
Chapter 1

Processes and Threads

 Basics of operating systems

 Services of OS

 Evolution of operating systems

 Processes

 Processes and process control blocks

 Process states

 Process creation

 Suspended processes

 OS control structures

 Process attributes

 Modes of execution

 Threads

 Thread functionality

 Thread synchronization

LEARNING OBJECTIVES

Basics oF oPerating systeM
An operating system (OS) is a program that controls the exe-
cution of application programs and acts as an interface between
applications and the computer hardware. The three objectives of
an OS are as follows:

 1. Convenience: An OS makes a computer more convenient to
use.

2. Effi ciency: An OS allows the computer system resources to
be used in an effi cient manner.

3. Ability to evolve: An OS should be constructed in such a way
as to permit the eff ective development, testing and introduction
of new system functions without interfering with service.

OS as a User–Computer Interface
Consider the below fi gure (Figure 1) which shows the hardware and
software used in providing applications to a user in a layered fashion.

Application programs

Utilities

Operating system

Computer hardware

End user Programmer

OS designer

Figure 1 Layers and views of a computer system.

The end user of the application is not concerned with the details
of computer hardware. Utilities implement the frequently used
functions that assist in program creation, the management of fi les
and control of input/output (I/O) devices. The most important col-
lection of system programs comprises the OS. The OS masks the
details of the hardware from the programmer and provides the pro-
grammer with a convenient interface for using the system.

Services of an OS
 1. Program development: An OS provides a variety of facilities

and services as editors and debuggers to assist programmers
in creating programs.

 2. Program execution: An OS handles the scheduling duties of
program execution for the user.

 3. Access to I/O devices: An OS provides a uniform
interface that hides the details of I/O devices so that the
programmers can access the I/O devices using simple
reads and writes.

 4. Controlled access to fi les: In a system with multiple users,
an OS provides protection mechanism to control access to
the fi les.

 5. System access: For shared or public systems, an OS controls
access to the system as a whole and to specifi c system
resources.

 6. Error detection and response: An OS must provide a response
that clears the error condition with the least impact on running
applications.

 7. Accounting: A good OS will collect usage statistics for
various resources and monitor performance parameters
(viz., response time).

7.4 | Unit 7 • Operating System

OS as Resource Manager
A computer is a set of resources for the movement, storage
and processing of data and for the control of these func-
tions. An OS is responsible for managing these resources.

 1. An OS functions in the same way as ordinary
computer software, that is, it is a program or suite of
programs executed by the processor.

 2. An OS frequently relinquishes control and must
depend on the processor to allow it to regain control.

The OS directs the processor in the use of the other system
resources and in the timing of its execution of other programs.

Figure 2 shows the resources that are managed by an OS.

Printers,
keyboards,
digital camera
etc.

Processor

OS
software

Programs
and data

I/O

I/O

I/O

I/O devices

Processor

Storage
OS

Programs
Data

Figure 2 OS as a resource manager.

A portion of the OS lies in the main memory. This
includes the kernel or nucleus, which contains the most fre-
quently used functions in the OS and, at a given time, other
portions of the OS currently in use. The remainder of main
memory contains user programs and data. The allocation of
this resource is controlled jointly by the OS and memory
management hardware in the processor.

Evolution of OSs
Serial processing
With the earliest computers, the programmer interacted
directly with the computer hardware. There was no OS.
Programs in machine code were loaded via the input devices.
This mode of operation is termed as serial processing.
Problems with this system are scheduling and setup time.

Simple batch systems
 • It requires the grouping up of similar jobs, which consist

of programs, data and system commands.
 • Users have no control over results of a program.
 • Off-line debugging.

Multiprogrammed batch systems
In view of simultaneous execution of multiple programs, it
improves system throughput and resource utilization.

Example: Windows XP, 98

 • Multitasking OS: A running state of a program is called
a process or a task. The concept of managing a multi-
tude of simultaneously active programs, competing with
each other for accessing the system resources is called
multitasking.

 • Serial multitasking or context switching is the simplest
form of multitasking.

Example: Windows NT, Linux

 • Multiuser OS: It is defined as multiprogramming OS that
supports simultaneous interaction with multiple users.

Example: Linux, Unix, a dedicated transaction processing
system (viz., railway reservation system).

 • Multiprocessing OS: The term multiprocessing means
multiple CPUs performing more than one job at one time.

The term ‘multiprogramming’ means situation in which a
single CPU divides its time between more than one job.

Time sharing systems
In this kind of OS, the processor time is shared among
multiple users. The CPU switches rapidly from one user
to another user; each user is given an impression that he/
she has his own computer while it is actually one computer
shared among many users.

If there are n users actively requesting service at one
time, each user will only see on the average 1/n of the effec-
tive computer capacity, not counting OS overhead.

Bootstrap Bootstrap is an initial program which runs, when
a computer is powered up (or) restarted. The task is to ini-
tialize system aspects (CPU registers to device controllers
to memory contents). It is stored within the computer hard-
ware known as firm ware (EEPROM).

Processes

Processes and Process Control Blocks
Process A process is an instance of a program in execution.
Two essential elements of a process are as follows:

 1. Program code
 2. Set of data

At any given point in time, while the program is execut-
ing, the process can be uniquely characterized by a number
of elements, including the following:

 1. Identifier
 2. State
 3. Priority

Chapter 1 • Processes and Threads | 7.5

 4. Program counter
 5. Memory pointers
 6. Context data
 7. I/O status information
 8. Accounting information

This information is stored in a data structure, typically
called a process control block, that is created and managed
by the OS.

