	G Ordina	Objective Questions	12. 13.	 (c) A ring structure Which one is a disacch (a) Glucose (c) Xylose Molecular formula C₆H 	(b) Fructose (d) Sucrose
	Carboh	vdrates		(a) Glucose	(b) Fructose
_				(c) Both (a) and (b)	(d) None of these
•	The change in optica	al rotation, with time, of	14.	Hydrolysis of sucrose	
	freshly prepared soluti	on of sugar is known as [CPMT	1982	[BHU 19/9, 83] , 85;)路县以1997]	; Pb. PMT 1999; Pb. CET 2000 (b) Saponification
	(a) Rotatory motion	(b) Inversion		(c) Inversion	(d) Hydration
	(c) Specific rotation	(d) Mutarotation	15.	• •	e two sugars known to occu
•	Gun-cotton is		15.	are glucose and	e two sugars known to occi
	(a) Nitrosucrose	(b) Nitrocellulose		(a) Fructose	(b) Lactose
	(c) Nitroglucose	(d) Nitropicrin		(c) Galactose	(d) Sucrose
•		ving monosaccharide is a	16.	The 'epimerisation' inv	
	pentose		10.	(a) Change of configur	
	(a) Galactose	[CPMT 1982, 87, 89, 93] (b) Glucose		(b) Addition of one mo	
	(c) Fructose	(d) Arabinose		(c) Substration of a 'C	
•	Amide group is presen			(d) Conversion of <i>-CH</i>	
-	(a) Lipids	(b) Carbohydrates	17.		ch does not contain a
	(c) Amino acids	(d) Proteins	1/.	asymmetric carbon ato	
•	Which of the following	is a carbohydrate		(a) Glycolaldehyde	(b) Glyceraldehyde
	(a) Leucine	(b) Albumin		(c) Glucose	(d) Galactose
	(c) Inulin	(d) Maltase	18.		ing sign indicate that th
•	General formula for ca	-	10.	sugar is actually 'dextr	
	(a) $C_n H_{2n} O_{2n+2}$	(b) $C_x(H_2O)_{2x}$		(a) -	(b) +
	(c) $C_x(H_2O)_y$	(d) None of these		(c) <i>R</i> -	(d) All of these
•	Benedict solution prov	ides [CPMT 1983]	19.		ound for determination of
	(a) Ag ⁺	(b) Li^+	-91	configuration in the 's	
	(c) Cu^{+2}	(d) Ba^{+2}		(a) Glycolaldehyde	•
•		irror with Tollen's reagent.		(c) Glucose	(d) Fructose
	It shows the presence		20.	Sugars are	
	[MNR 1981;	CPMT 1974, 81; MP PMT 1994]		(a) Optically active po	lyhydroxy aldehydes
	(a) An acidic group	(b) An alcoholic group		(b) Optically active po	lyhydroxy ketones
		(d) An aldehydic group			polyhydroxy aldehydes o
•	_	gives negative test with	keto	ones	
	-	ive test with Benedict's		(d) Polyhydroxy aldeh	ydes or ketones which ma
	solution. The compoun	[NCERT 1978; KCET 2000]		or may not be opti	cally active
	(a) A protein	(b) A monosaccharide	21.		pentahydroxy acid obtaine
	(c) A lipid	(d) An amino acid		when glucose is oxidis	ed with Br_2 water is
о.	_	answers Molisch's test as		(a) $C_6 H_{12} O_7$	(b) $C_6 H_{12} O_8$
		st. But it does not answer		(c) $C_6 H_{12} O_6$	(d) $C_6 H_{10} O_6$
		probably, it is [KCET 2003]	22.	The ' <i>phosphoglyceride</i>	
	(a) Sucrose	(b) Protein		(a) The brain and the	
	(c) Fructose	(d) Maltose		(b) Nails and hairs	
1.		with CH_3OH in presence of		(c) Oils and fats	
	dry HCl gas gives α	and β – methyl glucosides			
	because it contains		22	(d) Waxes	[0]]/// - 0-
		[CPMT 1982, 85]	23.	Sucrose is a	[CPMT 1983

				Bi	omolecules 1447
	(c) Trisaccharide	(d) Polysaccharide		(a) Glucose in aqueou	s solution
24.	The commonest disa	ccharide has the molecular		(b) Protein in blood	
	formula			(c) Iodine in aqueous	solution
	[0	CPMT 1982; Manipal MEE 1995;		(d) Urea in blood	
		MP PET 1999; AIIMS 1999]	36.	It is best to carry o	ut reactions with sugars in
	(a) $C_{10}H_{18}O_9$	(b) $C_{10}H_{20}O_{10}$		neutral or acid me	dium and not in alkaline
	(c) $C_{18}H_{22}O_{11}$	(d) $C_{12}H_{22}O_{11}$			ecause in alkaline medium
25.	On complete hydrolys	is of starch, we finally get		• •	f the following changes
•		2; DPMT 1979; CBSE PMT 1991;		(a) Racemisation	(b) Decomposition
		MP PMT 1987; MP PET 1993]		(c) Inversion	(d) Rearrangement
	(a) Glucose	(b) Fructose	37.		lowing compounds is found
	(c) Glucose and fruct	ose (d) Sucrose		-	BHU 1983; Manipal MEE 1995; DCE
6.	Which is monosaccha	ride		(a) Fructose	(b) Starch
	(a) Glucose	(b) Fructose	_	(c) Glucose	(d) Cellulose
	(c) Galactose	(d) All of these	38.		rms the plant cell walls is or
7۰	Which is polysacchari			of plant cells	is an essential constituents
	(a) Starch	(b) Cellulose		-	984; MP PET 1999; CPMT 2002]
	(c) Glycogen	(d) All of these		(a) Cellulose	(b) Sucrose
8.		of fats, carbohydrates and		(c) Vitamins	(d) Starch
	proteins vary in the o		39.		
	(a) Fats > Carbohydra		550	(a) Molisch test	(b) Dunstan's test
	(b) Fats > Proteins >	-		(c) Benedict's test	(d) Legal's test
	(c) Carbohydrates > F		40.		ated with conc. HNO_3 the
	(d) Proteins > Carboh	•	-	product is	
9.		ed when conc. nitric acid		produce is	[CPMT 1979]
	reacts with			(a) Sucrose nitrate	(b) Formic acid
	(a) Glycerine (c) Cellulose	(b) Glycol (d) Starch		(c) Oxalic acid	(d) Citric acid
0	A carbohydrate consis		41.	Amylopectin is	[KCET 2005]
;0.	(a) C and O	(b) C, H and O		(a) Water soluble	
				(b) Water insoluble	
		(d) C and H		(c) Forms colloidal so	olution with water
1.		derivatives. The derivative		(d) Both (b) and (c)	
	which will help to pro	ve the furanose structure is	42.	Which of the followin	ig statements about ribose is
		[AIIMS 1980; DPMT 1985]		incorrect	
	(a) Acetyl	(b) Benzoyl			[CPMT 1985]
_	(c) Osazone	(d) Isopropylidene		(a) It is a polyhydroxy	
2.	Glucose and fructose	form [MP PMT 1986]		(b) It is an aldehyde s	
	(a) Same osazone	- 4		(c) It has six carbon a	
	(b) Same acid on oxid			(d) It exhibits optical	-
	(c) Same alcohol whe	n reduced	43.	Maltose contains how	
	(d) Different osazone			(a) 6	(b) 10
3.	On heating with conc.	H_2SO_4 , sucrose gives [DPMT 1	984]	(c) 11	(b) 22
	(a) CO and CO_2	(b) CO and SO_2	44.	The correct name of '	
	(c) CO , CO_2 and SO_2	(d) None of these			syl – β – D – fructofuranoside
	2 Z			(b) $\beta - D - glucopyran os$	syl – β – D – fructofuranoside
1	The letter 'D' in carbo	hydrates represents			
4.	The letter ' D ' in carbo			(c) $\alpha - D - $ glucopyran os	syl – α – D – fructofuranoside
4.	(a) Its direct synthesi	s (b) Its dextrorotation			syl – α – D – fructofuranoside syl – α – L – fructofuranoside
	(a) Its direct synthesi(c) Its mutarotation	s (b) Its dextrorotation (d) Its configuration	45.		
34. 35.	(a) Its direct synthesi(c) Its mutarotation	s (b) Its dextrorotation	45.	(d) $\beta - D - glucopyran os$	

46.	The hydrolysis of suc which is	rose produces a mixture	57.	An enzyme which bri starch into maltose is	ngs about the conversion of known as [BHU 1979]
	(a) Laevorotatory			(a) Maltase	(b) Zymase
	(b) Dextrorotatory			(c) Invertase	(d) Diastase
	(c) Equally both (+) and	d (–) rotatory	58.	Canesugar on hydroly	sis gives
	(d) Optically inactive			[MADT Bihar	1984; NCERT 1977; AMU 1985]
4 7.	Sucrose is			(a) Glucose and malto	ose (b) Glucose and lactose
	(a) A reducing sugar			(c) Glucose and fructo	ose (d) Only glucose
	(b) Not a reducing suga		59.	Glucose is a	[CPMT 1984]
	(c) Partial reducing sug	ar		(a) Monosaccharide	(b) Disaccharide
.0	(d) Mixed sugar	of the following groups		(c) Trisaccharide	(d) Polysaccharide
18 .	Sucrose contains which (a) <i>-CHO</i>	(b) $> C = O$	60.	Which carbohydrate	is used in silvering of
	(c) Both (a) and (b)	(d) None of these		mirrors	
10	The fructose molecule in				[BHU 1973; CPMT 1991]
1 9.	(a) Furanose			(a) Sucrose	(b) Starch
	(c) Open chain	(b) Pyranose		(c) Glucose	(d) Fructose
50.		(d) All ing is laevorotatory[DPMT 19	61. 989]	A carbohydrate that simpler forms is calle	cannot be hydrolysed to d
	(a) Glucose	(b) Sucrose		(a) Disaccharide	(b) Monosaccharide
	(c) Fructose	(d) None of these		(c) Polysaccharide	(d) Trisaccharide
51.	Chemically 'digestion' is	S [NCERT 1978]	62.	If monosaccharide co	ntains an aldehyde group, it
	(a) Hydrolysis	(b) Change in bacteria		is known as	
	(c) Hydrogenation	(d) Dehydrogenation		(a) Epimer	(b) Osones
52.	Which one of the follow	ving is the reagent used to		(c) Osazone	(d) Aldose
	identify glucose	[MP PMT 1993]	63.	If a monosaccharide	contains a ketogroup, it is
	(a) Neutral ferric chlori	ide		known as	
	(b) Chloroform and alco	oholic <i>KOH</i>		(a) Ketose	(b) Osones
	(c) Ammoniacal silver n	nitrate		(c) Epimer	(d) Osazone
	(d) Sodium ethoxide		64.	=	of a carbohydrate gives dark
53.	Sucrose on hydrolysis g	ives		blue colour with iodin	
	[MF	PMT 1993; Bihar MEE 1997]		(a) Glucose	(b) Fructose
	(a) Two molecules of gl	ucose		(c) Sucrose	(d) Starch
	(b) Two molecules of fr	uctose	65.		owing carbohydrates is a
	(c) One molecule each o	of glucose and fructose		disaccharide	
	(d) One molecule each o	of glucose and mannose		(a) Glucose	(b) Fructose
4.	Which of the following	is a disaccharide [CPMT 1990,	94]	(c) Raffinose	(d) Maltose
	(a) Lactose	(b) Starch	66.	Optical activity is sho	wn by
	(c) Cellulose	(d) Glucose		(a) Glucose	(b) Fructose
5۰	Glucose cannot be class	ified as [CPMT 1989]		(c) Sucrose	(d) All of these
	(a) A hexose	(b) A carbohydrate	67.	Which is a reducing s	ugar
	(c) An oligosaccharide	(d) An aldose		(a) Glucose	(b) Fructose
	•	orms crystalline osazone		(c) Galactose	(d) All of these
6.	The reagene which is				
56.	•	l with glucose, is [CPMT 1990] 68.	The ultimate produc	t of oxidation of most of
56.	•	-] 68.	-	t of oxidation of most of in foodstuffs are [CPMT 1981]

					Biomolecul	es 1449
	(c) H_2O and CO_2	(d) None of these		(a) 2 carbons	(b) 3 ca	arbons
9.	Osazone formation inv	volves only 2 carbon atoms		(c) 4 carbons	(d) 6 ca	arbons
5.	of glucose because of	[MP PMT 1986]	80.	Lactose on hydr	olysis gives	[KCET 1983]
	(a) Chelation	(b) Oxidation		(a) Two glucose	e molecules	
	(c) Reduction	(d) Hydrolysis		(b) Two galacto	ose molecules	
o .		arotation when solvent is		(c) A galactose	molecule and a fi	ructose molecule
	Shucobe will blow lind	[MP PMT 1986]		(d) A galactose	molecule and a g	lucose molecule
	(a) Acidic	(b) Basic	81.	An example of r	non-reducing sug	ar is [KCET 1988]
				(a) Cane sugar	(b) Fru	ctose
	(c) Neutral	(d) Amphoteric		(c) Lactose	(d) Cel	lobiose
•	Glucose contains	[CPMT 1982]	82.	Cellulose is a po	olymer of	[KCET 1984]
	(a) One <i>–CHO</i> group			(a) L-fructose	(b) D-n	nannose
	(b) Five – <i>OH</i> groups			(c) D-glucose	(d) Am	•
	(c) One primary alcoho	olic group	83.		-	formed in the
	(d) Four secondary alc	oholic groups			tarch to glucose i	
	(e) All are correct			(a) Lactose	(b) Suc	
•	Carbohydrates are stor	ed in human body as	04	(c) Maltose	(d) Fru	
		PMT 1999; Kerala PMT 2004]	84.	-		ersion of [KCET 19
	(a) Glucose	(b) Glycogen		(a) Starch to gl		
	(c) Starch	(d) Fructose		-	glucose and fructo	ose
•		accharide made up of two		(c) Maltose to g	-	
units of the same monosaccharides is			(d) Glucose to	C_2H_5OH and CO_2		
		89; MP PET 1996; AFMC 2005]	85.	Which of the fo	ollowing pentoses	s will be optically
	(a) Sucrose	(b) Maltose		active		
	(c) Lactose	(d) None of these		СНО	СНО	СНО
ŀ •	The sugar present in fr					
	(a) Fructose	(b) Glucose		НСОН	НСОН	НСОН
	(c) Sucrose	(d) Galactose				
	Carbohydrates are	[MADT Bihar 1983]		НОСН	НСОН	НСОН
	(a) Hydrates of carbon					
	(b) Polyhydroxy aldehy			НСОН	НОСН	НСОН
	(c) Polyhydroxy acid c					
	(d) None of these	ompoundo		CH ₂ OH	CH ₂ OH	CH ₂ OH
	Glucose and fructose a	re [Bihar MADT 1982]		Ι	II	III
•	(a) Isotopes				(h) II a	[MP PET 1994]
	(b) Isotones			(a) All (c) I	(b) II a (d) II	
	(c) Isomers		86.			cose differ fron
	(d) Homologues of eac	h other	80.	-	-	one of the carbon
	-	of sucrose into glucose and		with respect to		one of the carbon
•	fructose is known as	[BHU 1979, 97]		with respect to		Г 1995; AFMC 1999
	(a) Induction	(b) Saponification		(a) Size of hem		Number of <i>OH</i> gro
	(c) Inversion	(d) Esterification		(c) Configuration	-	formation
	Starch is a polymer of		87.	•		est abundance ir
•		CPMT 1975, 80; MP PMT 1994]	,	human blood	5	[MP PET 1995
	(a) Glucose	(b) Fructose		(a) d-fructose	(b) <i>d</i> -g	
	(c) Both (a) and (b)	(d) None of these		(c) Sucrose	(d) Lac	
		ydrate a compound must	88.	Formation of si	ilver mirror by g	lucose shows tha
).						

