz Jx ].

(d) Verify that J 3z h2 Jz and J 3 0.

Solution

(a) For j 1 the allowed values of m are 1, 0, 1. The joint eigenstates of J 2 and Jz are

1 1 , 1 0 , and 1 1 . The matrix representations of the operators J 2 and Jz can be
inferred from (5.67) and (5.68):

J 2
1 1 J2 1 1 1 1 J 2 1 0 1 1 J2 1 1

1 0 J2 1 1 1 0 J 2 1 0 1 0 J2 1 1

1 1 J2 1 1 1 1 J 2 1 0 1 1 J 2 1 1

2h2
1 0 0

0 1 0

0 0 1

(5.72)

Jz h
1 0 0

0 0 0

0 0 1

(5.73)

Similarly, using (5.69), we can ascertain that the matrices of J and J are given by

J h 2

0 0 0

1 0 0

0 1 0

J h 2

0 1 0

0 0 1

0 0 0

(5.74)
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The matrices for Jx and Jy in the j m basis result immediately from the relations Jx
J J 2 and Jy i J J 2:

Jx
h

2

0 1 0

1 0 1

0 1 0

Jy
h

2

0 i 0

i 0 i
0 i 0

(5.75)

(b) The joint eigenvectors of J2 and Jz can be obtained as follows. The matrix equation of
Jz j m mh j m is

h
1 0 0

0 0 0

0 0 1

a
b
c

mh
a
b
c

ha mha
0 mhb
hc mhc

(5.76)

The normalized solutions to these equations for m 1, 0, 1 are respectively given by a 1,

b c 0; a 0, b 1, c 0; and a b 0, c 1; that is,

1 1

1

0

0

1 0

0

1

0

1 1

0

0

1

(5.77)

We can verify that these vectors are orthonormal:

1 m 1 m m m m m 1 0 1 (5.78)

We can also verify that they are complete:

1

m 1

1 m 1 m
0

0

1

0 0 1

0

1

0

0 1 0

1

0

0

1 0 0

1 0 0

0 1 0

0 0 1

(5.79)

(c) Using the matrices (5.75) we have

Jx Jy
h2

2

0 1 0

1 0 1

0 1 0

0 i 0

i 0 i
0 i 0

h2

2

i 0 i
0 0 0

i 0 i
(5.80)

Jy Jx
h2

2

0 i 0

i 0 i
0 i 0

0 1 0

1 0 1

0 1 0

h2

2

i 0 i
0 0 0

i 0 i
(5.81)

hence

Jx Jy Jy Jx
h2

2

2i 0 0

0 0 0

0 0 2i
ih2

1 0 0

0 0 0

0 0 1

ih Jz (5.82)

where the matrix of Jz is given by (5.73). A similar calculation leads to [Jy Jz] ih Jx and

[Jz Jx ] ih Jy .
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Figure 5.1 Geometrical representation of the angular momentum J : the vector J rotates along

the surface of a cone about its axis; the cone’s height is equal to mh, the projection of J on the

cone’s axis. The tip of J lies, within the Jz Jxy plane, on a circle of radius h j j 1 .

(d) The calculation of J 3z and J
3 is straightforward:

J 3z h3
1 0 0

0 0 0

0 0 1

3

h3
1 0 0

0 0 0

0 0 1

h2 Jz (5.83)

J 3 2h3 2

0 1 0

0 0 1

0 0 0

3

2h3 2

0 0 0

0 0 0

0 0 0

0 (5.84)

and

J 3 2h3 2

0 0 0

1 0 0

0 1 0

3

2h3 2

0 0 0

0 0 0

0 0 0

0 (5.85)

5.5 Geometrical Representation of Angular Momentum

At issue here is the relationship between the angular momentum and its z-component; this
relation can be represented geometrically as follows. For a fixed value of j , the total angular

momentum J may be represented by a vector whose length, as displayed in Figure 5.1, is given

by J
2

h j j 1 and whose z-component is Jz hm. Since Jx and Jy are separately

undefined, only their sum J 2x J 2y J2 J 2z , which lies within the xy plane, is well defined.
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Figure 5.2 Graphical representation of the angular momentum j 2 for the state 2 m with

m 2 1 0 1 2. The radius of the circle is h 2 2 1 6h.

In classical terms, we can think of J as representable graphically by a vector, whose endpoint
lies on a circle of radius h j j 1 , rotating along the surface of a cone of half-angle

cos 1 m

j j 1
(5.86)

such that its projection along the z-axis is always mh. Notice that, as the values of the quantum
number m are limited to m j , j 1, , j 1, j , the angle is quantized; the only

possible values of consist of a discrete set of 2 j 1 values:

cos 1 j

j j 1
cos 1 j 1

j j 1
cos 1 j 1

j j 1

cos 1 j

j j 1
(5.87)

Since all orientations of J on the surface of the cone are equally likely, the projection of J
on both the x and y axes average out to zero:

Jx Jy 0 (5.88)

where Jx stands for j m Jx j m .
As an example, Figure 5.2 shows the graphical representation for the j 2 case. As

specified in (5.87), takes only a discrete set of values. In this case where j 2, the angle

takes only five values corresponding respectively to m 2 1 0 1 2; they are given by

35 26 65 91 90 65 91 35 26 (5.89)
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Figure 5.3 (a) Stern–Gerlach experiment: when a beam of silver atoms passes through an

inhomogeneous magnetic field, it splits into two distinct components corresponding to spin-up

and spin-down. (b) Graphical representation of spin 1
2
: the tip of S lies on a circle of radius

S 3h 2 so that its projection on the z-axis takes only two values, h 2, with 54 73 .

5.6 Spin Angular Momentum

5.6.1 Experimental Evidence of the Spin

The existence of spin was confirmed experimentally by Stern and Gerlach in 1922 using silver

(Ag) atoms. Silver has 47 electrons; 46 of them form a spherically symmetric charge distrib-

ution and the 47th electron occupies a 5s orbital. If the silver atom were in its ground state,

its total orbital angular momentum would be zero: l 0 (since the fifth shell electron would

be in a 5s state). In the Stern–Gerlach experiment, a beam of silver atoms passes through an

inhomogeneous (nonuniform) magnetic field. If, for argument’s sake, the field were along the

z-direction, we would expect classically to see on the screen a continuous band that is symmet-
ric about the undeflected direction, z 0. According to Schrödinger’s wave theory, however,

if the atoms had an orbital angular momentum l, we would expect the beam to split into an odd
(discrete) number of 2l 1 components. Suppose the beam’s atoms were in their ground state

l 0, there would be only one spot on the screen, and if the fifth shell electron were in a 5p

state (l 1), we would expect to see three spots. Experimentally, however, the beam behaves

according to the predictions of neither classical physics nor Schrödinger’s wave theory. Instead,

it splits into two distinct components as shown in Figure 5.3a. This result was also observed for
hydrogen atoms in their ground state (l 0), where no splitting is expected.

To solve this puzzle, Goudsmit and Uhlenbeck postulated in 1925 that, in addition to its

orbital angular momentum, the electron possesses an intrinsic angular momentum which, un-
like the orbital angular momentum, has nothing to do with the spatial degrees of freedom. By

analogy with the motion of the Earth, which consists of an orbital motion around the Sun and

an internal rotational or spinningmotion about its axis, the electron or, for that matter, any other
microscopic particle may also be considered to have some sort of internal or intrinsic spinning

motion. This intrinsic degree of freedom was given the suggestive name of spin angular mo-
mentum. One has to keep in mind, however, that the electron remains thus far a structureless

or pointlike particle; hence caution has to be exercised when trying to link the electron’s spin

to an internal spinning motion. The spin angular momentum of a particle does not depend on
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Figure 5.4 (a) Orbital magnetic dipole moment of a positive charge q. (b) When an external
magnetic field is applied, the orbital magnetic moment precesses about it.

its spatial degrees of freedom. The spin, an intrinsic degree of freedom, is a purely quantum

mechanical concept with no classical analog. Unlike the orbital angular momentum, the spin
cannot be described by a differential operator.
From the classical theory of electromagnetism, an orbital magnetic dipole moment is gen-

erated with the orbital motion of a particle of charge q:

L
q

2mc
L (5.90)

where L is the orbital angular momentum of the particle, m is its mass, and c is the speed
of light. As shown in Figure 5.4a, if the charge q is positive, L and L will be in the same
direction; for a negative charge such as an electron (q e), the magnetic dipole moment

L eL 2mec and the orbital angular momentum will be in opposite directions. Similarly,
if we follow a classical analysis and picture the electron as a spinning spherical charge, then

we obtain an intrinsic or spin magnetic dipole moment S eS 2mec . This classical
derivation of S is quite erroneous, since the electron cannot be viewed as a spinning sphere;

in fact, it turns out that the electron’s spin magnetic moment is twice its classical expression.

