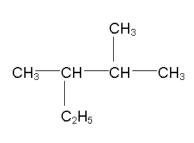
CBSE Board Class XI Chemistry

Time: 3 Hours Total Marks: 70

General Instructions

- 1. All questions are compulsory.
- 2. Question nos. 1 to 8 are very short answer questions and carry 1 mark each.
- 3. Question nos. 9 to 18 are short answer questions and carry 2 marks each.
- 4. Question nos. 19 to 27 are also short answer questions and carry 3 marks each
- 5. Question nos. 28 to 30 are long answer questions and carry 5 marks each
- 6. Use log tables if necessary, use of calculators is not allowed.
- **Q. 1** What happens when sodium metal is heated in free supply of air? [1]
- **Q. 2** Given: [1]


$$2 \text{Al}(s) + \frac{3}{2} \, \text{O}_2(g) \rightarrow \text{Al}_2 \text{O}_3(s), \\ \Delta_f H^\theta = -1,670 \; \text{kJ/mol for Al}_2 \text{O}_3(s).$$

Determine ΔH^{θ} for the reaction $2Al_2O_3(s) \rightarrow 4Al(s) + 3O_2(g)$.

 ${f Q.~3}$ Explain why BeH $_2$ molecule has zero dipole moment although the Be-H

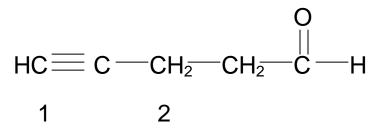
bonds are polar? [1]

- **Q. 4** Predict the shape of the PH₃ molecule according to VSEPR theory. [1]
- **Q. 5** Which isotope of hydrogen is radioactive? [1]
- **Q. 6** Write the correct IUPAC name of the compound given below: [1]

- **Q. 7** How many mono substituted derivatives of naphthalene are possible? [1]
- **Q. 8** Name any two gases responsible for greenhouse effect. [1]
- Q. 9 Arrange the following ions in order of increasing ionic radius: K+, P3-, S2-,Cl-.

Give reason. [2]

Q. 10 The successive ionization energies of a certain element are I_1 = 589.5


kJ/mol, I_2 =1145 kJ/mol, I_3 = 4900 kJ/mol, I_4 = 6500 kJ/mol, and I_5 = 8100

kJ/mol. This pattern of ionization energies suggests that the unknown	
element is:	[2]
a) K	
b) Si	
c) Ca	
d) As	
Explain your answer.	
Q. 11 A sample of gas occupies 3.00 L at 760 torr. Calculate the volume the gas	
will occupy if the pressure is changed to 1.45 atm and the temperature	
remains constant.	[2]
${f Q.~12}$ A mixture of hydrogen and oxygen at 1 bar pressure contains 20 % by	
mass of hydrogen .Calculate the partial pressure of hydrogen.	[2]
Q. 13 Complete the following reactions	[2]
(i) $P_4O_{10}(s) + H_2O(l) \rightarrow$ (ii) $SiCl_4(l) + H_2O(l) \rightarrow$	
OR	
Give reasons for the following	
(a) Alkali metals impart colour to the flame.(b) Explain why alkali and alkaline earth metals cannot be obtained by chemical reduction methods?	
	[2]
(i) Alkali metals are soft and can be cut with help of a knife.(ii) Potassium is more reactive than sodium.	
Q. 15	[2]
 (i) How would you distinguish between BeSO₄ and BaSO₄? (ii) Which is thermally most stable alkaline earth metal carbonate among MgCO₃ CaCO₃, SrCO₃, BaCO₃? Why? 	3,
-	[2]
(i) 52 mol of Ar (ii)52 u of He	
Q. 17 Arrange benzene, hexane and ethyne in decreasing order of acidic	
behavior. Also give reasons for this behaviour.	[2]

 ${\bf Q.\ 18}$ State the difference between classical smog and photochemical smog.

