
Chapter 9

Approximation Methods for

Stationary States

9.1 Introduction

Most problems encountered in quantum mechanics cannot be solved exactly. Exact solutions of
the Schrödinger equation exist only for a few idealized systems. To solve general problems, one
must resort to approximation methods. A variety of such methods have been developed, and

each has its own area of applicability. In this chapter we consider approximation methods that

deal with stationary states corresponding to time-independent Hamiltonians. In the following
chapter we will deal with approximation methods for explicitly time-dependent Hamiltonians.

To study problems of stationary states, we focus on three approximation methods: pertur-
bation theory, the variational method, and the WKB method.
Perturbation theory is based on the assumption that the problem we wish to solve is, in

some sense, only slightly different from a problem that can be solved exactly. In the case where
the deviation between the two problems is small, perturbation theory is suitable for calculating
the contribution associated with this deviation; this contribution is then added as a correction to

the energy and the wave function of the exactly solvable Hamiltonian. So perturbation theory

builds on the known exact solutions to obtain approximate solutions.

What about those systems whose Hamiltonians cannot be reduced to an exactly solvable

part plus a small correction? For these, we may consider the variational method or the WKB

approximation. The variational method is particularly useful in estimating the energy eigen-

values of the ground state and the first few excited states of a system for which one has only a

qualitative idea about the form of the wave function.

The WKB method is useful for finding the energy eigenvalues and wave functions of sys-

tems for which the classical limit is valid. Unlike perturbation theory, the variational and WKB
methods do not require the existence of a closely related Hamiltonian that can be solved exactly.

The application of the approximation methods to the study of stationary states consists of

finding the energy eigenvalues En and the eigenfunctions n of a time-independent Hamil-

tonian H that does not have exact solutions:

H n En n (9.1)
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Depending on the structure of H , we can use any of the three methods mentioned above to find
the approximate solutions to this eigenvalue problem.

9.2 Time-Independent Perturbation Theory

This method is most suitable when H is very close to a Hamiltonian H0 that can be solved
exactly. In this case, H can be split into two time-independent parts

H H0 Hp (9.2)

where Hp is very small compared to H0 (H0 is known as the Hamiltonian of the unperturbed

system). As a result, Hp is called the perturbation, for its effects on the energy spectrum and
eigenfunctions will be small; such perturbation is encountered, for instance, in systems subject

to weak electric or magnetic fields. We can make this idea more explicit by writing Hp in terms
of a dimensionless real parameter which is very small compared to 1:

Hp W 1 (9.3)

Thus the eigenvalue problem (9.1) becomes

H0 W n En n (9.4)

In what follows we are going to consider two separate cases depending on whether the

exact solutions of H0 are nondegenerate or degenerate. Each of these two cases requires its
own approximation scheme.

9.2.1 Nondegenerate Perturbation Theory

In this section we limit our study to the case where H0 has no degenerate eigenvalues; that is,

for every energy E 0
n there corresponds only one eigenstate n :

H0 n E 0
n n (9.5)

where the exact eigenvalues E 0
n and exact eigenfunctions n are known.

The main idea of perturbation theory consists in assuming that the perturbed eigenvalues

and eigenstates can both be expanded in power series in the parameter :

En E 0
n E 1

n
2E 2
n (9.6)

n n
1
n

2 2
n (9.7)

We need to make two remarks. First, one might think that whenever the perturbation is suffi-

ciently weak, the expansions (9.6) and (9.7) always exist. Unfortunately, this is not always the

case. There are cases where the perturbation is small, yet En and n are not expandable in

powers of . Second, the series (9.6) and (9.7) are frequently not convergent. However, when

is small, the first few terms do provide a reliable description of the system. So in practice, we

keep only one or two terms in these expansions; hence the problem of nonconvergence of these

series is avoided (we will deal later with the problem of convergence). Note that when 0

the expressions (9.6) and (9.7) yield the unperturbed solutions: En E 0
n and n n .
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The parameters E k
n and the kets

k
n represent the kth corrections to the eigenenergies and

eigenvectors, respectively.