Process control block (PCB) It contains sufficient informa-
tion so that it is possible to interrupt a running process and
later resume execution as if the interruption has not occurred.

Process States
The behaviour of an individual process can be characterized
by listing the sequence of instructions that executed for that
process. This listing is referred to as a trace of the process.
Also the behaviour of a processor is shown by listing the
traces of the various processes that are interleaved.

Dispatcher A dispatcher is a small program that switches
the processor from one process to another.

Two-state process model In the simplest possible process
model (Figure 3), at any time, a process is either being exe-
cuted by a processor or not, that is, a processor may be in
one of two states: running or not running.

Not
running Running

Enter Exit

Dispatch

Pause

(a)

Processor

Exit

Pause

DispatchQueue

(b)

Figure 3 Two-state process model. (a) State transition dia-
gram, (b) Queuing diagram

When the OS creates a new process, it creates the PCB
for the process and enters that process into the system in
the not running state. The process exists, is known to the
OS, and is waiting for an opportunity to execute. From time
to time, the currently running process will be interrupted
and the dispatcher portion of the OS will select some other
process to run. The former process moves from the running
state to the not running state and one of the other processes
moves to the running state.

Processes that are not running must be kept in some sort
of queue, waiting their turn to execute. Figure 3(b) shows
the structure. There is a single queue in which each entry is
a pointer to the PCB of a particular process.

Creation and Termination of Processes
Process creation
When a new process is to be added to those currently being
managed, the OS builds the data structures that are used to
manage the process and allocates address space in main mem-
ory to the process. The common events which lead to process
creation are as follows:

 1. New batch job
 2. Interactive logon
 3. Created by OS to provide a service
 4. Spawned by existing process

When the OS creates a process at the explicit request
of another process, the action is referred to as process
spawning. When one process spawns another, the former is
referred to as the parent process and the spawned process is
referred to as the child process.

Process termination
The following are the reasons for process termination:

 1. Normal completion: Process executes an OS service
call to indicate its completion.

 2. Time limit exceeded: The process has run longer than
the specified total time limit.

 3. Memory unavailable: The process requires more
memory than the system can provide.

 4. Bounds violation: The process tries to access a
memory location that it is not allowed to access.

 5. Protection error: The process attempts to use a
resource that is not allowed to access.

 6. Arithmetic error: The process tries a prohibited
computation.

 7. Time overrun: The process has waited longer than a
specified maximum for a certain event to occur.

 8. I/O failure: Error occurs during input or output.
 9. Invalid instruction: The process attempts to execute a

non-existent instruction.
 10. Privileged instruction: The process attempts to use an

instruction reserved for OS.
 11. Data misuse: A piece of data is of the wrong type or

is not initialized.
 12. Operator or OS intervention.
 13. Parent termination.
 14. Parent request.

Five-state model
The five states in Figure 4 are as follows:

 1. New: The process is created but not admitted to the
pool of executable processes.

 2. Running: Process in execution, that is, it is using
CPU.

 3. Blocked: Waiting for some event to occur (i.e., I/O)
before it can continue execution.

7.6 | Unit 7 • Operating System

 4. Ready: Process is ready for execution. Just it is
waiting.

 5. Exit: The process has been aborted by parent process
or has finished its execution.

New Ready Running

Blocked

Event
occurs

Timeout Event
wait

Dispatch Release

Exit

Figure 4 Process states.

Figure 4 indicates the types of events that lead to each
state transition for a process. The possible transitions are
as follows:

 1. NULL → New: A new process is created to execute a
program.

 2. New → Ready: The OS will move a process from the
New state to the Ready state when it is prepared to
take on an additional process.

 3. Ready → Running: When it is time to select a process
to run, the OS chooses one of the processes in the
Ready state.

 4. Running → Exit: The currently running process is
ter minated by the OS if the process indicates that it
has completed or if it aborts.

 5. Running → Ready: The reasons for this transition are
 • Running process has reached the maximum allow-

able time for uninterrupted execution.
 • As the OS assigns different levels of priority to differ-

ent processes, there will be pre-emption.
 • A process may voluntarily release control of the

processor.
 6. Running → Blocked: A process is put in the blocked

state if it requests something for which it must wait.
 7. Blocked → Ready: This transition occurs when the

event for which the process has been waiting occurs.
 8. Ready → Exit: A parent may terminate a child process

at any time.
 9. Blocked → Exit: Parent may terminate any blocked

process.

Queuing model for five-state model

Release

Timeout

Admit

Event waitEvent
occurs

Processor
Dispatch

Ready queue

Blocked queue

Figure 5 Single blocked queue.

Suspended Processes
Need for swapping In five-state process model using mul-
tiple blocked queues, the memory holds multiple processes.
Moreover, the processor can move to another process when
one process is blocked. But the processor is so much faster
than I/O that it will be common for all of the processes in
memory to be waiting for I/O. Thus, even with multipro-
gramming, a processor could be idle most of the time.