[2]

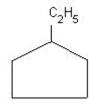
- **Q. 19** 50 kg of $N_2(g)$ & 10.0 kg of $H_2(g)$ are mixed to produce $NH_3(g)$, identify the limiting reagent. Also, calculate the amount of NH_3 formed. [3]
- **Q. 20** (i) Calculate the wavelength in nanometers, of visible light having a frequency of 4.37×10^{14} s⁻¹.
 - (ii) What are frequency and wavelength of a photon emitted during a transition from n = 6 to n = 1 state in the hydrogen atom.
- **Q. 21** (i) Explain why the following electronic configuration is not possible: [3] $n=1, l=0, m_l=+1, m_s=+\frac{1}{2}$
 - (ii) Write electric configurations of Cu & $\mbox{Cu}^{\mbox{\sc 2+}}$.
- **Q. 22** (i) Draw the resonating structures of carbon dioxide molecule. [3]
 - (ii) Why is NF₃ trigonal pyramidal while BF₃ is trigonal planar, though both are tetra atomic molecules?
 - (iii) State the hybridization of carbon atoms numbered 1 & 2:

- **Q. 23** How much volume of 0.1M CH₃COOH should be added to 50 mL of 0.2M of CH₃COONa solution to prepare a buffer solution of pH=4.91(Given pK_a of CH₃COOH is 4.76) [3]
- **Q. 24** (i) Calculate the concentration of hydroxyl ion in 0.1 M solution of NH₄OH having $K_b = 1.8 \times 10^{-5}$. [3]
 - (ii) K_{sp} value of two sparingly soluble salts Ni (OH)₂ and AgCN are 2×10^{-15} and 6.0×10^{-17} respectively. Which salt is more soluble?
- **Q. 25** Ajit had a very important cricket match but after 1 hour practicing, he was feeling very weak and so his mother gave him some glucon-D. After 10 minutes, he started feeling better and went back for playing. [3]
 - (a) What made Ajit energetic after drinking Glucon-D? Give plausible reasons for this.
 - (b) What value do you get from this?

OR

(a) Calculate the total number of electrons present in one mole of methane.

An atomic orbital has n = 3. What are the possible values of l and m_l ?


[3]

- **Q. 26.** (i) Draw the structural isomers of pentane.
 - (ii) Give the IUPAC names of the following compounds.

a)

$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{CH_3} - \overset{\mathsf{I}}{\operatorname{C-}} \operatorname{CH} - \operatorname{CH_2} - \operatorname{CH_2} - \operatorname{CH_3} \\ \operatorname{CH_3} \overset{\mathsf{I}}{\operatorname{CH_3}} \end{array}$$

b)

c) CH₃ – CH₂ – CH – CH₂ – CH₃ CH₂ – CH₃ – CH₃

- Q. 27 (i) 0.2475 g of an organic compound gave on combustion 0.4950 g of carbon dioxide and 0.2025 g of water. Calculate the percentage of C and H in it.
 - (ii) What will happen during Lassaigne's test for nitrogen if the compound also contains sulphur?
- Q. 28 (i) In a process, 701 J of heat is absorbed by a system and 394 J of work is done by the system. What is the change in internal energy for the process?
 [5]
 - (ii) The equilibrium constant for the reaction is 10. Calculate the value of ΔG^{θ} . Given R = 8.0 J mol⁻¹ K⁻¹; T = 300 K

OR

(i) Calculate lattice energy for the change

$$Li^+(g)+Cl^-(g) \rightarrow LiCl(s)$$

Given that:

$$\Delta_{\text{sub}} H^{\theta}$$
 of Li =160.67 kJ/mol

$$\Delta_{diss} H^{\theta}$$
 of $Cl_2 = 244.34$ kJ/mol

$$\Delta_{ie} H^{\theta}$$
 of Li(g)=520.07 kJ/mol

$$\Delta_{eq}H^{\theta}$$
 of CI(g) =- 365.26 kJ/mol

$$\Delta_f H^{\theta}$$
 of LiCl(s) =-401.66 kJ/mol

For a reaction; $2A(g)+B(g) \rightarrow 2D(g)$

$$\Delta U^{\theta} = -10.5 \text{ kJ } \& \Delta S^{\theta} = -34.1 \text{ J}$$

Calculate ΔG^{θ} for the reaction & predict whether the reaction is spontaneous or not at 298 K.

