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Chapter 

3 

Historically, Mechanics was the earliest 

branch of Physics to be developed as an exact 

science. The Laws of levers and of fluids were 

known to the Greeks in third century B.C. The 
fundamental theorem of statics, or rather 

another form of its, viz., the Triangle of Forces 

was first enunciated by Stevinus of Bruges in 

the year 1586. It was, however, left to Galileo 
(1564-1642) and Newton (1642-1727) to 

formulate the laws of mechanics and to place 

mechanics on a sound footing as an exact 
science. Newton was also the first to formulate 

correctly the law of universal gravitation. 

Following Newton's time, important 
contributions to mechanics were made by 

Euler, D' Alembert, Lagrange, Laplace, Poinsot 

and Coriolis. All these contributions were 

however within framework of Newton's laws of 

motion made.  
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 3.1 Introduction. 

 Statics is that branch of mechanics which deals with the study of the system of forces in equilibrium. 

 Matter : Matter is anything which can be perceived by our senses of which can exert, or be acted on, by 

forces. 

 Force : Force is anything which changes, or tends to change, the state of rest, or uniform motion, of a 

body. To specify a force completely four things are necessary they are magnitude, direction, sense and point of 

application. Force is a vector quantity. 

 3.2 Parallelogram law of Forces. 

 If two forces, acting at a point, be represented in magnitude and direction by the two sides of a 

parallelogram drawn from one of its angular points, their resultant is represented both in magnitude and 

direction of the parallelogram drawn through that point. 

 If OA and OB represent the forces P and Q acting at a point O and inclined to each other at an angle . If 

R is the resultant of these forces represented by the diagonal OC of the parallelogram OACB and R makes an 

angle  with P i.e. COA , then cos2222 PQQPR   and 





cos

sin
tan

QP

Q


  

 The angle 1 which the resultant R makes with the direction of the force Q is given by  

     









 






cos

sin
tan 1

1
PQ

P
 

 Case (i) : If P = Q 

 )2/cos(2 PR   and )2/tan(tan    or 2/   

 Case (ii) : If  90 , i.e. forces are perpendicular 

 
 

Q 

B 

R 

P 

 

D 

C 

A O 

1 
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 22 QPR  and 
P

Q
tan  

 Case (iii) : If  0 , i.e. forces act in the same direction 

 QPR  max  

 Case (iv) : If  180 , i.e. forces act in opposite direction 

 QPR  min  

 Note  :  The resultant of two forces is closer to the larger force. 

 The resultant of two equal forces of magnitude P acting at an angle  is 2P cos
2


and it bisects 

the angle between the forces. 

 If the resultant R of two forces P and Q acting at an angle  makes an angle  with the direction 

of P, then  
R

Q 


sin
sin  and 

R

QP 


cos
cos


   

 If the resultant R of the forces P and Q acting at an angle  

makes an angle  with the direction of the force Q, then 

R

P 


sin
sin   and 

R

PQ 


sin
cos


  

 Component of a force in two directions : The component of a 

force R in two directions making angles  and  with the line of 

action of R on and opposite sides of it are 

   
)sin(

sin

)sin(

sin.
1















ROC
F and 

)sin(

sin.

)sin(

sin.
2















ROC
F  

 - theorem : The resultant of two forces acting at a point O in directions OA and OB represented in 

magnitudes by .OA and .OB respectively is represented by OCµ)(  , where C is a point in AB such that 

CBµCA ..   
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Important Tips 

 

 The forces P, Q, R act along the sides BC, CA, AB of ABC.  

Their resultant passes through. 

(a) Incentre, if 0 RQP     (b) Circumcentre, if 0coscoscos  CRBQAP  

(c) Orthocentre, if 0secsecsec  CRBQAP  (d) Centroid, if 0cosec  cosec  cosec   CRBQAP  

or 
c

R

b

Q

a

P
  

 

Example: 1 Forces M and N acting at a point O make an angle 150°. Their resultant acts at O has magnitude 2 units and is 

perpendicular to M. Then, in the same unit, the magnitudes of M and N are     [BIT 

Ranchi 1993] 

 (a) 4,32    (b) 2,
2

3
  

 (c) 3, 4   (d) 4. 5 

Solution: (a) We have,  150cos22 222 MNNM  MNNM 34 22   .....(i)  

   and, 0150cos
150cos

150sin

2
tan 




 NM

NM

M
 

    0
2

3
 NM  

2

3N
M       .....(ii) 

   Solving (i) and (ii), we get 32M  and 4N . 

Example: 2 If the resultant of two forces of magnitude P and 2P is perpendicular to P, then the angle between the forces is  

          [Roorkee 1997] 

 (a) 2/3 (b) 3/4 (c) 4/5 (d) 5/6 

Solution: (a) Let the angle between the forces P and 2P be . Since the resultant of P and 2P is perpendicular to P. Therefore, 

   0cos2
cos2

sin2
2/tan 


 




 PP

PP

P
  

2

1
cos


   

3

2
   

Example: 3 If the line of action of the resultant of two forces P and Q divides the angle between them in the ratio 1 : 2, then the 

magnitude of the resultant is         [Roorkee 1993] 

 (a) 
P

QP 22 
 (b) 

Q

QP 22 
 (c) 

P

QP 22 
 (d) 

Q

QP 22 
 

Solution: (d) Let 3  be the angle between the forces P and Q. It is given that the resultant R of P and Q divides the angle between 

them in the ratio 1 : 2. This means that the resultant makes an angle  with the direction of P and angle 2 with the 

direction of Q. 
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   Therefore,  