Then we can extend the main memory to accommodate
more processes, but it is not an efficient solution. Another
solution to this problem is swapping. Swapping involves
moving part or all of a process from main memory to disk.
When none of the processes in main memory is in the ready
state, the OS swaps one of the blocked processes out onto
disk into a suspend queue. The OS then brings in another
process from the suspend queue or it honours a new process
request. Then execution continues with the newly arrived
process. With the use of swapping, another state is added to
the process in the behaviour model.

New Ready Running

Blocked

Event
occurs

Time out
Event
wait

Dispatch Release

Exit

Admit

Suspend

Suspend

Activate

Figure 6 Process state-transition diagram with suspend state.

The four distinguishable states in this process model are
as follows:

 1. Ready: The process is in main memory and is
available for execution.

 2. Blocked: The process is in main memory and awaiting
an event.

 3. Blocked/suspend: The process is in secondary
memory and awaiting an event.

 4. Ready/suspend: The process is in secondary memory
but is available for execution as soon as it is loaded
into main memory.

Figure 7 shows the process state model with two suspend states:

RunningReady Exit

New

Blocked

Ready/
suspend

Blocked/
suspend

Admit
Admit

ReleaseActivate

Activate

Dispatch

Suspend

Suspend

Suspend

Event
occurs

Event wait
Event
occurs

Time out

Figure 7 Process state transition diagram with suspend state.

Chapter 1 • Processes and Threads | 7.7

Uses of Suspension
Characteristics of suspended process are as follows:

 1. The process is not immediately available for execution.
 2. The process may or may not wait on an event.
 3. The process was placed in a suspend state by either

itself, a parent or the OS.

Reasons for process suspension

 • Swapping: To Release sufficient main memory.
 • Other OS reason: OS may suspend a background process.
 • Interactive User Request: A user may wish to suspend

execution of a program.
 • Timing: A process may be executed periodically and may

be suspended.
 • Parent Process request: A parent process may wish to

suspend execution of a descendent.

os control structures
If the OS is to manage processes and resources, it must have
information about the current status of each process and
resources. The OS constructs and maintains tables of infor-
mation about each entity that it is managing. Figure 8 shows
the general structure of OS control tables:

Memory

Devices

Files

Processes

I/O tables

Memory tables

File tables

Process 1

Process 2

Process 3

Process n

Process n

Process 1

Process image

Process image

Primary process tables

Figure 8 OS control tables.

Different tables maintained by the OS are

 1. Memory
 2. I/O

 3. File
 4. Process

Memory tables: These tables are used to keep track of both
main and secondary memory.

I/O tables: These are used by the OS to manage the I/O
devices and channels of the computer system.

File tables: These tables provide information about the
existence of files, their location on secondary memory, their
current status and other attributes.

Process tables: An OS must maintain process tables to man-
age processes.

Process control structures
The OS must know about

 1. Process location
 2. Process attributes

Process Location
The collection of program, data, stack and attributes is
referred as process image.

The location of a process image will depend on the mem-
ory management scheme being used. The process image is
maintained as a contiguous or continuous block of memory.
This block is maintained in secondary memory, usually
disk, so that the OS can manage the process, at least a small
portion of its image must be maintained in main memory.
To execute the process, the entire process image must be
loaded into main memory or at least virtual memory. Thus
the OS needs to know the location of each process on disk
and for each such process that is in the main memory, the
location of that process is in main memory.

For this, the OS maintains process tables. There is a pri-
mary process table with one entry for each process. Each
entry contains, at least, a pointer to a process image.

Process Attributes
The typical information required by the OS for each process
is as follows:

 1. Process identification
 2. Process state information
 3. Process control information

Process identification Each process is assigned a unique
numeric identifier, which may simply be an index into the
primary process table. The identifier for a PCB includes the
following:

 1. Identifier of the process
 2. Identifier of the process that created current process
 3. User identifier

Process state information It consists of the contents of
processor registers. It includes details of

 1. User-visible register
 2. Control and status registers
 3. Stack pointers

Process control information It consists of the additional
information needed by the OS to control and coordinate the
various active processes. It includes the following:

 1. Scheduling and state information
 2. Data structuring
 3. Interprocess communication

7.8 | Unit 7 • Operating System

 4. Process privileges
 5. Memory management
 6. Resource ownership and utilization

Process control

Modes of Execution
Most processors support at least two modes of execution as
follows:

 1. More-privileged mode
 2. Less-privileged mode

Two modes are required to protect the OS and key OS
tables from interference by user programs.

 1. More-privileged mode: This is also referred as
system mode, control mode or kernel mode. Certain
instructions can only be executed in Kernel mode
(e.g., reading or altering a control register, viz., PSW,
primitive I/O instructions, etc.).

 The Kernel of the OS is a portion of the OS and
encompasses the important system functions.

 The functions of an OS kernel are as follows:
 • Process management
 • Memory management
 • I/O Management
 • Support functions

 2. Less-privileged mode: This is also referred as user
mode, because user programs typically would execute
in this mode.

 In this mode, the software has complete control of the
processor and all its instructions, registers and memory.

Process creation If the OS decides to create a table, it has
to proceed as follows:

 1. Assign a unique process identifier to the new process.
 2. Allocate space for the process.
 3. Initialize the PCB
 4. Set the appropriate linkages.
 5. Create or expand other data structures.

