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Historically, Mechanics was the earliest

branch of Physics to be developed as an exact
science. The Laws of levers and of fluids were
known to the Greeks in third century B.C. The
fundamental theorem of statics, or rather
another form of its, viz., the Triangle of Forces
was first enunciated by Stevinus of Bruges in
the year 1586. It was, however, left to Galileo
(1564-1642) and Newton (1642-1727) to
formulate the laws of mechanics and to place
mechanics on a sound footing as an exact
science. Newton was also the first to formulate
correctly the law of universal gravitation.
Following Newton's time, important
contributions to mechanics were made by
Euler, D' Alembert, Lagrange, Laplace, Poinsot
and Coriolis. All these contributions were
however within framework of Newton's laws of
motion made.




Statics

3.1 Introduction .

Statics is that branch of mechanics which deals with the study of the system of forces in equilibrium.
Matter : Matter is anything which can be perceived by our senses of which can exert, or be acted on, by
forces.

Force : Force is anything which changes, or tends to change, the state of rest, or uniform motion, of a
body. To specify a force completely four things are necessary they are magnitude, direction, sense and point of

application. Force is a vector quantity.

3.2 Parallelogram law of Farces

If two forces, acting at a point, be represented in magnitude and direction by the two sides of a
parallelogram drawn from one of its angular points, their resultant is represented both in magnitude and
direction of the parallelogram drawn through that point.

If OA and OB represent the forces Pand Q acting at a point O and inclined to each other at an angle «. If

R is the resultant of these forces represented by the diagonal OC of the parallelogram OACB and R makes an
Qsina

angle @with Pje. ZCOA =@, then R? =P? +Q? +2PQcosa and tanf = —————
P+Qcosa

The angle 6, which the resultant £ makes with the direction of the force Qis given by

2 ztan’l ﬂ
! Q+Pcosa

Case():If P=0Q
. R=2Pcos(a/2) and tan@ =tan(a/2) or 6 =/ 2

Case (ii) : If @ =90°, /e. forces are perpendicular




Statics 85

~R=4P?+Q? and tanQ:%

Case (jii) : If & =0°, /e forces act in the same direction
S Ruex =P+0Q
Case (iv) : If a =180°, /e forces act in opposite direction
~Ry, =P-Q
M O The resultant of two forces is closer to the larger force.

O The resultant of two equal forces of magnitude Pacting at an angle a is 2P cos% and it bisects

the angle between the forces.

Q If the resultant R of two forces Pand Q acting at an angle « makes an angle @ with the direction

Qsina P+Qcosa

of P then sin@ = and cosé =

Q If the resultant R of the forces £ and Q acting at an angle «

makes an angle & with the direction of the force @Q then

. . R
sinezpsma and cosezw A
R s
0 Component of a force in two directions : The component of a = - )

force Rin two directions making angles « and g with the line of

action of R on and opposite sides of it are

LT Sin(at B) sina+ B) 2 sin(a+B)  sin(a+ f)

g _OCsing _ Rsing ndF—OC'sma R.sin

A-u theorem : The resultant of two forces acting at a point O in directions OA and OB represented in
magnitudes by 4.OA and wu.OB respectively is represented by (1 + n)OC, where Cis a point in AB such that
A.CA = uCB

40A ¢

4 OB
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Important Tips

& The forces P, Q, R act along the sides BC, CA, AB of AABC.

Their resultant passes through.

(@) Incentre if P+Q+R =0 (b) Circumcentre, if Pcos A+ Qcos B+RcosC =0
(c) Orthocentre, if Psec A+QsecB+RsecC =0 (d) Centroid, if P cosec A +Q cosec B + R cosec C =0
oP_Q_R
a b ¢
Example: 1 Forces M and N acting at a point O make an angle 150°. Their resultant acts at O has magnitude 2 units and is

Solution: (a)

Example: 2

Solution: (a)

Example: 3

Solution: (d)

perpendicular to M. Then, in the same unit, the magnitudes of Mand Nare [BIT

Ranchi 1993]

@) 2434 (b) \/g,z
(© 3,4 d) 4.5
We have, 22 =M2 + N2 + 2MN cos150°= 4 = M2 + N2 —/BMN ... ()
and, tanE:M:MJrNcoslSO":O
2 M+ Ncosl150°
- M7N§:0:> M:N—f ..... (i)

Solving (i) and (i), we get M = 243 and N=4.

If the resultant of two forces of magnitude Pand 2Pis perpendicular to £ then the angle between the forces is
[Roorkee 1997]

(a) 2n/3 (b) 3n/4 (¢ 4n/5 (d) 5m/6

Let the angle between the forces Pand 2P be «. Since the resultant of £and 2Pis perpendicular to P. Therefore,

tanﬂ/Z:ﬂ: P+2Pcosa=0 = cos::c:_—1 = azz—ﬂ

P +2Pcosa 2 3

If the line of action of the resultant of two forces £ and Q divides the angle between them in the ratio 1: 2, then the

magnitude of the resultant is [Roorkee 1993]
P2+Q2 P2+Q2 PZ_QZ P2_Q2
R S b)) — < I d) —

@) 5 (b) ) (@) 5 (d) )

Let 30 be the angle between the forces £ and Q. It is given that the resultant £ of £ and Q divides the angle between
them in the ratio 1: 2. This means that the resultant makes an angle @ with the direction of 2 and angle 26 with the

direction of Q.