Although the spin magnetic moment cannot be derived classically, as we did for the orbital

magnetic moment, it can still be postulated by analogy with (5.90):

S gs
e

2mec
S (5.91)

where gs is called the Landé factor or the gyromagnetic ratio of the electron; its experimental
value is gs 2 (this factor can be calculated using Dirac’s relativistic theory of the electron).

When the electron is placed in a magnetic field B and if the field is inhomogeneous, a force
will be exerted on the electron’s intrinsic dipole moment; the direction and magnitude of the

force depend on the relative orientation of the field and the dipole. This force tends to align S

along B, producing a precessional motion of S around B (Figure 5.4b). For instance, if S is

parallel to B, the electron will move in the direction in which the field increases; conversely, if

S is antiparallel to B, the electron will move in the direction in which the field decreases. For
hydrogen-like atoms (such as silver) that are in the ground state, the orbital angular momentum

will be zero; hence the dipole moment of the atomwill be entirely due to the spin of the electron.
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The atomic beamwill therefore deflect according to the orientation of the electron’s spin. Since,

experimentally, the beam splits into two components, the electron’s spin must have only two

possible orientations relative to the magnetic field, either parallel or antiparallel.

By analogy with the orbital angular momentum of a particle, which is characterized by two

quantum numbers—the orbital number l and the azimuthal number ml (with ml l, l 1,

, l 1, l)—the spin angular momentum is also characterized by two quantum numbers, the
spin s and its projection ms on the z-axis (the direction of the magnetic field), where ms s,
s 1, , s 1, s. Since only two components were observed in the Stern–Gerlach experiment,

we must have 2s 1 2. The quantum numbers for the electron must then be given by s 1
2

and ms
1
2
.

In nature it turns out that every fundamental particle has a specific spin. Some particles

have integer spins s 0, 1, 2 (the pi mesons have spin s 0, the photons have spin s 1,

and so on) and others have half-odd-integer spins s 1
2
, 3
2
, 5
2

(the electrons, protons, and

neutrons have spin s 1
2
, the deltas have spin s 3

2
, and so on). We will see in Chapter 8 that

particles with half-odd-integer spins are called fermions (quarks, electrons, protons, neutrons,
etc.) and those with integer spins are called bosons (pions, photons, gravitons, etc.).
Besides confirming the existence of spin and measuring it, the Stern–Gerlach experiment

offers a number of other important uses to quantum mechanics. First, by showing that a beam

splits into a discrete set of components rather than a continuous band, it provides additional
confirmation for the quantum hypothesis on the discrete character of the microphysical world.

The Stern–Gerlach experiment also turns out to be an invaluable technique for preparing a

quantum state. Suppose we want to prepare a beam of spin-up atoms; we simply pass an

unpolarized beam through an inhomogeneous magnet, then collect the desired component and

discard (or block) the other. The Stern–Gerlach experiment can also be used to determine the

total angular momentum of an atom which, in the case where l 0, is given by the sum of the

orbital and spin angular momenta: J L S. The addition of angular momenta is covered in
Chapter 7.

5.6.2 General Theory of Spin

The theory of spin is identical to the general theory of angular momentum (Section 5.3). By

analogy with the vector angular momentum J , the spin is also represented by a vector operator

S whose components Sx , Sy , Sz obey the same commutation relations as Jx , Jy , Jz:

[Sx Sy] ihSz [Sy Sz] ihSx [Sz Sx ] ihSy (5.92)

In addition, S2 and Sz commute; hence they have common eigenvectors:

S 2 s ms h2s s 1 s ms Sz s ms hms s ms (5.93)

where ms s, s 1, , s 1, s. Similarly, we have

S s ms h s s 1 ms ms 1 s ms 1 (5.94)

where S Sx i Sy , and

S2x S2y
1

2
S2 S2z

h2

2
s s 1 m2s (5.95)
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where A denotes A s ms A s ms .
The spin states form an orthonormal and complete basis

s ms s ms s s ms ms

s

ms s

s ms s ms I (5.96)

where I is the unit matrix.

5.6.3 Spin 1 2 and the Pauli Matrices

For a particle with spin 1
2
the quantum number ms takes only two values: ms

1
2
and 1

2
. The

particle can thus be found in either of the following two states: s ms
1
2

1
2
and 1

2
1
2
.

The eigenvalues of S 2 and Sz are given by

S2
1

2

1

2

3

4
h2

1

2

1

2
Sz
1

2

1

2

h

2

1

2

1

2
(5.97)

Hence the spin may be represented graphically, as shown in Figure 5.3b, by a vector of length

S 3h 2, whose endpoint lies on a circle of radius 3h 2, rotating along the surface of a
cone with half-angle

cos 1 ms
s s 1

cos 1 h 2

3h 2
cos 1 1

3
54 73 (5.98)

The projection of S on the z-axis is restricted to two values only: h 2 corresponding to spin-
up and spin-down.

Let us now study the matrix representation of the spin s 1
2
. Using (5.67) and (5.68) we

can represent the operators S2 and Sz within the s ms basis by the following matrices:

S2
1
2

1
2
S2 1

2
1
2

1
2

1
2

S2 1
2

1
2

1
2

1
2
S2 1

2
1
2

1
2

1
2

S2 1
2

1
2

3h2

4

1 0

0 1
(5.99)

Sz
h

2

1 0

0 1
(5.100)

The matrices of S and S can be inferred from (5.69):

S h
0 1

0 0
S h

0 0

1 0
(5.101)

and since Sx
1
2
S S and Sy

i
2
S S , we have

Sx
h

2

0 1

1 0
Sy

h

2

0 i
i 0

(5.102)

The joint eigenvectors of S2 and Sz are expressed in terms of two-element column matrices,
known as spinors:

1

2

1

2

1

0

1

2

1

2

0

1
(5.103)
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It is easy to verify that these eigenvectors form a basis that is complete,

1
2

ms
1
2

1

2
ms

1

2
ms

0

1
0 1

1

0
1 0

1 0

0 1
(5.104)

and orthonormal,

1

2

1

2

1

2

1

2
1 0

1

0
1 (5.105)

1

2

1

2

1

2

1

2
0 1

0

1
1 (5.106)

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
0 (5.107)

Let us now find the eigenvectors of Sx and Sy . First, note that the basis vectors s ms are

eigenvectors of neither Sx nor Sy ; their eigenvectors can, however, be expressed in terms of
s ms as follows:

x
1

2

1

2

1

2

1

2

1

2
(5.108)

y
1

2

1

2

1

2
i
1

2

1

2
(5.109)

The eigenvalue equations for Sx and Sy are thus given by

Sx x
h

2
x Sy y

h

2
y (5.110)

Pauli matrices

When s 1
2
it is convenient to introduce the Pauli matrices x , y , z , which are related to the

spin vector as follows:

S
h

2
(5.111)

Using this relation along with (5.100) and (5.102), we have

x
0 1

1 0 y
0 i
i 0 z

1 0

0 1
(5.112)

These matrices satisfy the following two properties:

2
j I j x y z (5.113)

j k k j 0 j k (5.114)

where the subscripts j and k refer to x y, z, and I is the 2 2 unit matrix. These two equations

are equivalent to the anticommutation relation

j k 2I j k (5.115)
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We can verify that the Pauli matrices satisfy the commutation relations

[ j k] 2i jkl l (5.116)

where jkl is the antisymmetric tensor (also known as the Levi–Civita tensor)

jkl

1 if jkl is an even permutation of x y z
1 if jkl is an odd permutation of x y z
0 if any two indices among j k l are equal.

(5.117)

We can condense the relations (5.113), (5.114), and (5.116) into

j k j k i
l

jkl l (5.118)

Using this relation we can verify that, for any two vectors A and B which commute with , we

have

A B A B I i A B (5.119)

where I is the unit matrix. The Pauli matrices are Hermitian, traceless, and have determinants
equal to 1:

†
j j Tr j 0 det j 1 j x y z (5.120)

Using the relation x y i z along with 2
z I , we obtain

x y z i I (5.121)

From the commutation relations (5.116) we can show that

ei j I cos i j sin j x y z (5.122)

where I is the unit matrix and is an arbitrary real constant.