	(a) Oxidising agent	(b) Acid			MT 1982, 87, 91; MP PET 2001]
_	(c) Reducing agent	(d) A salt of silver		(a) Maltose	(b) Lactose
39.	Which of the following	•		(c) Sucrose	(d) Cellobiose
		ar polymers of β – glucose	100.		d by body mainly [DCE 1999]
	molecules with β –	1,4 – linkages		(a) For obtaining vitan	
	-	olymers of α – glucose		(b) As source of energy	
	molecules with μ	3-1, 4-linkages and some		(c) For all its developm	nental needs
	β – 1, 6 – cross-linka	iges		(d) For building muscle	
	(c) Proteins are polyan	nides of β – amino acids	101.		s the solvent for cellulose
	(d) The structural	information about their		consists of	
	• •	contained in a class of			[JIPMER 1999]
	compounds called	nucleic acids, e.g. RNA and		(a) Ether and alcohol	
	DNA			(b) Copper sulphate an	
0.	The number of atoms i	in the cyclic structure of D-		(c) Sodium hydroxide	-
	fructose is			(d) Acetic acid and ace	tic anhydride
		[MP PMT 1997]	102.	-	g does not reduce Benedict's
	(a) 5	(b) 6		solution	
	(c) 4	(d) 7			[KCET 2000]
1.	Which is used in motio	•		(a) Sucrose	(b) Aldehyde
	(a) Cellulose acetate	(b) Glucose acetate		(c) Glucose	(d) Fructose
	(c) Starch acetate	(d) Sucrose acetate	103.		the linkage connecting
2.	Glucose reacts with ace	-		monosaccharide units is	
		[KCET 1996]		(a) Glycoside linkage	(b) Nucleoside linkage
	(a) Mono-acetate	(b) Tetra-acetate		(c) Glycogen linkage	(d) Peptide linkage
	(c) Penta-acetate	(d) Hexa-acetate	104.	Blood sugar is the same	e as [DPMT 2000]
3.		ving does not show any		(a) Glucose	(b) Galactose
		de[CPMT 1996; Orissa JEE 2004]		(c) Glycogen	(d) Fructose
	(a) Sucrose	(b) Fructose	105.	Glucose has functional	group [MH CET 2000]
	(c) Maltose	(d) Lactose		(a) Aldehydic	
4.		se the hydrolysis of starch,		(b) Aldehydic and alco	holic
		ned is chiefly [Pb. PMT 1998]		(c) Alcoholic	
	(a) Cellobiose	(b) Glucose		(d) Ketonic and alcoho	lic
	(c) Maltose	(d) Sucrose	106.	Which of the following	
5٠	Galactose is converted	into glucose in [AFMC 1998]	2000		[KCET (Engg.) 2001]
	(a) Mouth	(b) Stomach		(a) Cellulose	(b) Sucrose
	(c) Liver	(d) Intestine		(c) Glucose	(d) Raffinose
6.	Which among the follow	wing is the simplest [CPMT 199	9]		
	(a) Glucose	(b) Cellulose	107.	The calorific value is n	
	(c) Starch	(d) None of these		<i>.</i>	[Kerala (Med.) 2000]
7.	Indigestible carbohyd	rate, which is also a		(a) Milk	(b) Proteins
	constituent of our diet, i	is [Kerala (Med.) 1999]		(c) Minerals	(d) Carbohydrates
	(a) Cellulose	(b) Galactose	108.	An invert sugar is	[AFMC 2000]
	(c) Maltose	(d) Starch		(a) Isorotatory	(b) Dextrorotatory
8.	Starch is converted inte	o maltose by the		(c) Laevorotatory	(d) Optically inactive
	[DPMT	1979; CPMT 1982; BHU 1999]	109.	The change in optical r	rotation with time of freshly
	(a) Maltase	(b) Invertase	-	• •	sugar is known as [JIPMER 200
	(c) Zymase	(d) Diastase		(a) Maturation	(b) Rotatory motion
9.	The disaccharide prese	nt in milk is		(c) Inversion	(d) Specific rotation
				()	(a) opconic rotation

				F	Biomolecules 1451
110.	Yeast cell derive their	r energy from glucose by		(a) Mannose	(b) Galactose
		[AIIMS 2001]		(c) Maltose	(d) Fructose
	(a) Glycolysis	(b) Respiration	121.		most common alternative of
	formation			sugar is	
	(c) Formation	(d) None of these			[MP PMT 2003]
111.	Which of the following	g is correct statement		(a) Glucose (c) Saccharin	(b) Aspartame (d) Cyclodextrin
		[CBSE PMT 2001]	122.		n of equilibrium mixture of α -
	(a) Troleins are amino	o acid	142,	<i>D</i> -glucose and β - <i>D</i> -gl	-
	(b) α -hydrogen is pres	sent in fructose		(a) $+19^{\circ}$	(b) $+112^{\circ}$
	(c) Starch is polymer	of α -glucose		(c) $+52^{\circ}$	$(d) + 100^{\circ}$
	(d) Amylose is compou	und of cellulose	123.		gar, when treated with conc.
112.	Which of the following	g is a aldohexose[KCET 2001]		H_2SO_4 , is due to	[Pb. CET 2002]
	(a) Cellulose	(b) Sucrose		(a) Oxidation	(b) Reduction
	(c) Galactose	(d) Raffinose		(c) Dehydration	(d) Hydrolysis
113.		of the hydrolysis of starch is	124.	•	llowing is the simplest sugar
-	-	[DPMT 2001]			[Pb. CET 2002]
	(a) Fructose	(b) Glucose		(a) Glucose	(b) Cellulose
	(c) Sucrose	(d) None of these		(b) Starch	(d) Glycogen
114.	Raffinose is	[Pb. PMT 2001]	125.	Glucose and mannos	
•	(a) Trisaccharide	(b) Monosaccharide		(a) Epimers	(b) Anomers
	(c) Disaccharide	(d) None of these	- 6	(c) Ketohexoses	(d) Disaccharides
115.		a disaccharide, among the			h produces only glucose[BVP 2004]
	following is	a uisacciiariuc, unong ene		(a) Galactose	(b) Maltose
	10110	[KCET (Med./Engg.) 2002]	100	(c) Sucrose	(d) None
	(a) Lactose	(b) Galactose	12/.	family	vhich does not belong to the
	(c) Sucrose	(d) Maltose		Tanniy	[KCET 2004]
116.		ng and non reducing sugars,		(a) Pepsin	(b) Cellulose
		g test is used [MH CET 2002]		(c) Ptyalin	(d) Lipase
	(a) Molisch test			Which of the followi	ing is the sweetest sugar
	(c) Fehling's test	(d) Millions test		[MP PMT 199	997; CBSE PMT 1999; AIIMS 2000
•••	e e		1	_	EE 1995; CPMT 1996; BHU 1997;]
117.	-	g is a disaccharide[MH CET 20	02]	(a) Glucose	(b) Fructose
	(a) Glucose	(b) Ribulose	. – –	(c) Lactose	(d) Sucrose
	(c) Lactose	(d) Arabinose		-	e is one of the most important
118.	00	vith Fehling's solution we get		•	g cell. What is the number of merated in cells from one
		olour is[CPMT 1979; CBSE PMT		molecule of glucose	
	KCET 1992; I (a) Yellow	DPMT 1983, 86; MP PMT 1996] (b) Red		-	[CBSE PMT 1995]
	(a) Yellow (c) Black	(d) White		(a) 38	(b) 12
119.	Glycolysis is	[CBSE PMT 2003]		(c) 18	(d) 28
LL'U-	(a) Conversion of gluc			Glucose has differen	nce from fructose in that it[BHU 200
	(b) Oxidation of gluco			(a) Does not undergo	o hydrolysis
	(c) Conversion of pyru	-		(b) Gives silver mirr	ror with Tollen's reagent
	(d) Oxidation of gluco			(c) Monosaccharide	
	-	owing is an example of		(d) None of these	
120.		-			
	ketohexose		131.	In fructose, the poss	sible optical isomers are

- 1452 Biomolecules (a) 12 (b) 8 (c) 16 (d) 4 132. If an aqueous solution of glucoseis allowed to freeze than crystal of which will be separated out first [DPMT 2005] (a) Glucose (b) Water (c) Both of these (d) None of these **133.** Which is false [J & K 2005] (a) Glucose is a disaccharide (b) Starch is a polysaccharide (c) Glucose and fructose are not anomers (d) Invert sugar consists of glucose and fructose Proteins, Amino Acids and Enzymes 1. Insulin is [CBSE PMT 1991] (a) An amino acid (b) Protein (c) A carbohydrate (d) A lipid Peptides are 2. (a) Esters (b) Salts (c) Amides (d) Ketones The proteins which are insoluble in water are 3. (a) Fibrous proteins (b) Globular proteins (c) Both (a) and (b) (d) None of these Irreversible precipitation of proteins is called 4. (a) Denaturation (b) Hydrolysis (c) Rearrangement (d) Electrophoresis The proteins with a prosthetic group are called 5٠ (a) Pseudo proteins (b) Complex proteins (c) Conjugated proteins (d) Polypeptides 6. The prosthetic group of haemoglobin is (a) Porphin (b) Haem (c) Globin (d) Globulin When collagen is boiled with water, it forms 7. (a) Precipitate (b) Solution (c) Gelatin (d) Complex collagen 8. Which of the following is not essential amino acid (a) Valine (b) Lysine (c) Histidine (d) Glycine Amino acids are 9. (a) Liquids (b) Volatile solids (c) Non-volatile crystalline compounds (d) Mixture of amines and acids Isoelectric point is a 10. (a) Specific temperature (b) Suitable concentration of amino acid
- (c) Hydrogen ion concentration that does not allow migration of amino acid under electric field (d) Melting point of an amino acid under the influence of electric field Proteins are hydrolysed by enzymes into 11. [CPMT 1981; BHU 1987; MP PMT 1994, 2002] (a) Dicarboxylic acids (b) Hydroxy acids (c) Amino acids (d) Aromatic acids Proteins when heated with conc. HNO_3 give a 12. yellow colour. This is [CPMT 1989] (a) Oxidising test (b) Xanthoprotic test (c) Hoppe's test (d) Acid-base test Enzymes are [DPMT 1980; MP PMT 1993, 96] 13. (a) Proteins (b) Minerals (c) Oils (d) Fatty acids Proteins are built up of 14. [CPMT 1981, 99; BHU 1987; CBSE PMT 2001; MP PMT 1987, 96; KCET 1984] (a) Dicarboxylic acids (b) Amino acids (c) Alcohols (d) Hydroxy acids The main structural feature of proteins is 15. [MNR 1987; MP PET 1993, 97, 2004] (a) The ester linkage (b) The ether linkage (c) The peptide linkage (d) All of these Pepsin enzyme hydrolyses 16. [NCERT 1984; MP PET 1999; MP PMT 2001] (a) Proteins to amino acids (b) Fats to fatty acids (c) Glucose to ethyl alcohol (d) Polysaccharides to monosaccharides Which one of the following proteins transports 17. oxygen in the blood stream (a) Myoglobin (b) Insulin (c) Albumin (d) Haemoglobin Enzymes are 18. [MP PET 1993] (a) Living organisms (b) Dead organisms (c) Complex nitrogenous substances produced in living cells (d) None of these Which is an essential constituent of diet[AFMC 1980] 19. (a) Starch (b) Glucose (c) Carbohydrate (d) Protein Proteins can be used 20. (a) As food (b) In textile
 - (c) As enzyme (d) All of these

				Biomolecules 14	55
21.	Which of the follo nitrogen	wing foodstuffs contains	34.	Which of the following is not a clas proteins	sification of
		[DPMT 1986; MH CET 2002]			[KCET 1984]
	(a) Carbohydrates	(b) Fats		(a) Enzymes (b) Antibodie	S
	(c) Proteins	(d) None of these		(c) Antigens (d) Hormone	S
22.	<i>pH</i> in stomach is approx	oximately	35.	The protein that is a structural materi	al is [KCET 1984]
	(a) 7	(b) 2.0		(a) Albumin (b) Oxytocin	
	(c) 6.5	(d) 10		(c) Haemoglobin (d) Keratin	
23.	The helical structure o	f proteins is established by	36.	For α – amino acids having the structu	re
		[CPMT 1988]		$R - CH - CO_2H$	
	(a) Peptide bonds	(b) Dipeptide bond		NH ₂	
	(c) Hydrogen bond	(d) Vander Waal's forces		Which of the following statements are	true
24.	Natural silk is a			(A) Water solubility is maximum at	
	(a) Polyester	(b) Polyamide		concentrations of anions and catio	-
	(c) Polyacid	(d) Polysaccharide		(B) They give ninhydrin test	no are equal
25.	Protein contains	[CPMT 1975; MP PMT 2002]		(C) On reacting with nitrous acid give	off N
	(a) <i>C</i> , <i>H</i> , <i>O</i> and <i>N</i>	(b) Only <i>C</i> and <i>H</i>			-
	, ,	-		-	AP PET 1994]
	(c) Cl , H and O	(d) All of these		(a) All (b) B and C	
26.	The end product of pro	otein digestion is		(c) A and B (d) A	
	(a) Amino acid	[CPMT 1981; KCET 1984] (b) Glucose	37.	Which of the following reacts with l in the blood to form carboxyhaemoglo	
	(c) Glycerol	(d) Oxalic acid		(a) <i>CO</i> (b) <i>CO</i> ₂	
7.	•	sily removed from[MNR 1988]		(c) $HCOOH$ (d) H_2CO_3	
	(a) Alkanes	(b) Alkenes	38.	Secondary structure of a protein refer	TOLCREE DMT 100
	(c) Alkynes	(d) Benzene	30.	(a) Mainly denatured proteins and s	
8.	•	ving contains the highest		prosthetic groups	indefinites of
	percentage of protein	[CPMT 1984]		(b) Three dimensional structure, s	pecially the
	(a) Groundnut	(b) Cow's milk		bond between amino acid residu	
	(c) Egg	(d) Wheat		distant from each other in the	
29.		ed for the digestion of food		chain	
	is present in	[CPMT 1981; Pb. PMT 2004]		(c) Linear sequence of amino acid res	idues in the
	(a) Saliva	(b) Blood		polypeptide chain	
	(c) Intestines	(d) Adrenal glands		(d) Regular folding patterns of	continuous
0.		wing is an amino acid[KCET 198	34]	portions of the polypeptide chain	
	(a) CH_3CONH_2	(b) $CH_3CONHCH_3$	39.	Of the following statements about ena	ymes which
	(c) <i>CH</i> ₃ <i>NHCHO</i>	(d) $NH_2CH_2.COOH$		ones are true	
_	-			(i) Enzymes lack in nucleophilic group	
31.		the detection of [KCET 1993]		(ii) Enzymes are highly specific both	-
	(a) Saturated oils	(b) Sugars		chiral substrates and in catal	yzing their
_	(c) Proteins	(d) Fats		reactions	
2.	Out of the following the second secon	ne best category of proteins		(iii) Enzymes chemical reactions by lowering th	catalyse e activation
		[SCRA 1991]		energy	
	(a) Polyamides	(b) Polythioethers		(iv)Pepsin is a proteolytic enzyme	
	(c) Glycerides	(d) Polysaccharides		(a) (i) and (iv) (b) (i) and (i	ii)
3.	-	of protein is [KCET 1984]		(c) (ii), (iii) and (iv) (d) (i)	
	(a) < 10000	(b) > 10000	40.	Proteins are composed of [MP PMT 1995	
	(c) > 1000	(d) > 1000 and < 10000		(a) α – amino acids (b) Carbohyd	rates
				(c) Vitamins (d) Mineral s	•.