Example: 4

Solution: (b)

Example: 5

Solution: (a)

23T |;'|ang|e law_of Farces
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Rsin 20 nd 0 = Rsing

Therefore, P = — a =—
sin 36 sin 36
P = sm 26 =2c0s® 0)
Q sind
Rsing R
Also Q = -0Q0=—"
Q sin 36 Q 3—4sin?0

R 3 asinto=R_1iac0s20 :>5+1:(2co'567)2 ..... (ii)
Q Q Q

2 2 2 2 2
From (i) and (ii), we get, [Ej R R =# —R-=Q°
Q Q Q Q Q
Two forces Xand Vhave a resultant ~and the resolved part of £in the direction of Xis of magnitude ¥. Then the angle

between the forces is

(@) sin’? ,/i (b) Zsin’lJi (© 4sin’11}1 (d) None of these
2Y 2Y 2Y

Let OA and OBrepresent two forces Xand Yrespectively. Let a be the angle between them and 6 the angle which the
resultant £ (represented by OC) makes with OA.

Now, resolved part of Falong OA.

FCOS@ZOCX%=OD =0OA+AD =OA+ACcosa = X+Y cos a

But resolved part of Falong OAis given to by V.

Y =X+Ycosa or Y(1—cosa)= X :Y.ZsinZ%:X, .'.sinza/Z:%

. . a x a -l X
ie, sin—=_[-— or ==sin ‘/—
2 2Y 2 2Y
Thus, a =2sin™? ,/L
2Y

The greatest and least magnitude of the resultant of two forces of constant magnitude are Fand G When the forces

act an angle 2¢, the resultant in magnitudes is equal to [UPSEAT 2001]

@ VF2cos?a+G2sin2a (b)) VF2sina+G2cosla () VF2+G2 (d) JVF? -G?
Greatest resultant =F=A+B

Least resultant =G =A-B

F+G _ (F-G)

2

On solving, we get A = B

where A and Bact an angle 2¢, the resultant

R=vA2+B2+2ABcos2a = R=vF2cos?a+G2sin’a

If three forces, acting at a point, be represented in magnitude and direction by the sides of a triangle,

taken in order, they will be in equilibrium. »

Here ﬁ:P, ﬁf:Q, CA =R
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In triangle ABC, we have AB +BC +CA =0
=P+Q+R=0

Hence the forces £,Q R are in equilibrium.

Converse : If three forces acting at a point are in equilibrium, then they can be represented in magnitude
and direction by the sides of a triangle, taken in order.

3.4 Polygon law of Farces

If any number of forces acting on a particle be represented in magnitude and direction by the sides of a

polygon taken in order, the forces shall be in equilibrium.

A
Pa P
As A>
Ps P
A 2l Ai

Example: 6 D and £ are the mid-points of the sides A8 and AC respectively of a A4BC The resultant of the forces is represented by

BE and DC is

3= 3= 3= 3=

a) —AC b) =CA ¢ —AB d —=BC

(@) 5 (b) 5 © 5 (d 5
Solution: (d) We have, A

BE + DG - (BC + CE )+ (5B + BC

— 1l 10—  — l(— —
= 2BC +—-CA+—=AB=2BC +—(CA+AB) D E
2 2 2
- 2BC +CB = 2BC - 1BC = 2BC
2 2 2 5 c

Example: 7 ABCDE  is pentagon. Forces acting on a particle are represented in magnitude and direction by

AB,BC,CD,2DE, AD, and AE . Their resultant is given by

(@) AE (b) 2AB (© 3AE (d) 4AE

Solution: (c) We have, AB +BC +CD +2DE + AD + AE = (ﬁ+ﬁf)+ C$+?)+(3+? +AE
= (E+€E)+E+? = AE + AE + AE =3AE .

3.5 1 ami's Theorem
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If three forces acting at a point be in equilibrium, each force is proportional to the sine of
the angle between the other two. Thus if the forces are A Q and R a8y be the angles P g

between Q and R, Rand P, P and Q respectively. If the forces are in equilibrium, we have, @

P Q R
sing sinB  siny’

The converse of this theorem is also true.

