16. Surface area and volume

• Surface areas of cuboid:

Lateral surface area of the cuboid = 2h(l + b)

Total surface area of the cuboid = 2(lb + bh + hl)

Note: Length of the diagonal of a cuboid = $\sqrt{I^2 + b^2 + h^2}$

Example:

Find the edge of a cube whose surface area is 294 m².

Solution:

Let the edge of the given cube be a.

 \therefore Surface area of the cube = $6a^2$

Given, $6a^2 = 294$

$$\Rightarrow a^2 = 49 \text{ m}^2$$

$$\therefore a = \sqrt{49} \text{ m} = 7 \text{ m}$$

• Surface areas of cube:

Lateral surface area of the cube = $4a^2$

Total surface area of the cube = $6a^2$

Note: Length of the diagonal of a cube = $\sqrt{a^2 + a^2 + a^2} = \sqrt{3}a^2 = \sqrt{3}a$

- Volume of cube and cuboid
 - Volume of cube = a^3 , where a is the side of the cube
 - Volume of cuboid = $l \times b \times h$, where l, b and h are respectively the length, breadth and height of the cuboid.

Example:

What is the side of a cube of volume 512 cm³?

Solution:

Volume of cube = 512 cm^3

$$\Rightarrow a^3 = 512 \text{ cm}^3$$

$$\Rightarrow a = \sqrt[3]{512} \text{ cm}^3$$

$$\Rightarrow a = 8 \text{cm}$$

- Surface areas of solid cylinder
 - Curved surface area = $2\pi rh$, where r and h are the radius and height
 - Total surface area = $2\pi r (r + h)$, where r and h are the radius and height

Example:

What is the curved surface area of a cylinder of radius 2 cm and height 14 cm?

Solution:

Curved surface area of cylinder = $2\pi rh$

$$= 2 \times \frac{22}{7} \times 2 \times 14 \text{ cm}^2$$

= 176 cm²

- Surface areas of hollow cylinder
 - Curved surface area = $2\pi h (r + R)$, where r, R and h are the inner radius, outer radius and height
 - Total surface area = CSA of outer cylinder + CSA of inner cylinder + $2 \times$ Area of base

 $=2\pi (r+R)$ (h + R - r), where r, R and h are the inner radius, outer radius and height

- Volume of the solid cylinder and hollow cylinder
 - Volume of solid cylinder = $\pi r^2 h$, where r and h are the radius and height of the solid cylinder

• Volume of the hollow cylinder = $\pi (R^2 - r^2) h$, where r, R and h are the inner radius, outer radius and height of hollow cylinder

Example:

Find the volume of the pillar of radius 70 cm and height 10 m.

Solution:

Radius of the pillar (r) = 70 cm =
$$\frac{70 \text{ m}}{100}$$
 = 0.7 m

Height of the pillar (h) = 10 m

Volume of the pillar
$$=\pi r^2 h$$

$$= \frac{22}{7} \times (0.7)^2 \times 10 \text{ m}^3$$

$$=15.4 \text{ m}^3$$

• For any polyhedron, F + V - E = 2, where F is the number of faces, V is the number of vertices and E is the number of edges.

This relationship is called Euler's formula.

Example: Verify Euler's formula for the given solid.

Solution:

The given figure is a cube.

We have

Number of vertices, V = 8

Number of edges, E = 12

Number of faces, F = 6

Thus,
$$F + V - E = 6 + 8 - 12 = 14 - 12 = 2$$

Hence, Euler's formula is verified.