0.29

[5]

- (i) What happens when borax solution is acidified. Write the chemical reactions for the reaction.
- (ii) Explain why BF₃ exists whereas BH₃ does not?
- (iii)SiO₂ is solid but CO₂ is a gas at room temperature.

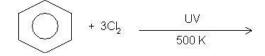
OR

When a metal X is treated with NaOH a white precipitate (A) is obtained, which is soluble in excess of NaOH to give soluble complex (B). Compound (A) is soluble in dilute HCl to form compound (C). The compound (A) when heated strongly gives D which is used to extract metal. Identify (X), (A),

(B), (C) & D. Write suitable equations to support their identities.

Q. 30 Complete the following reactions.

[5]


(i) CH₃CH₃+ O₂
$$\xrightarrow{\text{(CH}_3COO)_2Mn}$$
 $\xrightarrow{\Delta}$

(ii)
$$CH_2$$
 Br- CH_2 Br +Zn \rightarrow

(iii)
$$CH_3 - C = CH_2 + H_2O \xrightarrow{H^+}$$
 CH_3

(iv)

(v)

OR

- (i) Outline all the steps in the synthesis of the compound styrene from benzene.
- (ii) Give the products of ozonolysis of mesitylene.

CBSE Board Class XI Chemistry

Time: -3 hrs Total Marks:- 70

Solution

Ans. 1 On heating sodium in free supply of air, it forms sodium peroxide. $\left(\frac{1}{2}\right)$

 $2 \text{ Na(s)} + O_2 \text{ (Air)} \rightarrow \text{Na}_2 O_2$

(Sodium peroxide)
$$\left(\frac{1}{2}\right)$$

Ans. 2
$$\Delta H^{\theta} = 2 \times (+ (1,670)) \text{ kJ/mol} = + 3,340 \text{ kJ/mol}$$
 (1)

Ans. 3 BeH₂ is a linear molecule with H-Be-H bond angle as 180°. Although the Be-H bonds are polar, the bond polarities cancel each other and the net dipole moment is zero. (1)

Ans. 4 Trigonal pyramidal (1)

Ans. 5 Tritium (1)

Ans. 6 2,3-Dimethylpentane (1)

Ans. 7 3 (1)

Ans. 8 Carbon dioxide and methane (1)

Ans. 9 K⁺
$$<$$
 Cl⁻ $<$ S²⁻ $<$ P³⁻ (1)

Reason: All the ions are isoelectronic with 18 electrons. If the number of electrons is the same, as the number of protons increase, the nuclear charge increases and hence the outermost electrons will experience a greater force of attraction towards the nucleus. This results in the decrease in ionic radii. Since the nuclear charge decreases from K+ to P³⁻, the ionic radii increases from K+ to P³⁻. (1)

(1)

Here the third ionization energy is very high which suggest that the removal of the third electron is difficult. The electronic configuration of calcium is [Ar] 4s². First two electrons can be removed without much difficulty. But the removal of third electron from the stable electronic configuration of argon is difficult. Hence, the third ionization energy is high. (1)

Ans. 11 The given question is based on Boyle's law Therefore,

$$P_1V_1 = P_2V_2$$
 (At constant temperature) (1)

$$\Rightarrow \frac{760 \text{ torr}}{760 \text{ torr} / \text{ atm}} \times 3L = 1.45 \text{ atm} \times V_2L$$

$$\Rightarrow V_2 = 2.07L$$
 (1)

Ans. 12 Since 20 % by mass of hydrogen is present in the mixture, mass of

hydrogen in the mixture is 20 g in 100 g of the mixture present.