Example: 8 A horizontal force Fis applied to a small object £ of mass m on a smooth plane inclined to the horizon at an angle é. If
Fis just enough to keep Pin equilibrium, then £ = [BIT Ranchi 1993]
(a) mgcos? @ (b) mgsin? o () mgcosd (d) mgtanéd
Solution: (d) By applying Lami's theorem at A we have )
R F _ mg /\
sin90° sin(180°—6#) sin(90°+6) pY— -
R F mg
—=——=——=F= tan @ _
- 1 sind cos@ = Mg fan % gmg
0
A -
Example: 9 A kite of weight Wis flying with its string along a straight line. If the ratios of the resultant air pressure Rto the tension
7in the string and to the weight of the kite are J2 and (V3 +1) respectively, then [Roorkee 1990]
(@) T=(6+V2)W ) R=@3+D)W @ T :%(JE—JE)W @ R=(3-DW
Solution: (b) From Lami's theorem, R
R _ T _ w
sin(@+¢) sin(180° —#) sin(180° —¢)
¢ 7
SR T W () 0
sin@+¢) sing sing
P
Given R =2 ..(i) and =341 .. (i) w
T W
v
RN . W 3+1
Dividing (iii) by (ii), we get w_
g Yy 9 R 2
T
T J3+1 NEES | V2
= —= =>T= W==\6+/2)W =R=TV2 =223 +D)W =(/3 +DW
W 7 > ( ) JE( W = ( )
Example: 10 Three forces 56 Rare acting at a point in a plane. The angles between Pand Q and Q and R are 150° and 120°
respectively, then for equilibrium, forces £, Q Rare in the ratio [MNR 1991; UPSEAT 2000]
(@ 1:2:43 b) 1:2:3 © 321 d 3:2:1

Solution: (d) Clearly, the angle between Pand Ris 360°—(150°+120°) =90°. By Lami's theorem,
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P Q R P Q R P Q R
- =— =— = = - ==
sin120°  sin90° sin150° © 3/2 1 1/2 T3 2 1

3 6 Parallel Forces

(1) Like parallel forces : Two parallel forces are said to be like parallel forces when they act in the same

direction.

The resultant R of two like parallel forces £and Qis equal in magnitude
of the sum of the magnitude of forces and R acts in the same direction as the
forces Pand Qand at the point on the line segment joining the point of action

Pand Q which divides it in the ratio Q: Pinternally.

(2) Two unlike parallel forces : Two parallel forces are said to be unlike
if they act in opposite directions.

If Pand Q be two unlike parallel force acting at A and B and Pis greater
in magnitude than Q. Then their resultant R acts in the same direction as £ and
acts ata point Con BA produced. Such that R=P -Q and P.CA=Q.CB

Then in this case Cdivides BA externally in the inverse ratio of the forces,
P_Q_P-Q _R

CB CA CB-CA AB

Imporiant Tips

A

& If three like parallel forces P, Q R act at the vertices A, B, C repectively of a triangle ABC then their resultant act at the

() Incentre of AABC, if P = Q = R
a b ¢
(if) Circumcentre of AABC, if — P__ _Q =— R
sin2A sin2B  sin2C
P Q R

(i17) Orthocentre of AABC, if = =
tanA tanB tanC

(iv) Centroid of AABC, ifP=Q = R.
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Example: 11 Three like parallel forces £ Q R act at the corner points of a triangle ABC. Their resultant passes through the
circumcentre,if [Rookee 1995]
(a)%:%:% by P=Q=R (©0 P+Q+R=0 (d) None of these
Solution: (c) Since the resultant passes through the circumcentre of AABC, therefore, the algebraic sum of the moments about it, is
zero.
Hence, P+ Q + R=0.
Example: 12 Pand Q are like parallel forces. If Pis moved parallel to itself through a distance x then the resultant of #and Q moves
through a distance. [Rookee 1995]
(a) Px (b) Px (@) Px (d) None of these
P+Q P-Q P+2Q
Solution: (a) Let the parallel forces Pand Qact at A4 and B respectively. Suppose the resultant £+ Q acts at C
AB .
Then, C=|—Q .
* [P +QJQ .
. . . . A A c C R
If Pis moved parallel to itself through a distance x ie at A"
Suppose the resultant now acts at C. Then, -
A'B AB —x .
C=|—— AC=|——Q . p p P+0) P+0) 0
= 0
Now CC'= AC'-AC = AA'+A'C'-AC
—cC'= x+(AB _XJQ—[ AB ]Q —cC=x——F o= X
P+Q P+Q P+Q P+Q
3.7 Moment
The moment of a force about a point O is given in magnitude by the o)
product of the forces and the perpendicular distance of O from the line of
action of the force. p
If Fbe a force acting a point A of a rigid body along the line ABand OM (= .
) be the perpendicular distance of the fixed point O from AB then the moment = M §

of force about O = F.p = ABxOM = ZB(AB x OM)} = 2(area of AAOB)

The S.I. unit of moment is Newton-meter (N-m).

(1) Sign

tendency of the force to cause rotation about that point. The tendency of the force Aisto = &

turn the lamina in the clockwise direction and of the force £ is in the anticlockwise

direction.

of the moment : The moment of a force about a point measures the

F4
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The usual convention is to regard the moment which is anticlockwise direction as positive and that in the

clockwise direction as negative.

(2) Varignon's theorem : The algebraic sum of the moments of any two coplanar forces about any point in

their plane is equal to the moment of their resultant about the same point.

M Q Thy algebraic sum of the moments of any two forces about any point on the line of action of
their resultant is zero.
Q Conversely, if the algebraic sum of the moments of any two coplanar forces, which are not in
equilibrium, about any point in their plane is zero, their resultant passes through the point.
Q If a body, having one point fixed, is acted upon by two forces and is at rest. Then the moments of
the two forces about the fixed point are equal and opposite.

3.8 Couples

Two equal unlike parallel forces which do not have the same line of action, are said to form a couple.