Process switching In process switching, a running process
is interrupted and the OS assigns another process to the run-
ning state and turns control over to that process. The design
issues are as follows:

 1. When to switch processes
 2. Mode switching
 3. Change of process state

When to switch processes A process switch may occur
anytime that the OS has gained control from the currently
running process. The mechanisms for interrupting the exe-
cution of a process are as follows:

 1. Interrupt
 2. Trap
 3. Supervisor call

Interrupt When an interrupt occurs, the control is first
transferred to an interrupt handler, which does some basic
housekeeping and then branches to an OS routine that is con-
cerned with the particular type of interrupt that has occurred
(e.g., clock interrupt, I/O interrupt, memory fault, etc.).

Trap Trap related to an error or exception condition gets
generated within the currently running process. If the error
is fatal, the currently running process is moved to exit state
and a process switch occurs, otherwise the action of the OS
will depend on the nature of the error and design of the OS.

Supervisor call The OS may be activated by a supervisor
call from the program being executed. The case of system
call may place the user process in blocked state.

Mode switching If the processor identifies that any inter-
rupt is pending, then

 1. it sets the PC to the starting address of an interrupt
handler program.

 2. it switches from user mode to Kernel mode so that
the interrupt processing code may include privileged
instructions.

During this process, the context of the process, that has
been interrupted, is saved into that PCB of the interrupted
program. The context of a program includes PC, other pro-
cessor registers and stack information.

The occurrence of an interrupt does not necessarily
mean a process switch.

Change of process state The mode switch is a concept dis-
tinct from that of the process switch.

A mode switch may occur without changing the state of
the process that is currently in Running state. In that case, the
context saving and subsequent restoral involve little overhead.
However, if the currently running process is to be moved to
another state then the OS must make substantial changes in
its environment. Thus, the process switch, which involves a
state change, requires more effort than a mode switch.

System call In order to access the OS services, an interface
is required which is provided by the system call.

All the system call routines are executed in Kernal mode.
Whenever the system call is invoked, the process status
word is changed from user mode to Kernal mode (0 → 1).

System calls are of six types as follows:

 1. File system
 2. Process
 3. Scheduling
 4. Interprocess communications
 5. Socket
 6. Miscellaneous

Execution of the OS
There are three possibilities to consider about OS execution:

 1. Separate Kernel (Figure 9)
 2. OS functions execute within user processes (Figure 10)
 3. OS functions execute as separate processes (Figure 11)

Chapter 1 • Processes and Threads | 7.9

Separate Kernel

P1 P2 Pn

Kernel

Figure 9 OS as separate Kernel.

Here the Kernel of the OS is executed outside of any pro-
cess. When currently running process is interrupted or
issues a supervisor call, the mode context of this process is
saved and control is passed to the Kernel.

Execution within user process

Process switching functions

OS
function

OS
function

OS
function

P1 P2 Pn

Figure 10 OS functions execute within user processes.

We execute virtually all OS software in the context of user
process. To pass control from a user program to the OS, the
mode context is saved and a mode switch takes place to an
OS routine, that is, a process switch is not performed, just a
mode switch within the same process.

Process-based OS

Process switching functions

OS1 OS2 OSkP1 P2 Pn

Figure 11 OS functions execute as separate process.

Here the OS is a collection of system processes. This approach
encourages the use of modular OS with minimal, clean
interface between the modules.

threads
A thread is a basic unit of CPU utilization. It comprises a
thread ID, a program counter, a register set and a stack.

Multithreading
It refers to the ability of an OS to support multiple, concur-
rent paths of execution within a single process.

The threads which belong to same process can share their

 1. Code section
 2. Data section
 3. Other OS resources

If a process has multiple threads of control, it can per-
form more than one task at a time. Figure 12 shows single
threaded and multithreaded process models:

Thread
control
block

User
stack

User
stack

Kernel
stack

(a)

(b)

Kernel
stack

Thread
control
block

User
stack

Kernel
stack

User
address
space

User
address
space

PCB

PCB

Figure 12 Process models. (a) Single-thread process model
(b) Multithreaded process model.

As OS based on its design will be in one of the following
manners (Figure 13):

One process
one thread

(Ex: MS-DOS)

One process
multiple threads

(Ex: Java runtime environment)

Multiple processes
multiple threads per process

(Ex: windows)

Multiple processes
one thread per process
(Ex: variants of UNIX)

Figure 13 Threads and processes.

The threads of a process consist of the following:

 1. Thread execution state.
 2. Saved thread context when not running
 3. An execution stack
 4. Some pre-thread static storage for local variables.
 5. Access to the memory and resources of its process,

shared with all other threads in that process.

All the threads of a process share the state and resources of
that process.

Benefits of multithreaded programming
 1. Responsiveness: Multithreading an interactive appli-

cation may allow program to continue running even if

7.10 | Unit 7 • Operating System

part of it is blocked or is performing a lengthy operation,
thereby increasing responsiveness to the user.

 2. Resource sharing: Threads share the memory and the
resources of the process to which they belong by default.

 3. Economy: It is economical to create a new thread
in an existing process than to create a brand-new
process. It takes less time to context switch between
two threads of same process than to switch between
processes. Also the time to terminate a thread is less
than process termination.

 4. Scalability: Multithreading on a multi-CPU machine
increases parallelism.

Applications that benefit from thread As the threads take
advantages of multiple processors, image processing which
can be done in parallel, will execute in threads.

Animation rendering is another thread application,
where each frame can be rendered in parallel, as each one
is independent of other GUI programming will execute at
least two threads when it is processing large number of files.