41.	1. Read the following statements carefully		49.	Metal present in blood	l is [CPMT 1997]
	(A) Albumin is a simple	e protein		(a) <i>Al</i>	(b) <i>Mg</i>
	(B) The amino acid ala	nine contains an acidic side		(c) <i>Cu</i>	(d) <i>Fe</i>
chaiı			50.	Which compound can	exist in a dipolar (zwitter
	(C) Insulin is a hormor			ion) state	
	(D) Muscles contain th				[Pb. PMT 1998]
	-	atements in the above set of		(a) $C_6H_5CH_2CH(N = CH_2)$	H ₂)COOH
	statements			(b) $(CH_3)_2 CH.CH(NH_2)$	СООН
	(a) A, B (c) A, C	(b) C, D (d) B, D		(c) $C_6H_5CONHCH_2COC$)H
42		(u) в, D systems[СРМТ 1999; AIIMS 200		(d) HOOC.CH ₂ CH ₂ COC	
42.		BSE PMT 1997; MP PET 1999;]	,0, 51.	What is the monomer	
	(a) Provide energy	552 FWH 1997, WH FEI 1999,]	51.		3; JIPMER 1999; Pb. CET 2002]
	(b) Provide immunity			(a) Amino acid	(b) Glucose
	(c) Transport oxygen			(c) Nucleoside	(d) Nucleotide
	(d) Catalyse biological	processes	52.		ng enzymes is not useful in
43.		g statements about proteins	52.	the digestion of protei	
45.	is not true	,		(a) Chymotrypsin	(b) Pepsin
		[MP PET 2001]		(c) Trypsin	(d) Lipase
	(a) Amino acid residu	es join together to make a	53.	Haemoglobin is	[CBSE PMT 1997; BHU 2004]
	protein molecule		55.	(a) An enzyme	(b) A globular protein
	(b) Proteins are polym	ers with formula $(C_6H_{10}O_5)_n$		(c) A vitamin	(d) A carbohydrate
	(c) Eggs are rich in protein		54.		most abundant in [BHU 1998]
	(d) Pulses are good source of proteins		54.	(a) Meat	(b) Milk
44.	Enzymes	[AIIMS 1996]		(c) Egg	(d) Soyabean
	(a) Accelerate biochem	lical reactions		Dialysis can separate	-
	(b) Have optimum acti	vity at body temperature	55.		[BHU 1998]
	(c) Consist of amino ad	cids		(a) Glucose and fructo	
	(d) Have all these prop	perties		(b) Glucose and sucros	se
45.	The functional group v	hich is found in amino acid		(c) Glucose and <i>NaCl</i>	
	is		- 6	(d) Glucose and protein	
		[AFMC 1998; AIEEE 2002]	56.		lowing is an example of a [Orissa JEE 1997]
	(a) -COOH group	(b) $-NH_2$ group		(a) Keratin	(b) Insulin
	(c) $-CH_3$ group	(d) Both (a) and (b)		(c) Collagen	(d) Myoglobin
46.	Amino acids are produ	ced on hydrolysis of [AIIMS 19 9	6]	Leucine amino acids is	
	(a) Nucleic acid	(b) Carbohydrates	5%		
	(c) Fats	(d) Proteins		(a) Essential	(b) Non-essential
47.	Enzymes belong to whi	ch class of compounds	-	(c) Aromatic	(d) Basic
		[KCET 1996]	58.		ring tests is not used for
	(a) Polysaccharides			testing proteins	[Kerala PMT 1999; KCET 1999]
	(b) Polypeptides			(a) Millon's test	(b) Molisch's test
	(c) Polynitrogen heter	ocyclic compounds			
	(d) Hydrocarbons			(c) Biuret test	(d) Ninhydrin test
48.	By the action of enzyn	nes, the rate of biochemical	59 .	ions. This means that	exist in the form of Zwitter it consists of [KCET 2000]
	reaction				$-NH_2$ and the acidic group
		[CBSE PMT 1994]			m ₂ and the acture group
	(a) Decreases	(b) Increases		-СООН	
	(c) Does not change	(d) Either (a) or (c)			

				Bi	omolecules 1455
	(b) The basic group -	$-NH_3^+$ and the acidic group		(b) Skin formation	
	$-CO_2$			(c) Muscle formation	
	(c) The basic group -	$-CO_2^-$ and the acidic group		(d) Providing energy f	for metabolism
	NH_3^+	2 and the defate group	69.	The helical structure of	of proteins is stabilized by [MP PMT 2001]
	(d) No acidic or basic g	group		(a) Peptide bonds	(b) Dipeptide bond
о.	The most important	energy carrier in all the		(c) Hydrogen bond	(d) Vander Waal's forces
	living cells is		7 0.	The optically inactive	amino acid is
		[MP PET 2000; KCET 2000]			[MP PMT 2001; BHU 2005]
	(a) AMP	(b) ATP		(a) Lysine	(b) Glycine
	(c) ADP	(d) UDP		(c) Arginine	(d) Alanine
1.	The 10% energy trans given by	sfer law of food chain was	71.	Which α amino acid ca	an cross link peptide chains [AIIMS 2001]
	0	[BHU 2000]		(a) Serine	(b) Cysteine
	(a) Stanley	(b) Weismann		(c) Glutamine	(d) Tyrosine
	(c) Lindemann	(d) Tansley	72.		uilding blocks of [MH CET 2001]
2.		is a conjugated protein[BHU	•	(a) Fat	(b) Vitamin
	(a) Glycoprotein	(b) Phosphoprotein		(c) Protein	(d) Carbohydrate
	(c) Chromoprotein	(d) All of these	73.		wing protein destroys the
3.	The number of essentia	al amino acids in man is	/3		s in body cell[AIIMS 2001; Pb. Pl
		[CBSE PMT 2000]		(a) Antibodies	(b) Insulin
	(a) 8	(b) 10		(c) Chromoprotein	(d) Phosphoprotein
	(c) 18	(d) 20	74.	An antibiotic with a bi	road spectrum [AFMC 2001]
4.	Pick out wrong combin	ation [DCE 2000]		(a) Kills the antibodie	-
	(a) $Fe^{+2} \rightarrow$ Haemoglob	bin		(b) Acts on a specific a	antigen
	(b) $Mg^{2+} \rightarrow$ Photosynt	hesis		(c) Acts on different a	Intigents
	(c) $Se^{2+} \rightarrow \text{Kreb Cycle}$			(d) Acts on both the a	ntigens and antibodies
	(d) $CO^{+2} \rightarrow \text{Vitamin B}^{+2}$		75.	Antibodies are	[CBSE PMT 2001]
_				(a) Carbohydrate	(b) Globular protein
5.		complex organic compounds l with the help of enzyme is		(c) Immunoglobulins	(d) Cellulose compounds
	known as	with the help of enzyme is	76.	Excess of Na^+ ions in	our system causes[BHU 2001]
		[Pb. PMT 2000]		(a) High B.P.	(b) Low B.P.
	(a) Catabolism	(b) Anabolism		(c) Diabetes	(d) Anaemia
	(c) Fermentation	(d) Metabolism	77.	The example of a prot	ein is [MP PET 2003]
6.	A biological catalyst is	essentially		(a) Narvone	(b) Lacithin
		[Pb. PMT 2000; BHU 2004]		(c) Cellulose	(d) Insulin
	(a) A carbohydrates	(b) An amino acids	78.	Enzymes are made up	of [CBSE PMT 2002]
	(c) A nitrogen molecul			(a) Carbohydrates	
7.		ntifying peptide linkage in		(b) Edible proteins	
	proteins is			(c) Nitrogen containir	
	(a) Borsche's test	[KCET (Engg.) 2001] (b) Molisch's test		(d) Proteins with spec	
	(c) Ninhydrin test	(d) Biuret test	7 9 .	Chlorophyll contains	[RPMT 2002]
	(c) minimum lest			(a) <i>Fe</i>	(b) <i>Na</i>
8	•	ing is not a function of			
8.	Which of the follow	ing is not a function of		(c) <i>Mg</i>	(d) Zn
8.	•	ing is not a function of [MP PMT 2001]	80.		(d) Zn following biomolecules is [AIIMS 2005]

- (c) Ribonuclease (d) Adenine 89.
 81. A nanopeptide contains peptide linkages [KCET 2005]
 (a) 10 (b) 8
 - (c) 9 (d) 18
- 82. Identify the incorrect statement[Kerala (Med.) 2003]
 - (a) An octa deca peptide contains 18 amino acid residues and 17 peptide bonds
 - (b) Addition of an inert gas into a system in thermodynamic equilibrium for the dissociation of PCl_5 shifts the equilibrium to the left.
 - (c) When gold dissolves in aquaregia the complex formed is chloroauric acid
 - (d) In the extraction of aluminium purified bauxite is dissolved in molten fluorospar
 - (e) If the pH value of a solution is to be decreased from 5 to 3, the hydrogen ion concentration must be increased twice the initial value.
- **83.** α -helix is found in
- [Kerala (Engg.) 2002]
- (a) DNA (b) RNA
- (c) Lipid (d) Protein
- 84. The main structural of protein is[UPSEAT 2000, 02]
 - (a) The ester linkage (b) The ether linkage
 - (c) The peptide linkage (d) All of these
- 85. Among the following, the achiral amino acid is

[AIIMS 2003]

- (a) 2-Ethylalanine
- (b) 2-Methylglycine
- (c) 2-Hydroxymethyl serine
- (d) Tryptophan
- **86.** Which of the following could act as a propellant or rockets

[CBSE PMT 2003]

- (a) Liquid hydrogen + liquid nitrogen
- (b) Liquid oxygen + liquid argon
- (c) Liquid hydrogen + liquid oxygen
- (d) Liquid nitrogen +liquid oxygen
- 87. Which amino acid has aromatic ring [CPMT 2003]
 - (a) Alamine (b) Glycine
 - (c) Tyrosine (d) Lysine
- **88.** The *pH* value of the solution in which a particular amino acid does not migrate under the influence of an electric field in called the[Kerala (Med.) 2003]
 - (a) Eutectic point (b) Yielding point
 - (c) Neutralisation point (d) Effusion
 - (e) Isoelectric point

Which part of the protein molecule is responsible for function and activity of the proteins[AMU 2002]

- (a) Secondary structure (b) Peptide bond
- (c) Primary structure (d) Binding sites
- **90.** The Structural formula of an amino acid, isoleucine is

[MP PMT 2003]

(a)
$$CH_3 - CH.COOH$$

 $CH_3 - CH.COOH$
(b) $CH_3 - CH - CH.COOH$
 $CH_3 - CH - CH.COOH$
(c) $CH_3 - CH - CH.COOH$
 $C_2H_5 - CH - CH.COOH$
(d) $C_2H_5 - CH - CH.COOH$

NH 2

91. The process by which synthesis of protein takes place based on the genetic information present in *m*-RNA is called

[KCET 2003; Kerala CET 2005]

- (a) Translation (b) Transcription
- (c) Replication (d) Messenger

hypothesis

- **92.** Which of the following is used in our body as a fuel for muscles and nerves and to build and repair body tissues?
 - [DCE 2003]

(a) Cane sugar	(b) Fructose
(c) Proteins	(d) Glucose

93. Which enzyme convert glucose into alcohol

[Pb. CET 2003]

- (a) Invertase (b) Zymase
- (c) Maltase (d) Diastase
- 94. Which one of the following structures represents the peptide chain [CBSE PMT 2004; CPMT 2003; DCE 2002; MP PET 1994; Bihar MEE 1997; Orissa JEE 1997]

и

 \mathbf{n}

н

н

$$\begin{array}{ccccccc} H & O & H \\ I & I & I & I & I \\ (b) & -N - C - C - C - C - N - C - C - I & I & I \\ I & I & I & I \\ I & I & I \\ H & O \end{array}$$

$$\begin{array}{ccc} H & O \\ & O \\ (c) & -N - C - N - C - N - C - N H - C - N H - C \\ & 0 & H \end{array}$$

- **95.** The correct statement in respect of protein haemoglobin is that it [CBSE PMT 2004]
 - (a) Acts as an oxygen carrier in the blood

(b) Forms antibodies and offers resistance to diseases

- (c) Functions as a catalyst for biological reactions
- (d) Maintains blood sugar level
- 96. Identify the correct statement regarding enzymes

[AIEEE 2004]

- (a) Enzymes are specific biological catalysts that cannot be poisoned
- (b) Enzymes are normally heterogeneous catalysts that are very specific in their action
- (c) Enzymes are specific biological catalysts that can normally function at very high temperature ($T \sim 1000K$)
- (d) Enzymes are specific biological catalysts that possess well-defined active sites
- 97. A biological catalyst is essentially
 - (a) An enzyme
 - (b) A carbohydrate
 - (c) An amino acid
 - (d) A nitrogen compound
- 98. Which synthesis was done by Stainley Millar[CPMT 1979]
 - (a) Amino acid (b) Protein
 - (c) Virus (d) Vitamin
- **99.** The bond that determines the secondary structure of proteins is or secondary structure of protein is due to

[NCERT 1984; MP PET 1996; MP PMT 1997]

- (a) Coordinate bond
- (b) Covalent bond
- (c) Hydrogen bond
- (d) Peptide bond

Fats and Lipids

1. Tripalmitin is

(a) A protein	(b) An enzyme
(c) A lipid	(d) A carbohydrate

2. On hydrolysis, all lipids yield

- (a) Monocarboxylic acids (b)Monohydric alcohols
- (c) Monohaloalkanes (d) Enzymes
- Which of the following is not a lipid(a) Oils(b) Fats
 - (c) Waxes (d) Proteins
- **4.** The '*acid value*' of an oil or fat is measured in terms of weight of
 - (a) NH_4OH (b) NaOH
 - (c) KOH (d) CH_3COOH
- **5.** The 'saponification value' of an oil or fat is measured in terms of
 - (a) NH_4OH (b) NaOH
 - (c) KOH (d) C_6H_5OH
- 6. The 'iodine value' of an oil indicates
 - (a) Its boiling point
 - (b) Inflammability
 - (c) Unsaturation present in acid contents
 - (d) Solubility of salt in oils
- **7.** Hardening of oils is caused by

(a) H_2	(b) N_2

- (c) O_2 (d) CO_2
- **8.** Which of the following is obtained when an oil is hydrolysed with alkali
 - (a) Fat (b) Wax
 - [BHU 2004] (C) Soap (d) Vitamin
- **9.** Which of the following indicates the number of free *-OH* groups in an oil or fat
 - (a) Iodine value
 - (b) Acid value
 - (c) Acetyl value
 - (d) Saponification value
- **10.** Which of the following is not glyceride
 - (a) Lipids (simple) (b) Phospholipids
 - (c) Sphingolipids (d) All
- **11.** The most important food reserves of animals and plants are

[MP PET 1993]

- (a) Carbohydrates(b) Proteins(c) Vitamins(d) Fats
- 12. Which of the following gives maximum energy in metabolic processes [CPMT 1991; MP PET 1999]
 (a) Proteins (b) Carbohydrates
 - (c) Lipids (d) Vitamins
- The energy change produced by the combustion of food is called the 'calorific value'. The highest calorific value is given by [NCERT 1984; AFMC 1988]