3sin

2sinR
P   and 






3sin

sinR
  

   



cos2

sin

2sin


Q

P
     .....(i) 

   Also 



2sin433sin

sin




R
Q

R
Q  

    22 cos41sin43 
Q

R

Q

R
 2)cos2(1 

Q

R
  .....(ii) 

   From (i) and (ii), we get, 
2

222

1
Q

QP

Q

R

Q

R

Q

P 









 

Q

QP
R

22 
  

Example: 4 Two forces X and Y have a resultant F and the resolved part of F in the direction of X is of magnitude Y. Then the angle 

between the forces is  

 (a) 
Y

X

2
sin 1  (b) 

Y

X

2
sin2 1  (c) 

Y

X

2
sin4 1  (d) None of these 

Solution: (b) Let OA and OB represent two forces X and Y respectively. Let  be the angle between them and , the angle which the 

resultant F (represented by OC) makes with OA. 

   Now, resolved part of F along OA. 

   OD
OC

OD
OCF cos  = cosACOAADOA   = cosYX   

   But resolved part of F along OA is given to by Y. 

   cosYXY   or XY  )cos1(   
Y

X
XY

2
2/sin,

2
sin2. 22  


 

   i.e., 
Y

X

22
sin 


 or 

Y

X

2
sin

2

1


 

   Thus, 
Y

X

2
sin2 1   

Example: 5 The greatest and least magnitude of the resultant of two forces of constant magnitude are F and G. When the forces 

act an angle 2, the resultant in magnitudes is equal to       [UPSEAT 2001] 

 (a)  2222 sincos GF   (b)  222 cossin GF   (c) 22 GF   (d) 22 GF   

Solution: (a) Greatest resultant BAF   

   Least resultant BAG   

   On solving, we get 
2

GF
A


 , 

2

)( GF
B


  

   where A and B act an angle 2, the resultant 

   2cos222 ABBAR     2222 sincos GFR   

 3.3 Triangle law of Forces . 

 If three forces, acting at a point, be represented in magnitude and direction by the sides of a triangle, 

taken in order, they will be in equilibrium. 

 Here RCAQBCPAB  ,,  

 
 

O X A 

 

D 

Y 
F 

Y 

B C 

B Q C 

R P 

A 
R 

P 

Q 
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 In triangle ABC, we have 0 CABCAB  

 0 RQP  

 Hence the forces P,Q,R are in equilibrium. 

 

 Converse : If three forces acting at a point are in equilibrium, then they can be represented in magnitude 

and direction by the sides of a triangle, taken in order. 

 3.4 Polygon law of Forces . 

 If any number of forces acting on a particle be represented in magnitude and direction by the sides of a 

polygon taken in order, the forces shall be in equilibrium. 

 

 

 

 

 

 

 

Example: 6 D and E are the mid-points of the sides AB and AC respectively of a ABC. The resultant of the forces is represented by 

BE  and DC  is            

 (a) AC
2

3
 (b) CA

2

3
 (c) AB

2

3
 (d) BC

2

3
 

Solution: (d) We have, 

      BCDBCEBCDCBE   

   = 




  ABCABCABCABC

2

1
2

2

1

2

1
2  

   = BCBCBCCBBC
2

3

2

1
2

2

1
2   

 

Example: 7 ABCDE  is pentagon. Forces acting on a particle are represented in magnitude and direction by 

,,2,,, ADDECDBCAB and AE . Their resultant is given by      [Roorkee 1994] 

 (a) AE  (b) AB2  (c) AE3  (d) AE4  

Solution: (c) We have, AEADDECDBCAB  2 =       AEDEADDECDBCAB    

                =   AEAECEAC   = AEAEAEAE 3 . 

 3.5 Lami's Theorem . 

A3 

P3 

P2 

A2 

A1 P1 
A 

A4 

P5 

P4 
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 If three forces acting at a point be in equilibrium, each force is proportional to the sine of 

the angle between the other two. Thus if the forces are P, Q and R; ,, be the angles 

between Q and R, R and P, P and Q respectively. If the forces are in equilibrium, we have, 

 sinsinsin

RQP
 . 

 The converse of this theorem is also true. 

Example: 8 A horizontal force F is applied to a small object P of mass m on a smooth plane inclined to the horizon at an angle . If 

F is just enough to keep P in equilibrium, then F =       [BIT Ranchi 1993] 

 (a) 2cosmg  (b) 2sinmg  (c) cosmg  (d) tanmg  

Solution: (d) By applying Lami's theorem at P, we have 

   
)90sin()180sin(90sin  







mgFR
 

   


tan
cossin1

mgF
mgFR

  

 

 

Example: 9 A kite of weight W is flying with its string along a straight line. If the ratios of the resultant air pressure R to the tension 

T in the string and to the weight of the kite are 2  and )13(   respectively, then     [Roorkee 1990] 

 (a) WT )26(   (b) WR )13(   (c) WT )26(
2

1
  (d) WR )13(   

Solution: (b) From Lami's theorem,  

   
)180sin()180sin()sin(  





 oo

WTR
 

   
 sinsin)sin(

WTR



   .....(i) 

   Given, 2
T

R
 .....(ii)  and 13 

W

R
  .....(iii) 

   Dividing (iii) by (ii), we get  
2

13 


T

R
W

R

 