Remarks

Since the spin does not depend on the spatial degrees of freedom, the components Sx , Sy ,

Sz of the spin operator commute with all the spatial operators, notably the orbital angular

momentum L , the position and the momentum operators R and P:

[S j Lk] 0 [S j Rk] 0 [S j Pk] 0 j k x y z (5.123)

The total wave function of a system with spin consists of a product of two parts: a

spatial part r and a spin part s ms :

s ms (5.124)

This product of the space and spin degrees of freedom is not a product in the usual sense,

but a direct or tensor product as discussed in Chapter 7. We will show in Chapter 6 that

the four quantum numbers n, l, ml , and ms are required to completely describe the state
of an electron moving in a central field; its wave function is

nlmlms r nlml r s ms (5.125)
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Since the spin operator does not depend on the spatial degrees of freedom, it acts only

on the spin part s ms and leaves the spatial wave function, nlml r , unchanged;

conversely, the spatial operators L, R, and P act on the spatial part and not on the spin
part. For spin 1

2
particles, the total wave function corresponding to spin-up and spin-down

cases are respectively expressed in terms of the spinors:

nlml
1
2
r nlml r

1

0
nlml r
0

(5.126)

nlml
1
2
r nlml r

0

1

0

nlml r
(5.127)

Example 5.4

Find the energy levels of a spin s 3
2
particle whose Hamiltonian is given by

H
h2
S2x S2y 2S2z h

Sz

and are constants. Are these levels degenerate?

Solution

Rewriting H in the form,

H
h2

S2 3S2z h
Sz (5.128)

we see that H is diagonal in the s m basis:

Em s m H s m
h2

h2s s 1 3h2m2
h
hm

15

4
m 3 m (5.129)

where the quantum number m takes any of the four values m 3
2
, 1

2
, 1
2
, 3
2
. Since Em

depends on m, the energy levels of this particle are nondegenerate.

5.7 Eigenfunctions of Orbital Angular Momentum

We now turn to the coordinate representation of the angular momentum. In this section, we are

going to work within the spherical coordinate system. Let us denote the joint eigenstates of L2

and L z by l m :

L2 l m h2l l 1 l m (5.130)

Lz l m hm l m (5.131)
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The operators L z , L2, L , whose Cartesian components are listed in Eqs (5.3) to (5.5), can be

expressed in terms of spherical coordinates (Appendix B) as follows:

Lz ih (5.132)

L2 h2
1

sin
sin

1

sin2

2

2
(5.133)

L Lx i L y he i i
cos

sin
(5.134)

Since the operators L z and L depend only on the angles and , their eigenstates depend only

on and . Denoting their joint eigenstates by

l m Ylm (5.135)

where1 Ylm are continuous functions of and , we can rewrite the eigenvalue equations

(5.130) and (5.131) as follows:

L2Ylm h2l l 1 Ylm (5.136)

LzYlm mhYlm (5.137)

Since L z depends only on , as shown in (5.132), the previous two equations suggest that the

eigenfunctions Ylm are separable:

Ylm lm m (5.138)

We ascertain that

L Ylm h l l 1 m m 1 Yl m 1 (5.139)

5.7.1 Eigenfunctions and Eigenvalues of Lz

Inserting (5.138) into (5.137) we obtain L z lm m mh lm m . Now since

L z ih , we have

ih lm
m

mh lm m (5.140)

which reduces to

i
m

m m (5.141)

The normalized solutions of this equation are given by

m
1

2
eim (5.142)

1For notational consistency throughout this text, we will insert a comma between l and m in Ylm whenever m
is negative.
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where 1 2 is the normalization constant,

2

0

d m m m m (5.143)

For m to be single-valued, it must be periodic in with period 2 , m 2 m ;

hence

eim 2 eim (5.144)

This relation shows that the expectation value of L z , lz l m Lz l m , is restricted to a
discrete set of values

lz mh m 0 1 2 3 (5.145)

Thus, the values of m vary from l to l:

m l l 1 l 2 0 1 2 l 2 l 1 l (5.146)

Hence the quantum number l must also be an integer. This is expected since the orbital angular
momentum must have integer values.

5.7.2 Eigenfunctions of L2

Let us now focus on determining the eigenfunctions lm of L2. We are going to follow
two methods. The first method involves differential equations and gives lm in terms of the

well-known associated Legendre functions. The second method is algebraic; it deals with the

operators L and enables an explicit construction of Ylm , the spherical harmonics.

5.7.2.1 First Method for Determining the Eigenfunctions of L2

We begin by applying L2 of (5.133) to the eigenfunctions

Ylm
1

2
lm eim (5.147)

This gives

L2Ylm
h2

2

1

sin
sin

1

sin2

2

2 lm eim

h2l l 1

2
lm eim (5.148)

which, after eliminating the -dependence, reduces to

1

sin

d

d
sin

d lm

d
l l 1

m2

sin2
lm 0 (5.149)

This equation is known as the Legendre differential equation. Its solutions can be expressed in
terms of the associated Legendre functions Pml cos :

lm ClmP
m
l cos (5.150)
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which are defined by

Pml x 1 x2 m 2 d
m

dx m
Pl x (5.151)

This shows that

P m
l x Pml x (5.152)

where Pl x is the lth Legendre polynomial which is defined by the Rodrigues formula

Pl x
1

2ll!

dl

dx l
x2 1 l (5.153)

We can obtain at once the first few Legendre polynomials:

P0 x 1 P1 x
1

2

d x2 1

dx
x (5.154)

P2 x
1

8

d2 x2 1 2

dx2
1

2
3x2 1 P3 x

1

48

d3 x2 1 3

dx3
1

2
5x3 3x

(5.155)

P4 x
1

8
35x4 30x2 3 P5 x

1

8
63x5 70x3 15x (5.156)

The Legendre polynomials satisfy the following closure or completeness relation:

1

2
l 0

2l 1 Pl x Pl x x x (5.157)

From (5.153) we can infer at once

Pl x 1 l Pl x (5.158)

A similar calculation leads to the first few associated Legendre functions:

P11 x 1 x2 (5.159)

P12 x 3x 1 x2 P22 x 3 1 x2 (5.160)

P13 x
3

2
5x2 1 1 x2 P23 x 15x 1 x2 P33 x 15 1 x2 3 2 (5.161)

where P0l x Pl x , with l 0 1 2 3 . The first few expressions for the associated

Legendre functions and the Legendre polynomials are listed in Table 5.1. Note that

Pml x 1 l mPml x (5.162)

The constant Clm of (5.150) can be determined from the orthonormalization condition

l m l m
2

0

d
0

d sin l m l m l l m m (5.163)

which can be written as

2

0

d
0

d sin Yl m Ylm l l m m (5.164)
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Table 5.1 First few Legendre polynomials and associated Legendre functions.

Legendre polynomials Associated Legendre functions

P0 cos 1 P11 cos sin

P1 cos cos P12 cos 3 cos sin

P2 cos
1
2
3 cos2 1 P22 cos 3 sin2

P3 cos
1
2
5 cos3 3 cos P13 cos

3
2
sin 5 cos2 1

P4 cos
1
8
35 cos4 30 cos2 3 P23 cos 15 sin2 cos

P5 cos
1
8
63 cos5 70 cos3 15 cos P33 cos 15 sin3

This relation is known as the normalization condition of spherical harmonics. Using the form

(5.147) for Ylm , we obtain

2

0

d
0

d sin Ylm
2 Clm 2

2

2

0

d
0

d sin Pml cos 2 1 (5.165)

From the theory of associated Legendre functions, we have

0

d sin Pml cos Pml cos
2

2l 1

l m !

l m !
l l (5.166)

which is known as the normalization condition of associated Legendre functions. A combina-

tion of the previous two relations leads to an expression for the coefficient Clm :

Clm 1 m
2l 1

2

l m !

l m !
m 0 (5.167)

Inserting this equation into (5.150), we obtain the eigenfunctions of L2:

lm 1 m
2l 1

2

l m !

l m !
Pml cos (5.168)

Finally, the joint eigenfunctions, Ylm , of L2 and Jz can be obtained by substituting (5.142)
and (5.168) into (5.138):

Ylm 1 m
2l 1

4

l m !

l m !
Pml cos eim m 0 (5.169)

These are called the normalized spherical harmonics.

5.7.2.2 Second Method for Determining the Eigenfunctions of L2

The second method deals with a direct construction of Ylm ; it starts with the case m l
(this is the maximum value of m). By analogy with the general angular momentum algebra
developed in the previous section, the action of L on Yll gives zero,

L l l L Yll 0 (5.170)
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since Yll cannot be raised further as Yll Ylmmax .

Using the expression (5.134) for L in the spherical coordinates, we can rewrite (5.170) as

follows:
hei

2
i cot ll ei l 0 (5.171)

which leads to
1

ll

ll
l cot (5.172)

The solution to this differential equation is of the form

ll Cl sin
l (5.173)

where Cl is a constant to be determined from the normalization condition (5.164) of Yll :

Yll
Cl

2
eil sinl (5.174)

We can ascertain that Cl is given by

Cl
1 l

2ll!