	1458 Biomolecu		
	(a) Proteins	(b) Fats	(b) Three carboxylic acid residues
	(c) Carbohydrates	(d) Vitamins	(c) Two carboxylic acid residues and one
14.	Cell membrane contai	ns	phosphate group
	(a) Alternate layers of	f phospholipid and coline	(d) One carboxylic acid residue and two
	(b) Double layers of p	hospholipid	phosphate groups
		phospholipid with polar ends	24. Oils and fats are jointly called [MP PET 2003]
	projected outside		(a) Lipids (b) Soaps
		phospholipid with polar ends	(c) Proteins (d) Polymer
	projected inside		CH_2OOCR' CH_2OH $R'COOH$
15.		ng compounds do not belong	25. $CHOOCR$ " $\xrightarrow{Enzyme}_{Hydrolysis}$ $CHOH + R"COH_+$
	to lipids		CH ₂ OOCR"" CH ₂ OH R""COOH
		[AFMC 1998]	The enzyme used in the above reaction is [AMU 200
	(a) Fats	(b) Amino acids	(a) Amylase (b) Lactase
	(c) Phospholipids	(d) Carbohydrates	(c) Lipase (d) Invertase
16.	Which is not a macron		26. Oleic, stearic and palmitic acids are [Pb. CET 2002]
	(a) DNA	(b) Starch	(a) Fatty acid (b) Amino acid
	(c) Palmitate	(d) Insulin	(c) Nucleic acid (d) Essential acid
17.		racteristic functional group	27. An example for a saturated fatty acid, present in
	of fats is		nature is
		rala (Med.) 1999; AFMC 2005]	[KCET 2005]
	(a) An ester group		(a) Oleic acid (b) linoleic acid
	(b) A peptide group		(c) Linolenic acid (d) Palmitic acid
	(c) A ketonic group		
	(d) An alcoholic group)	Vitamin, Harmone and Nucleic acid
40	The survey and long	abain as manage of fatter	
18.	•	chain compounds of fatty	1
18.	acids, which belong to	the class of [BHU 1999; AFMC	2095] A nucleotide consists of
18.	acids, which belong to (a) Esters	the class of [BHU 1999; AFMC (b) Ethers	1
	acids, which belong to (a) Esters (c) Alcohols	the class of [BHU 1999; AFMC (b) Ethers (d) Acetic acid	2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and
18. 19.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction o	the class of [BHU 1999; AFMC (b) Ethers	2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate
	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction o known as	 the class of [BHU 1999; AFMC : (b) Ethers (d) Acetic acid f fats, with caustic soda, is 	 2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity
	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction o known as [Kerala (Med.) 20	o the class of [BHU 1999; AFMC (b) Ethers (d) Acetic acid f fats, with caustic soda, is 2000; Pb. PMT 2004; MNR 1988]	 2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity character
	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction o known as [Kerala (Med.) 20 (a) Acetylation	 b the class of [BHU 1999; AFMC : (b) Ethers (d) Acetic acid f fats, with caustic soda, is (b) PMT 2004; MNR 1988] (b) Carboxylation 	 2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity
19.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction o known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification	 b the class of [BHU 1999; AFMC : (b) Ethers (d) Acetic acid of fats, with caustic soda, is (b) Carboxylation (d) Esterification 	 2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity character
	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction of known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification Fat consists of	 b the class of [BHU 1999; AFMC : (b) Ethers (d) Acetic acid f fats, with caustic soda, is (b) Carboxylation (d) Esterification [MH CET 2002] 	 2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate 2. Which of the following is responsible for heredity character (a) DNA (b) RNA
19.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction o known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification Fat consists of (a) Monohydroxy carb	 b the class of [BHU 1999; AFMC = (b) Ethers (d) Acetic acid (d) Acetic acid (d) f fats, with caustic soda, is (b) Carboxylation (b) Carboxylation (c) Esterification [MH CET 2002] (c) poxylic acid 	 20q5] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity character (a) DNA (b) RNA (c) Proteins (d) Hormones
19.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction of known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification Fat consists of (a) Monohydroxy carb (b) Monohydroxy alip	 b the class of [BHU 1999; AFMC = (b) Ethers (d) Acetic acid (d) Acetic acid (f fats, with caustic soda, is (b) Carboxylation (d) Esterification [MH CET 2002] (b) carboxylic acid 	 2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate 2. Which of the following is responsible for heredity character (a) DNA (b) RNA (c) Proteins (d) Hormones 3. The base adenine occurs in [MP PMT 1995]
19.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction o known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification Fat consists of (a) Monohydroxy carb (b) Monohydroxy alip (c) Monohydroxy alip	 b the class of [BHU 1999; AFMC = (b) Ethers (d) Acetic acid (d) Acetic acid (d) f fats, with caustic soda, is (b) Carboxylation (b) Carboxylation (c) Esterification [MH CET 2002] (c) poxylic acid 	 2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity character (a) DNA (b) RNA (c) Proteins (d) Hormones 3. The base adenine occurs in [MP PMT 1995] (a) DNA only (b) RNA only
19.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction o known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification Fat consists of (a) Monohydroxy carb (b) Monohydroxy alip (c) Monohydroxy alip acid	 b the class of [BHU 1999; AFMC = (b) Ethers (d) Acetic acid (d) Acetic acid (e) fats, with caustic soda, is (fats, with caustic soda, is (b) Carboxylation (c) Carboxylation (d) Esterification [MH CET 2002] (c) Doxylic acid (c) hatic carboxylic acid (c) phatic, saturated carboxylic 	 2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity character (a) DNA (b) RNA (c) Proteins (d) Hormones 3. The base adenine occurs in [MP PMT 1995] (a) DNA only (b) RNA only (c) DNA and RNA both (d) Protein
19. 20.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction of known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification Fat consists of (a) Monohydroxy carb (b) Monohydroxy alip (c) Monohydroxy alip acid (d) Dihydroxy aliphat	 b the class of [BHU 1999; AFMC = (b) Ethers (d) Acetic acid (d) Acetic acid (f fats, with caustic soda, is (b) Carboxylation (d) Esterification [MH CET 2002] (b) carboxylic acid (carboxylic acid (carboxylic acid (carboxylic acid (carboxylic acid 	 2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity character (a) DNA (b) RNA (c) Proteins (d) Hormones 3. The base adenine occurs in [MP PMT 1995] (a) DNA only (b) RNA only (c) DNA and RNA both (d) Protein 4. The protein which maintains blood sugar level in
19.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction of known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification Fat consists of (a) Monohydroxy card (b) Monohydroxy alip (c) Monohydroxy alip acid (d) Dihydroxy aliphat The alcohol obtained	 b the class of [BHU 1999; AFMC = (b) Ethers (d) Acetic acid (d) Acetic acid (e) fats, with caustic soda, is (fats, with caustic soda, is (b) Carboxylation (c) Carboxylation (d) Esterification [MH CET 2002] (c) Doxylic acid (c) hatic carboxylic acid (c) phatic, saturated carboxylic 	 2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity character (a) DNA (b) RNA (c) Proteins (d) Hormones 3. The base adenine occurs in [MP PMT 1995] (a) DNA only (b) RNA only (c) DNA and RNA both (d) Protein 4. The protein which maintains blood sugar level in the human body [KCET 1993; MP PMT 1995]
19. 20.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction of known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification Fat consists of (a) Monohydroxy carb (b) Monohydroxy alip (c) Monohydroxy alip acid (d) Dihydroxy aliphat	 b the class of [BHU 1999; AFMC = (b) Ethers (d) Acetic acid f fats, with caustic soda, is coo; Pb. PMT 2004; MNR 1988] (b) Carboxylation (d) Esterification [MH CET 2002] poxylic acid hatic carboxylic acid phatic, saturated carboxylic ic carboxylic acid by the hydrolysis of oils and 	 2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity character (a) DNA (b) RNA (c) Proteins (d) Hormones 3. The base adenine occurs in [MP PMT 1995] (a) DNA only (b) RNA only (c) DNA and RNA both (d) Protein 4. The protein which maintains blood sugar level in the human body [KCET 1993; MP PMT 1995] (a) Haemoglobin (b) Oxytocin (c) Insulin (d) Ptyalin
19. 20.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction of known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification Fat consists of (a) Monohydroxy card (b) Monohydroxy alip (c) Monohydroxy alip acid (d) Dihydroxy aliphat The alcohol obtained	 b the class of [BHU 1999; AFMC = (b) Ethers (d) Acetic acid (d) Acetic acid (f fats, with caustic soda, is (b) Carboxylation (d) Esterification [MH CET 2002] (b) carboxylic acid (carboxylic acid (carboxylic acid (carboxylic acid (carboxylic acid 	 2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity character (a) DNA (b) RNA (c) Proteins (d) Hormones 3. The base adenine occurs in [MP PMT 1995] (a) DNA only (b) RNA only (c) DNA and RNA both (d) Protein 4. The protein which maintains blood sugar level in the human body [KCET 1993; MP PMT 1995] (a) Haemoglobin (b) Oxytocin (c) Insulin (d) Ptyalin 5. Which of the following statements about the assembly of nucleotides in a molecule of
19. 20.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction o known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification Fat consists of (a) Monohydroxy carb (b) Monohydroxy alip (c) Monohydroxy alip acid (d) Dihydroxy aliphat The alcohol obtained fats is	b the class of [BHU 1999; AFMC is (b) Ethers (d) Acetic acid f fats, with caustic soda, is (b) Carboxylation (b) Carboxylation (d) Esterification [MH CET 2002] boxylic acid hatic carboxylic acid phatic, saturated carboxylic ic carboxylic acid by the hydrolysis of oils and [KCET 2001]	 2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity character (a) DNA (b) RNA (c) Proteins (d) Hormones 3. The base adenine occurs in [MP PMT 1995] (a) DNA only (b) RNA only (c) DNA and RNA both (d) Protein 4. The protein which maintains blood sugar level in the human body [KCET 1993; MP PMT 1995] (a) Haemoglobin (b) Oxytocin (c) Insulin (d) Ptyalin 5. Which of the following statements about the assembly of nucleotides in a molecule of deoxyribose nucleic acid (DNA) is correct
19. 20.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction of known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification Fat consists of (a) Monohydroxy carb (b) Monohydroxy alip (c) Monohydroxy alip acid (d) Dihydroxy aliphat The alcohol obtained fats is (a) Glycol	b the class of [BHU 1999; AFMC (b) Ethers (d) Acetic acid (d) Acetic acid f fats, with caustic soda, is (b) Carboxylation (b) Carboxylation (c) Esterification [MH CET 2002] boxylic acid hatic carboxylic acid phatic, saturated carboxylic ic carboxylic acid by the hydrolysis of oils and [KCET 2001] (b) Glycerol (d) Pentanol	 2095] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity character (a) DNA (b) RNA (c) Proteins (d) Hormones 3. The base adenine occurs in [MP PMT 1995] (a) DNA only (b) RNA only (c) DNA and RNA both (d) Protein 4. The protein which maintains blood sugar level in the human body [KCET 1993; MP PMT 1995] (a) Haemoglobin (b) Oxytocin (c) Insulin (d) Ptyalin 5. Which of the following statements about the assembly of nucleotides in a molecule of deoxyribose nucleic acid (DNA) is correct (a) A pentose of one unit connects to a pentose of
19. 20. 21.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction of known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification Fat consists of (a) Monohydroxy carb (b) Monohydroxy alip (c) Monohydroxy alip (c) Monohydroxy alip acid (d) Dihydroxy aliphat: The alcohol obtained fats is (a) Glycol (c) Propanol	b the class of [BHU 1999; AFMC (b) Ethers (d) Acetic acid f fats, with caustic soda, is (d) Carboxylation (b) Carboxylation (d) Esterification [MH CET 2002] boxylic acid hatic carboxylic acid phatic, saturated carboxylic ic carboxylic acid by the hydrolysis of oils and [KCET 2001] (b) Glycerol (d) Pentanol	 220q5] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity character (a) DNA (b) RNA (c) Proteins (d) Hormones 3. The base adenine occurs in [MP PMT 1995] (a) DNA only (b) RNA only (c) DNA and RNA both (d) Protein 4. The protein which maintains blood sugar level in the human body [KCET 1993; MP PMT 1995] (a) Haemoglobin (b) Oxytocin (c) Insulin (d) Ptyalin 5. Which of the following statements about the assembly of nucleotides in a molecule of deoxyribose nucleic acid (DNA) is correct (a) A pentose of one unit connects to a pentose of another
19. 20. 21.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction of known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification Fat consists of (a) Monohydroxy carb (b) Monohydroxy alip (c) Monohydroxy alip (c) Monohydroxy alip acid (d) Dihydroxy aliphat: The alcohol obtained fats is (a) Glycol (c) Propanol Iodine value is related	b the class of [BHU 1999; AFMC : (b) Ethers (d) Acetic acid f fats, with caustic soda, is (b) Carboxylation (b) Carboxylation (d) Esterification [MH CET 2002] boxylic acid hatic carboxylic acid phatic, saturated carboxylic ic carboxylic acid by the hydrolysis of oils and [KCET 2001] (b) Glycerol (d) Pentanol H to [MP PET 2002]	 220q5] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity character (a) DNA (b) RNA (c) Proteins (d) Hormones 3. The base adenine occurs in [MP PMT 1995] (a) DNA only (b) RNA only (c) DNA and RNA both (d) Protein 4. The protein which maintains blood sugar level in the human body [KCET 1993; MP PMT 1995] (a) Haemoglobin (b) Oxytocin (c) Insulin (d) Ptyalin 5. Which of the following statements about the assembly of nucleotides in a molecule of deoxyribose nucleic acid (DNA) is correct (a) A pentose of one unit connects to the base of another
19. 20. 21.	acids, which belong to (a) Esters (c) Alcohols Hydrolytic reaction of known as [Kerala (Med.) 20 (a) Acetylation (c) Saponification Fat consists of (a) Monohydroxy carb (b) Monohydroxy alip (c) Monohydroxy alip (c) Monohydroxy alip (c) Monohydroxy alip acid (d) Dihydroxy aliphat: The alcohol obtained fats is (a) Glycol (c) Propanol Iodine value is related (a) Fats and oils (c) Esters	b the class of [BHU 1999; AFMC : (b) Ethers (d) Acetic acid (f fats, with caustic soda, is (b) Carboxylation (c) Esterification [MH CET 2002] boxylic acid hatic carboxylic acid phatic, saturated carboxylic ic carboxylic acid by the hydrolysis of oils and [KCET 2001] (b) Glycerol (d) Pentanol I to [MP PET 2002] (b) Alcohols	 20q5] A nucleotide consists of (a) Base and sugar (b) Base and phosphate (c) Sugar and phosphate (d) Base, sugar and phosphate 2. Which of the following is responsible for heredity character (a) DNA (b) RNA (c) Proteins (d) Hormones 3. The base adenine occurs in [MP PMT 1995] (a) DNA only (b) RNA only (c) DNA and RNA both (d) Protein 4. The protein which maintains blood sugar level in the human body [KCET 1993; MP PMT 1995] (a) Haemoglobin (b) Oxytocin (c) Insulin (d) Ptyalin 5. Which of the following statements about the assembly of nucleotides in a molecule of deoxyribose nucleic acid (DNA) is correct (a) A pentose of one unit connects to the base of another

				Bi	omolecules 1459
	(d) A phosphate of on	e unit connects to the base		(c) Gene	(d) Amino acid
	of another		19.	In DNA, the compleme	entary bases are[CBSE PMT 19
	Vitamin A is present ir	[MP PET 1995, 2000]		—	e; cytosine and guanine
	(a) Cod liver oil	(b) Carrot			ine; guanine and cytosine
	(c) Milk	(d) In all of these		(c) Adenine and thym	ine; guanine and uracil
	Ascorbic acid is a [Bihar CEE 1995; MP PET 1995]		-	ine; thymine and cytosine
	(a) Vitamin	(b) Enzyme	20.	The structure of DNA	
	(c) Protein	(d) Carbohydrate		(a) Linear	(b) Single helix
	The chemical name of	vitamin C is [J & K 2005]		(c) Double helix	(d) Triple helix
	(a) Ascorbic acid	(b) Folic acid	21.	Vitamin B_1 is	[MP PMT 2000]
	(c) Nicotinic acid	(d) Tartaric acid		(a) Riboflavin	(b) Cobalamin
	Which of the following	is not a constituent of RNA		(c) Thiamine	(d) Pyridoxine
		[MP PET 1996]	22		f a molecule of [AIIMS 1999]
	(a) Ribose	(b) Phosphate	22.	0 0	
	(c) Adenine	(d) Pyridine		(a) DNA	(b) m-RNA
	Which one is found in	ATP ribonucleotide		(c) <i>t</i> -RNA	(d) Protein
	(a) Guanine	(b) Uracil	23.	The deficiency of vita	
	(c) Adenine	(d) None of these		(a) Scurvy	[MP PMT 2000; CPMT 2000 (b) Rickets
	Which of the follow	wing proteins acts as a		(c) Pyrrohea	(d) Pernicious Anaemia
	messenger in living sy		24	DNA contains the suga	
	(a) Harmone	(b) Enzyme	24.	(a) Deoxyribose	(b) Ribose
	(c) Protective protein			(a) Deoxymbose (c) D-Fructose	(d) D-glucose
	-	t present in nucleic acid	25.	Which of the following	•
		[MP PET/PMT 1998]	23.	which of the following	[MP PMT 2000
	(a) Cytosine	(b) Adenine		(a) Testosterone	(b) Estrone
	(c) Thymine	(d) Guanidine		(c) Estradiol	(d) Cortisone
	The deficiency of vitar		26.	• •	ficiency syndroms (AIDS) i
•				characterised	[AIIMS 2000]
		94; MP PMT 1999; BHU 2000]		(a) Killer T-cells	
	(a) Beri-beri	(b) Scurvy		(b) Reduction in numb	per of helper T-cells
	(c) Rickets	(d) Anaemia		(c) An autoimmune di	_
•		g is not present in nucleic		(d) Inability of body t	o produce interferons
	acids		27.	The base present in D	NA, but not in RNA is
	/ N	[MP PMT 1999]		[KCET (Engg.) 2001; NO	CERT 1978; Manipal MEE 1985
	(a) Uracil	(b) 2-aminopyridine		MP PMT	1994, MP PET 1995; DCE 2004
	(c) Thymine	(d) Adenine		(a) Guanine	(b) Adenine
•	In nucleic acids, the se	-		(c) Uracil	(d) Thymine
	(a) Base-phosphate-su	gar (b)Phosphate-base-suga	ar 28.		curs due to changes in the
	(c) Sugar-base-phosph	ate (d)Base-sugar-phospha	te	sequence of one of the	•
•	The segment of D	NA which acts as the		(a) Bases	(b) Ribose units
	instructional manual	for the synthesis of the		(c) Phosphate units	(d) Sugar units
	protein is	[Pb. PMT 1998]	29.	Which of the following	g is not true about vitamins
	(a) Nucleoside	(b) Nucleotide			[AFMC 2001]
	(c) Ribose	(d) Gene		(a) They are vital for	
	The double helical stru	acture of DNA was proposed		(b) They help in diges	
	by	• •		(c) They were named	•
		[KCET 1998]		(d) Their deficiency ca	auses diseases
	(a) Watson and Crick	(b) Meicher	30.		can be increased by the
	(c) Emil Fischer	(d) Khorana		administration of	[AFMC 2001]
•		molecule which codes or		(a) Glucogon	(b) Calcitonin
	-	eptide chain is called[KCET 19	98]	(c) Thyroxine	(d) Paratharmone