Example : Couples have to be applied in order to wind a watch, to drive a p
gimlet, to push a cork screw in a cork or to draw circles by means of pair of |
compasses. A ’ :

(1) Arm of the couple : The perpendicular distance between the lines of |
action of the forces forming the couple is known as the arm of the couple.

(2) Moment of couple : The moment of a couple is obtained in magnitude by multiplying the magnitude
of one of the forces forming the couple and perpendicular distance between the lines of action of the force. The
perpendicular distance between the forces is called the arm of the couple. The moment of the couple is
regarded as positive or negative according as it has a tendency to turn the body in the anticlockwise or
clockwise direction.

Moment of a couple = Force x Arm of the couple = Pp

(3) Sign of the moment of a couple : The moment of a couple is taken with positive or negative sign

according as it has a tendency to turn the body in the anticlockwise or clockwise direction.

_ TV

Positive counle

Neaative couple P
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|/Vole : QA couple can not be balanced by a single force, but can be balanced by a couple of opposite

sign.

3.9 Triangle thearem of Counles

If three forces acting on a body be represented in magnitude, direction and line of action by the sides of
triangle taken in order, then they are equivalent to a couple whose moment is represented by twice the area of
triangle.

Consider the force Palong A£ Qalong CA and Ralong AB. These forces

are three concurrent forces acting at A and represented in magnitude and

direction by the sides BC, CA and AB of AABC. So, by the triangle law of forces,

they are in equilibrium.

The remaining two forces P along AD and P along BC form a couple,

whose moment is m = P.AL = BC.AL

Since %(BC.AL) = 2(% area of the AABC)
.. Moment = BCAL = 2 (Area of AABC)

Example: 13 A light rod AB of length 30 ¢m. rests on two pegs 15 ¢m. apart. At what distance from the end A the pegs should be
placed so that the reaction of pegs may be equal when weight 5 Wand 3 W are suspended from A and B respectively
[Roorkee 1995, UPSEAT 2001]
(@) 1.75 ¢m., 15.75 cm. (o) 2.75 c¢m., 17.75 cm. (¢) 3.75¢cm, 18.75 cm. (d) None of these
Solution: (c) Let R Rbe the reactions at the pegs Pand Qsuch that AP = x

Resolving all forces vertically, we get |R |/?
A x 15 B

R+R=8W =R =4W

Take moment of forces about A, we get l l

R.AP + R.AQ = 3W.AB 5w 3w

= 4W.x + 4W.(x +15) = 3W.30

= X =3.75¢cm

S AP =x =3.75cm and AQ =18.75cm
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Example: 14

Solution: (b)

Example: 15

Solution: (c)

Example: 16

Solution: (b)

At what height from the base of a vertical pillar, a string of length 6 metres be tied, so that a man sitting on the ground

and pulling the other end of the string has to apply minimum force to overturn the pillar
(@) 1.5 metres (b) 342 metres (©) 3+/3 metres (d) 4+/2 metres
Let the string be tied at the point C of the vertical pillar, so that AC = x
Now moment of Fabout A= F AL

= F APsing

= F6cosé sin @

=3 Fsin 260

To overturn the pillar with maximum (fixed) force £ moment is maximum if

sin 260 =1(max.)

=20 =90° /e 0=45°

- AC = PC sin45° = 6. - = 32

V2

Two unlike parallel forces acting at points A and B form a couple of moment G. If their lines of action are turned
through a right angle, they form a couple of moment A. Show that when both act at right angles to A8 they form a

couple of moment.

(a) GH by @+ H © G2 +H?2 (@ None of these
We have, Pa=G and Pb=H

P
Clearly, a® +b? =x? %
o7 ne P P .
SX= 5+ — [from (i)]
P2 P a

= Px =VG? +H?
A
Hence, required moment = YG?2 + H?

The resultant of three forces represented in magnitude and direction by the sides of a triangle ABCtaken in order with

BC=5cm CA=5cm and AB = 8 cm, is a couple of moment
(@) 12 units (b) 24 units (c) 36 units (d) 16 units

Resultant of three forces represented in magnitude and direction by the sides of a triangle taken in order is a couple of

moment equal to twice the area of triangle.
.. the resultant is a couple of moment = 2 x (area of AABC)
Here, a=5cm b=5cmandc=8 cm

©25=5+5+8= 5=09.

Area = ,/S(S —a)(S —b)(S —¢) =,/9(9-5)(Q-5)©9-8) =12

.. Required moment = 2 (12) = 24 units.
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3.10 Equilibrium of Coplanar Forces

(1) If three forces keep a body in equilibrium, they must be coplanar.

(2) If three forces acting in one plane upon a rigid body keep it in equilibrium, they must either meet in a

point or be parallel.

(3) When more than three forces acting on a rigid body, keep it in equilibrium, then it is not necessary that

they meet at a point. The system of forces will be in equilibrium if there is neither translatory motion nor rotatory

motion.

e X=0,Y=0 G6=00rR=0 G6G=0.

(4) A system of coplanar forces acting upon a rigid body will be in equilibrium if the algebraic sum of their

resolved parts in any two mutually perpendicular directions vanish separately,

and if the algebraic sum of their moments about any point in their plane is

Zero.