The job of perturbation theory reduces then to the calculation of E 1
n , E

2
n , and

1
n ,

2
n , . In this section we shall be concerned only with the determination of E 1

n , E
2
n ,

and
1
n . Assuming that the unperturbed states n are nondegenerate, and substituting (9.6)

and (9.7) into (9.4), we obtain

H0 W n
1
n

2 2
n

E 0
n E 1

n
2E 2
n n

1
n

2 2
n

(9.8)

The coefficients of successive powers of on both sides of this equation must be equal. Equat-

ing the coefficients of the first three powers of , we obtain these results:

Zero order in :

H0 n E 0
n n (9.9)

First order in :

H0
1
n W n E 0

n
1
n E 1

n n (9.10)

Second order in :

H0
2
n W 1

n E 0
n

2
n E 1

n
1
n E 2

n n (9.11)

We now proceed to determine the eigenvalues E 1
n , E

2
n and the eigenvector

1
n from

(9.9) to (9.11). For this, we need to specify how the states n and n overlap. Since n

is considered not to be very different from n , we have n n 1. We can, however,

normalize n so that its overlap with n is exactly equal to one:

n n 1 (9.12)

Substituting (9.7) into (9.12) we get

n
1
n

2
n

2
n 0 (9.13)

hence the coefficients of the various powers of must vanish separately:

n
1
n n

2
n 0 (9.14)

First-order correction

To determine the first-order correction, E 1
n , to En we need simply to multiply both sides of

(9.10) by n :

E 1
n n W n (9.15)

where we have used the facts that n H0
1
n and n

1
n are both equal to zero

and n n 1. The insertion of (9.15) into (9.6) thus yields the energy to first-order

perturbation:

En E 0
n n Hp n (9.16)
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Note that for some systems, the first-order correction E 1
n vanishes exactly. In such cases, one

needs to consider higher-order terms.

Let us now determine
1
n . Since the set of the unperturbed states n form a complete

and orthonormal basis, we can expand
1
n in the n basis:

1
n

m
m m

1
n

m n
m

1
n m (9.17)

the term m n does not contribute, since n
1
n 0. The coefficient m

1
n can be

inferred from (9.10) by multiplying both sides by m :

m
1
n

m W n

E 0
n E 0

m

(9.18)

which, when substituted into (9.17), leads to

1
n

m n

m W n

E 0
n E 0

m
m (9.19)

The eigenfunction n of H to first order in W can then be obtained by substituting (9.19)

into (9.7):

n n
m n

m Hp n

E 0
n E 0

m
m (9.20)

Second-order correction

Now, to determine E 2
n we need to multiply both sides of (9.11) by n :

E 2
n n W 1

n (9.21)

in obtaining this result we have used the facts that n
1
n n

2
n 0 and

n n 1. Inserting (9.19) into (9.21) we end up with

E 2
n

m n

m W n

2

E 0
n E 0

m

(9.22)

The eigenenergy to second order in Hp is obtained by substituting (9.22) and (9.15) into (9.6):

En E 0
n n Hp n

m n

m Hp n

2

E 0
n E 0

m

(9.23)

In principle one can obtain energy corrections to any order. However, pushing the calculations

beyond the second order, besides being mostly intractable, is a futile exercise, since the first

two orders are generally sufficiently accurate.
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Validity of the time-independent perturbation theory

For perturbation theory to work, the corrections it produces must be small; convergence must be

achieved with the first two corrections. Expressions (9.20) and (9.23) show that the expansion

parameter is m Hp n E 0
n E 0

m . Thus, for the perturbation schemes (9.6) and (9.7) to

work (i.e., to converge), the expansion parameter must be small:

m Hp n

E 0
n E 0

m

1 n m (9.24)

If the unperturbed energy levels E 0
n and E 0

m were equal (i.e., degenerate) then condition

(9.24) would break down. Degenerate energy levels require an approach that is different from

the nondegenerate treatment. This question will be taken up in the following section.

Example 9.1 (Charged oscillator in an electric field)

A particle of charge q and mass m, which is moving in a one-dimensional harmonic potential
of frequency , is subject to a weak electric field E in the x-direction.
(a) Find the exact expression for the energy.