   WWT
W

T
)26(

2

1

2

13

2

13






  WWTR )13()13(

2

2
2   

Example: 10 Three forces RQP, are acting at a point in a plane. The angles between P and Q  and Q and R  are 150° and 120° 

respectively, then for equilibrium, forces P, Q, R are in the ratio         [MNR 1991; UPSEAT 2000] 

 (a) 3:2:1  (b) 3:2:1  (c) 3:2:1 (d) 1:2:3  

Solution: (d) Clearly, the angle between P and R is  90)120150(360 . By Lami's theorem, 

P R 
 

 
 

Q 

R Q 

P 

 

W 

T 
 

90– 

 mg 

F 

R B 

C A 

P 
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1232/112/3150sin90sin120sin

RQPRQPRQP









 

 

 3.6 Parallel Forces. 

 (1) Like parallel forces : Two parallel forces are said to be like parallel forces when they act in the same 

direction. 

 The resultant R of two like parallel forces P and Q is equal in magnitude 

of the sum of the magnitude of forces and R acts in the same direction as the 

forces P and Q and at the point on the line segment joining the point of action 

P and Q, which divides it in the ratio Q : P internally. 

 

 

 

 (2) Two unlike parallel forces : Two parallel forces are said to be unlike 

if they act in opposite directions. 

 If P and Q be two unlike parallel force acting at A and B and P is greater 

in magnitude than Q. Then their resultant R acts in the same direction as P and 

acts at a  point  C on BA produced. Such that QPR   and CBQCAP ..   

 Then in this case C divides BA externally in the inverse ratio of the forces, 

AB

R

CACB

QP

CA

Q

CB

P





  

 
 

Important Tips 

 If three like parallel forces P, Q, R act at the vertices A, B, C repectively of a triangle ABC, then their resultant act at the 

 (i) Incentre of ABC, if 
c

R

b

Q

a

P
  

 (ii) Circumcentre of ABC, if  
C

R

B

Q

A

P

2sin2sin2sin
   

(iii) Orthocentre of ABC, if 
C

R

B

Q

A

P

tantantan
  

(iv) Centroid of ABC, if P = Q = R. 
 

A C B 

Q R P 

R 
P 

C 

A 

B 

Q 
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Example: 11 Three like parallel forces P, Q, R act at the corner points of a triangle ABC. Their resultant passes through the 

circumcentre,if [Rookee 1995] 

 (a) 
c

R

b

Q

a

P
  (b) RQP   (c) 0 RQP  (d) None of these 

Solution: (c) Since the resultant passes through the circumcentre of ABC, therefore, the algebraic sum of the moments about it, is 

zero. 

   Hence, P + Q + R = 0. 

Example: 12 P and Q are like parallel forces. If P is moved parallel to itself through a distance x, then the resultant of P and Q moves 

through a distance.         [Rookee 1995] 

 (a) 
QP

Px


 (b) 

QP

Px


 (c) 

QP

Px

2
 (d) None of these 

Solution: (a) Let the parallel forces P and Q act at A and B respectively. Suppose the resultant P + Q acts at C. 

   Then, Q
QP

AB
AC 










      .....(i) 

   If P is moved parallel to itself through a distance x i.e. at A'.  

   Suppose the resultant now acts at C'. Then , 

   Q
QP

BA
CA 












'
''    Q

QP

xAB
CA 












''    .....(ii) 

   Now ACCAAAACACCC  '''''  

   Q
QP

AB
Q

QP

xAB
xCC 























 '  

QP

Px
CC

QP

Qx
xCC





 ''  

 3.7 Moment. 

 The moment of a force about a point O is given in magnitude by the 

product of the forces and the perpendicular distance of O from the line of 

action of the force. 

 If F be a force acting a point A of a rigid body along the line AB and OM (= 

p) be the perpendicular distance of the fixed point O from AB, then the moment 

of force about 







 )(

2

1
2. OMABOMABpFO )of  area(2 AOB    

 The S.I. unit of moment is Newton-meter (N-m). 

 (1) Sign of the moment : The moment of a force about a point measures the 

tendency of the force to cause rotation about that point. The tendency of the force F1 is to 

turn the lamina in the clockwise direction and of the force F2 is in the anticlockwise 

direction. 

B 

O 

P 

A 
M 

F 

F1 

O 

F2 

A A C C B 

P P

P 

P+Q P+Q Q 

xP 
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 The usual convention is to regard the moment which is anticlockwise direction as positive and that in the 

clockwise direction as negative. 

 (2) Varignon's theorem : The algebraic sum of the moments of any two coplanar forces about any point in 

their plane is equal to the moment of their resultant about the same point.  
 

 Note  :  Thy algebraic sum of the moments of any two forces about any point on the line of action of 

their resultant is zero. 

            Conversely, if the algebraic sum of the moments of any two coplanar forces, which are not in 

equilibrium, about any point in their plane is zero, their resultant passes through the point. 

            If a body, having one point fixed, is acted upon by two forces and is at rest. Then the moments of 

the two forces about the fixed point are equal and opposite. 

 3.8 Couples. 

 Two equal unlike parallel forces which do not have the same line of action, are said to form a couple. 

 Example : Couples have to be applied in order to wind a watch, to drive a 

gimlet, to push a cork screw in a cork or to draw circles by means of  pair of 

compasses. 

 (1) Arm of the couple : The perpendicular distance between the lines of 

action of the forces forming the couple is known as the arm of the couple. 

