SRESISTANCE <

1 Resistance

The opposing effect to the flow of current is known as Resistance of the conductor. It is denoted by "R".

$$R = \frac{\rho l}{A}$$

 ρ = Resistivity

1 = Length

A = Area

Resistance (R) is measured in **Ohm** (Ω).

2 Combination

Series

The current passing through the individual resistance is same and its equal to magnitude of current that comes from the battery.

$$\mathbf{I}=\mathbf{I}_1=\mathbf{I}_2=\mathbf{I}_3$$

The sum of the voltage across the individual resistance is equal to the voltage of the battery.

$$V = V_1 + V_2 + V_3$$

- $R_{eq} = R_1 + R_2 + R_3$
- The equivalent resistance of the circuit is always greater than the value of resistance in the circuit.

Parallel

The sum of current passing through each resistance is equal to the total current coming from the battery.

$$\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2 + \mathbf{I}_3$$

The voltage across the individual resistance is same and is equal to the voltage of the battery.

$$V=V_1=V_2=V_3$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

The equivalent resistance of the circuit is always less than the smallest value of resistance in the circuit.

GROUPING OF CELLS'E

CELLS IN SERIES

Equivalent EMF

$$E_{eq} = E_1 + E_2 + + E_n$$

Equivalent internal resistance

$$r_{eq} = r_1 + r_2 + r_3 + r_4 + \dots r_n$$

In n cells each of emf E are arranged in series and if r is internal resistance of each cell, then the total emf is equal to

and, current in the circuit, $I = \frac{nE}{R + nE}$

CELLS IN PARALLEL

$$E_{eq} = \frac{E_1/r_1 + E_2/E_2 + \dots ... E_n/r_n}{1/r_1 + 1/r_2 + \dots + 1/r_n}$$

$$\frac{1}{\Gamma_{eq}} = \frac{1}{\Gamma_1} + \frac{1}{\Gamma_2} + \dots + \frac{1}{\Gamma_n}$$

If m cells, each of emf E and internal resistance r be connected in parallel and if this combination is connected to an external resistance (R) then the emf of the circuit = E.

internal resistance of the circuit = $\frac{r}{m}$

CELLS IN MULTIPLE ARC

n = number of rows

m = number of cells in each row

Current
$$I = \frac{mE}{R + \frac{mr}{n}}$$

for maximum current nR = mr

ELECTRICAL POWER

Power,
$$P = \frac{V.dq}{dt} = VI = I^2 R = \frac{V^2}{R}$$

Work, W = VIt =
$$I^2 Rt = \frac{V^2}{R} t$$

Heat,
$$H = I^2$$
 Rt Joule = $\frac{I^2Rt}{4.2}$ calorie

COMBINATIONS OF CELLS

1 CELL IN SERIES

CELLS AND ELECTRIC POWER

- Net EMF of the cells = nE,
- Total internal resistance = nr,
- → Hence total resistance of the circuit = nr + R,

$$I = \frac{\text{net EMF}}{\text{Total Resistance}} = \frac{\text{nE}}{\text{nr} + \text{R}}$$

nr

Case I

If nr < R, then $I \cong n E/R$ i.e. current obtained from the cells is approximately equal to n times the current obtained from a single cell.

Case II

If nr >> R, then $l \cong nE/nr = E/r$ i.e. current obtained from the combination of n cells is nearly the same as obtained from a single cell.

2 CELL IN PARALLEL

When E.M.F's and internal resistance of all the cells are equal

- E.M.F of battery = E.
- Total internal resistance of the combination of n cells = r/n
- Total resistance of the circuit = (r/n) + R

$$I = \frac{\text{net E.M.F}}{\text{Total Resistance}} = \frac{E}{(r/n)+R} = \frac{nE}{r+nR}$$

Case I

If r < R, the $I \cong nE/nR = E/R$; then total current obtained from combination is approximately equal to current given by one cells only.

Case II

If r >> R, then $I \cong nE/r$; then total current is approximately equal to n times the current given by one cell.

When E.M.F's and internal resistance of all the cells connected in parallel are different

$$I = \frac{\sum\limits_{i=0}^{n}\frac{E_{i}}{r_{i}}}{1+R\sum\limits_{i}\frac{1}{r_{i}}} \text{ and } E_{eq.} = \frac{\sum\frac{E_{i}}{r_{i}}}{\sum\frac{1}{r_{i}}}, \quad r_{eq.} = \frac{1}{\sum\frac{1}{r_{i}}}$$

CELL IN MIXED GROUPING

Total resistance of the circuit =
$$\left[\left(\frac{nr}{m} \right) + R \right]$$

$$I = \frac{net E.M.F}{Total Bosistance} = \frac{nE}{(res/res) \cdot R} = \frac{nmE}{res/res}$$

ELECTRICAL POWER

The energy liberated per second in a device is called its power. The electrical power P delivered by an electrical device is given by

$$P = \frac{dq}{dt} V$$
 $P = VI$ $P = I^2R$ $P = \frac{V^2}{R}$

$$P = I^2F$$

$$P = \frac{V^2}{R}$$

INSTRUMENTS MEASURING VARIOUS ELECTRICAL QUANTITIES

01 AMMETER

A shunt (small resistance) is connected is parallel with galvanometer to convert it into ammeter.

I_G = Current through galvanometer

R_G = Resistance of galvanometer

$$S = \frac{I_G R_G}{I - I_G}$$

02 VOLTMETER

A high resistance is put in series with galvanometer. It is used to measure potential difference across a resistor in a circuit.

$$I_G = \frac{V}{R_G + R}$$

03 METRE-BRIDGE

$$S = \frac{R(100 - l)}{l}$$

R = Resistance taken in the resistance box

I = Length measured

POTENTIOMETER

l = Length

A = Area of cross-section

 ρ = Resistivity of material

I = Current

$$V = I_{\rho} \frac{l}{A}$$

APPLICATION OF POTENTIOMETER

APPLICATION-01

To find EMF of an unknown cell and compare EMF of two cells

 ℓ_1 = Balancing length when key is between gaps of terminal 1 and 2

$$\frac{\mathsf{E}_1}{\mathsf{E}_2} = \frac{\ell_1}{\ell_2}$$

 ℓ_2 = Balancing length when key is between gaps of terminal 2 and 3

APPLICATION-02

To find the internal resistance of a cell

$$\mathbf{r'} = \left[\frac{\ell_1 - \ell_2}{\ell_2} \right]$$

APPLICATION-03

To find current if resistance is known

$$I = \frac{X\ell_1}{R_1}$$