(5) A system of coplanar forces acting upon a rigid body will be in

equilibrium if the algebraic sum of the moments of the forces about each of

three non-collinear points is zero.

(6) Trigonometrical theorem : If Pis any point on the base BC of AABC such that BP: CP = m: n.

Then, (i) (m+n)cotd =mcota —ncot B where ZBAP =a, ZCAP =

Example: 17

Solution: (a)

(i) (n+n)cotd =ncotB-mcotC

Two smooth beads A and B, free to move on a vertical smooth circular wire, are connected by a string. Weights W, W5

and W are suspended from A, Band a point Cof the string respectively.
In equilibrium, A and B are in a horizontal line. If #/BAC =« and ZABC = f3, then the ratio tana :tan B is

[Roorkee 1996, UPSEAT 2001]

W -W, +W W+W, —-W W+W, +W
tana _ 1+ W, (b) tana _ W+W, W, © tna W+ W, +W, (d) None of these
tan W +W, —W,

a = =
@ tan g W -W, +W, tan g W+W, —W,

Resolving forces horizontally and vertically at the points 4, Band Crespectively, we get
Tcosa =R, siny

T, sina+W, =R, cos y
T,cos =R, siny L (ii)
T,sing+W, =R,cosy .. (iv)

T,cosq¢=T,cos g .. v)
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Example: 18

Solution: (a)

Example: 19

Solution: (b)

and T, sing+T,sing=Ww .. (vi)
Using (v), from (i)and (i), we get, R, =R,

.. From (i) and (vi), we have

T, sina+W, =T, sin S+W,

or Tysina—T,sing=W,-W, .. (vii)
Adding and subtracting (vi) and (vii), we get

2T, sina=W+W, -W, . (viii)
2T, sinB=W-W, +W, .. (ix)
Dividing (viii) by (ix), we get

tana  W-W, +W,
tang W+W, -W,

T sing _ W-W, +W, or cos f sina W -W, +W,

—_—= —= (from (v)) or
T, sing W+W, -W, cosa sing W+W, -W,

A uniform beam of length 2a rests in equilibrium against a smooth vertical plane and over a smooth peg at a distance

h from the plane. If @ be the inclination of the beam to the vertical, then sin@ is [MNR 1996]
h h? a a’
= b) — s d) <

@ 6 @ 1 @

Let AB be a rod of length 2a and weight W. It rests against a smooth vertical wall at A and over peg G at a distance A

from the wall. The rod is in equilibrium under the following forces :

(i) The weight Wat G

- R
i) Th tion Rat A
(i) The reaction Ra i — ) S
(iii) The reaction Sat Cperpendicular to AB. 6 Hf
Since the rod is in equilibrium. So, the three force are concurrent at O. lf’ u
In AACK, we have, sin 8 = - w
AC N

In AACO, we have, sin 6 = %

In AAGO, we have sin 8 = £,' sin39=L.£.£=E

a AC AO a a
A beam whose centre of gravity divides it into two portions @ and b, is placed inside a smooth horizontal sphere. If 6
be its inclination to the horizon in the position of equilibrium and 2« be the angle subtended by the beam at the
centre of the sphere, then [Roorkee 1994]

(b_a)tana () tanH:(b+a)tana (d) tanezétana
(b +a) (b -a) (b -a)b +a)

(@ tand=(p-a)b+a)tana (b) tand=

Applying m —ntheorem in AABC we get

(AG + GB)cot ZOGB = GB cot ZOAB — AG cot ZOBG
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= (a+b)cot(90°-0)=b cot[% - aJ - acot[% - aj

= (a+b)tand =btana —atana :tan&:(b_zjtana
a+

211 Friction

Friction is a retarding force which prevent one body from sliding on 5
another.
It is, therefore a reaction. i P
When two bodies are in contact with each other, then the property of
4

roughness of the bodies by virtue of which a force is exerted between them to

resist the motion of one body upon the other is called friction and the force exerted is called force of friction.

(1) Friction is a self adjusting force : Let a horizontal force P pull a heavy body of weight W resting on
a smooth horizontal table. It will be noticed that up to a certain value of A, the body does not move. The
reaction R of the table and the weight W/ of the body do not have any effect on the horizontal pull as they are
vertical. It is the force of friction £ acting in the horizontal direction, which balances P and prevents the body
from moving.

As Pis increased, Falso increases so as to balance P. Thus Fincreases with P. A stage comes when P just
begins to move the body. At this stage F reaches its maximum value and is equal to the value of P at that
instant. After that, if Pis increased further, Fdoes not increase any more and body begins to move.

This shows that friction is self adjusting, Ze. amount of friction exerted is not constant, but increases
gradually from zero to a certain maximum limit.

(2) Statical friction : When one body tends to slide over the surface of another body and is not on the
verge of motion then the friction called into play is called statical friction.

(3) Limiting friction : When one body is on the verge of sliding over the surface of another body then
the friction called into play is called limiting friction.

(4) Dynamical friction : When one body is actually sliding over the surface of another body the friction

called into play is called dynamical friction.
(5) Laws of limiting friction/statical friction/Dynamical friction :

(i) Limiting friction acts in the direction opposite to that in which the body is about to move.
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(i) The magnitude of the limiting friction between two bodies bears a constant ratio depends only on the
nature of the materials of which these bodies are made.