 (2) Moment of couple : The moment of a couple is obtained in magnitude by multiplying the magnitude 

of one of the forces forming the couple and perpendicular distance between the lines of action of the force. The 

perpendicular distance between the forces is called the arm of the couple. The moment of the couple is 

regarded as positive or negative according as it has a tendency to turn the body in the anticlockwise or 

clockwise direction. 

 Moment of a couple = Force × Arm of the couple = P.p 

 (3) Sign of the moment of a couple : The moment of a couple is taken with positive or negative sign 

according as it has a tendency to turn the body in the anticlockwise or clockwise direction. 

 

 

 

 

P 

A 
p 

P 

B 

P 

A 

P 

B 

Positive couple 

P 

A 

P 

B 

Negative couple 



 

 

 

 

Statics 93 

 

 

 

 Note  :  A couple can not be balanced by a single force, but can be balanced by a couple of opposite 

sign. 

 3.9 Triangle theorem of Couples. 

 If three forces acting on a body be represented in magnitude, direction and line of action by the sides of 

triangle taken in order, then they are equivalent to a couple whose moment is represented by twice the area of 

triangle. 

 Consider the force P along AE, Q along CA and R along AB. These forces 

are three concurrent forces acting at A and represented in magnitude and 

direction by the sides BC, CA and AB of ABC. So, by the triangle law of forces, 

they are in equilibrium. 

 The remaining two forces P along AD and P along BC form a couple, 

whose moment is ALBCALPm ..   

  Since ).(
2

1
ALBC  = 








ABC of the area

2

1
2  

  Moment = BC.AL = 2 (Area of ABC) 

 

Example: 13 A light rod AB of length 30 cm. rests on two pegs 15 cm. apart. At what distance from the end A the pegs should be 

placed so that the reaction of pegs may be equal when weight 5W and 3W are suspended from A and B respectively  

       [Roorkee 1995, UPSEAT 2001] 

 (a) 1.75 cm., 15.75 cm. (b) 2.75 cm., 17.75 cm. (c) 3.75 cm., 18.75 cm. (d) None of these 

Solution: (c) Let R, R be the reactions at the pegs P and Q such that AP = x 

   Resolving all forces vertically, we get 

   WRWRR 48   

   Take moment of forces about A, we get 

   ABWAQRAPR .3..   

   30.3)15.(4.4 WxWxW   

   cmx 75.3  

   cmxAP 75.3  and cmAQ 75.18  

R 

D P 

A P 

E 

Q 

C P L B 

A x 

R 

15 

R 

B 

3W 5W 
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Example: 14 At what height from the base of a vertical pillar, a string of length 6 metres be tied, so that a man sitting on the ground 

and pulling the other end of the string has to apply minimum force to overturn the pillar      [Roorkee 1997, SCRA 2000] 

 (a) 1.5 metres (b) 23 metres (c) metres 33  (d) metres24  

Solution: (b) Let the string be tied at the point C of the vertical pillar, so that AC = x 

   Now moment of F about A = F. AL 

      = F. AP sin 

      = F.6 cos  sin  

      = 3 F sin 2 

  To overturn the pillar with maximum (fixed) force F, moment is maximum if  

  sin 2 = 1 (max.) 

   ,902    i.e.  45  

   23
2

1
.645sin  PCAC   

Example: 15 Two unlike parallel forces acting at points A and B form a couple of moment G. If their lines of action are turned 

through a right angle, they form a couple of moment H. Show that when both act at right angles to AB, they form a 

couple of moment.  

 (a) GH (b) G2 + H2 (c) 22 HG   (d) None of these 

Solution: (c) We have, GPa   and HPb      .....(i) 

   Clearly, 222 xba   

   
2

2

2

2

P

H

P

G
x       [from (i)] 

   22 HGPx   

   Hence, required moment = 22 HG   

Example: 16 The resultant of three forces represented in magnitude and direction by the sides of a triangle ABC taken in order with 

BC = 5 cm, CA = 5 cm, and AB = 8 cm, is a couple of moment       

 (a) 12 units (b) 24 units (c) 36 units (d) 16 units  

Solution: (b) Resultant of three forces represented in magnitude and direction by the sides of a triangle taken in order is a couple of 

moment equal to twice the area of triangle. 

    the resultant is a couple of moment = 2  (area of ABC) 

   Here, a = 5 cm, b = 5 cm and c = 8 cm 

     2S = 5 + 5 + 8   S = 9. 

   Area = ))()(( cSbSaSS   12)89)(59)(59(9   

    Required moment = 2 (12) = 24 units.  

 

C 

L 

F 
 

P A 

B 

6 
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P 
B 
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 3.10 Equilibrium of Coplanar Forces. 

 (1) If three forces keep a body in equilibrium, they must be coplanar. 

 (2) If three forces acting in one plane upon a rigid body keep it in equilibrium, they must either meet in a 

point or be parallel. 

 (3)  When more than three forces acting on a rigid body, keep it in equilibrium, then it is not necessary that 

they meet at a point. The system  of forces will be in equilibrium if there is neither translatory motion nor rotatory 

motion. 

 i.e. X = 0, Y = 0, G = 0 or R = 0, G = 0. 

 (4) A system of coplanar forces acting upon a rigid body will be in equilibrium if the algebraic sum of their 

resolved parts in any two mutually perpendicular directions vanish separately, 

and if the algebraic sum of their moments about any point in their plane is 

zero. 