2l 1 !

2
(5.175)

The action of L on Yll is given, on the one hand, by

L Yll h 2lYl l 1 (5.176)

and, on the other hand, by

L Yll h
1 l

2l l!

2l 1 !

4
ei l 1 sin 1 l d

d cos
[ sin 2l ] (5.177)

where we have used the spherical coordinate form (5.134).

Similarly, we can show that the action of Ll m on Yll is given, on the one hand, by

Ll mYll hl m
2l ! l m !

l m !
Ylm (5.178)

and, on the other hand, by

Ll mYll hl m
1 l

2ll!

2l ! 2l 1 !

4
eim

1

sinm
dl m

d cos l m
sin 2l (5.179)

where m 0. Equating the previous two relations, we obtain the expression of the spherical

harmonic Ylm for m 0:

Ylm
1 l

2ll!

2l 1

4

l m !

l m !
eim

1

sinm
dl m

d cos l m
sin 2l (5.180)
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5.7.3 Properties of the Spherical Harmonics

Since the spherical harmonics Ylm are joint eigenfunctions of L2 and L z and are ortho-
normal (5.164), they constitute an orthonormal basis in the Hilbert space of square-integrable

functions of and . The completeness relation is given by

l

m l

l m l m 1 (5.181)

or

m

l m l m
m

Yl m Ylm cos cos

sin
(5.182)

Let us mention some essential properties of the spherical harmonics. First, the spherical har-

monics are complex functions; their complex conjugate is given by

[Ylm ] 1 mYl m (5.183)

We can verify that Ylm is an eigenstate of the parity operator P with an eigenvalue 1 l :

PYlm Ylm 1 lYlm (5.184)

since a spatial reflection about the origin, r r , corresponds to r r , , and

, which leads to Pml cos Pml cos 1 l mPml cos and eim

eim eim 1 meim .
We can establish a connection between the spherical harmonics and the Legendre polyno-

mials by simply taking m 0. Then equation (5.180) yields

Yl0
1 l

2ll!

2l 1

4

dl

d cos l
sin 2l 2l 1

4
Pl cos (5.185)

with

Pl cos
1

2ll!

dl

d cos l
cos2 1 l (5.186)

From the expression of Ylm , we can verify that

Ylm 0
2l 1

4
m 0 (5.187)

The expressions for the spherical harmonics corresponding to l 0 l 1, and l 2 are listed

in Table 5.2.

Spherical harmonics in Cartesian coordinates

Note that Ylm can also be expressed in terms of the Cartesian coordinates. For this, we

need only to substitute

sin cos
x

r
sin sin

y

r
cos

z

r
(5.188)
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Table 5.2 Spherical harmonics and their expressions in Cartesian coordinates.

Ylm Ylm x y z

Y00
1

4
Y00 x y z

1

4

Y10
3
4
cos Y10 x y z

3
4

z
r

Y1 1
3
8
e i sin Y1 1 x y z

3
8

x iy
r

Y20
5
16

3 cos2 1 Y20 x y z
5
16

3z2 r2

r2

Y2 1
15
8
e i sin cos Y2 1 x y z

15
8

x iy z
r2

Y2 2
15
32

e 2i sin2 Y2 2 x y z
15
32

x2 y2 2i xy
r2

in the expression for Ylm .

As an illustration, let us show how to derive the Cartesian expressions for Y10 and Y1 1.

Substituting cos z r into Y10 3 4 cos Y10, we have

Y10 x y z
3

4

z

r

3

4

z

x2 y2 z2
(5.189)

Using sin cos x r and sin sin y r , we obtain

x iy

r
sin cos i sin sin sin e i (5.190)

which, when substituted into Y1 1 3 8 sin e i , leads to

Y1 1 x y z
3

8

x iy

r
(5.191)

Following the same procedure, we can derive the Cartesian expressions of the remaining har-

monics; for a listing, see Table 5.2.

Example 5.5 (Application of ladder operators to spherical harmonics)

(a) Use the relation Yl0 2l 1 4 Pl cos to find the expression of Y30 .

(b) Find the expression of Y30 in Cartesian coordinates.
(c) Use the expression of Y30 to infer those of Y3 1 .

Solution

(a) From Table 5.1 we have P3 cos
1
2
5 cos3 3 cos ; hence

Y30
7

4
P3 cos

7

16
5 cos3 3 cos (5.192)
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(b) Since cos z r , we have 5 cos3 3 cos 5 cos 5 cos2 3 z 5z2 3r2 r3;
hence

Y30 x y z
7

16

z

r3
5z2 3r2 (5.193)

(c) To find Y31 from Y30, we need to apply the ladder operator L on Y30 in two ways: first,
algebraically

L Y30 h 3 3 1 0Y31 2h 3Y31 (5.194)

and hence

Y31
1

2h 3
L Y30 (5.195)

then we use the differential form (5.134) of L :

L Y30 hei i
cos

sin
Y30

h
7

16
ei i

cos

sin
5 cos3 3 cos

3h
7

16
sin 5 cos2 1 ei (5.196)

Inserting (5.196) into (5.195) we end up with

Y31
1

2h 3
L Y30

21

64
sin 5 cos2 1 ei (5.197)

Now, to find Y3 1 from Y30, we also need to apply L on Y30 in two ways:

L Y30 h 3 3 1 0Y3 1 2h 3Y3 1 (5.198)

and hence

Y3 1
1

2h 3
L Y30 (5.199)

then we use the differential form (5.134) of L :

L Y30 he i i
cos

sin
Y30

h
7

16
e i i

cos

sin
5 cos3 3 cos

3h
7

16
sin 5 cos2 1 e i (5.200)

Inserting (5.200) into (5.199), we obtain

Y3 1
1

2h 3
L Y30

21

64
sin 5 cos2 1 e i (5.201)
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5.8 Solved Problems

Problem 5.1

(a) Show that Jx Jy h2[ j j 1 m2] 2, where Jx J 2x Jx 2 and the same
for Jy .

(b) Show that this relation is consistent with Jx Jy h 2 Jz h2m 2.

Solution

(a) First, note that Jx and Jy are zero, since

Jx
1

2
j m J j m

1

2
j m J j m 0 (5.202)

As for J2x and J2y , they are given by

J2x
1

4
J J 2 1

4
J 2 J J J J J 2 (5.203)

J2y
1

4
J J 2 1

4
J2 J J J J J 2 (5.204)

Since J 2 J 2 0, we see that

J2x
1

4
J J J J J2y (5.205)

Using the fact that

J 2x J2y J 2 J 2z (5.206)

along with J2x J 2y , we see that

J 2x J 2y
1

2
[ J 2 J2z ] (5.207)

Now, since j m is a joint eigenstate of J 2 and Jz with eigenvalues j j 1 h2 and mh, we
can easily see that the expressions of J 2x and J2y are given by

J2x J2y
1

2
[ J 2 J 2z ]

h2

2
j j 1 m2 (5.208)

Hence Jx Jy is given by

Jx Jy J2x J 2y
h2

2
[ j j 1 m2] (5.209)

(b) Since j m (because m j j 1 j 1 j), we have

j j 1 m2 m m 1 m2 m (5.210)

from which we infer that Jx Jy h2m 2, or

Jx Jy
h

2
Jz (5.211)
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Problem 5.2

Find the energy levels of a particle which is free except that it is constrained to move on the

surface of a sphere of radius r .

Solution

This system consists of a particle that is constrained to move on the surface of a sphere but free

from the influence of any other potential; it is called a rigid rotator. Since V 0 the energy of

this system is purely kinetic; the Hamiltonian of the rotator is

H
L2

2I
(5.212)

where I mr2 is the moment of inertia of the particle with respect to the origin. In deriving
this relation, we have used the fact that H p2 2m rp 2 2mr2 L2 2I , since L
r p rp.
The wave function of the system is clearly independent of the radial degree of freedom, for

it is constant. The Schrödinger equation is thus given by

H
L2

2I
E (5.213)

Since the eigenstates of L2 are the spherical harmonics Ylm , the corresponding energy

eigenvalues are given by

El
h2

2I
l l 1 l 0 1 2 3 (5.214)

and the Schrödinger equation by

L2

2I
Ylm

h2

2I
l l 1 Ylm (5.215)

Note that the energy levels do not depend on the azimuthal quantum number m. This means
that there are 2l 1 eigenfunctions Yl l , Yl l 1, , Yl l 1, Yll corresponding to the same
energy. Thus, every energy level El is 2l 1 -fold degenerate. This is due to the fact that the

rotator’s Hamiltonian, L2 2I , commutes with L . That is, the Hamiltonian is independent of

the orientation of L in space; hence the energy spectrum does not depend on the component of

L in any particular direction.