(iii) Limiting friction is independent of the shape and the area of the surfaces in contact, so long as the
normal reaction between them is same, if the normal reaction is constant.

(iv) Limiting friction £ is directly proportional to the normal reaction &, /e f; « R

f, = U.R; W = f, /R, where usis a constant which is called coefficient of statical friction.

In case of dynamic friction, w = %/R, where  is the coefficient of dynamic friction.

(6) Angle of friction : The angle which the resultant force makes with
the direction of the normal reaction is called the angle of friction and it is R s

generally denoted by A.

Thus 4 is the limiting value of o, when the force of friction £ attains its

maximum value.

_ Maximum force of friction
Normal reaction

stan A

Since Rand u R are the components of S, we have, Scos A = R, Ssind = uR.
Hence by squaring and adding, we get S =Ry1+ p? and on dividing them, we get tan 4 = 1 Hence we

see that the coefficient of friction is equal to the tangent of the angle of friction.

2 12 Coefficient of Frictian .

When one body is in limiting equilibrium in contact with another body, the constant ratio which the
limiting force of friction bears to normal reaction at their point of contact, is called the coefficient of friction and
it is generally denoted by (.

Thus, s the ratio of the limiting friction and normal reaction.

Maximum force of friction

Hence, ¢ = tan A = -
Normal reaction

= U= g = F = UR, where Fis the limiting friction and R'is the normal reaction.

|/Vak : @ The value of 1 depends on the substance of which the bodies are made and so it differs from
one body to the other. Also, the value of y always lies between 0 and 1. Its value is zero for a

perfectly smooth body.
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O Cone of friction : A cone whose vertex is at the point of contact of two rough bodies and whose
axis lies along the common normal and whose semi-vertical angle is equal to the angle of

friction is called cone of friction.

3.13 Limiting equilibrium on an Inclined Plane

Let a body of weight W be on the point of sliding down a plane which is
inclined at an angle « to the horizon. Let R be the normal reaction and 1 R be

R
the limiting friction acting up the plane. g

Thus, the body is in limiting equilibrium under the action of three forces :
R 1 Rand W. a

Resolving the forces along and perpendicular to the plane, we have

PR =Wsihnaand R =W cosa

MR Wsina
- — =
R cos o

> u=tanag =>tani=tana=a=A1

Thus, if a body be on the point of sliding down an inclined plane under its own weight, the inclination of

the plane is equal to the angle of the friction.
(1) Least force required to pull a body up an inclined rough plane :
Let a body of weight W be at point A « be the inclination of rough inclined
plane to the horizontal and A be the angle of friction. Let 2 be the force acting
at an angle @ with the plane required just to move body up the plane.
oy Sin(a + A)

p=w—- "7 s u=tan A
cos(@ — 1) { H=tan }

Clearly, the force P is least when cos(@—A)is maximum, /ie. when
cos(@—-A)=1,/ie. @—A=0o0r 8 =A4.The least value of Pis W sin(a + 1)

(2) Least force required to pull a body down an inclined plane : Let a
body of weight W be at the point A, « be the inclination of rough inclined
plane to the horizontal and A be the angle of friction. Let 2 be the force acting

an angle @ with the plane, required just to move the body up the plane.

P W sin(4 - a)
~ cos(@-A)

[.- u=tan 4]

Clearly, Pis least when cos(@— 1) is maximum, /e. when §—1=0 or 8 =A4. The least value of Pis

Wsin(A - «a).
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|/{/oZe :QIf @ =4, then the body is in limiting equilibrium and is just on the point of moving downwards.
Q If @ < 4, then the least force required to move the body down the plane is W sin(4 — ).
Q If a=4a>Aora<l, then the least force required to move the body up the plane is

W sin(a + 4).

Q If a> 4,then the body will move down the plane under the action of its weight and normal

reaction.

Important Tips

& Least force on the honizontal plane : Least force required to move the bodly with wejght W on the rough horizontal plane is W sin A .
Example: 20 A force of 35 Kg is required to pull a block of wood weighing 140 Kg on a rough horizontal surface. The coefficient of
friction is [BIT Ranchi 1995]
1
(@ 1 (b) O © 4 (d) 7
. . N I 3% 1
Solution: (d) In the position of limiting equilibrium, we have pR =35 and R=140 = p= 120 "2
R
e I I
140 ka
Example: 21 A uniform ladder rests in limiting equilibrium, its lower end on a rough horizontal plane and its upper end against a
smooth vertical wall. If @is the angle of inclination of the ladder to the vertical wall and p is the coefficient of friction,
then tan@is equal to [MNR 1991; UPSEAT 2000]
3p
(@ v (b) 2u @ — d w+1
Solution: (b) Resolving the forces horizontally and vertically, we get

S=uR and R=W
SS=pw o ()
Taking moments about 4, we get

-W.AGsin@+S.ABcos & =0

= W.AGsind =S.ABcos @ :W.%sinezs.ABcose [ AG:E}

2




Example: 22

Solution: (b)

Example: 23

Solution: (b)
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= %.AB sin@ = UW.AB cos & [from (i)]

= tanf =2p.
A body of 6 Kg. rests in limiting equilibrium on an inclined plane whose slope is 30°. If the plane is raised to slope of

60°, the force in Kg weight along the plane required to support it is

@ 3 (b) 243
(© V3 (d 33
In case (i), ur

R =6c0s30°, UR =6sin30°.