(b) Calculate the energy to first nonzero correction and compare it with the exact result

obtained in (a).

Solution

The interaction between the oscillating charge and the external electric field gives rise to a term

HP qEX that needs to be added to the Hamiltonian of the oscillator:

H H0 Hp
h

2m

d2

dX2
1

2
m 2X2 qEX (9.25)

(a) First, note that the eigenenergies of this Hamiltonian can be obtained exactly without

resorting to any perturbative treatment. A variable change y X qE m 2 leads to

H
h2

2m

d2

dy2
1

2
m 2y2

q2E2

2m 2
(9.26)

This is the Hamiltonian of a harmonic oscillator from which a constant, q2E2 2 2m , is sub-
tracted. The exact eigenenergies can thus be easily inferred:

En n
1

2
h

q2E2

2m 2
(9.27)

This simple example allows us to compare the exact and approximate eigenenergies.

(b) Let us now turn to finding the approximate eigenvalues of H by means of perturbation
theory. Since the electric field is weak, we can treat Hp as a perturbation.

Note that the first-order correction to the energy, E 1
n a n X n , is zero (since

n X n 0), but the second-order correction is not:

E 2
n q2E2

m n

m X n
2

E 0
n E 0

m

(9.28)
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Since E 0
n n 1

2
h , and using the relations

n 1 X n n 1
h

2m
n 1 X n n

h

2m
(9.29)

E 0
n E 0

n 1 h E 0
n E 0

n 1 h (9.30)

we can reduce (9.28) to

E 2
n q2E2

n 1 X n 2

E 0
n E 0

n 1

n 1 X n 2

E 0
n E 0

n 1

q2E2

2m 2
(9.31)

hence the energy is given to second order by

En E 0
n E 1

n E 2
n n

1

2
h

q2E2

2m 2
(9.32)

This agrees fully with the exact energy found in (9.27).

Similarly, using (9.19) along with (9.29) and (9.30), we can easily ascertain that
1
n is

given by

1
n

qE

h

h

2m
n n 1 n 1 n 1 (9.33)

hence the state n is given to first order by

n n
qE

h

h

2m
n n 1 n 1 n 1 (9.34)

where n is the exact eigenstate of the nth excited state of a one-dimensional harmonic oscil-
lator.

Example 9.2 (The Stark effect)

(a) Study the effect of an external uniform weak electric field, which is directed along the

positive z-axis, E Ek, on the ground state of a hydrogen atom; ignore the spin degrees of
freedom.

(b) Find an approximate value for the polarizability of the hydrogen atom.

Solution

(a) The effect that an external electric field has on the energy levels of an atom is called the

Stark effect. In the absence of an electric field, the (unperturbed) Hamiltonian of the hydrogen

atom (in CGS units) is:

H0
p 2

2

e2

r
(9.35)

The eigenfunctions of this Hamiltonian, nlm r , were obtained in Chapter 6; they are given by

r nlm nlm r Rnl r Ylm (9.36)
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When the electric field is turned on, the interaction between the atom and the field generates a

term Hp eE r eEZ that needs to be added to H0.
Since the excited states of the hydrogen atom are degenerate while the ground state is not,

nondegenerate perturbation theory applies only to the ground state, 100 r . Ignoring the spin
degrees of freedom, the energy of this system to second-order perturbation is given as follows

(see (9.23)):

E100 E 0
100 eE 100 Z 100 e2E2

nlm 100

nlm Z 100
2

E 0
100 E 0

nlm

(9.37)

The term

100 Z 100 100 r
2z d3r (9.38)

is zero, since Z is odd under parity and 100 r has a definite parity. This means that there can
be no correction term to the energy which is proportional to the electric field and hence there

is no linear Stark effect. The underlying physics behind this is that when the hydrogen atom

is in its ground state, it has no permanent electric dipole moment. We are left then with only

a quadratic dependence of the energy (9.37) on the electric field. This is called the quadratic
Stark effect. This correction, which is known as the energy shift E , is given by

E e2E2

nlm 100

nlm Z 100
2

E 0
100 E 0

nlm

(9.39)