31.	The first harmone chemically synthesised in the	41.	Codon is present in	[Pb. PMT 2004]
	laboratory is		(a) <i>t</i> -RNA	(b) <i>m</i> -RNA
	[BHU 2002]		(c) <i>r</i> -RNA	(c) All of these
	(a) Cortisone (b) Insuline	42.	Energy is stored in our	body in the form of
	(c) Adrenaline (d) Estrone			[CBSE PMT 2001; KCET 2003]
32.	Purine derivative among the following bases is		(a) ATP	(b) ADP
	[KCET (Med./Engg.) 2002; MPPET 2004]		(c) Fats	(d) Carbohydrates
	(a) Guanine (b) Cytosine	43.	Nucleic acid is a polym	
	(c) Thymine (d) Uracil		(a) Nucleosides	(b) α – amino acids
33.	RNA is different from DNA because RNA contains		(c) Nucleotides	(d) Glucose
	[AIEEE 2002, 04]	44.	A nucleoside on hydrol	
	(a) Ribose sugar and thymine		-	e and orthophosphoric acid
	(b) Ribose sugar and uracil		_	a heterocyclic base and
	(c) Deoxyribose sugar and thymine		orthophosphoric ac	
	(d) Deoxyribose sugar and uracil		(c) An aldopentose and(d) An aldopentose and	-
34.	Deficiency of which vitamin causes rickets [MP PET 2		-	base sequence of nucleic
	(a) Vitamin- <i>D</i> (b) Vitamin- <i>B</i>	45.	acid molecule is called	-
	(c) Vitamin-A (d) Vitamin-K		(a) Replication	(b) Mutation
35.	Which do the following vitamins has isoprene		(c) Duplication	(d) Dislocation
	units in its structure [JIPMER 2002]		(e) Flocculation	
	(a) Vitamin A (b) Vitamin C	46.	Vitamin B ₆ is known as	5 [DCE 2004]
	(c) Vitamin B_2 (d) Vitamin D	• • •	(a) Pyridoxin	(b) Thiamine
36.	The reason for double helical structure of DNA is		(c) Tocopherol	(d) Riboflavin
36.	operation of [CBSE PMT 2003; DPMT 2004]		(c) Tocopherol	(d) Riboflavin
36.	operation of[CBSE PMT 2003; DPMT 2004](a) Vander Waal's forces		-	
36.	operation of[CBSE PMT 2003; DPMT 2004](a) Vander Waal's forces(b) Dipole-dipole interaction		-	(d) Riboflavin
36.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding		-	al Thinking
36.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions		-	
	operation of[CBSE PMT 2003; DPMT 2004](a) Vander Waal's forces(b) Dipole-dipole interaction(c) Hydrogen bonding(d) Electrostatic attractionsThe tripeptide harmone present in most living		-	al Thinking
	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is	1	C ritica	al Thinking Objective Questions
	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is [KCET 2003]	1.	GCritica Number of chiral carbo	al Thinking Objective Questions ons in $\beta - D - (+)$ -glucose is
	operation of[CBSE PMT 2003; DPMT 2004](a) Vander Waal's forces(b) Dipole-dipole interaction(c) Hydrogen bonding(d) Electrostatic attractionsThe tripeptide harmone present in most living cells is[KCET 2003](a) Glutathione(b) Glutamine	1.	Critica Number of chiral carbo [C	al Thinking Objective Questions ons in $\beta - D - (+)$ -glucose is BSE PMT 2004; MHCET 2004]
37.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions (d) Electrostatic attractions The tripeptide harmone present in most living cells is [KCET 2003] (a) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin	1.	Number of chiral carbo [C (a) Three	al Thinking Objective Questions ons in β -D-(+)-glucose is BSE PMT 2004; MHCET 2004] (b) Four
37.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interactions (c) Hydrogen bonding (d) Electrostatic attractions (d) Electrostatic attractions The tripeptide harmone present in most living cells is [KCET 2003] (a) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin The function of DNA in organism is [DCE 2003]		Number of chiral carbo [C (a) Three (c) Five	al Thinking Objective Questions Ons in β -D-(+)-glucose is EBSE PMT 2004; MHCET 2004] (b) Four (d) Six
37.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is The tripeptide harmone present in most living (d) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin The function of DNA in arganism is [DCE 2003] (a) To assist in the synthesis of RNA molecule	1.	Number of chiral carbo [C (a) Three (c) Five The nucleic acid base I	al Thinking Objective Questions ons in β -D-(+)-glucose is BSE PMT 2004; MHCET 2004] (b) Four
37.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is [KCET 2003] (a) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin The function of DNA in an organism is [DCE 2003] (a) To assist in the synthesis of RNA molecule (b) To store information of heredity		Number of chiral carbo [C (a) Three (c) Five	al Thinking Objective Questions Objective Questions ons in $\beta - D - (+)$ -glucose is BSE PMT 2004; MHCET 2004] (b) Four (d) Six having two possible binding
37.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is [KCET 2003] (a) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin The function of DNA in an organism is [DCE 2003] (a) To assist in the synthesis of RNA molecule (b) To store information of heredity characteristics		Number of chiral carbo [C (a) Three (c) Five The nucleic acid base I sites is	al Thinking Objective Questions Objective Questions ons in $\beta - D - (+)$ -glucose is ESE PMT 2004; MHCET 2004] (b) Four (d) Six having two possible binding [AIIMS 2004]
37.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is [KCET 2003] (a) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin The function of DNA in an organism is [DCE 2003] (a) To assist in the synthesis of RNA molecule (b) To store information of heredity characteristics		Number of chiral carbo [C (a) Three (c) Five The nucleic acid base I sites is (a) Thymine	al Thinking Objective Questions Objective Questions ons in $\beta - D - (+)$ -glucose is (b) Four (d) Six (b) Four (d) Six having two possible binding [AIIMS 2004] (b) Cytosine
37.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is The tripeptide harmone present in most living cells is (b) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin The function of DNA in an organism is [DCE 2003] (a) To assist in the synthesis of RNA molecule (b) To store information of heredity characteristics (c) To assist in the synthesis of proteins and polypeptides	2.	Number of chiral carbo [C (a) Three (c) Five The nucleic acid base I sites is (a) Thymine (c) Guanine	al Thinking Objective Questions Objective Questions ons in $\beta - D - (+)$ -glucose is BSE PMT 2004; MHCET 2004] (b) Four (d) Six having two possible binding [AIIMS 2004] (b) Cytosine (d) Adenine
37. 38.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is [KCET 2003] (a) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin The function of DNA in an organism is [DCE 2003] (a) To assist in the synthesis of RNA molecule (b) To store information of heredity characteristics (c) To assist in the synthesis of proteins and polypeptides (d) All of these		Number of chiral carbo [C (a) Three (c) Five The nucleic acid base I sites is (a) Thymine (c) Guanine Subunits present in had	al Thinking Objective Questions Objective Questions Objective Questions Objective Questions Objective Questions (b) Four (b) Four (c) Four (c) Six having two possible binding [AIIMS 2004] (b) Cytosine (c) Adenine emoglobin are [AIIMS 2003]
37. 38.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is [KCET 2003] (a) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin The function of DNA in an organism is [DCE 2003] (a) To assist in the synthesis of RNA molecule (b) To store information of heredity characteristics (c) To assist in the synthesis of proteins and polypeptides (d) All of these	2.	Number of chiral carbo [C (a) Three (c) Five The nucleic acid base I sites is (a) Thymine (c) Guanine Subunits present in had (a) 2	al Thinking Objective Questions Objective Questions Objective Questions Objective Questions Objective Questions (b) Four (b) Four (c) Six (c) Six (c) Six (c) Cytosine (c) Cytosine (c) Adenine emoglobin are [AIIMS 2003] (c) 3
37.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is [KCET 2003] (a) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin The function of DNA in an organism is [DCE 2003] (a) To assist in the synthesis of RNA molecule (b) To store information of heredity characteristics (c) To assist in the synthesis of proteins and polypeptides (d) All of these The harmone that helps in the conversion of glucose to glycogen in [CBSE PMT 2004]	2. 3.	Number of chiral carbo [C (a) Three (c) Five The nucleic acid base I sites is (a) Thymine (c) Guanine Subunits present in had (a) 2 (c) 4	al Thinking Objective Questions Objective Questions Objective Questions Objective Questions Objective Questions State PMT 2004; MHCET 2004] (b) Four (d) Six having two possible binding [AIIMS 2004] (b) Cytosine (d) Adenine emoglobin are [AIIMS 2003] (b) 3 (d) 5
37. 38.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is [KCET 2003] (a) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin The function of DNA in an organism is [DCE 2003] (a) To assist in the synthesis of RNA molecule (b) To store information of heredity characteristics (c) To assist in the synthesis of proteins and polypeptides (d) All of these	2.	Number of chiral carbo [C (a) Three (c) Five The nucleic acid base I sites is (a) Thymine (c) Guanine Subunits present in had (a) 2 (c) 4	al Thinking Objective Questions Objective Questions Objective Questions Objective Questions Objective Questions State PMT 2004; MHCET 2004] (b) Four (d) Six having two possible binding [AIIMS 2004] (b) Cytosine (d) Adenine emoglobin are [AIIMS 2003] (b) 3 (d) 5 ny nucleotides in messenger
37. 38.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is Inter tripeptide harmone present in most living cells is (b) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin The function of DNA in an organism is [DCE 2003] (a) To assist in the synthesis of RNA molecule (b) To store information of heredity characteristics (c) To assist in the synthesis of proteins and polypeptides (d) All of these The harmone that helps in the conversion of glucose to glycogen in [CBSE PMT 2004] (a) Adrenaline (b) Insulin	2. 3.	Number of chiral carbo [C (a) Three (c) Five The nucleic acid base I sites is (a) Thymine (c) Guanine Subunits present in hav (a) 2 (c) 4 A sequence of how man	al Thinking Objective Questions Objective Questions Objective Questions Objective Questions Objective Questions State PMT 2004; MHCET 2004] (b) Four (d) Six having two possible binding [AIIMS 2004] (b) Cytosine (d) Adenine emoglobin are [AIIMS 2003] (b) 3 (d) 5 ny nucleotides in messenger
37. 38.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is [KCET 2003] (a) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin The function of DNA in an organism is [DCE 2003] (a) To assist in the synthesis of RNA molecule (b) To store information of heredity characteristics (c) To assist in the synthesis of proteins and polypeptides (d) All of these The harmone that helps in the conversion of glucose to glycogen in [CBSE PMT 2004] (a) Adrenaline (b) Insulin (c) Cortisone (d) Bile acids	2. 3.	Number of chiral carbo [C (a) Three (c) Five The nucleic acid base I sites is (a) Thymine (c) Guanine Subunits present in hav (a) 2 (c) 4 A sequence of how man RNA makes a codon for (a) One	al Thinking Objective Questions Objective Questions Objective Questions Objective Questions Objective Questions (D) = (1) +
37. 38.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is [KCET 2003] (a) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin The function of DNA in an organism is [DCE 2003] (a) To assist in the synthesis of RNA molecule (b) To store information of heredity characteristics (c) To assist in the synthesis of proteins and polypeptides (d) All of these The harmone that helps in the conversion of glucose to glycogen in [CBSE PMT 2004] (a) Adrenaline (b) Insulin (c) Cortisone (d) Bile acids Insulin production and its action in human body	2. 3. 4.	Critica Number of chiral carbo [C (a) Three (c) Five The nucleic acid base I sites is (a) Thymine (c) Guanine Subunits present in hav (a) 2 (c) 4 A sequence of how mar RNA makes a codon for (a) One (c) Three	al Thinking Objective Questions Objective Questions Objective Questions Objective Questions Objective Questions $\beta - D - (+) - glucose is BSE PMT 2004; MHCET 2004] (b) Four (d) Six having two possible binding [AIIMS 2004] (b) Cytosine (d) Adenine emoglobin are [AIIMS 2003] (b) 3 (d) 5 my nucleotides in messenger r an amino acid (b) Two (d) Four$
37. 38.	operation of [CBSE PMT 2003; DPMT 2004] (a) Vander Waal's forces (b) Dipole-dipole interaction (c) Hydrogen bonding (d) Electrostatic attractions The tripeptide harmone present in most living cells is [KCET 2003] (a) Glutathione (b) Glutamine (c) Oxytocin (d) Ptyalin The function of DNA in an organism is [DCE 2003] (a) To assist in the synthesis of RNA molecule (b) To store information of heredity characteristics (c) To assist in the synthesis of proteins and polypeptides (d) All of these The harmone that helps in the conversion of glucose to glycogen in [CBSE PMT 2004] (a) Adrenaline (b) Insulin (c) Cortisone (d) Bile acids Insulin production and its action in human body are responsible for the level of diabetes. This compound belongs to which of the following categories [AIEEE 2004]	2. 3.	Number of chiral carbo [C (a) Three (c) Five The nucleic acid base I sites is (a) Thymine (c) Guanine Subunits present in hav (a) 2 (c) 4 A sequence of how mai RNA makes a codon for (a) One (c) Three Chargaff's rule states t	al Thinking Objective Questions Objective Questions Objective Questions Objective Questions Objective Questions Objective Questions (b) Four (c) -guestions (c) Four (c) Six having two possible binding [AIIMS 2004] (b) Cytosine (c) Adenine emoglobin are [AIIMS 2003] (c) 3 (c) 3 (c) 5 my nucleotides in messenger r an amino acid (c) Two (c) Four that in an organism[CBSE PMT 20]
37. 38.	operation of[CBSE PMT 2003; DPMT 2004](a) Vander Waal's forces(b) Dipole-dipole interaction(c) Hydrogen bonding(d) Electrostatic attractionsThe tripeptide harmone present in most living cells is[KCET 2003](a) Glutathione(b) Glutamine(c) Oxytocin(d) PtyalinThe function of DNA in an organism is [DCE 2003](a) To assist in the synthesis of RNA molecule(b) Tostore(b) To storeinformation(c) To assist in the synthesis of proteins and polypeptides(d) All of theseThe harmone that helps in the conversion of glucose to glycogen in(a) Adrenaline(b) Insulin(c) Cortisone(d) Bile acidsInsulin production and its action in human body are responsible for the level of diabetes. This compound belongs to which of the following	2. 3. 4.	Critica Number of chiral carbo [C (a) Three (c) Five The nucleic acid base I sites is (a) Thymine (c) Guanine Subunits present in hav (a) 2 (c) 4 A sequence of how mar RNA makes a codon for (a) One (c) Three	al Thinking Objective Questions Objective Questions Objective Questions Objective Questions Objective Questions Objective Questions (b) Four (c) -guestions (c) Four (c) Six having two possible binding [AIIMS 2004] (b) Cytosine (c) Adenine emoglobin are [AIIMS 2003] (c) 3 (c) 3 (c) 5 my nucleotides in messenger r an amino acid (c) Two (c) Four that in an organism[CBSE PMT 20]