1
S H=tan30°=—— . 6kg
\/g 30
In case (i),
S =6c0s60°
P + uS = 65in60° o 7
1 . J3
- P +——(6c0s60°) = 65iN60° =62 =33 .
J3 2
A ke
1.1 3
P =33 -—=6x==3J3-—==3/3-43=23. 60°
J32 J3

The coefficient of friction between the floor and a box weighing 1 ton if a minimum force of 600 Kgfis required to start

the box moving is [SCRA 1995]
1 1
a) — b) — o = d) 1
(@) 2 (b) 1 © 5 (d)
Resolving horizontally and vertically P
Pcos@=pR; Psind+R =W P
. Pcosd = pW — Psind] uR 0
or P[cosé + psind] = pW
or P pyv _ MW cos 4 _ WsinA W
sinA cos(d —A) cos(@— A1)

cos @ + ——.sinf
cos A

Now Pis minimum when cos(@ — 1) is maximum, /.e. when cos(@ — 1) =1
S MinP =Wsin 4
But W =1tonwt.=1000 Kg. and P =600 kg

.'.sinlzizﬂzi; .'.tanﬂ,:i,.'.u:g
W 1000 5 4 4
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Example: 24 A block of mass 2 Kg. slides down a rough inclined plane starting from rest at the top. If the inclination of the plane to

the horizontal is @ with tan 6 = % the coefficient of friction is 0.3 and the acceleration due to gravity is g = 9.8. The

velocity of the block when it reaches the bottom is
(a) 6.3 (b) 5.2 (© 7 (d) 81

Solution: (c) Let Pbe the position of the man at any time.
Clearly, R =2gcos @

Let fbe acceleration down the plane.

Equation of motionis 2f =2gsin@d — pR 20 cos 0 .

2f =2gsinéd — (29 cos 9)

B C
2f =2g(sin@ — pcos 9)
Here, tane— in0—— a—i
5' Ja© Va1
Now, 2f = 2¢g ——i —
Jar 10 J_l
29 5_ 59 59
2f=— — =, .f=—= Va1
[ j Jar 2 Jm 2Ja1 4
Let vbe the velocity at C 0
Then, v2 =u? 4215 =0+2—9_ AC :
’ 241
v = S—QJH {we can take AC = \/H since tan 0 = i}
Jar 5
v2=50=5x9.8=49.0, /e, v>=7m/sec
Example: 25 A circular cylinder of radius 7 and height / rests on a rough horizontal plane with one of its flat ends on the plane. A

gradually increasing horizontal force is applied through the centre of the upper end. If the coefficient of friction is 1.

The cylinder will topple before sliding of [UPSEAT 1994]
(@ r<ph (b) r=ph (© r=2ph (d) r=2ph

Solution: (b) Let base of cylinder is AB.

~BC=r
R
Let force Pis applied at O. |
F — P
Let reaction of plane is #and force of friction is p/R Let weight of cylinder is W/ \_l; P
In equilibrium condition,
h Aa

R=wWw . (yand P=pr . (ii) /I/
From (i) and (i), we have P = pw it [

(i) and (i) u —— >
Taking moment about the point O, w
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WxBC Wxr
ocC h

We have WxBC —Px0OC=0 = P =

|for

>uW or r> ph

The cylinder will be topple before sliding.

3.14 Centre of Gravity

The centre of gravity of a body or a system of particles rigidly connected together, is that point through
which the line of action of the weight of the body always passes in whatever position the body is placed and this
point is called centroid. A body can have one and only one centre of gravity.

If Wi, Wy, ,w,, are the weights of the particles placed at the points
AL XL Y1) A (X, Y ) s A (X, Yy respectively, then the centre of gravity G(X,¥) is given by
= Zwlxl - ZW1Y1
X = Wy = :

2w T,

(1) Centre of gravity of a number of bodies of different shape :

(i) C.G. of a uniform rod : The C.G. of a uniform rod lies at its mid-point.

(i) C.G. of a uniform parallelogram : The C.G. of a uniform parallelogram is the point of inter-section of the
diagonals.

(iii) C.G. of a uniform triangular lamina : The C.G. of a triangle lies on a median at a distance from the base

equal to one third of the medians.
(2) Some Important points to remember :

() The C.G. of a uniform tetrahedron lies on the line joining a vertex to the C.G. of the opposite face,
dividing this line in the ratio 3 : 1.

(i) The C.G. of a right circular solid cone lies at a distance A/4 from the base on the axis and divides it in
theratio 3 : 1.

(iii) The C.G. of the curved surface of a right circular hollow cone lies at a distance //3 from the base on
the axis and divides it in the ratio 2 : 1

(iv) The C.G. of a hemispherical shell at a distance a/2 from the centre on the symmetrical radius.