Problem 5.3

Find the rotational energy levels of a diatomic molecule.

Solution

Consider two molecules of masses m1 and m2 separated by a constant distance r . Let r1 and
r2 be their distances from the center of mass, i.e., m1r1 m2r2. The moment of inertia of the
diatomic molecule is

I m1r
2
1 m2r

2
2 r2 (5.216)
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where r r1 r2 and where is their reduced mass, m1m2 m1 m2 . The total
angular momentum is given by

L m1r1r1 m2r2r2 I r2 (5.217)

and the Hamiltonian by

H
L2

2I

L2

2 r2
(5.218)

The corresponding eigenvalue equation

H l m
L2

2 r2
l m

l l 1 h2

2 r2
l m (5.219)

shows that the eigenenergies are 2l 1 -fold degenerate and given by

El
l l 1 h2

2 r2
(5.220)

Problem 5.4

(a) Find the eigenvalues and eigenstates of the spin operator S of an electron in the direction
of a unit vector n; assume that n lies in the xz plane.
(b) Find the probability of measuring Sz h 2.

Solution

(a) In this question we want to solve

n S
h

2
(5.221)

where n is given by n sin i cos k , because it lies in the xz plane, with 0 . We

can thus write

n S sin i cos k Sx i Sy j Szk Sx sin Sz cos (5.222)

Using the spin matrices

Sx
h

2

0 1

1 0
Sy

h

2

0 i
i 0

Sz
h

2

1 0

0 1
(5.223)

we can write (5.222) in the following matrix form:

n S
h

2

0 1

1 0
sin

h

2

1 0

0 1
cos

h

2

cos sin

sin cos
(5.224)

The diagonalization of this matrix leads to the following secular equation:

h2

4
cos cos

h2

4
sin2 0 (5.225)
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which in turn leads as expected to the eigenvalues 1.

The eigenvector corresponding to 1 can be obtained from

h

2

cos sin

sin cos

a
b

h

2

a
b

(5.226)

This matrix equation can be reduced to a single equation

a sin
1

2
b cos

1

2
(5.227)

Combining this equation with the normalization condition a 2 b 2 1, we infer that a
cos 1

2
and b sin 1

2
; hence the eigenvector corresponding to 1 is

cos 2

sin 2
(5.228)

Proceeding in the same way, we can easily obtain the eigenvector for 1:

sin 2

cos 2
(5.229)

(b) Let us write of (5.228) and (5.229) in terms of the spin-up and spin-down eigen-

vectors, 1
2

1
2

1

0
and 1

2
1
2

0

1
:

cos
1

2

1

2

1

2
sin

1

2

1

2

1

2
(5.230)

sin
1

2

1

2

1

2
cos

1

2

1

2

1

2
(5.231)

We see that the probability of measuring Sz h 2 is given by

1

2

1

2

2

cos2
1

2
(5.232)

Problem 5.5

(a) Find the eigenvalues and eigenstates of the spin operator S of an electron in the direction
of a unit vector n, where n is arbitrary.
(b) Find the probability of measuring Sz h 2.
(c) Assuming that the eigenvectors of the spin calculated in (a) correspond to t 0, find

these eigenvectors at time t .

Solution

(a) We need to solve

n S
h

2
(5.233)
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where n, a unit vector pointing along an arbitrary direction, is given in spherical coordinates
by

n sin cos i sin sin j cos k (5.234)

with 0 and 0 2 . We can thus write

n S sin cos i sin sin j cos k Sx i Sy j Szk

Sx sin cos Sy sin sin Sz cos (5.235)

Using the spin matrices, we can write this equation in the following matrix form:

n S
h

2

0 1

1 0
sin cos

h

2

0 i
i 0

sin sin
h

2

1 0

0 1
cos

h

2

cos sin cos i sin
sin cos i sin cos

h

2

cos e i sin

ei sin cos
(5.236)

Diagonalization of this matrix leads to the secular equation

h2

4
cos cos

h2

4
sin2 0 (5.237)

which in turn leads to the eigenvalues 1.

The eigenvector corresponding to 1 can be obtained from

h

2

cos e i sin

ei sin cos

a
b

h

2

a
b

(5.238)

which leads to

a cos be i sin a (5.239)

or

a 1 cos be i sin (5.240)

Using the relations 1 cos 2 sin2 1
2
and sin 2 cos 1

2
sin 1

2
, we have

b a tan
1

2
ei (5.241)

Combining this equation with the normalization condition a 2 b 2 1, we obtain a
cos 1

2
and b ei sin 1

2
. Thus, the eigenvector corresponding to 1 is

cos 2

ei sin 2
(5.242)

A similar treatment leads to the eigenvector for 1:

sin 2

ei cos 2
(5.243)
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(b) Write of (5.243) in terms of 1
2

1
2

1

0
and 1

2
1
2

0

1
:

cos
1

2

1

2

1

2
ei sin

1

2

1

2

1

2
(5.244)

sin
1

2

1

2

1

2
ei cos

1

2

1

2

1

2
(5.245)

We can then obtain the probability of measuring Sz h 2:

1

2

1

2

2

cos2
1

2
(5.246)

(c) The spin’s eigenstates at time t are given by

t e i E t h cos
1

2

1

2

1

2
ei E t h sin

1

2

1

2

1

2
(5.247)

t e i E t h sin
1

2

1

2

1

2
ei E t h cos

1

2

1

2

1

2
(5.248)

where E are the energy eigenvalues corresponding to the spin-up and spin-down states, re-

spectively.

Problem 5.6

The Hamiltonian of a system is H n, where is a constant having the dimensions of

energy, n is an arbitrary unit vector, and x , y , and z are the Pauli matrices.

(a) Find the energy eigenvalues and normalized eigenvectors of H .
(b) Find a transformation matrix that diagonalizes H .

Solution

(a) Using the Pauli matrices x
0 1

1 0
, y

0 i
i 0

, z
1 0

0 1

and the expression of an arbitrary unit vector in spherical coordinates n sin cos i
sin sin j cos k, we can rewrite the Hamiltonian

H n x sin cos y sin sin z cos (5.249)

in the following matrix form:

H
cos exp i sin

exp i sin cos
(5.250)

The eigenvalues of H are obtained by solving the secular equation det H E 0, or

cos E cos E 2 sin2 0 (5.251)

which yields two eigenenergies E1 and E2 .
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The energy eigenfunctions are obtained from

cos exp i sin

exp i sin cos

x
y

E
x
y

(5.252)

For the case E E1 , this equation yields

cos 1 x y sin exp i 0 (5.253)

which in turn leads to

x

y

sin exp i

1 cos

cos 2 exp i 2

sin 2 exp i 2
(5.254)

hence

x1
y1

exp i 2 cos 2

exp i 2 sin 2
(5.255)

this vector is normalized. Similarly, in the case where E E2 , we can show that the

second normalized eigenvector is

x2
y2

exp i 2 sin 2

exp i 2 cos 2
(5.256)

(b) A transformation U that diagonalizes H can be obtained from the two eigenvectors

obtained in part (a): U11 x1, U21 y1, U12 x2, U22 y2. That is,

U
exp i 2 cos 2 exp i 2 sin 2

exp i 2 sin 2 exp i 2 cos 2
(5.257)

Note that this matrix is unitary, since U† U 1 and det U 1. We can ascertain that

UHU†
0

0
(5.258)

Problem 5.7

Consider a system of total angular momentum j 1. As shown in (5.73) and (5.75), the

operators Jx , Jy , and Jz are given by

Jx
h

2

0 1 0

1 0 1

0 1 0

Jy
h

2

0 i 0

i 0 i
0 i 0

Jz h
1 0 0

0 0 0

0 0 1
(5.259)

(a) What are the possible values when measuring Jx?
(b) Calculate Jz , J 2z , and Jz if the system is in the state jx h.

(c) Repeat (b) for Jy , J 2y , and Jy .