 (5) A system of coplanar forces acting upon a rigid body will be in 

equilibrium if the algebraic sum of the moments of the forces about each of 

three non-collinear  points is zero. 

 (6) Trigonometrical theorem : If P is any point on the base BC of ABC such that BP : CP = m : n. 

 Then, (i)  cotcotcot)( nmnm   where   CAPBAP ,  

          (ii) CmBnnn cotcotcot)(      
 

Example: 17 Two smooth beads A and B, free to move on a vertical smooth circular wire, are connected by a string. Weights W1, W2 

and W are suspended from A, B and a point C of the string respectively. 

 In equilibrium, A and B are in a horizontal line. If BAC  and ABC , then the ratio  tan:tan  is  

        [Roorkee 1996, UPSEAT 2001] 

 (a) 
21

21

tan

tan

WWW

WWW









 (b) 

21

21

tan

tan

WWW

WWW









 (c) 

21

21

tan

tan

WWW

WWW









 (d) None of these 

Solution: (a) Resolving forces horizontally and vertically at the points A, B and C respectively, we get 

    sincos 1RT      .....(i) 

    cossin 111 RWT     .....(ii) 

    sincos 21 RT     .....(iii) 

    cossin 222 RWT     .....(iv) 

    coscos 21 TT     .....(v) 

  

W1 W W2 

T2 T1 

C B A 

R1 R2 

  

O 

  

B m P n C 

 

A 
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   and WTT   sinsin 21    .....(vi) 

   Using (v), from (i)and (ii), we get, 21 RR   

    From (ii) and (vi), we have 

   2211 sinsin WTWT    

   or 1221 sinsin WWTT     .....(vii) 

   Adding and subtracting (vi) and (vii), we get 

   121 sin2 WWWT     ......(viii) 

   122 sin2 WWWT     ......(ix) 

   Dividing (viii) by (ix), we get 

   
21

21

2

1

sin

sin
.

WWW

WWW

T

T









  or 

21

21

sin

sin
.

cos

cos

WWW

WWW













    (from (v))    or 

21

21

tan

tan

WWW

WWW









 

Example: 18 A uniform beam of length 2a rests in equilibrium against a smooth vertical plane and over a smooth peg at a distance 

h from the plane. If   be the inclination of the beam to the vertical, then sin3  is    [MNR 1996] 

 (a) 
a

h
 (b) 

2

2

a

h
 (c) 

h

a
 (d) 

2

2

h

a
 

Solution: (a) Let AB be a rod of length 2a and weight W. It rests against a smooth vertical wall at A and over peg C, at a distance h 

from the wall. The rod is in equilibrium under the following forces : 

   (i) The weight W at G 

   (ii) The reaction R at A 

   (iii) The reaction S at C perpendicular to AB.  

   Since the rod is in equilibrium. So, the three force are concurrent at O. 

   In ACK, we have, sin  =
AC

h
 

   In ACO, we have, sin  = 
a

AO
 

   In AGO, we have sin  = 
a

AO
;  

a

h

a

AO

AO

AC

AC

h
 ..sin 3   

Example: 19 A beam whose centre of gravity divides it into two portions a and b, is placed inside a smooth horizontal sphere. If  

be its inclination to the horizon in the position of equilibrium and 2 be the angle subtended by the beam at the 

centre of the sphere, then        [Roorkee 1994] 

 (a)  tan))((tan abab   (b)  tan
)(

)(
tan

ab

ab




  (c)  tan

)(

)(
tan

ab

ab




  (d)  tan

))((

1
tan

abab 
  

Solution: (b) Applying m –n theorem in ABC, we get 

   OBGAGOABGBOGBGBAG  cotcotcot)(  
S 0 

R 

 

 
 

b 

M 

A 

a 
G 

N 
 

B 

W 

K 

M 

 

h 

C 

O 

 

 

G B 

R 

W 
N 

S 
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   
















 







2
cot

2
cot)90cot()( abba  

    tantantan)( abba    tantan 













ba

ab
 

 3.11 Friction. 

 Friction is a retarding force which prevent one body from sliding on 

another.  

 It is, therefore a reaction. 

 When two bodies are in contact with each other, then the property of 

roughness of the bodies by virtue of which a force is exerted between them to 

resist the motion of one body upon the other is called friction and the force exerted is called force of friction. 

 

 (1) Friction is a self adjusting force : Let a horizontal force P pull a heavy body of weight W resting on 

a smooth horizontal table. It will be noticed that up to a certain value of P, the body does not move. The 

reaction R of the table and the weight W of the body do not have any effect on the horizontal pull as they are 

vertical. It is the force of friction F, acting in the horizontal direction, which balances P and prevents the body 

from moving. 

 As P is increased, F also increases so as to balance P. Thus F increases with P. A stage comes when P just 

begins to move the body. At this stage F reaches its maximum value and is equal to the value of P at that 

instant. After that, if P is increased further, F does not increase any more and body begins to move. 

 This shows that friction is self adjusting, i.e. amount of friction exerted is not constant, but increases 

gradually from zero to a certain maximum limit. 

 (2) Statical friction : When one body tends to slide over the surface of another body and is not on the 

verge of motion then the friction called into play is called statical friction. 

 (3) Limiting friction : When one body is on the verge of sliding over the surface of another body then 

the friction called into play is called limiting friction. 

 (4) Dynamical friction : When one body is actually sliding over the surface of another body the friction 

called into play is called dynamical friction. 

 (5) Laws of limiting friction/statical friction/Dynamical friction : 

 (i) Limiting friction acts in the direction opposite to that in which the body is about to move. 