Remaining mass in the mixture is of oxygen = 80 g

No. of moles of hydrogen = $20 \text{ g} / 2 \text{ g mol}^{-1} = 10 \text{ mol}$

No. of moles of oxygen = $80 \text{ g} / 32 \text{ g mol}^{-1} = 2.5 \text{ mol}$

Mole fraction of hydrogen

$$\begin{split} x_{H_2} &= \frac{n_{H_2}}{n_{H_2} + n_{O_2}} \\ &= \frac{10}{10 + 2.5} \\ &= \frac{10}{12.5} \\ &= 0.8 \end{split} \tag{\frac{1}{2}}$$

Partial pressure of hydrogen

$$p_{H_{2}} = x_{H_{2}} \times p_{total}$$

$$= 0.8 \times 1 bar$$

$$= 0.8 bar$$

$$\left(\frac{1}{2}\right)$$

Therefore partial pressure of hydrogen is 0.8 bar.

(i)
$$P_4O_{10}(s) + 6H_2O(l) \rightarrow 4H_3PO_4(aq)$$
 (1)

(ii)
$$SiCl_4(I) + 2H_2O(I) \rightarrow SiO_2(s) + 4HCl(aq)$$
 (1)

OR

- (a) Alkali metals have loosely held electron. Energy from the flame is sufficient to excite the electron to a high energy level. When electron falls to lower level the energy released falls in the visible region of spectrum thus imparting colour to the flame.
- (b)Alkali and alkaline earth metals are themselves very strong reducing agents and therefore cannot be reduced by chemical reduction methods.

(1)

Ans. 14

- (i) Alkali metals have large atomic size with only one valence electron.

 Thus, they have weak metallic bonding between the atoms of the metal.

 Because of weak metallic bonding, alkali metals are soft and can be cut with a knife.
- (ii) Reactivity of metals depends on ionization enthalpy. Smaller is the i onization enthalpy, greater is the reactivity. Potassium has a larger atomic size than sodium. Thus, the ionization enthalpy of potassium is less than sodium. Hence, potassium is more reactive than sodium. (1)

Ans. 15

- (i) BeSO₄ and BaSO₄ can be differentiated by solubility test. BeSO₄ is soluble in water and BaSO₄ is insoluble in water. (1)
- (ii) BaCO₃ is thermally most stable alkaline earth metal carbonate because Ba^{2+} ion being larger in size is more stabilized by larger CO_3^{2-} ion through

formation of stable lattice.

Ans. 16

(i) 1 mol of Ar contains = 6.022×10^{23} atoms

52 mol of Ar will contains = $(52 \times 6.022 \times 10^{23})$ atoms

$$= 3.13 \times 10^{25} \text{ atoms}$$
 (1)

(1)

(ii) 4 u of He = 1 atom

52 u of He =
$$\frac{1}{4}$$
x 52 = 13 atoms (1)

Ans. 17

The decreasing order of acidic behaviour is:

The C-H bond in ethyne, benzene and n-pentane are formed by sp-s, sp^2-s and sp^3-s overlap.

Now, greater the percentage s character, greater is the electronegativity.

Therefore, sp-hybridised carbon in ethyne is more electronegative then sp² hybridised carbon of benzene which in turn is more electronegative than sp³ hybridised carbon of n-pentane.

Therefore, the polarity of the C-H bond is in order of:

Ethyne > benzene > pentane

Hence the acidity order is:

Ans. 18

131 10	
Classical Smog	Photochemical Smog
1. It occurs in cool humid	1. It occurs in warm, dry and sunny
climate. $\left(\frac{1}{2} \text{mark}\right)$	climate. $\left(\frac{1}{2} \text{mark}\right)$
2. It is a mixture of smoke, fog & sulphur dioxide.	2. Components of photochemical smog result from the action of sunlight on unsaturated hydrocarbons & oxides of

Moles of
$$N_2 = \frac{Mass}{Molar \, mass}$$

$$= \frac{50 \times 10^3 \, g}{28 \, g/mol} \qquad \qquad \left(\frac{1}{2}\right)$$

$$= 1.786 \times 10^3 \, mol$$

$$\begin{aligned} \text{Moles of H}_2 &= \frac{\text{Mass}}{\text{Molar Mass}} \\ &= \frac{10 \times 10^3 \text{g}}{2 \text{ g/mol}} \\ &= 5.0 \times 10^3 \text{mol} \end{aligned} \qquad \left(\frac{1}{2}\right)$$

$$N_2(g) + 3H_2 g = 2NH_3(g)$$
 (Eqn 1)