(V) The C.G. of a solid hemisphere lies on the central radius at a distance 34/8 from the centre where ais the

radius.
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(vi) The C.G. of a circular arc subtending an angle 2 « at the centre is at a distance ANZ fom the centre
(24
on the symmetrical radius, a being the radius, and « in radians.
(vii) The C.G. of a sector of a circle subtending an angle 2 « at the centre is at a distance §5In—Otfrom the
[24

centre on the symmetrical radius, a being the radius and « in radians.
(viii) The C.G. of the semi circular arc lies on the central radius at a distance of 2a from the boundry
T

diameter, where g is the radius of the arc.

Important Tips

& Let there be a body of wejght w and x be its C.G. If a portion of weight w; is removed from it and x; be the C.G. of the removed
WX — W, X

portion. Then, the C.G. of the remaining portion is given by X, =
W —W,

& Let x be the C.G. of a bodly of weight w. If x; x5 x3 are the C.G. of portions of weights w, w, ws respectively, which are removed
WX =W X; =W, X, —W3 Xy

from the boadly, then the C.G. of the remaining body is given by X, =
W—W; —W, —W,

Example: 26 Two uniform solid spheres composed of the same material and having their radii 6 ¢m and 3 am respectively are firmly
united. The distance of the centre of gravity of the whole body from the centre of the larger sphere is [MNR 1980]
(@ 1cm. (b) 3 cm. () 2am. (d)y 4 cm.

Solution: (a) Weights of the spheres are proportional to their volumes.

Let Pbe the density of the material, then

w = Weight of the sphere of radius 6cm = %7{(63),0 =288 7p

4 6cmyY 3gm
ws = Weight of the sphere of radius 3cm = 57[(33),0 =367 0 o

x = Distance of the C.G. of the larger sphere from its centre O =0

X, = Distance of the C.G. of smallar sphere from O =9 cm.

X = Distance of the C.G. of the whole body from O

WiX; +WyX, 2887px0+ 3670 %9

Now X = =
w; +W, 288 7p + 36 7p
% = 36 x9 1
324
Example: 27 A solid right circular cylinder is attached to a hemisphere of equal base. It the C.G. of combined solid is at the centre of

the base, then the ratio of the radius and height of cylinder is
(@ 1:2 (b) J2:1 (© 1:3 (d) None of these



Solution: (b)

Example: 28

Solution: (b)

Example: 29

Solution: (d)
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Let a be the radius of the base of the cylinder and 4 be the height of the cylinder. Let w4 and us be the weight of the

cylinder and hemisphere respectively. These weights act at their centres of gravity G, and G, respectively.

Now, wi = weight of the cylinder = za*hpg

ws = weight of the hemisphere = éﬂaspg \ /

{ E
0,6, =1 and 0,6, =h+2 7 G %/ﬂ
2 8

Since the combined C.G. is at 0. Therefore D ¢
0.0 :W1x01G+W2+0162
12 Wy +W,
2
(ﬂazhpg)xEJr E7za3pg «[he 32 h” 2 (.32 , ,
2 3 8 2 3 8 , 2ah h 2ah a
=h= > :>h=—2:>h = —+—
7ra2hpg+§;ra3pg h+§a 3 2 3 4

32h2:a2:>%=\/§:>a:h:\/5:1

On the same base A8 and on opposite side of it, isosceles triangles CAB and DAB are described whose altitudes are 12

cmand 6 cm respectively. The distance of the centre of gravity of the quadrilateral CADB from AB, is

(@ 0.5 cm (b) 1cm () 1.5cm (d) 2cam

Let £ be the midpoint of AB Then CL L ABand DL 1 AB.

Let Gyand G, be the centres of gravity of triangular lamina CABand DAB respectively.

Then, LG, :%CL =4cm. and LG, :%DL: 2cm. 12¢m] &

The C.G. of the quadrilateral ABCD'is at G the mid point of G| G,. AN6am 7 g
..G,G, =GG; =3cm.

D

=GL=G,L-GG,; =(4 —3)cm =1cm.

ABCis a uniform triangular lamina with centre of gravity at G If the portion GBC is removed, the centre of gravity of

the remaining portion is at G. Then GG is equal to [UPSEAT 1994]
1 1 1 1
= AG b) —AG = AG d) =AG

@) 3 (b) 2 (@) B (d) 5

Since Gand G are the centroids of AABC and GBD respectively. Therefore AG = %AD,

GDzlAD and GG":EGD:E iAD :EAD
3 3 3.3 9

Now, AG =§AD and GD:%AD

= Area of AGBC = %Area of AABC
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= Weight of triangular lamina GBC = %(Weight of triangle lamina ABC)

Thus, if Wis the weight of lamina GBC then the weight of lamina ABCis 3W.
Now, G is the C.G. of the remaining portion ABGC.

Therefore,

_ 3W(AG)-W(AG")
- 3W —W

AG'
=£(3AG - AG") = AG"= AG +GG":EAD +EAD :EAD
2 3 9 9
-1 3XEAD—§AD :EAD
2 3 9 9

.'.GG‘:AG—AG':EAD—EAD = lAD=l iAG :lAG.
3 9 9 9 6
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