Applications that cannot benefit from thread The main
drawbacks of threads is if kernel is single threaded, system
call of one thread will block the whole process, in which
CPU will be idle during the blocking period.

The other major drawback is security as it is possible that
a thread can overwrite the stack as the other thread, as they
were meant to cooperate on a single task. Applications that
are developed using PHP does not support multithreading
at the server side.

thread Functionality
The key states for threads are as follows:

 1. Running
 2. Ready
 3. Blocked

There are four basic thread operations associated with a
change in thread state:

 1. Spawn: When a new process is spawned, a thread for
that process is also spawned.

 Also, a thread within a process may spawn another
thread within the same process.

 2. Block: When a thread needs to wait for an event, it will
block. Then the processor may turn to the execution of
another ready thread in the same or different process.

 3. Unblock: When an event for which a thread is blocked
occurs, the thread is moved to Ready queue.

 4. Finish: When a thread completes, its register context

and stacks are deallocated.

Multithreading on a Uni-processor
On a uni-processor, multiprogramming enables the inter-
leaving of multiple threads within multiple processes. For

example, consider the execution of three threads A, B, C in
two processes on a single processor which are interleaved
(Figure 14).

Time quantum expires

Time quantum expires

Request completeI/O request
Time

Process crated
Blocked Running Ready

Thread A (process 1)

Thread B (process 1)

Thread C (process 2)

Figure 14 Multithreading on a uni-processor.

Execution passes from one thread to another, either when
the currently running thread is blocked or its time slice is
exhausted.

Resources used in thread creation
and process creations
As process has heavy weight, when it is created, new address
space is required, which includes stack, heap and data sec-
tion, etc. If a process shares the memory, then the IPC is
expensive.

The thread is a light-weight process, if it doesn’t require
any new resources, as it will share the process resources
to which it belongs. The major benefit of this is, several
threads belong to same activity and can run under same
address space.

Thread Synchronization
All of the threads of a process share the same address space
and other resources, such as open files. Any alteration of a
resource by one thread affects the environment of the other
threads in the same process. So, synchronization mecha-
nism is required to coordinate the activities of all the threads
within a process.

The techniques used for thread synchronization is the
same as process synchronization techniques, which has
been discussed later in this book.

tyPes oF threads

User-Level Threads

All thread management is done by the application. The
Kernel is not aware of the existence of threads. Thread
creation and scheduling are done in user space. User-level
threads (Figure 15) are fast to create and manage. User-level
library provides support for creating, managing and sched-
uling threads. In single-threaded Kernel, blocking system
call from user level thread will block the entire process,
even if other threads are ready to run.

Chapter 1 • Processes and Threads | 7.11

Thread library

Process

User
space
Kernel
space

User level
thread (ULT)

Figure 15 Pure user-level threads.

Advantages of ULTs
 1. ULT creation does not require Kernel mode privileges.
 2. ULT scheduling can be application specific.
 3. ULTs can run on any OS.

Disadvantages of ULTs
 1. When a ULT executes a system call, not only is that

thread blocked, but also all of the threads within the
process are blocked.

 2. In a pure ULT strategy, a multithreaded application
cannot take advantage of multiprocessing.

Kernel-level Threads
Kernel-level threads (KLTs) are supported directly by the
OS. The creation, scheduling, management are done by ker-
nel in kernel space. They are slower to create and manage.
In a multiprocessor, Kernel can schedule threads on differ-
ent processors.

Process

ULT

KLT

User
spaces

Kernel
spaces

Figure 16 Pure kernel-level threads.

Advantages of KLTs
 1. Kernel can simultaneously schedule multiple threads

from the same process on multiple processors.
 2. If one thread in a process is blocked, the kernel can

schedule another thread of the same process.
 3. Kernel routines themselves multithreaded.

Disadvantages of KLTs
The transfer of control from one thread to another within
the same process requires a mode switch to the Kernel.

Combined Approach

Thread library
User
space

Kernel
space

P P

Figure 17 Combined approach.

In combined approach (Figure 17), multiple threads within
the same application can run in parallel on multiple proces-
sors and a blocking system call need not block the entire
process.

Relationship between the threads
and processes
 1. One-to-one relationship: Each thread of execution is

a unique process with its own address and resources.
 Example: Traditional UNIX.

 2. Many-to-one relationship: A process defines an
address space and dynamic resources ownership.
Multiple threads may be created and executed within
that process.

 Example: Windows NT, Solaris, Linux.

 3. One-to-many relationship: A thread may migrate
from one process environment to another. This
allows a thread to be easily moved among distinct
systems.

 Example: Emerald

 4. Many-to-many relationship: It combines the attributes
of M:1 and 1:M cases.

 Example: TRIX

threading issues

fork() and exec() System Calls
A fork() system call is used to create a separate, duplicate
process. In UNIX, each process is identified by its process
identifier, which is a unique integer. A new process is cre-
ated by fork() system call.

The new process consists of a copy of the address space
of the original process. This mechanism allows the parent
process to communicate easily with its child process. Both
processes continue execution at the instruction after the
fork(), with one difference: the return code for the fork() is
zero for the new process, whereas the process identifier of
the child is returned to the parent. The exec() system call is
used after a fork() system call by one of the two processes
to replace the processes memory space with a new program.