(b) Let us now estimate the value of the polarizability of the hydrogen atom. The polariz-
ability of an atom which is subjected to an electric field E is given in terms of the energy shift

E as

2
E

E2
(9.40)

Substituting (9.39) into (9.40), we obtain the polarizability of the hydrogen atom in its ground

state:

2e2

nlm 100

nlm Z 100
2

E 0
100 E 0

nlm

(9.41)

To estimate this sum, let us assume that the denominator is constant. Since n 2, we can write

E 0
100 E 0

nlm E100 E200
e2

2a0
1

1

4

3e2

8a0
(9.42)

hence
16a0
3

nlm 100

nlm Z 100 2 (9.43)

where

nlm 100

nlm Z 100 2

all nlm

nlm Z 100 2

100 Z
all nlm

nlm nlm Z 100

100 Z2 100 (9.44)
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in deriving this relation, we have used the facts that 100 Z 100 0 and that the set of

states nlm is complete. Now since z r cos and r 100 R10 r Y00
R10 r 4 , we immediately obtain

100 Z2 100
1

4 0

r4R210 r dr
0

sin cos2 d
2

0

d a20 (9.45)

Substituting (9.45) and (9.44) into (9.43), we see that the polarizability for hydrogen has an

upper limit
16

3
a30 (9.46)

This limit, which is obtained from perturbation theory, agrees with the exact value 9
2
a30 .

9.2.2 Degenerate Perturbation Theory

In the discussion above, we have considered only systems with nondegenerate H0. We now
apply perturbation theory to determine the energy spectrum and the states of a system whose

unperturbed Hamiltonian H0 is degenerate:

H n H0 Hp n En n (9.47)

If, for instance, the level of energy E 0
n is f -fold degenerate (i.e., there exists a set of f

different eigenstates n , where 1, 2, , f , that correspond to the same eigenenergy

E 0
n ), we have

H0 n E 0
n n 1 2 f (9.48)

where stands for one or more quantum numbers; the energy eigenvalues E 0
n are independent

of .

In the zeroth-order approximation we can write the eigenfunction n as a linear combi-

nation in terms of n :

n

f

1

a n (9.49)

Considering the states n to be orthonormal with respect to the label (i.e., n n

) and n to be normalized, n n 1, we can ascertain that the coefficients a obey

the relation

n n a a
f

1

a 2 1 (9.50)

In what follows we are going to show how to determine these coefficients and the first-order

corrections to the energy. For this, let us substitute (9.48) and (9.49) into (9.47):

E 0
n n Hp n a En a n (9.51)

The multiplication of both sides of this equation by n leads to

a E 0
n n Hp n En a (9.52)
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or to

a En a E 0
n

f

1

a n Hp n (9.53)

where we have used n n . We can rewrite (9.53) as follows:

f

1

Hp E 1
n a 0 1 2 f (9.54)

with Hp n Hp n and E 1
n En E 0

n . This is a system of f homogeneous
linear equations for the coefficients a . These coefficients are nonvanishing only when the

determinant Hp E 1
n is zero:

Hp11 E 1
n Hp12 Hp13 Hp1 f

Hp21 Hp22 E 1
n Hp23 Hp2 f

Hp f 1 Hp f 2 Hp f 3 Hp f f E 1
n

0 (9.55)

This is an f th degree equation in E 1
n and in general it has f different real roots, E 1

n . These

roots are the first-order correction to the eigenvalues, En , of H . To find the coefficients a ,
we need simply to substitute these roots into (9.54) and then solve the resulting expression.

Knowing these coefficients, we can then determine the eigenfunctions, n , of H in the

zeroth approximation from (9.49).

The roots E 1
n of (9.55) are in general different. In this case the eigenvalues H are not

degenerate, hence the f -fold degenerate level E 0
n of the unperturbed problem is split into f

different levels En : En E 0
n E 1

n , 1 2 f . In this way, the perturbation
lifts the degeneracy. The lifting of the degeneracy may be either total or partial, depending on

whether all the roots of (9.55), or only some of them, are different.