According to equation (1),

1 mole of $N_2(g)$ reacts with = 3 moles of $H_2(g)$

Therefore 1.786×10^3 mol of N_2 (g) will react with = $\frac{3 \times 1.786 \times 10^3}{1}$

moles of H₂(g)

$$= 5.36 \times 10^3 \, \text{mol} \qquad \qquad \left(\frac{1}{2}\right)$$

But we are having 5.0×10^3 mol of $H_2(g)$ only.

Hence,
$$H_2(g)$$
 is the limiting reagent. $\left(\frac{1}{2}\right)$

To calculate the amount of NH_3 formed,

3 moles of $H_2(g)$ give = 2 moles of $NH_3(g)$

Therefore,

$$5.0 \times 10^3$$
 moles of H₂ will give= $\frac{2}{3}$ x5x10³ moles of NH₃ $\left(\frac{1}{2}\right)$
=3.3x10³ moles of NH₃

Mass of NH₃ produced=
$$3.3 \times 10^3 \times 17$$
 g of NH₃

$$= 56.1 \text{ kg}$$

$$\left(\frac{1}{2}\right)$$

(i)
$$v = \frac{c}{\lambda}$$
 $\left(\frac{1}{2}\right)$

$$\lambda = \frac{c}{v} = \frac{3 \times 10^8 \, \text{m/s}}{4.37 \times 10^{14} \, \text{s}^{-1}}$$

$$\therefore \lambda = 0.686 \times 10^{-6} \text{ m}$$

$$\therefore \lambda = 686 \,\text{nm} \qquad \left(\frac{1}{2}\right)$$

(ii)

Here
$$n_1 = 6 \& n_2 = 1$$

The energy gap between two orbits for a hydrogen atom is given as

$$\Delta E = 2.18 \times 10^{-18} \, J \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$= 2.18 \times 10^{-18} \, J \left(\frac{1}{6^2} - \frac{1}{1^2} \right)$$

$$= 2.18 \times 10^{-18} \, J \left(\frac{1 - 36}{36} \right)$$

$$\Delta \mathsf{E} = -2.11 \times 10^{-18} \mathsf{J} \tag{\frac{1}{2}}$$

Since ΔE is negative, energy is emitted.

Now, frequency of photon is given by

$$v = \frac{\Delta E}{h}$$

$$= \frac{2.11 \times 10^{-18} \text{ J}}{6.626 \times 10^{-34} \text{ Js}}$$

$$= 3.18 \times 10^{15} \text{ s}^{-1}$$

$$v = 3.18 \times 10^{15} \text{ Hz}$$

$$\left(\frac{1}{2}\right)$$

Ans. 21

(i) For
$$n = 1$$
,
Value of $l = n - 1$
= $1 - 1$
= 0

For each value of I,

Value of
$$m_l = -1, ..., 0, ..., +1$$
 $\left(\frac{1}{2}\right)$

Therefore,

Forn=
$$1,l=0$$
,

$$m_I = 0$$

Thus the value of
$$m_i = 1$$
 is not possible. $\left(\frac{1}{2}\right)$

Electronic configuration of Cu(Z = 29) is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$ (1)

Electronic configuration of Cu^{2+} is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^9$ (1)

Ans. 22

(i) Resonating structures of CO₂ molecule

$$: \overset{\dots}{O} = C = \overset{\dots}{O}: \overset{\dots}{\longleftrightarrow} -\overset{\dots}{:} \overset{+}{O} = C = \overset{+}{O}: \overset{+}{\longleftrightarrow} : \overset{+}{O} = C - \overset{\dots}{O}: \overset{-}{\odot}$$

$$(1)$$

(ii) In NF₃, N atom involves sp^3 hybridization and one position is occupied by a lone pair. Therefore the molecule is trigonal pyramidal. But in BF₃, B involves sp^2 hybridization having trigonal planar geometry. Thus NF₃ is trigonal pyramidal while BF₃ is trigonal planar, even though both are tetra atomic molecules. (1)