(d) If the system were initially in state 1

14

3

2 2

3

, what values will one obtain

when measuring Jx and with what probabilities?
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Solution

(a) According to Postulate 2 of Chapter 3, the results of the measurements are given by

the eigenvalues of the measured quantity. Here the eigenvalues of Jx , which are obtained by
diagonalizing the matrix Jx , are jx h, 0, and h; the respective (normalized) eigenstates are

1
1

2

1

2

1

0
1

2

1

0

1

1
1

2

1

2

1

(5.260)

(b) If the system is in the state jx h, its eigenstate is given by 1 . In this case Jz
and J 2z are given by

1 Jz 1
h

4
1 2 1

1 0 0

0 0 0

0 0 1

1

2

1

0 (5.261)

1 J2z 1
h2

4
1 2 1

1 0 0

0 0 0

0 0 1

1

2

1

h2

2
(5.262)

Thus, the uncertainty Jz is given by

Jz 1 J2z 1 1 Jz 1 2
h2

2

h

2
(5.263)

(c) Following the same procedure in (b), we have

1 Jy 1
h

4 2
1 2 1

0 i 0

i 0 i
0 i 0

1

2

1

0 (5.264)

1 J2y 1
h2

8
1 2 1

1 0 1

0 2 0

1 0 1

1

2

1

h2

2
(5.265)

hence

Jy 1 J 2y 1 1 Jy 1 2
h

2
(5.266)

(d) We can express 1

14

3

2 2

3

in terms of the eigenstates (5.260) as

1

14

3

2 2

3

2

7

1

2

1

2

1

3

7

1

2

1

0

1

2

7

1

2

1

2

1

(5.267)

or
2

7
1

3

7
0

2

7
1 (5.268)
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A measurement of Jx on a system initially in the state (5.268) yields a value jx h with
probability

P 1 1 2 2

7
1 1

3

7
1 0

2

7
1 1

2
2

7
(5.269)

since 1 0 1 1 0 and 1 1 1, and the values jx 0 and jx h with the
respective probabilities

P0 0 2 3

7
0 0

2
3

7
P1 1 2 2

7
1 1

2
2

7
(5.270)

Problem 5.8

Consider a particle of total angular momentum j 1. Find the matrix for the component of J
along a unit vector with arbitrary direction n. Find its eigenvalues and eigenvectors.

Solution

Since J Jx i Jy j Jzk and n sin cos i sin sin j cos k, the component

of J along n is
n J Jx sin cos Jy sin sin Jz cos (5.271)

with 0 and 0 2 ; the matrices of Jx , Jy , and Jz are given by (5.259). We can
therefore write this equation in the following matrix form:

n J
h

2

0 1 0

1 0 1

0 1 0

sin cos
h

2

0 i 0

i 0 i
0 i 0

sin sin

h
1 0 0

0 0 0

0 0 1

cos
h

2

2 cos e i sin 0

ei sin 0 e i sin

0 ei sin 2 cos

(5.272)

The diagonalization of this matrix leads to the eigenvalues 1 h, 2 0, and 3 h; the
corresponding eigenvectors are given by

1
1

2

1 cos e i

2

2
sin

1 cos ei
2

1

2

e i sin

2 cos

ei sin

(5.273)

3
1

2

1 cos e i

2

2
sin

1 cos ei

(5.274)

Problem 5.9

Consider a system which is initially in the state

1

5
Y1 1

3

5
Y10

1

5
Y11
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(a) Find L .

(b) If L z were measured what values will one obtain and with what probabilities?
(c) If after measuring Lz we find lz h, calculate the uncertainties Lx and L y and

their product Lx L y .

Solution

(a) Let us use a lighter notation for : 1

5
1 1 3

5
1 0 1

5
1 1 .

From (5.56) we can write L l m h l l 1 m m 1 l m 1 ; hence the only

terms that survive in L are

L
3

5
1 0 L 1 1

3

5
1 1 L 1 0

2 6

5
h (5.275)

since 1 0 L 1 1 1 1 L 1 0 2h.
(b) If L z were measured, we will find three values lz h, 0, and h. The probability of

finding the value lz h is

P 1 1 1 2 1

5
1 1 1 1

3

5
1 1 1 0

1

5
1 1 1 1

2

1

5
(5.276)

since 1 1 1 0 1 1 1 1 0 and 1 1 1 1 1. Similarly, we can verify

that the probabilities of measuring lz 0 and h are respectively given by

P0 1 0 2 3

5
1 0 1 0

2
3

5
(5.277)

P1 1 1 2 1

5
1 1 1 1

2
1

5
(5.278)

(c) After measuring lz h, the system will be in the eigenstate lm 1 1 , that is,

Y1 1 . We need first to calculate the expectation values of Lx , L y , L2x , and

L2y using 1 1 . Symmetry requires that 1 1 Lx 1 1 1 1 L y 1 1 0.

The expectation values of L2x and L
2
y are equal, as shown in (5.60); they are given by

L2x L2y
1

2
[ L2 L2z ]

h2

2
l l 1 m2

h2

2
(5.279)

in this relation, we have used the fact that l 1 and m 1. Hence

Lx L2x
h

2
L y (5.280)

and the uncertainties product Lx L y is given by

Lx L y L2x L2y
h2

2
(5.281)
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Problem 5.10

Find the angle between the angular momentum l 4 and the z-axis for all possible orientations.

Solution

Since ml 0 1 2 l and the angle between the orbital angular momentum l and the
z-axis is cos ml ml l l 1 we have

ml cos 1 ml
l l 1

cos 1 ml

2 5
(5.282)

hence

0 cos 1 0 90 (5.283)

1 cos 1 1

2 5
77 08 2 cos 1 2

2 5
63 43 (5.284)

3 cos 1 3

2 5
47 87 4 cos 1 4

2 5
26 57 (5.285)

The angles for the remaining quantum numbers m4 1 2 3 4 can be inferred at once

from the relation

ml 180 ml (5.286)

hence

1 180 77 08 102 92 2 180 63 43 116 57 (5.287)

3 180 47 87 132 13 4 180 26 57 153 43 (5.288)

Problem 5.11

Using [X P] ih, calculate the various commutation relations between the following opera-
tors2

T1
1

4
P2 X2 T2

1

4
X P PX T3

1

4
P2 X2

Solution

The operators T1, T2, and T3 can be viewed as describing some sort of collective vibrations; T3
has the structure of a harmonic oscillator Hamiltonian. The first commutator can be calculated

as follows:

[T1 T2]
1

4
[P2 X2 T2]

1

4
[P2 T2]

1

4
[X2 T2] (5.289)

where, using the commutation relation [X P] ih, we have

[P2 T2]
1

4
[P2 X P]

1

4
[P2 PX]

1

4
P[P X P]

1

4
[P X P]P

1

4
P[P PX ]

1

4
[P PX]P

1

4
P[P X ]P

1

4
[P X]P2

1

4
P2[P X]

1

4
P[P X ]P

2N. Zettili and F. Villars, Nucl. Phys., A469, 77 (1987).
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ih

4
P2

ih

4
P2

ih

4
P2

ih

4
P2 ihP2 (5.290)

[X2 T2]
1

4
[X2 X P]

1

4
[X2 PX ]

1

4
X [X X P]

1

4
[X X P]X

1

4
X [X PX]

1

4
[X PX]X

1

4
X2[X P]

1

4
X[X P]X

1

4
X[X P]X

1

4
[X P]X2

ih

4
X2

ih

4
X2

ih

4
X2

ih

4
X2 ihX2 (5.291)

hence

[T1 T2]
1

4
[P2 X2 T2]

1

4
ihP2 ihX2 ihT3 (5.292)

The second commutator is calculated as follows:

[T2 T3]
1

4
[T2 P2 X2]

1

4
[T2 P2]

1

4
[T2 X2] (5.293)

where [T2 P2] and [T2 X2] were calculated in (5.290) and (5.291):

[T2 P2] ihP2 [T2 X2] ihX2 (5.294)

Thus, we have

[T2 T3]
1

4
ihP2 ihX2 ihT1 (5.295)

The third commutator is

[T3 T1]
1

4
[T3 P2 X2]

1

4
[T3 P2]

1

4
[T3 X2] (5.296)

where

[T3 P2]
1

4
[P2 P2]

1

4
[X2 P2]

1

4
[X2 P2]

1

4
X[X P2]

1

4
[X P2]X

1

4
X P[X P]

1

4
X [X P]P

1

4
P[X P]X

1

4
[X P]PX

ih

4
2X P 2PX

ih

2
X P PX (5.297)

[T3 X2]
1

4
[P2 X2]

1

4
[X2 X2]

1

4
[P2 X2]

ih

2
X P PX (5.298)

hence

[T3 T1]
1

4
[T3 P2]

1

4
[T3 X2]

ih

8
X P PX

ih

8
X P PX

ih

4
X P PX ihT2 (5.299)

In sum, the commutation relations between T1, T2, and T3 are

[T1 T2] ihT3 [T2 T3] ihT1 [T3 T1] ihT2 (5.300)

These relations are similar to those of ordinary angular momentum, save for the minus sign in

[T1 T2] ihT3.
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Problem 5.12

Consider a particle whose wave function is

x y z
1

4

2z2 x2 y2

r2
3 xz

r2

(a) Calculate L2 x y z and Lz x y z . Find the total angular momentum of this

particle.

