RATIONAL NUMBERS

Real numbers(R)- Rational and irrational numbers taken togrther are real numbers

<u>Rationalizing factor (RF)</u>: The product of two rational factor is a rational, each is called rationalizing factor of other. Ex: $(\sqrt{3}+1) \times (\sqrt{3}-1) = 3-1 = 2$ is rational. $(\sqrt{3}+1)$ and $(\sqrt{3}-1)$ are RF of each other

RATIONAL NUMBERS

Rationalisation	 It is a process of multiplying an irrational number by its rationalising factor. Stop 1: Divide and multiply by rationalising factor of the 	
	 Step 1: Divide and multiply by fationalising factor of the denominator Step 2 : Simplify , if necessary 	/

PROPERTIES OF NUMBERS

CLOSURE PROPERTY: For any two numbers 'a' and 'b' belonging to N, W, I or Q. Then (a+b), (a-b), (a×b) and (a+b) also belongs to N, W, I or Q respectively

COMMUTATIVE PROPERTY : For any two numbers 'a' and 'b' belonging to N, W, I or R, it can be shown that a+b=b+a; $a-b\neq b-a$; $a\times b=b\times a$; $a\div b\neq b\div a$

ASSOCIATIVE PROPERTY : For any three numbers 'a', 'b'and 'c' belonging to N, W, I or R, it can be shown that a+(b+c)= (a+b)+c ; a-(b-c)≠(a-b)-c ; a×(b×c)=(a×b)×c ; a+(b+c)≠(a+b)+c

DISTRIBUTIVE PROPERTY : For any three numbers 'a' ,'b'and 'c', the following results are true **a**×(**b**+**c**)= (**a**×**b**)+(**a**×**c**) and **a**×(**b**-**c**)= (**a**×**b**)-(**a**×**c**)

- If zero is added to any number, the value of the number remains unchanged. This property of zero is called "Identity for Addition". Ex : 5+0=5
- If one is multiplied with any number, the value of number remains unchanged.
 This property of one is called "Identity for Multiplication". Ex: (-6)×1=(-6)