				BR	omolecules 1461
	(b) Amount of adeni	ne (A) is equal to that of		(a) Carbohydrates	(b) Proteins
	-	the amount of guanine (G) is		(c) Phospholipids	(d) Fats
	equal to that of cy		16.	A compound of mol. w	t. 180 is acetylated to give a
		ne (A) is equal to that of		-	390. The number of amino
	•	the amount of thymine (T) is		groups in the initial co	ompound is
	equal to that of cytosine (C)(d) Amount of adenine (A) is equal to that of cytosine (C) and the amount of thymine (T) is			(a) 2	(b) 4
				(c) 5	(d) 6
	equal to guanine (-	17.	Starting with three	
5.		called [Kerala (Med.) 2000]		molecules, how m	any different tripeptide
•	(a) Translation	(b) Transduction		molecules are formed	
	(c) Transcription	(d) Replication			[Kerala PMT 1999; KCET 1999]
'.	-	-	61	(a) 12	(b) 9
•	Insulin is a protein which plays the role of [KCET 1986] (a) An antibody (b) A harmone		1 8 .	(c) 8	(d) 6
	-				wing is a polysaccharide[NDA 1
3.	•	(d) A transport agent I functions in living systems.		(a) Nylon	(b) Amylose
•		ein which acts as a hormone		(c) Ribose	(d) Polyethylene
	is	[KCET 1985]	19.		g is not an acidic amino acid
	(a) Casein	(b) Oxytocin		(a) Lysine	(b) Arginine
	(c) Trypsin	(d) Keratin		(c) Aspartic acid	(d) Histidine
).	••	rated fatty acid from the	20.	Proteins do not respon	
	following			(a) Biuret test	(b) Heller's ring test
	-	[KCET 2004; MHCET 2002]		(c) Ninhydrin test	(d) Lucas test
	(a) Stearic acid	(b) Lauric acid	21.	• •	onates can be conductivity
	(c) Oleic acid (d) Palmitic acid			used as detergents in	hard water, unlike soaps, as [AMU 2002]
0.	Vitamin B_{12} contains	metal		(a) They are highly so	
	12				
	Bibar MEE 1007. BBET 10	00. Ph. PMT 1000. AFMC 2002.			alts are water soluble
		99; Pb. PMT 1999; AFMC 2002;		(b) Their Ca^{++}/Mg^{++} s	
	CBSE PMT 20	03; CPMT 2003; MP PMT 2003]		(b) Their Ca^{++}/Mg^{++} s (c) They are non-ionic	
	CBSE PMT 20 (a) <i>Ca</i> (II)	03; CPMT 2003; MP PMT 2003] (b) <i>Zn</i> (II)		(b) Their $Ca^{++}/M_{\mathcal{B}}^{++}$ s (c) They are non-ionic (d) Their $Ca^{++}/M_{\mathcal{B}}^{++}$ s	: alts are insoluble in water
[1	CBSE PMT 20 (a) Ca (II) (c) Fe (II)	 (b) Zn (II) (c) Co (III) 	22.	(b) Their Ca^{++}/Mg^{++} s (c) They are non-ionic (d) Their Ca^{++}/Mg^{++} s When glucose reacts	alts are insoluble in water with bromine water, the
[1	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molect	o3; CPMT 2003; MP PMT 2003] (b) <i>Zn</i> (II) (d) <i>Co</i> (III) sules of ATP produced in the	22.	(b) Their Ca^{++}/Mg^{++} s (c) They are non-ionic (d) Their Ca^{++}/Mg^{++} s When glucose reacts main product is	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004]
[1	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molect	 (b) Zn (II) (c) Co (III) (c) ATP produced in the molecule of palmitic acid is 	22.	(b) Their Ca^{++}/M_{g}^{++} s (c) They are non-ionic (d) Their Ca^{++}/M_{g}^{++} s When glucose reacts main product is (a) Acetic acid	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid
[1	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molec lipid metabolism of a	(b) Zn (II) (d) Co (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998]		(b) Their Ca^{++}/Mg^{++} s (c) They are non-ionic (d) Their Ca^{++}/Mg^{++} s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid
[1	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molec lipid metabolism of a (a) 130	o3; CPMT 2003; MP PMT 2003] (b) Zn (II) (d) Co (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998] (b) 36	22. 23.	(b) Their Ca^{++}/Mg^{++} s (c) They are non-ionic (d) Their Ca^{++}/Mg^{++} s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde A zwitter ion is	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid [KCET 1989]
[I	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molect lipid metabolism of a (a) 130 (c) 56	o3; CPMT 2003; MP PMT 2003] (b) <i>Zn</i> (II) (d) <i>Co</i> (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998] (b) 36 (d) 86	23.	(b) Their Ca^{++}/M_{g}^{++} s (c) They are non-ionic (d) Their Ca^{++}/M_{g}^{++} s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde A zwitter ion is (a) A positively charge	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid
[I	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molec lipid metabolism of a (a) 130	o3; CPMT 2003; MP PMT 2003] (b) Zn (II) (d) Co (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998] (b) 36 (d) 86 asily removed from		(b) Their Ca^{++}/Mg^{++} s (c) They are non-ionic (d) Their Ca^{++}/Mg^{++} s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde A zwitter ion is (a) A positively charge	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid [KCET 1989] ed ion without a metal atom
[I	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molect lipid metabolism of a (a) 130 (c) 56 Protein can be most e	o3; CPMT 2003; MP PMT 2003] (b) Zn (II) (d) Co (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998] (b) 36 (d) 86 asily removed from [UPSEAT 2000, 02]	23. in it	(b) Their Ca^{++}/Mg^{++} s (c) They are non-ionic (d) Their Ca^{++}/Mg^{++} s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde A zwitter ion is (a) A positively charge (b) A negatively charge	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid [KCET 1989]
[I	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molect lipid metabolism of a (a) 130 (c) 56 Protein can be most e (a) Alkanes	o3; CPMT 2003; MP PMT 2003] (b) Zn (II) (d) Co (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998] (b) 36 (d) 86 asily removed from [UPSEAT 2000, 02] (b) Alkenes	23.	(b) Their Ca^{++}/Mg^{++} s (c) They are non-ionic (d) Their Ca^{++}/Mg^{++} s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde A zwitter ion is (a) A positively charge (b) A negatively charge	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid [KCET 1989] ed ion without a metal atom ged ion without metal atom
[Ŧ 1. 2.	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molect lipid metabolism of a (a) 130 (c) 56 Protein can be most e (a) Alkanes (c) Alkynes	o3; CPMT 2003; MP PMT 2003] (b) Zn (II) (d) Co (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998] (b) 36 (d) 86 asily removed from [UPSEAT 2000, 02] (b) Alkenes (d) Benzene	23. in it	(b) Their Ca^{++}/M_{g}^{++} s (c) They are non-ionic (d) Their Ca^{++}/M_{g}^{++} s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde A zwitter ion is (a) A positively charge (b) A negatively charge (c) An ion with positi	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid [KCET 1989] ed ion without a metal atom ged ion without metal atom
[Ŧ 1. 2.	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molect lipid metabolism of a (a) 130 (c) 56 Protein can be most e (a) Alkanes (c) Alkynes The enzyme which	o3; CPMT 2003; MP PMT 2003] (b) Zn (II) (d) Co (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998] (b) 36 (d) 86 asily removed from [UPSEAT 2000, 02] (b) Alkenes (d) Benzene hydrolyses triglycerides to	23. in it	(b) Their Ca^{++}/Mg^{++} s (c) They are non-ionic (d) Their Ca^{++}/Mg^{++} s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde A zwitter ion is (a) A positively charge (b) A negatively charge (c) An ion with positi different points on	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid [KCET 1989] ed ion without a metal atom ged ion without metal atom ive and negative charges at it
[Ŧ 1. 2.	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molect lipid metabolism of a (a) 130 (c) 56 Protein can be most e (a) Alkanes (c) Alkynes The enzyme which fatty acids and glycer	o3; CPMT 2003; MP PMT 2003] (b) Zn (II) (d) Co (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998] (b) 36 (d) 86 asily removed from [UPSEAT 2000, 02] (b) Alkenes (d) Benzene hydrolyses triglycerides to ol is called	23. in it	(b) Their Ca^{++}/M_{g}^{++} s (c) They are non-ionic (d) Their Ca^{++}/M_{g}^{++} s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde A zwitter ion is (a) A positively charge (b) A negatively charge (c) An ion with positi	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid [KCET 1989] ed ion without a metal atom ged ion without metal atom ive and negative charges at it small charge on it
[I	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molect lipid metabolism of a (a) 130 (c) 56 Protein can be most e (a) Alkanes (c) Alkynes The enzyme which fatty acids and glycer (a) Zymase	o3; CPMT 2003; MP PMT 2003] (b) Zn (II) (d) Co (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998] (b) 36 (d) 86 asily removed from [UPSEAT 2000, 02] (b) Alkenes (d) Benzene hydrolyses triglycerides to ol is called (b) Pepsin	23. in it in it	 (b) Their Ca⁺⁺/Mg⁺⁺ s (c) They are non-ionic (d) Their Ca⁺⁺/Mg⁺⁺ s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde A zwitter ion is (a) A positively charge (b) A negatively charge (c) An ion with positidifferent points on (d) A pressey port with p 	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid [KCET 1989] ed ion without a metal atom ged ion without metal atom ive and negative charges at it small charge on it of [KCET 1998]
[F 1. 2. 3.	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molect lipid metabolism of a (a) 130 (c) 56 Protein can be most e (a) Alkanes (c) Alkynes The enzyme which fatty acids and glycer (a) Zymase (c) Maltase	o3; CPMT 2003; MP PMT 2003] (b) Zn (II) (d) Co (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998] (b) 36 (d) 86 asily removed from [UPSEAT 2000, 02] (b) Alkenes (d) Benzene hydrolyses triglycerides to ol is called (b) Pepsin (d) Lipase	23. in it in it	 (b) Their Ca⁺⁺/Mg⁺⁺ s (c) They are non-ionic (d) Their Ca⁺⁺/Mg⁺⁺ s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde A zwitter ion is (a) A positively charge (b) A negatively charge (c) An ion with positidifferent points on (d) A presserviour with position 	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid [KCET 1989] ed ion without a metal atom ged ion without metal atom ive and negative charges at it small charge on it
[H 1. 2. 3.	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molect lipid metabolism of a (a) 130 (c) 56 Protein can be most e (a) Alkanes (c) Alkynes The enzyme which fatty acids and glycer (a) Zymase (c) Maltase	o3; CPMT 2003; MP PMT 2003] (b) Zn (II) (d) Co (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998] (b) 36 (d) 86 asily removed from [UPSEAT 2000, 02] (b) Alkenes (d) Benzene hydrolyses triglycerides to ol is called (b) Pepsin (d) Lipase of protein is stabilized by	23. in it in it	 (b) Their Ca⁺⁺/Mg⁺⁺ s (c) They are non-ionic (d) Their Ca⁺⁺/Mg⁺⁺ s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde A zwitter ion is (a) A positively charge (b) A negatively charge (c) An ion with positidifferent points on (d) A pressymmer with periods (a) Ketohexose (c) Disaccharide 	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid [KCET 1989] ed ion without a metal atom ged ion without metal atom ave and negative charges at it small charge on it of [KCET 1998] (b) Aldopentose (d) Aldohexose
[H 1. 2. 3.	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molect lipid metabolism of a (a) 130 (c) 56 Protein can be most e (a) Alkanes (c) Alkynes The enzyme which fatty acids and glycer (a) Zymase (c) Maltase The helical structure	o3; CPMT 2003; MP PMT 2003] (b) Zn (II) (d) Co (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998] (b) 36 (d) 86 asily removed from [UPSEAT 2000, 02] (b) Alkenes (d) Benzene hydrolyses triglycerides to ol is called (b) Pepsin (d) Lipase of protein is stabilized by [CBSE PMT 2004]	23. in it in it 24.	 (b) Their Ca⁺⁺/Mg⁺⁺ s (c) They are non-ionic (d) Their Ca⁺⁺/Mg⁺⁺ s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde A zwitter ion is (a) A positively charge (b) A negatively charge (c) An ion with positidifferent points on (d) A pressymmer with periods (a) Ketohexose (c) Disaccharide 	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid [KCET 1989] ed ion without a metal atom ged ion without metal atom ive and negative charges at it small charge on it of [KCET 1998] (b) Aldopentose (d) Aldohexose lucopyranose obtained from
	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molect lipid metabolism of a (a) 130 (c) 56 Protein can be most e (a) Alkanes (c) Alkynes The enzyme which fatty acids and glycer (a) Zymase (c) Maltase The helical structure (a) Ether bonds	o3; CPMT 2003; MP PMT 2003] (b) Zn (II) (d) Co (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998] (b) 36 (d) 86 asily removed from [UPSEAT 2000, 02] (b) Alkenes (d) Benzene hydrolyses triglycerides to ol is called (b) Pepsin (d) Lipase of protein is stabilized by [CBSE PMT 2004] (b) Peptide bonds	23. in it in it 24.	 (b) Their Ca⁺⁺/Mg⁺⁺ s (c) They are non-ionic (d) Their Ca⁺⁺/Mg⁺⁺ s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde A zwitter ion is (a) A positively charge (b) A negatively charge (c) An ion with positidifferent points on (d) A presserviour with p Ribose is an example of (a) Ketohexose (c) Disaccharide The two forms of D-gite 	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid [KCET 1989] ed ion without a metal atom ged ion without metal atom ive and negative charges at it small charge on it of [KCET 1998] (b) Aldopentose (d) Aldohexose lucopyranose obtained from
[H 1. 2. 3.	CBSE PMT 20 (a) <i>Ca</i> (II) (c) <i>Fe</i> (II) The number of molect lipid metabolism of a (a) 130 (c) 56 Protein can be most e (a) Alkanes (c) Alkynes The enzyme which fatty acids and glycer (a) Zymase (c) Maltase The helical structure (a) Ether bonds (c) Dipeptide bonds	o3; CPMT 2003; MP PMT 2003] (b) Zn (II) (d) Co (III) cules of ATP produced in the molecule of palmitic acid is [CBSE PMT 1998] (b) 36 (d) 86 asily removed from [UPSEAT 2000, 02] (b) Alkenes (d) Benzene hydrolyses triglycerides to ol is called (b) Pepsin (d) Lipase of protein is stabilized by [CBSE PMT 2004]	23. in it in it 24.	 (b) Their Ca⁺⁺/Mg⁺⁺ s (c) They are non-ionic (d) Their Ca⁺⁺/Mg⁺⁺ s When glucose reacts main product is (a) Acetic acid (c) Glyceraldyhyde A zwitter ion is (a) A positively charge (b) A negatively charge (c) An ion with positidifferent points on (d) A pressey port with positidifferent points on (d) A pressey port with positidifferent points on (d) A pressey port with positidifferent points on (c) Disaccharide The two forms of D-giuco 	alts are insoluble in water with bromine water, the [Pb. CET 2003; BHU 2004] (b) Saccharic acid (d) Gluconic acid [KCET 1989] ed ion without a metal atom ged ion without metal atom ave and negative charges at it small charge on it of [KCET 1998] (b) Aldopentose (d) Aldohexose lucopyranose obtained from ose are called

- (a) A gluco pyranose and a fructo pyranose
- (b) A gluco pyranose and a fructo furanose
- (c) A gluco furanose and a fructo pyranose
- (d) A gluco furanose and a fructo furanose

Read the assertion and reason carefully to mark the correct option out of the options given below :

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.