7.12 | Unit 7 • Operating System

If one thread in a program calls fork(), then UNIX chooses
two alternatives as follows:

 1. Duplicates all the threads
 2. Duplicates only the thread that invoked the fork()

system call.

If a thread invokes the exec() system call, the program
specified in the parameter to exec() will replace the entire
process including all threads.

Cancellation
Thread cancellation is the task of terminating a thread
before it has completed. A thread that is to be cancelled
is often referred to as the target thread. Cancellation of a
thread may occur in two different scenarios as follows:

 1. Asynchronous cancellation: One thread immediately
terminates the target thread.

 2. Deferred cancellation: The target thread periodically
checks whether it should terminate, allowing it an
opportunity to terminate itself in an orderly fashion.

Microkernels
Microkernel (Figure 18) is a small OS core that provides the
foundation for modular extensions.

c
I
i
e
n
t
p
r
o
c
e
s
s

D
e
v
i
c
e
D
r
i
v
e
r
s

User mode

Kernel modeMicrokernel
Hardware

Figure 18 Microkernel architecture.

Advantages of Microkernel Organization
 • Uniform interfaces
 • Extensibility
 • Flexibility
 • Portability
 • Reliability
 • Distributed system support
 • Support for object oriented OS

exercises

Practice Problems 1
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.
 1. In fork() system call, the return value to the parent

process and the child process are respectively
 (A) PID of child process, 1
 (B) PID of child process, 0
 (C) PID of child, PID of parent process
 (D) PID of parent process, PID of child

 2. Which of the following is not an advantage of thread?
 (A) Inter process communication
 (B) Less memory space occupied by thread
 (C) Less time to create and terminate than a process
 (D) Context switching is faster

 3. A process executes the following segment of code

 for (i = 1; i < 10; i ++) fork();

 The number of new processes created is
 (A) 1024 (B) 1023
 (C) 1025 (D) 1028

 4. For each of the following transitions, between process
states, which transition is not possible?

 (A) Running → Ready
 (B) Blocked → Suspend
 (C) Ready → Ready/Suspend
 (D) Blocked → Running

 5. An operating system can be mapped to a five-state
process model. A new event has been designated as
capable to pre-empt the existing processes in order to
trigger a new process to complete. Select the correct
statement from below:

 (A) A new state need to be added to the existing transi-
tion model to accommodate the changes.

 (B) The existing model still holds good.
 (C) Both the states and transitions of the existing mod-

el have to be changed.
 (D) Only the transitions need to be modified.

 6. The advantage of having multiple threads over multiple
processes is

 (i) Less time for creation
 (ii) Less time for termination
 (iii) Less time for switching
 (iv) Kernel not involved in communication among

threads
 (A) (i), (ii), (iii) (B) (i), (ii), (iv)
 (C) (ii), (iii), (iv) (D) (i), (ii), (iii), (iv)

 7. Select the correct sequence of steps taken by the pro-
cessor when an interrupt occurs

 (i) Switch from user mode to kernel mode.
 (ii) Set the program counter to the first instruction of

the interrupt handling routine.
 (iii) Save the current context.

Chapter 1 • Processes and Threads | 7.13

 (A) (i), (ii), (iii)
 (B) (i), (iii), (ii)
 (C) (iii), (ii), (i)
 (D) (ii), (i), (iii)

 8. What are the necessary steps for a new process creation?

 (i) Assign an identifier to the new process.
 (ii) Suspend all other processes.
 (iii) Allocate space for the process.
 (iv) Initialize process control block.
 (v) Update process-related data structures.
 (vi) Update process state information wherever nec-

essary.
 (vii) Set the process to user mode
 (viii) Notify all the machines in the network about the

new process.
 (ix) Set the state of the new process as suspended

 (A) All except (ii), (v), (vi), (viii)
 (B) All except (ii), (vii), (viii), (ix)
 (C) All except (iv), (v), (vii), (ix)
 (D) All except (iii), (iv), (vii), (ix)

 9. A processor, while executing the instruction sequence
of user mode process, received n interrupts. If no other
activity is reported to processor during the execution of
the instruction sequence, what is the number of mode
switches and process switches experienced?

 (A) 2n, 2n (B) n, n
 (C) 2n, 0 (D) n, 0

 10. Assume a program needs to implement threads, what
are the resources that need to be encompassed in criti-
cal section?

 (i) Global variables
 (ii) Local variables
 (iii) Static variables
 (iv) Function parameters that are passed as reference

pointers
 (v) Global constants
 (A) (i), (ii), (iii), (v)
 (B) (i), (iv), (v)
 (C) (i), (iii), (v)
 (D) (i), (iii), (iv)

 11. Which of the following is an appropriate four-state
model for a process?

 (A) RunningNew End

UnblockBlock

Blocked

 (B)
Ready

Running

New End

UnblockBlock
Block

Open

 (C)

Running

Ready

New End

Unblock

Abort

Block

Blocked

 (D)

Ready

Abort

Running

New End

UnblockBlock

Retry

Open

 12. Which of the following are considered as disadvantage
of user level thread (ULT)?

 (i) Calls made from system will block all threads in a
process

 (ii) When scheduled in a multiprocessing environment
only one thread per process can be executed at a time.

 (iii) ULTs cannot communicate with each other in a
process.