$$C_1 \rightarrow \text{sp}$$
 $C_2 \rightarrow \text{sp}^3$

$$\left(\frac{1}{2} \times 2 = 1 \text{mark}\right)$$

Ans. 23 According to Henderson's equation

$$pH = pK_a + log \frac{[Salt]}{[Acid]}$$
 (1) Given
$$pH = 4.91 \quad pK_a = 4.76$$

$$4.91 = 4.76 + log \frac{Salt}{Acid}$$

$$\log \frac{\left[\text{CH}_3\text{COONa}\right]}{\left[\text{CH}_3\text{COOH}\right]} = 4.91 - 4.76 \qquad \left(\frac{1}{2}\right)$$

$$\frac{\left[\text{CH}_{3}\text{COONa}\right]}{\left[\text{CH}_{3}\text{COOH}\right]} = \text{antilog}(0.15) = 1.41 \qquad \left(\frac{1}{2}\right)$$

If V is the volume of 0.1 CH₃COOH required.

$$\frac{\text{[CH}_{3}\text{COONa]}}{\text{[CH}_{3}\text{COOH]}} = \frac{\frac{0.2 \times 50}{1000}}{\frac{0.1 \times \text{V}}{1000}} = 1.41$$
 $\left(\frac{1}{2}\right)$

$$\frac{0.2 \times 50}{0.1 \times V} = 1.41$$

$$V = \frac{0.2 \times 50}{0.1 \times 1.41} = 70.92$$

$$\left(\frac{1}{2}\right)$$

Therefore, Volume of 0.1 M acetic acid required =70.92 mL

Ans. 24

4
(i)
$$NH_4OH$$
 aq $\Rightarrow NH_4^+(aq) + OH^-$ aq
$$K_b = \frac{[NH_4^+][OH^-]}{[NH_4OH]}$$

$$Now, [NH_4^+] = [OH^-]$$

$$[NH_4OH] = 0.1M$$

$$K_b = \frac{[OH^-]^2}{[NH_4OH]}$$

$$[OH^-]^2 = 1.8 \times 10^{-5} \times 0.1$$

$$= 0.18 \times 10^{-5}$$

$$\therefore [OH^-] = 1.34 \times 10^{-3} \text{ mol/L}$$
(ii) $AgCN \Rightarrow Ag^+ + CN$
Let $x \text{ mol/L}$ be the solubility of $AgCN$
Thus $[Ag^+] = x$, $[CN^-] = x$

$$K_{sp} = [Ag^+][CN^-]$$

$$= x^2$$

$$x = \sqrt{K_{sp}}$$

$$= \sqrt{6.0 \times 10^{-17}}$$

$$= 7.75 \times 10^{-9}$$

$$Ni(OH)_2 \Rightarrow Ni^{2+} + 2OH^-$$
Let $y \text{ mol/L}$ be the solubility of $Ni(OH)$

Let y mol/L be the solubility of Ni(OH)₂

Thus
$$\left[Ni^{2+}\right] = y$$
 & $\left[OH^{-}\right] = 2y$

$$K_{sp} = \left[Ni^{2+}\right] \left[OH^{-}\right]^{2}$$

$$= y \times (2y)^{2}$$

$$= 4y^{3}$$

$$y = \left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}}$$

$$y = \left(\frac{2 \times 10^{-15}}{4}\right)^{\frac{1}{3}}$$

$$y = \sqrt[3]{0.5} \times 10^{-5}$$

$$\left(\frac{1}{2}\right)$$

Since solubility of $Ni(OH)_2$ is more than AgCN, $Ni(OH)_2$ is more soluble than AgCN. $\left(\frac{1}{2}\right)^2$

Ans. 25

(a) Ajit started feeling energetic after drinking glucose because of the redox reactions occurring in our body. In our body, glucose is oxidized to carbon dioxide and water and energy is released. This energy made him feel energetic.

(2)

(b) Application of knowledge of chemistry in our daily life and care for others.