(b) Calculate L x y z and L .

(c) If a measurement of the z-component of the orbital angular momentum is carried out,
find the probabilities corresponding to finding the results 0, h, and h.
(d) What is the probability of finding the particle at the position 3 and 2

within d 0 03 rad and d 0 03 rad?

Solution

(a) Since Y20 x y z 5 16 3z2 r2 r2 and Y2 1 x y z 15 8 x
iy z r2, we can write

2z2 x2 y2

r2
3z2 r2

r2
16

5
Y20 and

xz

r2
2

15
Y2 1 Y21 (5.301)

hence

x y z
1

4

16

5
Y20

3 2

15
Y2 1 Y21

1

5
Y20

2

5
Y2 1 Y21

(5.302)

Having expressed in terms of the spherical harmonics, we can now easily write

L2 x y z
1

5
L2Y20

2

5
L2 Y2 1 Y21 6h2 x y z (5.303)

and

L z x y z
1

5
L zY20

2

5
L z Y2 1 Y21 h

2

5
Lz Y2 1 Y21 (5.304)

This shows that x y z is an eigenstate of L2 with eigenvalue 6h2; x y z is, however,
not an eigenstate of L z . Thus the total angular momentum of the particle is

L2 6h (5.305)

(b) Using the relation L Ylm h l l 1 m m 1 Yl m 1, we have

L x y z
1

5
L Y20

2

5
L Y2 1 Y21 h

6

5
Y21 h

2

5
6Y20 2Y22

(5.306)
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hence

L
1

5
2 0

2

5
2 1 2 1

h
6

5
Y21 h

2

5
6Y20 2Y22

0 (5.307)

(c) Since 1 5 Y20 2 5 Y2 1 Y21 , a calculation of Lz yields

L z 0 with probability P0
1

5
(5.308)

L z h with probability P 1
2

5
(5.309)

L z h with probability P1
2

5
(5.310)

(d) Since x y z 1 4 2z2 x2 y2 r2 3 xz r2 can be written in terms
of the spherical coordinates as

1

4
3 cos 2 1

3
sin cos cos (5.311)

the probability of finding the particle at the position and is

P 2 sin d d
1

4
3 cos2 1

3
sin cos cos

2

sin d d

(5.312)

hence

P
3 2

1

4
3 cos2

3
1 0

2

0 03 2 sin
3

9 7 10 7 (5.313)

Problem 5.13

Consider a particle of spin s 3 2.

(a) Find the matrices representing the operators Sz , Sx , Sy , S2x , and S
2
y within the basis of

S2 and Sz .
(b) Find the energy levels of this particle when its Hamiltonian is given by

H
0

h2
S2x S2y

0

h
Sz

where 0 is a constant having the dimensions of energy. Are these levels degenerate?

(c) If the system was initially in an eigenstate 0

1

0

0

0

, find the state of the system

at time t .
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Solution

(a) Following the same procedure that led to (5.73) and (5.75), we can verify that for s 3
2

we have

Sz
h

2

3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 3

(5.314)

S h

0 0 0 0

3 0 0 0

0 2 0 0

0 0 3 0

S h

0 3 0 0

0 0 2 0

0 0 0 3

0 0 0 0

(5.315)

which, when combined with Sx S S 2 and Sy i S S 2, lead to

Sx
h

2

0 3 0 0

3 0 2 0

0 2 0 3

0 0 3 0

Sy
ih

2

0 3 0 0

3 0 2 0

0 2 0 3

0 0 3 0

(5.316)

Thus, we have

S2x
h2

4

3 0 2 3 0

0 7 0 2 3

2 3 0 7 0

0 2 3 0 3

S2y
h2

4

3 0 2 3 0

0 7 0 2 3

2 3 0 7 0

0 2 3 0 3
(5.317)

(b) The Hamiltonian is then given by

H
0

h2
S2x S2y

0

h
Sz

1

2
0

3 0 2 3 0

0 1 0 2 3

2 3 0 1 0

0 2 3 0 3

(5.318)

The diagonalization of this Hamiltonian yields the following energy values:

E1
5

2
0 E2

3

2
0 E3

3

2
0 E4

5

2
0 (5.319)

The corresponding normalized eigenvectors are given by

1
1

2

3

0

1

0

2
1

2

0

3

0

1

3
1

12

3

0

3

0

4
1

2

0

1

0

3
(5.320)

None of the energy levels is degenerate.

(c) Since the initial state 0 can be written in terms of the eigenvectors (5.320) as follows:

0

1

0

0

0

3

2
1

1

2
3 (5.321)
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the eigenfunction at a later time t is given by

t
3

2
1 e i E1t h

1

2
3 e i E3t h

3

4

3

0

1

0

exp
5i 0t

2h

1

2 12

3

0

3

0

exp
3i 0t

2h

(5.322)

5.9 Exercises

Exercise 5.1

(a) Show the following commutation relations:

[Y L y] 0 [Y Lz] ihX [Y Lx ] ihZ

[Z Lz] 0 [Z Lx ] ihY [Z L y] ihX

(b) Using a cyclic permutation of xyz, apply the results of (a) to infer expressions for
[X Lx ], [X L y], and [X Lz].

(c) Use the results of (a) and (b) to calculate [R2 Lx ], [R2 L y], and [R2 Lx ], where

R2 X2 Y 2 Z2.

Exercise 5.2

(a) Show the following commutation relations:

[Py L y] 0 [Py Lz] ihPx [Py Lx ] ihPz

[Pz L z] 0 [Pz Lx ] ihPy [Pz L y] ihPx

(b) Use the results of (a) to infer by means of a cyclic permutation the expressions for

[Px Lx ], [Px L y], and [Px L z].

(c) Use the results of (a) and (b) to calculate [P2 Lx ], [P2 L y], and [P2 L z], where

P2 P2x P2y P2z .

Exercise 5.3

If L and R are defined by L Lx i L y and R X iY , prove the following commu-

tators: (a) [L R ] 2hZ and (b) [L R ] 0.

Exercise 5.4

If L and R are defined by L Lx i L y and R X iY , prove the following commu-

tators: (a) [L Z] hR , (b) [Lz R ] hR , and (c) [L z Z] 0.

Exercise 5.5

Prove the following two relations: R L 0 and P L 0.
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Exercise 5.6

The Hamiltonian due to the interaction of a particle of spin S with a magnetic field B is given
by H S B where S is the spin. Calculate the commutator [S H ].

Exercise 5.7

Prove the following relation:

[Lz cos ] ih sin

where is the azimuthal angle.

Exercise 5.8

Prove the following relation:

[Lz sin 2 ] 2ih sin2 cos2

where is the azimuthal angle. Hint: [A BC] B[A C] [A B]C .

Exercise 5.9

Using the properties of J and J , calculate j j and j m as functions of the action of

J on the states j m and j j , respectively.

Exercise 5.10

Consider the operator A 1
2
Jx Jy Jy Jx .

(a) Calculate the expectation value of A and A
2
with respect to the state j m .

(b) Use the result of (a) to find an expression for A
2
in terms of: J 4, J2, J 2z , J

4 , J4 .

Exercise 5.11

Consider the wave function

3 sin cos ei 2 1 cos2 e2i

(a) Write in terms of the spherical harmonics.

(b) Write the expression found in (a) in terms of the Cartesian coordinates.

(c) Is an eigenstate of L2 or L z?
(d) Find the probability of measuring 2h for the z-component of the orbital angular momen-

tum.

Exercise 5.12

Show that L z cos2 sin2 2i sin cos 2h2i , where is the azimuthal angle.

Exercise 5.13

Find the expressions for the spherical harmonics Y30 and Y3 1 ,

Y30 7 16 5 cos3 3 cos Y3 1 21 64 sin 5 cos2 1 e i

in terms of the Cartesian coordinates x y z.

Exercise 5.14

(a) Show that the following expectation values between lm states satisfy the relations

Lx L y 0 and L2x L2y
1
2
l l 1 h2 m2h2 .

(b) Verify the inequality Lx L y h2m 2, where Lx L2x Lx 2.
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Exercise 5.15

A particle of mass m is fixed at one end of a rigid rod of negligible mass and length R. The
other end of the rod rotates in the xy plane about a bearing located at the origin, whose axis is
in the z-direction.
(a) Write the system’s total energy in terms of its angular momentum L.
(b)Write down the time-independent Schrödinger equation of the system. Hint: In spherical

coordinates, only varies.