F P 

R 

W 
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 (ii) The magnitude of the limiting friction between two bodies bears a constant ratio depends only on the 

nature of the materials of which these bodies are made. 

 (iii) Limiting friction is independent of the shape and the area of the surfaces in contact, so long as the 

normal reaction between them is same, if the normal reaction is constant. 

 (iv) Limiting friction fs is directly proportional to the normal reaction R, i.e. fs  R 

  ;.Rµf ss   Rfµ ss / , where µs is a constant which is called coefficient of statical friction. 

 In case of dynamic friction, µk = fk/R, where µk is the coefficient of dynamic friction. 

 (6) Angle of friction : The angle which the resultant force makes with 

the direction of the normal reaction is called the angle of friction and it is 

generally denoted by . 

 Thus  is the limiting value of , when the  force of friction F attains its 

maximum value. 

 
reactionNormal 

frictionof  force Maximum
tan    

 Since R and µ R are the components of S, we have, S cos  = R, S sin = µR.  

 Hence by squaring and adding, we get 21 µRS   and on dividing them, we get tan  = µ. Hence we 

see that the coefficient of friction is equal to the tangent of the angle of friction.    

 3.12 Coefficient of Friction. 

 When one body is in limiting equilibrium in contact with another body, the constant ratio which the 

limiting force of friction bears to normal reaction at their point of contact, is called the coefficient of friction and 

it is generally denoted by µ. 

 Thus, µ is the ratio of the limiting friction and normal reaction. 

 Hence, µ = 
reactionNormal 

frictionof  force Maximum
tan    

 ,µRF
R

F
µ   where F is the limiting friction and R is the normal reaction. 

 Note  :  The value of µ depends on the substance of which the bodies are made and so it differs from 

one body to the other. Also, the value of µ always lies between 0 and 1. Its value is zero for a 

perfectly smooth body. 

 

R 

F =  R 

S 
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  Cone of friction : A cone whose vertex is at the point of contact of two rough bodies and whose 

axis lies along the common normal and whose semi-vertical angle is equal to the angle of 

friction is called cone of friction. 
 

 3.13 Limiting equilibrium on an Inclined Plane    

 Let a body of weight W be on the point of sliding down a plane which is 

inclined at an angle  to the horizon. Let R be the normal reaction and µ R be 

the limiting friction acting up the plane. 

 Thus, the body is in limiting equilibrium under the action of three forces :    

R, µ R and W. 

 Resolving the forces along and perpendicular to the plane, we have 

  cos and sin WRWµR   

 



tan

cos

sin
 µ

W

R

µR
   tantan  

 Thus, if a body be on the point of sliding down an inclined plane under its own weight, the inclination of 

the plane is equal to the angle of the friction. 

 (1) Least force required to pull a body up an inclined rough plane : 

Let a body of weight W be at  point A,  be the inclination of rough inclined 

plane to the horizontal and  be the angle of friction. Let P be the force acting 

at an angle  with the plane required just to move body up the plane. 

  
)cos(

)sin(








 WP       tanµ  

 Clearly, the force P is least when )cos(   is maximum, i.e. when 

1)cos(   , i.e. 0 or   . The least value of P is )sin(  W  

 (2) Least force required to pull a body down an inclined plane : Let a 

body of weight W be at the point A,  be the inclination of rough inclined 

plane to the horizontal and  be the angle of friction. Let P be the force acting 

an angle  with the plane, required just to move the body up the plane. 

 
)cos(

)sin(










W
P       ]tan[ µ   

 Clearly, P is least when )cos(    is maximum, i.e. when 0  or   . The least value of P is 

W )sin(   .    

R 

A 

R 

 

W 
 

O 

R 

A 

R  

W 
 

O 

 

P 

R 

A 

R 

 

W 
 

O 

P  
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 Note  :  If   , then the body is in limiting equilibrium and is just on the point of moving downwards. 

          If   , then the least force required to move the body down the plane is )sin(  W . 

          If   or  , , then the least force required to move the body up the plane is 

)sin(  W . 

          If ,  then the body will move down the plane under the action of its weight and normal 

reaction. 
 

Important Tips 

 Least force on the horizontal plane : Least force required to move the body with weight W on the rough horizontal plane is W sin  . 

 

Example: 20 A force of 35 Kg is required to pull a block of wood weighing 140 Kg on a rough horizontal surface. The coefficient of 

friction is              [BIT Ranchi 1995] 

 (a) 1 (b) 0 (c) 4 (d) 
4

1
 

Solution: (d) In the position of limiting equilibrium, we have 35µR  and 140R  
4

1

140

35
 µ  

    

 

 

 

 

 

 

 

Example: 21 A uniform ladder rests in limiting equilibrium, its lower end on a rough horizontal plane and its upper end against a 

smooth vertical wall. If  is the angle of inclination of the ladder to the vertical wall and µ is the coefficient of friction, 

then tan is equal to         [MNR 1991; UPSEAT 2000] 

 (a) µ (b) 2µ (c) 
2

3 µ
 (d) µ + 1 

Solution: (b) Resolving the forces horizontally and vertically, we get 

 µRS   and WR   

 µWS      .....(i) 

 Taking moments about A, we get 

 0cos.sin.–   ABSAGW  

  cos.sin. ABSAGW    cos.sin
2

. ABS
AB

W    









2

AB
AG  

R 

R 

35 kg 

140 kg 

R 

A R 0 

G 

W 

 

S 
B 
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  cos.sin.
2

ABµWAB
W

   [from (i)]  

 µ2tan   . 