	A - -	
1.	Assertion :	Glycine is amphoteric in nature.
	Reason :	Glycine contains both acid and basic
		groups. [AIIMS 1996]
2.	Assertion :	Hydrolysis of sucrose is known as
	_	inversion of cane sugar.
	Reason :	Sucrose is a disaccharide.[AIIMS 1997]
3.	Assertion :	Proteins on hydrolysis produce
	Deces	amino acida contain MU and
	Reason :	Amino acids contain $-NH_2$ and
		<i>–COOH</i> groups. [AIIMS 1998]
4.	Assertion :	Sucrose undergo mutarotation.
_	Reason :	Sucrose is a disaccharide.[AIIMS 2000]
5۰	Assertion :	DNA molecules and RNA molecules are found in the nucleus of a cell.
	Reason :	On heating the enzyme do not lose
	Reason .	their specific activity. [AIIMS 2002]
6.	Assertion :	All Amino acids exist as Zwitter
0.		ions.
	Reason :	Amino acids have both $-NH_2$ and
		<i>–COOH</i> group. [AIIMS 2002]
7.	Assertion :	Activity of an enzyme is <i>pH</i> -
		dependent.
	Reason :	Change in <i>pH</i> affects the solubility
		of the enzyme in water.[AIIMS 2003]
8.	Assertion :	Glycosides are hydrolyzed in acidic
		conditions.
	Reason :	Glycosides are acetals. [AIIMS 2003]
9.	Assertion :	Haemoglobin is an oxygen carrier.
	Reason :	Oxygen binds as O_2^- to Fe of
		haemoglobin. [AIIMS 2003]
10.	Assertion :	Carboxypeptidase is an
		exopeptidase.
	Reason :	It cleaves the <i>N</i> -terminal bond.

	A	[AIIMS 2004]
11.	Assertion : Reason :	Sucrose is a non-reducing sugar. It has glycosidic linkage. [AIIMS 2004]
12.	Assertion :	Sucrose is a disaccharide.
12.	Reason :	Sucrose is dextro rotatory.
13.	Assertion :	Fructose reduces Fehling's solution
-0,		and Tollen's reagent.
	Reason :	Fructose does not contain any aldehyde group.
14.	Assertion :	The specific rotation of a freshly prepared solution of α -glucose decreases from + 112° to 52.7° while that of β glucose increase from + 19° to 52.7°.
	Reason :	The change in specific rotation of an optically active compound with time to an equilibrium value is called mutarotation.
15.	Assertion :	α – amino acids exist as dipolar ions or zwitter ions.
	Reason :	α – amino acids are the building blocks of proteins.
16.	Assertion :	Valine is an essential amino acid.
	Reason :	The lack of essential amino acids in the diet causes Kwashiorkor.
17.	Assertion :	Sequence of bases in DNA is TGAACCCTT and sequence of bases in <i>m</i> -RNA is CATTAAACC.
	Reason :	In DNA nitrogenous bases have hydrogen bonds.
18.	Assertion :	Millon's test is a test to identify carbohydrates.
	Reason :	Millon's reagent is solution of mercurous nitrate and mercuric nitrate in nitric acid containing little nitrous acid.
19.	Assertion :	ATP molecules are energy rich molecules.
	Reason :	ATP consists of a purine base adenine, pentose sugar ribose and a string of three phosphate groups.
20.	Assertion :	Solubilities of protein is minimum at the isoelectric point.
	Reason :	At isoelectric point, protein molecule behaves as a zwitter ion.
21.	Assertion :	Amino acids are soluble in benzene and ether.
	Reason :	Amino acids exist as zwitter ions.
22.	Assertion :	A solution of sucrose in water is dextrorotatory but on hydrolysis in presence of little hydrochloric acid, It becomes laevorotatory.
	Reason :	Sucrose on hydrolysis gives unequal amounts of glucose and fructose as.

- **23.** Assertion : Treatment of *D*-glucose with alkali affords an equilibrium mixture consisting of *D*-mannose, *D*-fructose and starting substance *D*-glucose.
 - Reason : The reaction involves an intermediate in which hybridization of C_2 changes from sp^3 to sp^2 .

Carbohydrates d 2 b 3 d 4 d 5 1 С 7 8 9 10 6 с с d b d 11 12 13 14 15 d С с С с 18 19 16 17 20 а b b d а 23 21 22 b 24 d 25 а а а 26 d 27 d 28 29 30 b а С 33 34 31 32 d d 35 С а С 36 cd 37 d 38 39 40 а с с 43 44 41 b 42 45 b С а c 48 46 47 49 50 а b d а С 51 52 53 54 55 а С С а С 57 d 58 59 60 56 b С а С 61 62 d 63 64 65 b а d d 66 d 67 d 68 69 70 С b с 71 72 73 b 74 75 b b е а 76 77 78 79 80 с С а b d 82 83 84 81 b 85 С а С а 88 87 89 86 С b С 90 а а 91 а 92 с 93 а 94 с 95 с 96 97 98 d 99 100 b b а а 101 С 102 а 103 а 104 а 105 b 107 108 109 106 с d с с 110 а 112 111 113 114 115 b C С а b 116 117 118 119 d 120 d С c b 121 122 123 124 125 с с с а а 126 127 128 129 130 b b d b а 131 b 132 b 133 а

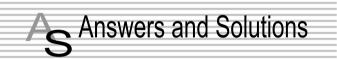
Proteins, Amino Acids and Enzymes

1	b	2	C	3	a	4	a	5	c
6	b	7	C	8	d	9	C	10	с
11	С	12	b	13	а	14	b	15	с
16	а	17	d	18	С	19	d	20	d
21	C	22	b	23	с	24	b	25	a
26	a	27	d	28	а	29	а	30	d
31	С	32	a	33	b	34	c	35	d
36	b	37	a	38	d	39	c	40	a
41	d	42	d	43	b	44	d	45	d
46	d	47	b	48	b	49	d	50	b
51	а	52	d	53	b	54	c	55	d
56	d	57	a	58	b	59	c	60	b
61	С	62	d	63	b	64	c	65	c
66	b	67	d	68	d	69	c	70	b
71	b	72	c	73	a	74	c	75	c
76	а	77	d	78	d	79	с	80	а
81	b	82	е	83	d	84	с	85	с
86	С	87	c	88	е	89	b	90	c
91	а	92	c	93	b	94	a	95	а
96	d	97	a	98	a	99	C		

Fats and Lipids

1	с	2	a	3	d	4	С	5	С
6	С	7	а	8	С	9	b	10	C
11	d	12	C	13	d	14	C	15	bd
16	С	17	a	18	a	19	c	20	c
21	b	22	a	23	d	24	а	25	c
26	а	27	d						

Vitamins, Hormone and Nucleic Acid


1	d	2	а	3	С	4	С	5	C
6	d	7	а	8	а	9	d	10	C
11	a	12	d	13	а	14	b	15	d
16	b	17	а	18	С	19	b	20	C
21	C	22	а	23	а	24	а	25	d
26	b	27	d	28	а	29	b	30	d
31	b	32	a	33	b	34	а	35	a
36	C	37	a	38	d	39	b	40	b
41	b	42	a	43	C	44	c	45	b
46	a								

Critical Thinking Questions

1	b	2	С	3	C	4	C	5	b
6	d	7	b	8	b	9	С	10	d
11	а	12	d	13	d	14	d	15	b
16	а	17	d	18	b	19	c	20	d
21	d	22	d	23	c	24	b	25	b
26	b								

Assertion and Reason

1	а	2	b	3	b	4	е	5	d
6	a	7	b	8	d	9	C	10	C
11	а	12	b	13	b	14	b	15	b
16	b	17	е	18	е	19	b	20	е
21	е	22	c	23	a				

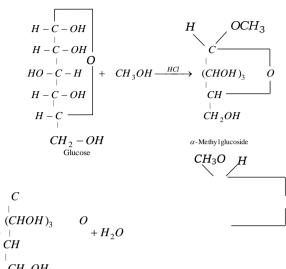
Carbohydrates

1. (d) $\alpha - D - \text{Glucose} \Rightarrow \text{Equilibriu m mixture} \Rightarrow \begin{bmatrix} \alpha \end{bmatrix}_{\substack{[\alpha] = +12^{\circ} \\ (36\%)}} \begin{bmatrix} \alpha \end{bmatrix}_{\substack{[\alpha] = +52^{\circ} \\ (0.02\%)}}$

 $\beta - D - \text{Glucose}_{\substack{[\alpha]_D = +19^{\circ} \\ (64\%)}}$

Glucose has two forms α and β . When either of these two is dissolved in water and allowed to stand, it gets converted to an equilibrium mixture of α and β forms.

- (b) Gun-cotton is a nitrocellulose or cellulose trinitrate which is used in explosive and as a binder for solid rocket propellant.
- **3.** (d) Arabinose is an aldopentose $HOCH_2 (CHOH)_3 CHO$
- 4. (d) In proteins amide group is present


$$(-NH - CH - C - NH - CH - C - NH - C - NH - C - N_n$$

$$R \underbrace{O \quad R}_{\text{Amino or}} R O$$

- (c) Inulin is a carbohydrate which is stored in "Roots of Dahliya".
- **6.** (c) Carbohydrates are hydrates of carbon. Their general formula is $C_x(H_2O)_y$.
- **8.** (d) Glucose + Tollen's reagent \rightarrow
 - Gluconic acid + Ag-mirror.
- **9.** (b) Protein gives blue-violet colour with ninhydrin

(2, 2-dihydroxyindane-1, 3-diene) Carbohydrates gives brown red ppt. with benedict's solution (Alk. $CuSO_4$ + Citrate ions)

11. (c) A ring structure

$$\beta$$
-Methylglucoside

+

- **39.** (c) Glucose + Benedict's solution \rightarrow Red colour (Cu_2O) .
- **40.** (c) Sucrose $\xrightarrow{\text{conc.}HNO_3}$ Oxalic acid.
- 41. (b) Amylopectin is not soluble in water.
- **43.** (c) $C_{12}H_{22}O_{11}$
- 47. (b) Sucrose is not a reducing sugar. CHO $CH = N - NHC_6H_5$

56. (b)
$$(CHOH)_{1} \xrightarrow{NH_{2}NHC_{6}H_{5}} (CHOH)_{3} \xrightarrow{CHOH} (CHOH)_{3} \xrightarrow{H} (CHOH)_{3} \xrightarrow{H} (CHOH)_{2}OH$$

Glucose pheny lhy drazone

$$CH = N - NHC_{6}H_{5}$$

$$C = O$$

$$(CHOH)_{3}$$

$$CH = N - NHC_{6}H_{5}$$

57. (d) Starch $\xrightarrow{\text{Diastase}}$ Maltose.

58. (c)
$$C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$$

Cane sugar Glucose Fructose

- **61.** (b) Monosaccharide cannot be hydrolysed to simple forms.
- **64.** (d) Starch + $I_2 \rightarrow$ Blue colour.
- **66.** (d) Glucose and sucrose are dextrorotatory Fructose is leavorotatory

- **68.** (c) Food shift $+O_2 \rightarrow CO_2 + H_2O$
- **70.** (c) In neutral solvent, glucose shows mutarotation.
- **73.** (b) Maltose $\xrightarrow{\text{Hydrolysis}}_{\text{Maltase}}$ glucose + glucose.
- **79.** (b) 3 carbons e.g. Glyceraldehyde $CH_2 CH CHO$
- **83.** (c) Starch $\xrightarrow{\text{Diastage}}$ Maltose $\xrightarrow{\text{Maltase}}$ glucose.
- **85.** (a) All are optically active.

86. (c)
$$\begin{array}{c} H \\ C \\ C \\ (CHOH)_{3} \\ (CHOH)_{4} \\ (CHO$$

- 93. (a) In sucrose the two monosaccharide units joined by α-1, 2 glycoside bond. Since sucrose does not have hemiacetal carbon. Therefore it is non- reducing sugar.
- **94.** (c) Starch $\xrightarrow{\text{Amylase}}$ Maltose.
- **96.** (a) Glucose is the simplest carbohydrate i.e. mono saccharide rest are polysaccharide.
- **97.** (a) We can't digest cellulose which is a polysaccharide.
- **98.** (d) Diastase enzyme converts starch into maltose.
- **99.** (b) Lactose is present in milk (Glucose + Galactose).
- 100. (b) Carbohydrates are rich source of energy.
- 102. (a) Sucrose is a non reducing sugar it does not give any test with Benedict's solution.
- 103. (a) That is called glycosidic linkage.
- 108. (c) Invert sugar is laevo rotatory.
- 111. (c) Starch is polymer of alpha glucose.
- **114.** (a) Raffinose $(C_{18}H_{32}O_{16})$ is a trisaccharide

$$C_{18}H_{32}O_{16} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6 + C_6H_{12}O_6 - C_6H_{$$

118. (b) Glucose + Fehling solution \rightarrow Gluconic acid + Cu_2O (Red ppt)

- **123.** (c) Charring of sugar, when it is treated with sulphuric acid (H_2SO_4) is due to dehydration. In this reaction water is removed from the sugar.
- 124. (a) Glucose is a monosaccharide while others are polysaccharide. So glucose is the simplest sugar.
- **125.** (a) Glucose and mannose are epimers because they both differ in configuration at C-2 and the Isomer which differ at C_2 position known as epimers of each other.

126. (b)
$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{\text{Hydrolysis}} C_6H_{12}O_6 + C_6H_{12}O_6$$

Maltose

127. (b) Pepsin, ptyalin and lipase are enzyme while cellulose is not the enzyme.

128. (b) Sugar	Relative sweetness
Sucrose	100
Glucose	74
Lactose	16
Fructose	173

- **129.** (a) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + 38$ ATP
- 131. (b) Fructose has three chiral centres and hence 23= 8 optical isomers are possible.
- **132.** (b) Freezing point is the temperature at which the liquid and the solid form of the same substance are in equilibrium and hence have the same vapour pressure. Due to lower vapour pressure of the solution, solid form of a solution separates out at a lower temperature. The decrease is called depression in freezing point.

When solid is the solute, it is solvent that freezes. Hence in the given question water will be separated out first.

133. (a) Glucose is a monosaccharide having chemical composition $C_6H_{12}O_6$.

Proteins, Amino Acids and Enzymes

1. (b) Insulin is a protein consists of 51 amino acids in two chains. α and β

 α - 21 amino acids, β - 30 amino acids

It is secreted by pancreas for controlling the sugar level in blood.

3. (a) Fibrous proteins are insoluble in water.

4. (a) Protein $\xrightarrow{\text{Heated}}_{\text{or change in pH}}$ Denatured protein

5. (c) Simple protein + non - protein material \rightarrow (Prosthetic group or co-factor)

Conjugated protein

- 6. (b) Heam $\rightarrow Fe^{+2}$ to which the porphyrine ring is attached to central atom by co-ordinate linkage.
- 7. (c) It is insoluble in water and used in food products capsules and photographic plates.
- **9.** (c) Amino acids are non volatile crystalline compound.
- **10.** (c) Isoelectric point is a pH at which zwitter ions do not migrate towards any of the electrode.

11. (c) Protein
$$\xrightarrow{\text{Enzyme}}$$
 Amino acid
(Acidic medium in stomach)

12. (b) Protein + conc. $HNO_3 \rightarrow$ Yellow colour

[This test is given by a protein which consists of α -amino acids containing a benzene ring such as tyrosine, phenylalanine etc. The yellow colour is due to nitration of benzene ring.]

14. (b) Proteins are polymers of amino acids.

- **21.** (c) Proteins are nitrogenous compounds.
- **22.** (b) In stomach medium is strongly acidic. Hence, pH = 2.
- **30.** (d) Glycine $\rightarrow NH_2 CH_2 COOH$.
- **34.** (c) Antigens are polysaccharides present on RBC's surface.
- 37. (a) $Hb + CO \rightarrow HbCO$ carboxy haemoglobin it is 20 times more stable then oxyhaemoglobin.
- **40.** (a) Peptides are formed by condensation of α amino acids.

$$\begin{array}{c} H_2N - CH_2COOH + H_2N - CH_2 - COOH \\ & \xrightarrow{-H_2O} H_2N - CH_2 - CONH - CH_2COOH \\ & \xrightarrow{-H_2N - CH_2COOH} \end{array} \text{ and so on.}$$

41. (d) Muscles contain myoglobin $CH_3 - CH = \frac{NH_2}{COOH}$

alanine contain side chain of methyl group.