(c) Solve for the possible energy levels of the system, in terms of m and the moment of
inertia I mR2.
(d) Explain why there is no zero-point energy.

Exercise 5.16

Consider a system which is described by the state

3

8
Y11

1

8
Y10 AY1 1

where A is a real constant
(a) Calculate A so that is normalized.

(b) Find L .

(c) Calculate the expectation values of Lx and L2 in the state .

(d) Find the probability associated with a measurement that gives zero for the z-component
of the angular momentum.

(e) Calculate Lz and L where

8

15
Y11

4

15
Y10

3

15
Y2 1

Exercise 5.17

(a) Using the commutation relations of angular momentum, verify the validity of the (Ja-

cobi) identity: [Jx [Jy Jz]] [Jy [Jz Jx ]] [Jz [Jx Jy]] 0.

(b)Prove the following identity: [J 2x J 2y ] [J 2y J 2z ] [J 2z J 2x ].

(c) Calculate the expressions of L L Ylm and L L Ylm , and then infer the

commutator [L L L L ]Ylm .

Exercise 5.18

Consider a particle whose wave function is given by x y z A[ x z y z2] r2 A 3,
where A is a constant.

(a) Is an eigenstate of L 2? If yes, what is the corresponding eigenvalue? Is it also an
eigenstate of L z?
(b) Find the constant A so that is normalized.

(c) Find the relative probabilities for measuring the various values of Lz and L 2, and then

calculate the expectation values of Lz and L 2.
(d) Calculate L and then infer L .

Exercise 5.19

Consider a system which is in the state

2

13
Y3 3

3

13
Y3 2

3

13
Y30

3

13
Y3 2

2

13
Y33
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(a) If L z were measured, what values will one obtain and with what probabilities?
(b) If after a measurement of L z we find lz 2h, calculate the uncertainties Lx and L y

and their product Lx L y .

(c) Find Lx and L y .

Exercise 5.20

(a) Calculate the energy eigenvalues of an axially symmetric rotator and find the degeneracy

of each energy level (i.e., for each value of the azimuthal quantum number m, find how many
states l m correspond to the same energy). We may recall that the Hamiltonian of an axially

symmetric rotator is given by

H
L2x L2y
2I1

L2z
2I2

where I1 and I2 are the moments of inertia.
(b) From part (a) infer the energy eigenvalues for the various levels of l 3.

(c) In the case of a rigid rotator (i.e., I1 I2 I ), find the energy expression and the
corresponding degeneracy relation.

(d) Calculate the orbital quantum number l and the corresponding energy degeneracy for a
rigid rotator where the magnitude of the total angular momentum is 56h.

Exercise 5.21

Consider a system of total angular momentum j 1. We are interested here in the measure-

ment of Jy ; its matrix is given by

Jy
h

2

0 i 0

i 0 i
0 i 0

(a) What are the possible values will we obtain when measuring Jy?

(b) Calculate Jz , J 2z , and Jz if the system is in the state jy h.

(c) Repeat (b) for Jx , J 2x , and Jx .

Exercise 5.22

Calculate Y3 2 by applying the ladder operators L on Y3 1 .

Exercise 5.23

Consider a system of total angular momentum j 1. We want to carry out measurements on

Jz h
1 0 0

0 0 0

0 0 1

(a) What are the possible values will we obtain when measuring Jz?
(b) Calculate Jx , J 2x , and Jx if the system is in the state jz h.

(c) Repeat (b) for Jy , J 2y , and Jy .

Exercise 5.24

Consider a system which is in the state

x y z
1

4

z

r

1

3

x

r
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(a) Express x y z in terms of the spherical harmonics then calculate L2 x y z and

Lz x y z . Is x y z an eigenstate of L2 or Lz?
(b) Calculate L x y z and L .

(c) If a measurement of the z-component of the orbital angular momentum is carried out,
find the probabilities corresponding to finding the results 0, h, and h.

Exercise 5.25

Consider a system whose wave function is given by

1

2
Y00

1

3
Y11

1

2
Y1 1

1

6
Y22

(a) Is normalized?

(b) Is an eigenstate of L2 or L z?
(c) Calculate L and L .

(d) If a measurement of the z-component of the orbital angular momentum is carried out,
find the probabilities corresponding to finding the results 0, h, h, and 2h.

Exercise 5.26

Using the expression of L in spherical coordinates, prove the following two commutators:

[L e i sin ] 0 and [L cos ] he i sin .

Exercise 5.27

Consider a particle whose angular momentum is l 1.

(a) Find the eigenvalues and eigenvectors, 1 mx , of Lx .
(b) Express the state 1 mx 1 as a linear superposition of the eigenstates of Lz . Hint:

you need first to find the eigenstates of Lx and find which of them corresponds to the eigenvalue
mx 1; this eigenvector will be expanded in the z basis.
(c) What is the probability of measuring mz 1 when the particle is in the eigenstate

1 mx 1 ? What about the probability corresponding to measuring mz 0?

(d) Suppose that a measurement of the z-component of angular momentum is performed and
that the result mz 1 is obtained. Now we measure the x-component of angular momentum.
What are the possible results and with what probabilities?

Exercise 5.28

Consider a system which is given in the following angular momentum eigenstates l m :

1

7
1 1 A 1 0

2

7
1 1

where A is a real constant
(a) Calculate A so that is normalized.

(b) Calculate the expectation values of Lx , L y , L z , and L2 in the state .

(c) Find the probability associated with a measurement that gives 1h for the z-component
of the angular momentum.

(d) Calculate 1 m L2 and 1 m L2 .
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Exercise 5.29

Consider a particle of angular momentum j 3 2.

(a) Find the matrices representing the operators J 2, Jx , Jy , and Jz in the
3
2
m basis.

(b) Using these matrices, show that Jx , Jy , Jz satisfy the commutator [Jx Jy] ih Jz .

(c) Calculate the mean values of Jx and J2x with respect to the state

0

0

1

0

.

(d) Calculate Jx Jy with respect to the state

0

0

1

0

and verify that this product satisfies Heisenberg’s uncertainty principle.

Exercise 5.30

Consider the Pauli matrices

x
0 1

1 0 y
0 i
i 0 z

1 0

0 1

(a) Verify that 2
x

2
y

2
z I , where I is the unit matrix

I
1 0

0 1

(b) Calculate the commutators [ x y], [ x z], and [ y z].

(c) Calculate the anticommutator x y y x .

(d) Show that ei y I cos i y sin , where I is the unit matrix.
(e) Derive an expression for ei z by analogy with the one for y .

Exercise 5.31

Consider a spin 3
2
particle whose Hamiltonian is given by

H
0

h2
S2x S2y

0

h2
S2z

where 0 is a constant having the dimensions of energy.

(a) Find the matrix of the Hamiltonian and diagonalize it to find the energy levels.

(b) Find the eigenvectors and verify that the energy levels are doubly degenerate.

Exercise 5.32

Find the energy levels of a spin 5
2
particle whose Hamiltonian is given by

H
0

h2
S2x S2y

0

h
Sz

where 0 is a constant having the dimensions of energy. Are the energy levels degenerate?
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Exercise 5.33

Consider an electron whose spin direction is located in the xy plane.
(a) Find the eigenvalues (call them 1, 2) and eigenstates ( 1 , 2 ) of the electron’s

spin operator S.
(b) Assuming that the initial state of the electron is given by

0
1

3
1

2 2

3
2

find the probability of obtaining a value of S h 2 after measuring the spin of the electron.

Exercise 5.34

(a) Find the eigenvalues (call them 1, 2) and eigenstates ( 1 , 2 ) of the spin operator

S of an electron when S is pointing along an arbitrary unit vector n that lies within the yz plane.
(b) Assuming that the initial state of the electron is given by

0
1

2
1

3

2
2

find the probability of obtaining a value of S h 2 after measuring the spin of the electron.

Exercise 5.35

Consider a particle of spin 3
2
. Find the matrix for the component of the spin along a unit vector

with arbitrary direction n. Find its eigenvalues and eigenvectors. Hint:

n sin cos i sin sin j cos k

Exercise 5.36

Show that [Jx Jy Jz] [Jx Jy Jz] ih J 2x 2J 2y J2z .

Exercise 5.37

Find the eigenvalues of the operators L
2

and L z for each of the following states:
(a) Y21 ,

(b) Y3 2 ,

(c) 1

2
Y33 Y3 3 , and

(d) Y40 .

Exercise 5.38

Use the following general relations:

x
1

2

1

2

1

2

1

2

1

2
y

1

2

1

2

1

2
i
1

2

1

2

to verify the following eigenvalue equations:

Sx x
h

2
x and Sy y

h

2
y