 (iv) The cost of creating a thread is high
 (A) (i), (ii), (iii) (B) (i), (iii), (iv)
 (C) (i), (ii) only (D) (ii), (iii), (iv)

 13. Choose from below, advantages of kernel-level threads:
 (i) Kernel can simultaneously schedule multiple threads

from the same process on multiple processors.
 (ii) Kernel routines can be multithreaded.
 (iii) If one thread of a process is blocked then kernel

can schedule another thread from the same process.
 (A) (i) only (B) (i), (ii)
 (C) (i), (ii), (iii) (D) (i), (iii)

 14. Assume that part of a program takes long time to exe-
cute. Select an option from below that can enhance
performance:

 (i) Implement the part that takes long time as a sepa-
rate process and use the results as needed from the
main program.

 (ii) Implement both the parts as two different threads
in the same process.

 (A) (i) only
 (B) (ii) only
 (C) Both (i) and (ii)
 (D) Neither (i) nor (ii)

 15. What is a kernel-level thread?
 (i) Threads that are spawned by OS Kernel
 (ii) Threads that are launched by user by directly ac-

cessing the kernel
 (A) (i) only (B) (ii) only
 (C) Both (i), (ii) (D) Neither (i) nor (ii)

7.14 | Unit 7 • Operating System

Practice Problems 2
Directions for questions 1 to 14: Select the correct alterna-
tive from the given choices.
 1. Many-to-many multithreading model is used in which of

the following operating system?
 (A) Windows NT/2000 with Thread Fibre
 (B) Windows 95
 (C) Windows 98
 (D) Solaris Green Threads

 2. Which of the following does not interrupt a running
process?

 (A) Device (B) Timer
 (C) Scheduler (D) Power failure

 3. Which of the following need not be saved on a context
switch between processes?

 (A) General purpose registers
 (B) Translation look aside buffer
 (C) Program counter
 (D) All of the above

 4. Which of the following actions is/are typically not per-
formed by the OS when switching context from process
A to process B?

 (A) Saving current register values and restoring the
register values for process B

 (B) Changing address translation tables
 (C) Swapping out the memory image of process A to

the disk
 (D) Both (B) and (C)

 5. For each thread in a multithreaded process, there is a
separate

 (A) Process control block
 (B) User address space
 (C) User and kernel stack
 (D) Kernel space only

 6. When a supervisor call is received
 (A) Mode switch happens
 (B) Process switch happens
 (C) Both (A) and (B)
 (D) Neither (A) nor (B)

 7. What is the purpose of jacketing?
 (A) Convert non-blocking system call to blocking sys-

tem call
 (B) Convert blocking system call to non-blocking sys-

tem call
 (C) Convert blocking system call into a new thread
 (D) Convert non-blocking system call into a new

thread

 8. Which of the following statements is/are always true?
 (i) Time taken for mode switch is always greater than

process switch.
 (ii) Time taken for mode switch is always less than

process switch.
 (iii) Time taken for mode switch is always equal to pro-

cess switch.
 (A) (i) and (iii) (B) (ii) and (iii)
 (C) Only (i) (D) Only (ii)

 9. Which of the following is the property of time sharing
systems?

 (i) Multiple user access
 (ii) Multiprogramming
 (A) (i) only (B) (ii) only
 (C) Both (i) and (ii) (D) Neither (i) nor (ii)

 10. Which of the following is/are not a valid reason for pro-
cess creation?

 (i) Created by OS
 (ii) Interactive logon
 (iii) Privileged instruction
 (A) (i), (ii) (B) (ii), (iii)
 (C) (i), (iii) (D) (iii) only

 11. Which of the following is/are reason(s) for blocking a
running process?

 (i) A call from the running program to a procedure
that is a part of OS code.

 (ii) A running process may initiate an I/O operation.
 (iii) A user may block a running process.
 (A) (i), (ii) only (B) (ii), (iii)only
 (C) (i), (iii) only (D) (iii) only

 12. If the OS is pre-empting a running process because
a higher priority process on blocked/suspend queue
has just become unblocked, then the running process
moved to queue.

 (A) Suspend (B) Ready/suspend
 (C) Blocked (D) Blocked/suspend

 13. Which of the following is used to call an OS function?
 (A) Interrupt (B) Trap
 (C) Supervisor call (D) All of these

 14. Which of the following is a general component of a
thread?

 (i) Thread ID
 (ii) Register set
 (iii) User stack
 (iv) Kernel stack

 (A) (i), (iii), (iv) (B) (i), (ii), (iv)
 (C) (i), (ii), (iii) (D) (i), (ii), (iii), (iv)

Chapter 1 • Processes and Threads | 7.15

Previous years’ Questions

 1. Consider the following statements with respect to
User-level threads and Kernel-supported threads.

 [2004]
 (1) Context switch is faster with Kernel-supported

threads
 (2) For user-level threads, a system call can block

the entire process
 (3) Kernel supported threads can be scheduled inde-

pendently
 (4) User level threads are transparent to the Kernel
 Which of the above statements are true?
 (A) 2, 3 and 4 only (B) 2 and 3 only
 (C) 1 and 3 only (D) 1 and 2 only

 2. Which one of the following is true for a CPU having
a single interrupt request line and a single interrupt
grant line? [2005]

 (A) Neither vectored interrupt nor multiple inter-
rupting devices are possible

 (B) Vectored interrupts are not possible but multiple
interrupting devices are possible

