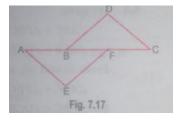
Que 1. In Fig. 7.17, it is given that AB = CF, EF = BD and $\angle AFE = \angle CBD$. Prove that $\Delta AFE \cong \Delta CBD$.



Sol. In triangles *AFE* and *CBD*, we have

AB = CF

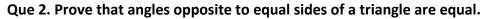
Adding *BF* on both the sides

$$AB + BF = CF + BF$$

AF = BC

Now in triangles AFE and CBD, we have AF = CB (Proved above)

	$\angle AFE = \angle CBD$	(Given)
And	EF = BD	(Given)
∴	$\Delta AFE \cong \Delta CBD$	(SAS congruence criterion)



Sol. Given: A $\triangle ABC$ in which AB = AC.

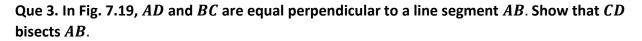
To prove: $\angle B = \angle C$

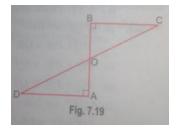
Construction: Draw *AD*, the bisector of $\angle A$, to meet BC at D.

Proof: In $\triangle ABD$ and $\triangle ACD$, we have

AB = AC(Given) $\angle BAD = \angle CAD$ (By Construction)

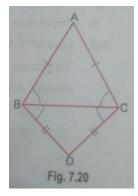
	AD = AD	(Common)
	$\Delta ABD \cong \Delta ACD$	(SAS Congruence criterion)
Hence, $\angle B = \angle C$		(CPCT)





Sol.In $\triangle OAD$ and $\triangle OBC$, we have $\angle AOD = \angle BOC$ (Vertically opposite angles) $\angle OAD = \angle OBC$ (Each90⁰)And, AD = BC: $\therefore \ \Delta AOD \cong \Delta BOC$ (AAS congruence criterion) $\Rightarrow \ OA = OB$ (CPCT)

Thus, CD bisects AB.



- **Sol.** In $\triangle ABC$, we have, AB = AC
 - $\Rightarrow \angle ACB = \angle ABC$ (Angles opposite to equal sides) ...(i)

In ΔDBC , we have

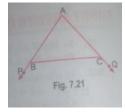
BD = CD

 $\Rightarrow \angle DCB = \angle DBC$ (Angles opposite to equal sides) ...(ii)

Adding (i) and (ii), we get

$$\angle ACB + \angle DCB = \angle ABC + \angle DBC$$
$$\angle ACD = \angle ABD$$
Hence,
$$\angle ABD = \angle ACD$$

Que 5. In Fig. 7.21, sides *AB* and *AC* of $\triangle ABC$ are extended to points P and Q respectively. Also, $\angle PBC < \angle QCB$. Show that AC > AB.



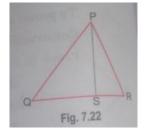
Sol. We have,

 $\angle ABC + \angle PBC = 180^{\circ}$ (Linear Pair) ...(i) $\angle ACB + \angle QCB = 180^{\circ}$ (Linear Pair) ...(ii)

From (i) and (ii), we have

 $\angle ACB + \angle QPBC = \angle ACB + \angle QCB$ But $\angle PBC < \angle QCB$ (Given) $\therefore \quad \angle ABC > \angle ACB$ $\Rightarrow \quad AC > AB$ (:: Side opposite to greater angle is larger)

Que 6. S is any point on side QR of a ΔPQR . Show that: PQ + QR + RP > 2PS.



Sol. Since sum of the two sides of a triangle is greater than the third side

 \therefore In ΔPQS , we have

$$PQ + QS > PS$$
 ... (i)

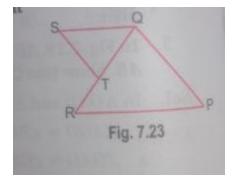
Similarly, in ΔPRS , we have

$$RS + RP > PS$$
 ... (*ii*)

Adding (i) and (ii), we get

PQ + QS + RS + RP > PS + PS $\Rightarrow PQ + (QS + RS) + RP > 2PS$ $\Rightarrow PQ + QR + RP > 2PS$

Que 7. In Fig. 7.23, *T* is a point on side *QR* of ΔPQR and *S* is a point such that RT = ST. Prove that PQ + PR > QS.



Sol. In ΔPQR , we have

$$PQ + PR > QR$$

$$\Rightarrow PQ + PR > QT + RT \qquad (:: QR = QT + RT)$$

$$\Rightarrow PQ + PR > QT + ST \qquad (:: RT = ST) \qquad ...(i)$$

In ΔQST , we have

$$QT + ST > QS$$
 ...(ii)

From (i) and (ii), we have

PQ + PR > QS

Que 8. Prove that each angle of an equilateral triangle is 60° .

Sol. Given: A
$$\triangle ABC$$
 in which $AB = BC = CA$ (Fig. 7.24)
To prove: $\angle A = \angle B = \angle C = 60^{\circ}$
Proof: $AB = AC$
 $\Rightarrow \angle C = \angle B$ (Angles opposite to equal sides are equal) ... (i)
Also, $BA = BC$
 $\Rightarrow \angle C = \angle A$ (Angles opposite to equal sides are equal) ... (ii)
From (i) and (ii), we have
 $\angle A = \angle B = \angle C$

Now, $\angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow \angle A + \angle A + \angle A = 180^{\circ}$ $\Rightarrow \angle A = 60^{\circ}$ $3 \angle A = 180^{\circ}$ \Rightarrow $\angle A = \angle B = \angle C = 60^{\circ}$ Hence,

Que 9. Show that in a quadrilateral ABCD, AB + BC + CD + DA > AC + BD.

Sol. Since the sum of any two sides of a triangle is greater than the third side.

Therefore, in $\triangle ABC$, we have

$$AB + BC > AC \qquad \dots (i)$$

In \triangle BCD, we have

$$BC + CD > BD$$
 ...(iii)

In $\triangle CDA$, we have

$$CD + DA > AC$$
 ... (iv)

Adding: (i), (ii), (iii) and (iv), we get

2AB + 2BC + 2CD + 2DA > 2AC + 2BD

$$\Rightarrow \quad 2(AB + BC + CD + DA) > 2(AC + BD)$$

AB + BC + CD + DA > AC + BD \Rightarrow