Mathematics

(Chapter - 5) (Lines and Angles) (Exercise 5.1) (Class - VII)

Question 1:

Find the complement of each of the following angles:

Answer 1:

Complementary angle = 90 – given angle

- (i) Complement of $20^{\circ} = 90^{\circ} 20^{\circ} = 70^{\circ}$
- (ii) Complement of $63^{\circ} = 90^{\circ} 63^{\circ} = 27^{\circ}$
- (iii) Complement of $57^{\circ} = 90^{\circ} 57^{\circ} = 33^{\circ}$

Question 2:

Find the supplement of each of the following angles:

Answer 2:

Supplementary angle = 180° – given angle

- (i) Supplement of $105^{\circ} = 180^{\circ} 105^{\circ} = 75^{\circ}$
- (ii) Supplement of $87^{\circ} = 180^{\circ} 87^{\circ} = 93^{\circ}$
- (iii) Supplement of $154^{\circ} = 180^{\circ} 154^{\circ} = 26^{\circ}$

Question 3:

Identify which of the following pairs of angles are complementary and which are supplementary:

- (i) 65°,115°
- (ii) 63°, 27°
- (iii) 112°,68°
- (iv) 130°,50°
- (v) 45°,45°
- (vi) 80°,10°

Answer 3:

If sum of two angles is 180°, then they are called supplementary angles.

If sum of two angles is 90°, then they are called complementary angles.

- (i) $65^{\circ}+115^{\circ}=180^{\circ}$ These are supplementary angles.
- (ii) $63^{\circ}+27^{\circ}=90^{\circ}$ These are complementary angles.
- (iii) $112^{\circ}+68^{\circ}=180^{\circ}$ These are supplementary angles.
- (iv) $130^{\circ}+50^{\circ}=180^{\circ}$ These are supplementary angles.
- (v) $45^{\circ} + 45^{\circ} = 90^{\circ}$ These are complementary angles.
- (vi) $80^{\circ}+10^{\circ}=90^{\circ}$ These are complementary angles.

Question 4:

Find the angle which is equal to its complement.

Answer 4:

Let one of the two equal complementary angles be x.

$$\therefore x + x = 90^{\circ}$$

$$\Rightarrow 2x = 90^{\circ}$$

$$\Rightarrow x = \frac{90^{\circ}}{2} = 45^{\circ}$$

Thus, 45° is equal to its complement.

Question 5:

Find the angle which is equal to its supplement.

Answer 5:

Let *x* be two equal angles of its supplement.

Therefore, $x+x=180^{\circ}$

 $2v - 180^{\circ}$

 \Rightarrow $2x=180^{\circ}$

 $\Rightarrow \qquad x = \frac{180^{\circ}}{2} = 90^{\circ}$

Thus, 90 is equal to its supplement.

[Supplementary angles]

Question 6:

In the given figure, \angle 1 and \angle 2 are supplementary angles. If \angle 1 is decreased, what changes should take place in \angle 2 so that both the angles still remain supplementary?

Answer 6:

If $\angle 1$ is decreased then, $\angle 2$ will increase with the same measure, so that both the angles still remain supplementary.

Question 7:

Can two angles be supplementary if both of them are:

(i) acute

(ii) obtuse

(iii) right?

Answer 7:

- (i) No, because sum of two acute angles is less than 180°.
- (ii) No, because sum of two obtuse angles is more than 180°.
- (iii) Yes, because sum of two right angles is 180°.

Question 8:

An angle is greater than 45°. Is its complementary angle greater than 45° or equal to 45° or less than 45°?

Answer 8:

Let the complementary angles be x and y, i.e., $x+y=90^\circ$

It is given that $x > 45^{\circ}$

Adding y both sides,
$$x+y>45^{\circ}+y$$

$$x + y > 45^{\circ} + y$$

$$\Rightarrow$$

$$90^{\circ} > 45^{\circ} + y$$

$$\rightarrow$$

$$\Rightarrow$$
 90° -45° > y

$$\Rightarrow$$

$$y < 45^{\circ}$$

Thus, its complementary angle is less than 45.

Question 9:

Fill in the blanks:

- If two angles are complementary, then the sum of their measures is ______.
- If two angles are supplementary, then the sum of their measures is ______. (ii)
- (iii) If two adjacent angles are supplementary, they form a ______.

Answer 9:

90° (i)

- 180° (ii)
- (iii) linear pair

Question 10:

In the adjoining figure, name the following pairs of angles:

- Obtuse vertically opposite angles. (i)
- (ii) Adjacent complementary angles.
- Equal supplementary angles. (iii)
- Unequal supplementary angles. (iv)
- Adjacent angles that do not form a linear pair. (v)

Answer 10:

- (i) Obtuse vertically opposite angles means greater than 90° and equal \angle AOD = \angle BOC.
- (ii) Adjacent complementary angles means angles have common vertex, common arm, noncommon arms are on either side of common arm and sum of angles is 90.
- Equal supplementary angles means sum of angles is 180° and supplement angles are (iii) equal.
- Unequal supplementary angles means sum of angles is 180° and supplement angles are (iv) unequal.