(1)

OR

(a) Number of electrons in 1 molecule of methane = 6 + 4 = 10 electrons Number of molecules in 1 mole of methane = 6.022×10^{23} molecules of methane

Number of electrons in 1 mole of methane = 6.022×10^{24} electrons

(1)

 $m_1 = -2, -1, 0, +1, +2$

(b) n = 3

$$l = 0 \text{ to}(n-1)$$

= 0, 1, 2 (1)
For $l = 0$,
 $m_l = 0$
For $l = 1$
 $m_l = -1, 0, +1$
For $l = 2$

(1)

Ans. 26 (i) There are 3 structural isomers of pentane:

$$\begin{array}{c} \mathsf{CH_3} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_3} \\ \mathsf{n} - \mathsf{Pentane} \end{array} \qquad \left(\frac{1}{2}\right)$$

$$\begin{array}{c} \operatorname{CH_3} - \operatorname{CH_2} - \operatorname{CH} - \operatorname{CH_3} \\ \operatorname{CH_3} \\ \operatorname{2-Methylbutane} \end{array} \qquad \qquad \left(\frac{1}{2}\right)$$

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 - \overset{1}{\text{C}} - \text{CH}_3 \\ \overset{1}{\text{CH}}_3 \\ \text{2,2} - \text{Dimethylpropane} \end{array} \qquad \left(\frac{1}{2}\right)$$

(ii) a) 2,2,3 –Trimethylhexane
$$\left(\frac{1}{2}\right)$$

b) Ethylcyclopentane
$$\left(\frac{1}{2}\right)$$

c) 3 – Ethylhexane
$$\left(\frac{1}{2}\right)$$

Ans 27

(i) Mass of organic compound = 0.2475 g

Mass of CO_2 produced = 0.4950 g

Mass of H_2O produced = 0.2025 g

% of C=
$$\frac{12}{44}$$
× $\frac{\text{Mass of CO}_2}{\text{Mass of compound taken}}$ ×100

$$= \frac{12}{44} \times \frac{0.4950}{0.2475} \times 100 = 54.54 \tag{1}$$

% of H =
$$\frac{2}{18} \times \frac{\text{Mass of H}_2\text{O}}{\text{Mass of compound taken}} \times 100$$

$$= \frac{2}{18} \times \frac{0.2025}{0.2475} \times 100 = 9.09 \tag{1}$$

(ii) Blood red colouration due to Fe(CNS) will be produced. (1)

(i) Heat absorbed by the system (q) = + 701 J
$$\left(\frac{1}{2}\right)$$

Work done by the system (w) = -394 J
$$\left(\frac{1}{2}\right)$$

Change in internal energy (
$$\Delta U$$
) = q + w $\left(\frac{1}{2}\right)$

$$=701 - 394$$

$$= +307 J \qquad \left(\frac{1}{2}\right)$$

$$\Delta G^{o} = -2.303 RT \log K \tag{1}$$

$$R = 8.0 \, JK^{-1} \, mol^{-1}$$

 $T = 300 \, K$

 $K\!=\!10$

$$\Delta G^{\circ} = -2.303 RT log K$$

$$=-2.303 \times 8.0 \times 300 \times \log 10 \tag{1}$$

$$=-5527.2 \,\mathrm{Jmol}^{-1}$$
 (1)

OR

$$(i) \ \Delta_f H^o = \! \Delta_{sub} \ H^o + \! \Delta_{ie} H^o \ + \frac{1}{2} \ \Delta_{diss} \, H^o \ + \ \Delta_{eg} \ H^o + \ \Delta_{\ lattice} \ H^o$$

 $\left(\frac{1}{2}\right)$

$$\Delta_{lattice} H^o = -401.66 - (160.67) - (520.07) - \frac{1}{2}(244.34) - (-365.26)$$

$$\Delta_{\text{lattice}} H^{\text{o}} = -839.31 \text{ kJ/mol}$$
 $\left(\frac{1}{2}\right)$