Example: 22 A body of 6 Kg. rests in limiting equilibrium on an inclined plane whose slope is 30°. If the plane is raised to slope of 

60°, the force in Kg. weight along the plane required to support it is     [MNR 1987] 

 (a) 3   (b) 32  

 (c) 3    (d) 33  

Solution: (b) In case (i), 

  30cos6R ,  30sin6µR . 

 
3

1
30tan  µ  

 In case (ii), 

  60cos6S  

  60sin6µSP  

 33
2

3
660sin6)60cos6(

3

1
P . 

 32333
3

3
33

2

1
6

3

1
33 P . 

 

Example: 23 The coefficient of friction between the floor and a box weighing 1 ton if a minimum force of 600 Kgf is required to start 

the box moving is         [SCRA 1995] 

 (a) 
4

1
 (b) 

4

3
 (c) 

2

1
 (d) 1 

Solution: (b) Resolving horizontally and vertically 

 WRPµRP   sin;cos  

 ]sin[cos  PWµP   

 or µWµP  ]sin[cos   

 or 
)cos(

sin

)cos(

cos

sin.
cos

sin
cos
























WµWµW

P  

 Now P is minimum when )cos(    is maximum, i.e. when 1)cos(    

 sin Min WP   

 But .1000  . 1 Kgton wtW   and kgP 600  

 
5

3

1000

600
sin 

W

P
 ;  

4

3
,

4

3
tan  µ   

30° 6 kg 

R 
R 

60° 

6 kg 

R 
S 

P 

R 

R 

 

P 

W 
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Example: 24 A block of mass 2 Kg. slides down a rough inclined plane starting from rest at the top. If the inclination of the plane to 

the horizontal is  with 
5

4
tan  , the coefficient of friction is 0.3 and the acceleration due to gravity is g = 9.8. The 

velocity of the block when it reaches the bottom is          

 (a) 6.3 (b) 5.2 (c) 7 (d) 8.1 

Solution: (c) Let P be the position of the man at any time. 

 Clearly, cos2gR   

 Let f be acceleration down the plane. 

 Equation of motion is µRgf  sin22  

 )cos2(sin22  gµgf   

 )cos(sin22  µgf   

 Here, 
5

4
tan  , 

41

4
sin  , 

41

5
cos   

 Now, 














41

5
.

10

3

41

4
22 gf  

 
41

5

2

5
.

41

2

2

3
4

41

2
2

ggg
f 








 ,  

412

5g
f   

 Let v be the velocity at C. 

 Then, AC
g

fSuv
412

5
20222   

 41.
41

52 g
v   










5

4
tancesin,41  takecan we AC  

 0.498.9552  gv , i.e., sec/72 mv   

Example: 25 A circular cylinder of radius r and height h rests on a rough horizontal plane with one of its flat ends on the plane. A 

gradually increasing horizontal force is applied through the centre of the upper end. If the coefficient of friction is µ. 

The cylinder will topple before sliding of        [UPSEAT 1994] 

 (a) µhr   (b) µhr   (c) µhr 2  (d) µhr 2  

Solution: (b) Let base of cylinder is AB. 

 rBC   

 Let force P is applied at O. 

 Let reaction of plane is R and force of friction is µR. Let weight of cylinder is W. 

 In equilibrium condition,  

 WR     .....(i) and µRP     .....(ii) 

 From (i) and (ii), we have µWP   

 Taking moment about the point O,  

2g 
2g cos  

B 

2g sin  

R 

P 

R 
A 

 

 

C 

 

41

 
4 

5 

E 

R 

h 

O 

W 

a 

D 
P 

R 
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 We have 0 OCPBCW   
h

rW

OC

BCW
P





  

 If µW
h

rW



 or µhr   

 The cylinder will be topple before sliding. 

    

 3.14 Centre of Gravity    

 The centre of gravity of a body or a system of particles rigidly connected together, is that point through 

which the line of action of the weight of the body always passes in whatever position the body is placed and this 

point is called centroid. A body can have one and only one centre of gravity. 

 If nwww ..,,........., 21  are the weights of the particles placed at the points 

)222111 ,(..,),........,(),,( nnn yxAyxAyxA  respectively, then the centre of gravity ),( yxG  is given by 








1

11

1

11
,

w

yw
y

w

xw
x . 

 (1) Centre of gravity of a number of bodies of different shape :  

 (i) C.G. of a uniform rod : The C.G. of a uniform rod lies at its mid-point. 

 (ii) C.G. of a uniform parallelogram : The C.G. of a uniform parallelogram is the point of inter-section of the 

diagonals. 

 (iii) C.G. of a uniform triangular lamina : The C.G. of a triangle lies on a median at a distance from the base 

equal to one third of the medians. 

 (2) Some Important points to remember :  

 (i) The C.G. of a uniform tetrahedron lies on the line joining a vertex to the C.G. of the opposite face, 

dividing this line in the ratio 3 : 1. 

 (ii) The C.G. of a right circular solid cone lies at a distance h/4 from the base on the axis and divides it in 

the ratio 3 : 1. 

 (iii) The C.G. of the curved surface of a right circular hollow cone lies at a distance h/3 from the base on 

the axis and divides it in the ratio 2 : 1 

 (iv) The C.G. of a hemispherical shell at a distance a/2 from the centre on the symmetrical radius. 