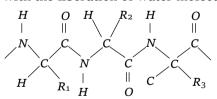
43. (b) It is the general formula for polysaccharides.

50. (b)
$$(CH_3)_2$$
. CH . CH – $COOH \neq (CH_3)_2$ – CH . CH – COO
 $|_{NH_2}$ NH_3^+

52. (d) Lipase is used in lipid metabolism. Lipid $\xrightarrow{\text{Lipase}}$ Fatty acid + Glycerol

53. (b) Haemoglobin is a globular protein.

59. (c) Zwitter ion is a dipolar ion containing both a positive and negative charge in the following NH_2^+


form
$$R - CH - COO^{-1}$$

Zwitter ion

The basic group CO_2^- and acidic group NH_3^+ .

- **63.** (b) The amino acids which can't be synthesised by human body so they are essential to take from diet. They are 10 in number.
- **66.** (b) Biological catalysts are enzymes and all enzymes are nucleic acid.
- **68.** (d) Protein is a body building substance not energy giving substance.
- **76.** (a) Na^+ and K^+ controls blood pressure and heart beat so excess of Na^+ ion increases B.P.
- **80.** (a) This protein is found in hair, nail, muscle etc.
- 81. (b) The peptide bond is formed between two amino acids by the elimination of a water molecule. A dipeptide contains one peptide linkage. A tripeptide contains two peptide linkages. Similarly, a nanopeptide contains 8 peptide linkages.
- **91.** (a) Synthesis of polypeptide known as translation. For this process three type of RNA essential.
- **92.** (c) Protein is used in our body as a fuel for muscles and nerves and to build and repair body tissues.
- **93.** (b) Zymase enzyme convert glucose into alcohol. It is found in the yeast.

$$C_{6}H_{12}O_{6} \xrightarrow{zy \text{ mase}} 2C_{2}H_{5}OH + 2CO_{2}$$

glucose ethyl alcohol

94. (a) In peptide linkage *i.e.*, *-CONH* – group, the carboxyl group of one amino acid molecules forms an amide by combination with the amino group of the next amino acid molecule with the liberation of water molecule.

95. (a) Four Fe^{2+} ions of each haemoglobin can bind with 4 molecules of O_2 and it is carried as oxyhaemoglobin.

 $Hb_4 + 4O_2 \rightarrow Hb_4O_8$

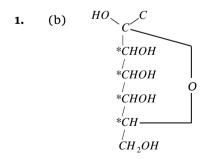
- **96.** (d) Enzyme are shape selective specific biological catalyst which normally functions effectively at body temperature.
- **97.** (a) An enzyme (protein) is a biological catalyst.
- **98.** (a) Amino acid synthesis was done by stainley millar.

Fats and Lipids

- (c) Acid value is the number of 1 mg of KOH required to neutralise 1 gm of the fat or oil.
- 5. (c) Saponification value is the number of mg of *KOH* required to neutralize the fatty acid resulting from the complete hydrolysis of 1gm. of oil or fat.
- 6. (c) Iodine number is the number of gms of I_2 which combine with 100 gm of oil or fat. It shows the degree of unsaturation of acids in fat or oil.
- 7. (a) Oil(unsaturate d) + $H_2 \xrightarrow{Ni}$ Fat (saturated)
- 8. (c) Oil + NaOH (alkali) $\xrightarrow{\text{Saponification}} \text{Glycerol} + \text{Soap}$
- (d) Fats are called energy bank of the body. Stored below the dermis as subcutaneous fats.
- 12. (c)
- 13. (b) 1gm carbohydrate on oxidation gives 17 kJ of energy while 1 gm fat provide 37 kJ of energy.
- **18.** (a) Waxes are esters of higher fatty acids.
- **19.** (c) Oil/fat + Alkali $\xrightarrow{\text{Saponification}}$ Soap + Glycerol. CH_2OOCR CH_2OH

- **26.** (a) Oleic acid, stearic acid and palmitic acids are produced by the hydrolysis of fats and the acid produced by hydrolysis of fats are called fatty acid.
- **27.** (d) Oleic acid $C_{17}H_{33}COOH$, linoleic acid- $C_{17}H_{31}COOH$, linolenic acid - $C_{17}H_{29}COOH$, palmitic acid - $C_{15}H_{31}COOH$.

Saturated monocarboxylic acids form a homologous series which has a general formula $C_nH_{2n+1}COOH$ or $C_nH_{2n}O_2$. Only palmitic acid follows this.


Vitamin, Hormone and Nucleic acid

- 1. (d) $\underbrace{\text{Nitrogenba se + Sugar}}_{\text{Nucleoside}} + \text{Phosphate}$
- (c) Adenine is a purine base common in both RNA and DNA.
- 4. (c) Insulin hormone is secreted by pancreas.

8. (a)
$$HO HO OH$$

Ascorbic acid

- **19.** (b) Adenine = Thymine, Guanine = Cytosine ${}_{2 \text{ hydrogen bonds}}$ ${}_{3 \text{ hydrogen bonds}}$
- **21.** (c) Vitamin B_1 is thiamine. Its main source is cereals.
- **22.** (a) Gene is a part of the DNA molecule that codes for a specific protein.
- 25. (d) Cortisone is not a sex harmone, it regulates metabolism of fats, carbohydrates, proteins etc.
- **27.** (d) Thymine is present in DNA while in RNA there is Uracil.
- **28.** (a) Mutation is a chemical change in the sequence of Nitrogenous bases along the DNA strained which can lead to the synthesis of protein with altered amino acid sequence.
- **39.** (b) Insulin is a hormones secreted by the pancreas that lower blood glucose level by promoting the uptake of glucose by cells and the conversion of glucose to glycogen by the liver and skeletal muscle.
- 40. (b) Insulin is a proteinaceous harmone secreted by β cells by islet of langerhans of pancreas in our body.
- **41.** (b) Codon is present in *m*-RNA, which is responsible for translation.
- **42.** (a) Energy is stored in our body in the form of A.T.P
- **43.** (c) Nucleic acid is a polymer of nucleotides.
- 44. (c) Nucleoside on hydrolysis gives an aldopentose and a heterocyclic base purine and pyrimidine.
- **45.** (b) An alternation in the base sequence of nucleic acid molecule is called mutation which can be by radioactive ray, by adaptation etc.
- **46.** (a) Vitamin B_6 is called pyridoxin. It is found in fruits, green-vegetables, milk, etc. Due to its deficiency, anaemia disease is caused.

Critical Thinking Questions

This structure of β -D glucose has four asymmetric carbon atom

- **2.** (c) It is Guanine having two possible binding site.
- 3. (c) Four sub units are present in haemoglobin.
- 4. (c) The four bases in *m*-RNA : adenine, cytosine, guanine and Uracil have been shown to act in the form of triplet; each triplet behaving as a

code for the synthesis of a particular amino acid.

- 5. (b) According to Chargaff's rule amount of adenine(A) is equal to that of thymin(T) and the amount of guanine(G) is equal to that of cytosine(C).
- 6. (d) Multiplication of DNA is called replication.
- (b) Insulin is a harmone which decreases sugar level in the blood.
- (b) Oxytocin hormone secreted by posterior pitutary gland plays an important role in child birth and milk ejection for feeding baby.
- (c) Except oleic acid stearic acid, Lauric acid and Palmitic acid are saturated fatty acid. Oleic acid is unsaturated fatty acid.
- 10. (d) CO (III) Transition metal is present in vitamin B_{12} .
- (a) 130 molecules of ATP produced in the lipid metabolism of a molecule of palmitic acid.
- 12. (d) Protein is insoluble in benzene.

13. (d)
$$CH_2O \xrightarrow{H} COR$$

 $CHO \xrightarrow{Lipase}$
 $CH_2O \xrightarrow{H} COR$
 $CH_2O \xrightarrow{H} COR$
 $CH_2O \xrightarrow{Lipase}$
 $CHOH + R - COOH$
 CH_2OH
 CH_2O

- 14. (d) α -helix structure is formed when the chain of α -amino acid coil as a right handed screw because of the formation of hydrogen bonds between amide groups of the same peptide chain *i.e.*, *NH* group in one unit is linked to carbonyl oxygen of the third unit by hydrogen bonding. This *H*-bonding is responsible for holding helix in a position.
- 15. (b) Three types of chemicals enter the composition of all membranes proteins, lipids and carbohydrates, proteins content varies from 46-76% lipids 20-53%, while Carbohydrate content is 1-8%
- 16. (c) Difference in mass of compound

wt. of
$$CH_3CO$$
 – group is = 43

Therefore no. of $-NH_2$ group = $\frac{210}{43} = 4.88 = 5$.

- 17. (d) Six type of tripeptide molecules are formed.
- **18.** (b) Amylose is a polysaccharide.
- **19.** (c) Aspartic acid is an amino acid with acidic side chain.

$$HOOC - CH_2 - CH < \frac{NH_2}{COOH}$$

Lysine, Arginine and Histidine all are basic amino acids.

- 20. (d) Lucas test is used for the distinction of alcohols.
- **21.** (d) Because their Ca^{++}/Mg^{++} salts are insoluble in water.
- **22.** (d) Glucose on reaction with bromine water followed by oxidation gives gluconic acid

$$\begin{array}{c} C_{6}H_{12}O_{6}+(O) \xrightarrow{Br_{2} \ / \ H_{2}O} & CH_{2}OH(CHOH)_{4}COOH \\ \\ Glucose & Gluconic acid \end{array}$$

23. (c) $NH_3^+ - CH_2 - COO^$ dipolar ion (Zwitter ion or internal salt)

25.

24. (b) Ribose is an example of aldopentose.

(b)

$$H^{-1}C - OH$$

$$H^{-1}C - OH$$

$$H^{-2}C - OH$$

$$H^{-2}C - OH$$

$$H^{-2}C - OH$$

$$H^{-4}C - OH$$

$$H^{-4}C - OH$$

$$H^{-5}C$$

$$H^{-$$

 α - D(+) - Glucopyranose β - D(+)

 β - D(+) - Glucopyranose

Two form of *D*-Glucopyranose are α -D(+)-Glucopyranose and β -D(+)-Glucopyranose. These are anomers (a pair of stereoisomers which differ in configuration only around C_1 are called anomers).

26. (b) Surcrose is composed of α -*D*-glucopyranose unit and a β -D-fructofuranose unit. These units are joined by $\alpha - \beta$ -glycosidic linkage between *C*-1 of the glucose unit and *C*-2 of the fructose unit.

Assertion and Reason

 (a) Glycine is an amino acid, it contains both NH₂ as well as -COOH groups and therefore, its aqueous solution form Zwitter ion which is amphoteric in nature.

$$NH_{2}CH_{2}COOH$$
$$NH_{3}^{+}CH_{2}COO^{-}$$

Gly cine Zwitter ion

Therefore, both assertion and reason are true.

- (b) Hydrolysis of sucrose is known as inversion of canesugar because sucrose produce equimolecular mixture of glucose and fructose. Sucrose is dextro-rotatory which glucose and fructose mixture is laevorotatory. Sucrose is disaccharide.
- (b) Proteins on hydrolysis gives α-amino acid because amino acids are the building block of

proteins. It is also fact that amino acids contain both $-NH_2$ and -COOH group.

Here assertion and reason both are correct but reason is not a correct explanation of assertion.

- 4. (e) Sucrose does not undergo mutarotation. Glucose and fructose shows mutarotation because they have two forms α and β . It is fact that sucrose is a disaccharide. Therefore, assertion is false but reason is true.
- 5. (d) Here, both the reason and assertion are false, DNA occurs in nucleus of the cell while RNA is found mainly in cytoplasm of the cell. On heating, enzymes lose their specific activity.
- 6. (a) All amino acid posses amino as well as carboxylic group. $-NH_2$ group is basic while -COOH group is acidic. Therefore, they behave as zwitter ion (dipolar ion). Here, both assertion and reason are true and reason is a correct explanation.
- 7. (b) The assertion that activity of an enzyme is *pH* dependent is correct. The reason that change in *pH* affects the solubility of enzyme in water is also true but the reason is not the correct explanation of assertion. Change in *pH* cause denaturation of enzyme.
- 8. (d) Glycosides are formed by treating glucose with methanol in presence of dry *HCl* gas. They cannot be hydrolysed in acidic conditions. They are not acetals but they are hemiacetals.
- 9. (c) The assertion is correct that haemoglobin is an oxygen carrier and the reason that oxygen binds as O₂⁻ to Fe of haemoglobin is incorrect, because oxygen binds as O₂ to Fe of haeme part.
- 10. (c) Carboxypeptidase is an exopeptidase because it breaks the peptide chain at terminal ends.

Carboxypeptidase cleaves carboxy-terminal amino acids that have aromatic or branched aliphatic side chains.

11. (a) Sucrose is a non reducing sugar as it does not reduce Tollen's or Fehling's reagent, due to absence of free aldehyde of ketone group. It contains stable acetal or ketal structure which cannot be opened into a free carboxyl group.

Sugar is composed of α -D-glucopyranose unit and β -D-fructo furanose unit. These units are joined by α - β -glycosidic linkage between *C*- 1 of the glucose unit and *C*- 2 of the fructose unit.

- 12. (b) Carbohydrates which upon hydrolysis yield two molecules of the same or different monosaccharides are called disaccharides. For example, sucrose on acid hydrolysis give one molecule of glucose and fructose.
- 13. (b) Fructose on warming with dilute alkali, gives rise to an equilibrium mixture of glucose, fructose and mannose. The ability of fructose to reduce Fehling solution and Tollen's reagent is probably due to the isomerisation of fructose to glucose and mannose (this is called Lobry de Bruyn and Elkenstein rearrangement).
- 14. (b) Glucose exists in two forms, *i.e.*, α -D-glucose with a specific rotation of +112° and β -D-glucose with a specific rotation of +19°. However, when either of these two forms is dissolved in water and allowed to stand. it gets converted into the same equilibrium mixture of both the α and β -forms with a small amount of open chain form. As a result of this equilibrium, the specific rotation of a freshly prepared solution of α -glucose decreases from +112° to 52.7°.
- 15. (b) In acidic medium -COOH group acts as the base and accepts a proton. As a result, α-amino acids exist as cations in acidic medium and migrate towards cathode under the influence of an electric field. In alkaline medium ⁺_NH₃ group acts as the acid and thus loses a proton. As a result, α-amino acids exist as anion and migrate towards anode under the influence of an electric field. However at some intermediate value of *pH*, the concentration of cationic form and anionic form will become equal and hence there is no net migration of α-amino acid under the influence of an electric field.
- 16. (b) Valine is an essential amino acid. The amino acids which the body cannot synthesize are called essential amino acid.

- 17. (e) Sequence of bases in DNA is TGAACCCTT. Since according to base-pairing principle, T in DNA faces A in m-RNA, while G faces C and A faces U. Therefore, sequence of bases in m-RNA is ACUUGGGAA.
- 18. (e) Millons test is a test for proteins. When Millon's reagent is added to the aqueous solution of a protein, a white precipitate is formed.
- 19. (b) ATP has four negatively charged oxygen atoms very close to each other. So the repulsive forces between them is high. On hydrolysis of ATP, a $H_2PO_4^-$ ion is eliminated and the number of negatively charged oxygen atoms decreases. Thus, repulsive forces decreases and a large amount of energy is set free. When ATP changes to ADP, which in turn changes into AMP, energy is released at each step. This is how ATP can act as a source of energy.
- **20.** (e) Solubility of protein is maximum at the isoelectric point.
- **21.** (e) Amino acids are soluble in polar solvents like H_2O , *NaOH* and *HCl* and insoluble in non-polar solvents like benzene, ether etc.
- 22. (c) Sucrose on hydrolysis gives equal amounts of glucose and fructose. Since glucose has less positive and fructose has more negative magnitude of rotation, therefore, change in the sign of rotation is observed.