 \angle AOE, \angle EOC; \angle AOD, \angle DOC and \angle AOB, \angle BOC

Adjacent angles that do not form a linear pair mean, angles have common ray but the (v) angles in a linear pair are not supplementary.

i.e.,

 \angle AOB, \angle AOE; \angle AOE, \angle EOD and \angle EOD, \angle COD

Mathematics

(Chapter - 5) (Lines and Angles) (Exercise 5.2) (Class - VII)

Question 1:

State the property that is used in each of the following statements:

- (i) If a||b, then $\angle 1 = \angle 5$.
- (ii) If $\angle 4 = \angle 6$, then a||b.
- (iii) If $\angle 4 + \angle 5 + 180^{\circ}$, then a||b|.

Answer 1:

- (i) Given, a||b, then $\angle 1 = \angle 5$ [Corresponding angles] If two parallel lines are cut by a transversal, each pair of corresponding angles are equal in measure.
- (ii) Given, $\angle 4 = \angle 6$, then a||b [Alternate interior angles] When a transversal cuts two lines such that pairs of alternate interior angles are equal, the lines have to be parallel.
- (iii) Given, $\angle 4 + \angle 5 = 180^\circ$, then a|b [Co-interior Angles] When a transversal cuts two lines, such that pairs of interior angles on the same side of transversal are supplementary, the lines have to be parallel.

Question 2:

In the adjoining figure, identify:

- (i) the pairs of corresponding angles.
- (ii) the pairs of alternate interior angles.
- (iii) the pairs of interior angles on the same side of the transversal.
- (iv) the vertically opposite angles.

Answer 2:

- (i) The pairs of corresponding angles: $\angle 1$, $\angle 5$; $\angle 2$, $\angle 6$; $\angle 4$, $\angle 8$ and $\angle 3$, $\angle 7$
- (ii) The pairs of alternate interior angles are: $\angle 3$, $\angle 5$ and $\angle 2$, $\angle 8$
- (iii) The pair of interior angles on the same side of the transversal: $\angle 3$, $\angle 8$ and $\angle 2$, $\angle 5$
- (iv) The vertically opposite angles are: $\angle 1$, $\angle 3$; $\angle 2$, $\angle 4$; $\angle 6$, $\angle 8$ and $\angle 5$, $\angle 7$

Question 3:

In the adjoining figure, p||q. Find the unknown angles.

Answer 3:

Given, p||q and cut by a transversal line.

 $e = 180^{\circ} - 125^{\circ} = 55^{\circ}$

Now $e = f = 55^{\circ}$

Also $a = f = 55^{\circ}$

 $a+b=180^{\circ}$

 \Rightarrow 55°+b=180°

 \Rightarrow $b=180^{\circ}-55^{\circ}=125^{\circ}$

Now $a = c = 55^{\circ} \text{ and } b = d = 125^{\circ}$

[Linear pair]

....(i)

[Vertically opposite angles]

125

[Alternate interior angles]

[Linear pair]

[From equation (i)]

[Vertically opposite angles]

Thus, $a = 55^{\circ}, b = 125^{\circ}, c = 55^{\circ}, d = 125^{\circ}, e = 55^{\circ}$ and $f = 55^{\circ}$.

Question 4:

Find the values of x in each of the following figures if l||m|

Answer 4:

- Given, l||m| and t is transversal line. (i)
 - Interior vertically opposite angle between lines l and $t = 110^{\circ}$.

 $110^{\circ} + x = 180^{\circ}$ [Supplementary angles]

- $x = 180^{\circ} 110^{\circ} = 70^{\circ}$
- Given, l||m and a||b. (ii)

 $x = 100^{\circ}$

[Corresponding angles]

Question 5:

In the given figure, the arms of two angles are parallel. If $\triangle ABC = 70^{\circ}$, then find:

- (i) ∠DGC
- (ii) ∠DEF

Answer 5:

(i) Given, AB || DE and BC is a transversal line and \angle ABC=70°

 $\angle ABC = \angle DGC$

[Corresponding angles]

 $\angle DGC = 70^{\circ}$

....(i)

Given, BC || EF and DE is a transversal line and $\angle DGC = 70^{\circ}$ (ii)

 $\angle DGC = \angle DEF$

[Corresponding angles]

 $\angle DEF = 70^{\circ}$

[From equation (i)]

Question 6:

In the given figures below, decide whether l is parallel to m.

Answer 6:

(i)
$$126^{\circ}+44^{\circ}=170^{\circ}$$
 $l | | m$ because sum of interior opposite angles should be 180° .

(ii)
$$75^{\circ}+75^{\circ}=150^{\circ}$$
 $l \mid m$ because sum of angles does not obey the property of parallel lines.

(iii)
$$57^{\circ}+123^{\circ}=180^{\circ}$$
 $l \mid m \text{ due to supplementary angles property of parallel lines.}$

(iv)
$$98^{\circ}+72^{\circ}=170^{\circ}$$
l is not parallel to *m* because sum of angles does not obey the property of parallel lines.