 (v) The C.G. of a solid hemisphere lies on the central radius at a distance 3a/8 from the centre where a is the 

radius. 
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 (vi) The C.G. of a circular arc subtending an angle 2 at the centre is at a distance 


sina
 from the centre 

on the symmetrical radius, a being the radius, and  in radians. 

 (vii) The C.G. of a sector of a circle subtending an angle 2 at the centre is at a distance 


sin

3

2a
from the 

centre on the symmetrical radius, a being the radius and  in radians. 

 (viii) The C.G. of the semi circular arc lies on the central radius at a distance of 


a2
 from the boundry 

diameter, where a is the radius of the arc. 
  

Important Tips 

 Let there be a body of weight w and x be its C.G. If a portion of weight w1 is removed from it and x1 be the C.G. of the removed 

portion. Then, the C.G. of the remaining portion is given by 
1

11
2

ww

xwwx
x




  

 Let x be the C.G. of a body of weight w. If x1, x2, x3 are the C.G. of portions of weights w1, w2, w3 respectively, which are removed 

from the body, then the C.G. of the remaining body is given by 
321

332211
4

wwww

xwxwxwwx
x




   

 

Example: 26 Two uniform solid spheres composed of the same material and having their radii 6 cm and 3 cm respectively are firmly 

united. The distance of the centre of gravity of the whole body from the centre of the larger sphere is [MNR 1980] 

 (a) 1 cm. (b) 3 cm. (c) 2 cm. (d) 4 cm. 

Solution: (a) Weights of the spheres are proportional to their volumes. 

   Let P be the density of the material, then 

   w1 = Weight of the sphere of radius  288)6(
3

4
6 3 cm  

   w2 = Weight of the sphere of radius  36)3(
3

4
3 3 cm  

   x1 = Distance of the C.G. of the larger sphere from its centre O = 0 

   x2 = Distance of the C.G. of smallar sphere from O = 9 cm.  

   x  = Distance of the C.G. of the whole body from O 

   Now 




36288

9360288

21

2211











ww

xwxw
x  

   1
324

936



x    

Example: 27 A solid right circular cylinder is attached to a hemisphere of equal base. It the C.G. of combined solid is at the centre of 

the base, then the ratio of the radius and height of cylinder is    

 (a) 1 : 2 (b) 1:2  (c) 1 : 3 (d) None of these 

O O 

3 cm 6 cm 
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Solution: (b) Let a be the radius of the base of the cylinder and h be the height of the cylinder. Let w1 and w2 be the weight of the 

cylinder and hemisphere respectively. These weights act at their centres of gravity G1 and G2 respectively. 

   Now, w1 = weight of the cylinder = gha  2  

   w2 = weight of the hemisphere = ga  3

3

2
 

   
2

11

h
GO   and 

8

3
21

a
hGO   

   Since the combined C.G. is at O2. Therefore  

   
21

21211
21

ww

GOwGOw
OO




  

   

gagha

a
hga

h
gha

h





32

32

3

2

8

3

3

2

2
)(






















  
43

2

23

2

3

2

8

3

3

2

2 22
2

2

aahhah
h

ah

a
ha

h

h 













  

   1:2:22 22  ha
h

a
ah  

Example: 28 On the same base AB and on opposite side of it, isosceles triangles CAB and DAB are described whose altitudes are 12 

cm and 6 cm respectively. The distance of the centre of gravity of the quadrilateral CADB from AB, is 

 (a) 0.5 cm (b) 1 cm (c) 1.5 cm (d) 2 cm 

Solution: (b) Let L be the midpoint of AB. Then CL  AB and DL  AB. 

  Let G1 and G2 be the centres of gravity of triangular lamina CAB and DAB respectively. 

   Then, .4
3

1
1 cmCLLG   and .2

3

1
2 cmDLLG   

   The C.G. of the quadrilateral ABCD is at G, the mid point of G1 G2. 

   .3121 cmGGGG   

   .1)34(11 cmcmGGLGGL   

 

Example: 29 ABC is a uniform triangular lamina with centre of gravity at G. If the portion GBC is removed, the centre of gravity of 

the remaining portion is at G'. Then GG' is equal to         [UPSEAT 1994] 

 (a) AG
3

1
 (b) AG

4

1
 (c) AG

5

1
 (d) AG

6

1
 

Solution: (d) Since G and G' are the centroids  of ABC and GBD respectively. Therefore ,
3

2
ADAG   

   ADGD
3

1
  and ADADGDGG

9

2

3

1

3

2

3

2
" 








  

   Now, ADAG
3

2
  and ADGD

3

1
  

    Area of ABCGBC  of  Area
3

1
 

O1 O2 G2 G1 

A 

D C 

B 

E 

G2 

G1 

A B 

C 

D 

L 6cm 

12cm 

G 

G 
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    Weight of triangular lamina GBC = 
3

1
(weight of triangle lamina ABC) 

   Thus, if W is the weight of lamina GBC, then the weight of lamina ABC is 3W. 

   Now, G' is the C.G. of the remaining portion ABGC.  

   Therefore,  

   
WW

AGWAGW
AG






3

)"()(3
'  

          = )"3(
2

1
AGAG         









 ADADADGGAGAG
9

8

9

2

3

2
""   

         = ADADAD
9

5

9

8

3

2
3

2

1









  

   ADADAGAGGG
9

5

3

2
''   = AGAGAD

6

1

2

3

9

1

9

1









 . 
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