(ii)

$$\Delta U^{o}$$
 =-10.5 kJ, $\Delta n(g)$ =-1 mol, T = 298 K R=8.314×10⁻³ kJ K⁻¹ mol⁻¹

$$\Delta H^{o} = \Delta U^{o} + \Delta n(g) RT$$
 $\left(\frac{1}{2}\right)$

$$\Delta H^{o} = -10.5 + \left[-1 \text{mol} \times 8.314 \times 10^{-3} \text{ kJ K}^{-1} \text{mol}^{-1} \times 298 \text{ K} \right]$$

= -10.5 kJ-2.478 kJ

= -12.978 kJ
$$\left(\frac{1}{2}\right)$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} \qquad \left(\frac{1}{2}\right)$$

$$= -12978 \, J - 298(-34.1 \, J) \qquad \left(\frac{1}{2}\right)$$

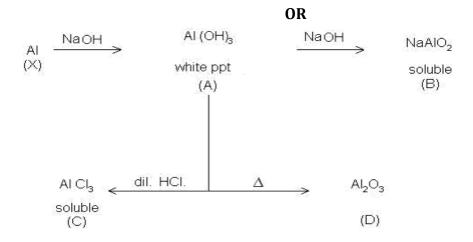
$$= -12978 + 10161.8$$

$$= -2816.2 \, J \qquad \left(\frac{1}{2}\right)$$

Since the value of ΔG^{θ} is negative, the reaction is spontaneous. (1)

Ans. 29 (i) Borax solution on acidification forms boric acid.

$$Na_2 B_4 O_7 + 2HCI + 5H_2O \rightarrow 2NaCI + 4H_3BO_3$$
 (1)


(ii) BF_3 is trigonal planar molecule. Due to $p\pi - p\pi$ back bonding, lone pair of electrons of F is back donated to B atom. This delocalization reduces the deficiency of electrons of boron thereby increasing the stability of BF_3 molecule.

The mechanism is as follows:

Due to absence of lone pair of electrons on H atom this compensation does not occur in BH3. $\left(\frac{1}{2}\right)$

(iii) Carbon is able to form $p\pi - p\pi$ bond with 0 atom and constitute a stable non - polar molecule O = C = O. Due to weak inter particle force its boiling point is low and it is gas at room temperature. (1)

Si on the other hand is not able to from $p\pi - p\pi$ bond with 0 atoms because of its relatively large size. In order to complete its octet Si is linked to four 0 atoms around it by sigma bond & these constitutes network structure, which is responsible for its solid state. (1)

2 marks for writing reactions

1 mark for identifying X

 $\left(\frac{1}{2}\,\text{mark}\right)$ each for correctly identifying A, B, C and D.

(i)
$$2CH_3CH_3 + 3O_2 \xrightarrow{(CH_3COO)_2Mn} 2CH_3COOH + 2H_2O$$
 (1)

(ii)
$$CH_2 Br-CH_2 Br+Zn \rightarrow CH_2 = CH_2 + ZnBr_2$$
 (1)

(iii)
$$CH_3 - C = CH_2 + H_2O \xrightarrow{H^+} CH_3 - C - CH_3$$
 (1) CH_3

(iv)

(1)

(v)

(1)

$$C_{2}H_{5} \xrightarrow{C_{1}} CI_{2} \xrightarrow{C_{1}CH_{2}CH_{3}} CH = CH_{2}$$

$$C_{2}H_{5} \xrightarrow{C} CI_{2} \xrightarrow{AICI_{3}} CI_{2} \xrightarrow{AICI_{3}} CI_{2} \xrightarrow{AICI_{3}} CI_{2} \xrightarrow{AICI_{3}} CI_{2}$$

$$(1) \qquad (1) \qquad (1)$$

$$\begin{array}{c|c} \text{CH}_3 \\ \hline & 1) \ \mathcal{O}_3 \\ \hline & 2) \ H_2 \ \mathcal{O}/\mathbb{Z}n \end{array} \rightarrow 3 \ CH_3 - C - C - H$$
 2-Ketopropanal

(1 mark for the correct product + 1 mark for the correct reagents)