 (C) Vectored interrupts and multiple interrupting de-
vices are both possible

 (D) Vectored interrupt is possible but multiple inter-
rupting devices are not possible

 3. Normally user programs are prevented from handling
I/O directly by I/O instructions in them. For CPUs
having explicit I/O instructions, such I/O protection is
ensured by having the I/O instructions privileged. In
a CPU with memory mapped I/O, there is no explicit
I/O instruction. Which one of the following is true for
a CPU with memory mapped I/O? [2005]

 (A) I/O protection is ensured by operating system
routine(s)

 (B) I/O protection is ensured by a hardware trap
 (C) I/O protection is ensured during system configu-

ration
 (D) I/O protection is not possible

 4. Consider the following code fragment: if (fork ()==0)
 [2005]

 { a = a + 5; printf(“%d,%d\n”,a,&a);}

 else { a = a - 5; printf(“%d,%d\n”,a,&a);}

 Let u, v be the values printed by the parent process,
and x, y be the values printed by the child process.
Which one of the following is true?

 (A) u = x + 10 and v = y
 (B) u = x + 10 and v ≠ y
 (C) u + 10 = x and v = y
 (D) u + 10 = x and v ≠ y

 5. Consider the following statements about user-level
threads and Kernel-level threads. Which one of the
following statements is false? [2007]

 (A) Context switch time is longer for Kernel-level
threads than for user level threads.

 (B) User level threads do not need any hardware
support.

 (C) Related Kernel-level threads can be scheduled on
different processors in a multi-processor system.

 (D) Blocking one Kernel-level thread blocks all re-
lated threads.

 6. Which of the following statements about synchronous
and asynchronous I/O is NOT true? [2008]

 (A) An ISR is invoked on completion of I/O in syn-
chronous I/O but not in asynchronous I/O

 (B) In both synchronous and asynchronous I/O, an
ISR (Interrupt Service Routine) is invoked after
completion of the I/O

 (C) A process making a synchronous I/O call waits
until I/O is complete, but a process making an
asynchronous I/O call does not wait for comple-
tion of the I/O

 (D) In the case of synchronous I/O, the process wait-
ing for the completion of I/O is woken up by the
ISR that is invoked after the completion of I/O

 7. A process executes the following code

 for (i=0; i<n; i++) fork();

 The total number of child processes created is [2008]
 (A) n (B) 2n − 1
 (C) 2n (D) 2n+1 – 1

 8. A CPU generally handles an interrupt by executing an
interrupt service routine [2009]

 (A) As soon as an interrupt is raised.
 (B) By checking the interrupt register at the end of

fetch cycle.
 (C) By checking the interrupt register after finishing

the execution of the current instruction.
 (D) By checking the interrupt register at fixed time

intervals.

 9. A thread is usually defined as ‘light weight process’
because an operating system (OS) maintains smaller
data structures for a thread than for a process. In rela-
tion to this, which of the following is true? [2011]

 (A) On per-thread basis, the OS maintains only CPU
register state

 (B) The OS does not maintain a separate stack for
each thread

 (C) On per thread basis, the OS does not maintain
virtual memory state.

 (D) On per thread basis, the OS maintains only
scheduling and accounting information.

 10. Let the time taken to switch between user and ker-
nel modes of execution be t

1
 while the time taken to

switch between two processes be t
2
. Which of the fol-

lowing is true? [2011]

7.16 | Unit 7 • Operating System

 (A) t
1
 > t

2

 (B) t
1
 = t

2

 (C) t
1
 < t

2

 (D) Nothing can be said about the relation between t
1

and t
2

 11. A process executes the code
 fork();
 fork();
 fork();

 The total number of child processes created is [2012]
 (A) 3 (B) 4
 (C) 7 (D) 8

 12. Which one of the following is FALSE? [2014]
 (A) User level threads are not scheduled by the Kernel.
 (B) When a user level thread is blocked, all other

threads of its process are blocked.

 (C) Context switching between user level threads is
faster than context switching between Kernel-
level threads.

 (D) Kernel-level threads cannot share the code seg-
ment.

 13. Threads of a process share [2017]
 (A) global variables but not heap.
 (B) heap but not global variables.
 (C) neither global variables nor heap.
 (D) both heap and global variables.

 14. Which of the following is/are shared by all the threads
in a process? [2017]

 I. Program counter
 II. Stack
 III. Address space
 IV. Registers
 (A) I and II only (B) III only
 (C) IV only (D) III and IV only

answer Keys

exercises

Practice Problems 1
 1. B 2. A 3. B 4. D 5. D 6. D 7. C 8. B 9. C 10. D
 11. A 12. C 13. C 14. C 15. A

Practice Problems 2
 1. A 2. C 3. B 4. C 5. C 6. A 7. B 8. D 9. C 10. D
 11. A 12. B 13. C 14. D

Previous Years’ Questions
 1. A 2. C 3. A 4. D 5. D 6. A 7. B 8. C 9. C 10. C
 11. C 12. D 13. D 14. B

	Unit 7: Operating System
	Chapter 1: Processes and Threads
	Basics of Operating System
	Processes
	OS Control Structures
	Process Control Structures
	Process Control
	Threads
	Thread Functionality
	Types of Threads
	Threading Issues
	Exercises
	Previous Years’ Questions
	Answer Keys