In summary, to determine the eigenvalues to first-order and the eigenstates to zeroth order

for an f -fold degenerate level from perturbation theory, we proceed as follows:

First, for each f -fold degenerate level, determine the f f matrix of the perturbation
Hp:

Hp

Hp11 Hp12 Hp1 f
Hp21 Hp22 Hp2 f

Hp f 1 Hp f 2 Hp f f

(9.56)

where Hp n Hp n .

Second, diagonalize this matrix and find the f eigenvalues E 1
n 1 2 f and

their corresponding eigenvectors

a

a
1

a
2

a f

1 2 f (9.57)
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Finally, the energy eigenvalues are given to first order by

En E 0
n E 1

n 1 2 f (9.58)

and the corresponding eigenvectors are given to zero order by

n

f

1

a n (9.59)

Example 9.3 (The Stark effect of hydrogen)

Using first-order (degenerate) perturbation theory, calculate the energy levels of the n 2 states

of a hydrogen atom placed in an external uniform weak electric field along the positive z-axis.

Solution

In the absence of any external electric field, the first excited state (i.e., n 2) is fourfold

degenerate: the states nlm 200 , 210 , 211 , and 21 1 have the same energy

E2 Ry 4, where Ry e4 2h2 13 6 eV is the Rydberg constant.

When the external electric field is turned on, some energy levels will split. The energy

due to the interaction between the dipole moment of the electron d er and the external
electric field (E Ek) is given by

Hp d E er E eEZ (9.60)

To calculate the eigenenergies, we need to determine and then diagonalize the 4 4 matrix

elements of Hp: 2l m Hp 2lm eE 2l m Z 2lm . The matrix elements 2l m Z
2lm can be calculated more simply by using the relevant selection rules and symmetries. First,

since Z does not depend on the azimuthal angle , z r cos , the elements 2l m Z 2lm
are nonzero only if m m. Second, as Z is odd, the states 2l m and 2lm must have

opposite parities so that 2l m Z 2lm does not vanish. Therefore, the only nonvanishing

matrix elements are those that couple the 2s and 2p states (with m 0); that is, between 200

and 210 . In this case we have

200 Z 210
0

R20 r R21 r r
2dr Y00 zY10 d

4

3 0

R20 r R21 r r
3dr Y00 Y 210 d

3a0 (9.61)

since z r cos 4 3rY10 , r 200 R20 r Y00 , r 210 R21 r Y10 ,

and d sin d d ; a0 h2 e2 is the Bohr radius. Using the notations 1 200 ,

2 211 , 3 210 , and 4 21 1 , we can write the matrix of Hp as

Hp

1 Hp 1 1 Hp 2 1 Hp 3 1 Hp 4

2 Hp 1 2 Hp 2 2 Hp 3 2 Hp 4

3 Hp 1 3 Hp 2 3 Hp 3 3 Hp 4

4 Hp 1 4 Hp 2 4 Hp 3 4 Hp 4

(9.62)



9.2. TIME-INDEPENDENT PERTURBATION THEORY 499

or as

Hp 3eEa0

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

(9.63)

The diagonalization of this matrix leads to the following eigenvalues:

E 1
2 1

3eEa0 E 1
2 2

E 1
2 3

0 E 1
2 4

3eEa0 (9.64)

Thus, the energy levels of the n 2 states are given to first order by

E21
Ry
4

3eEa0 E22 E23
Ry
4

E24
Ry
4

3eEa0 (9.65)

The corresponding eigenvectors to zeroth order are

2 1
1

2
200 210 2 2 211 (9.66)

2 3 21 1 2 4
1

2
200 210 (9.67)

This perturbation has only partially removed the degeneracy of the n 2 level; the states 211

and 21 1 still have the same energy E3 E4 Ry 4.

9.2.3 Fine Structure and the Anomalous Zeeman Effect

One of the most useful applications of perturbation theory is to calculate the energy correc-

tions for the hydrogen atom, notably the corrections due to the fine structure and the Zeeman

effect. The fine structure is in turn due to two effects: spin–orbit coupling and the relativistic

correction. Let us look at these corrections separately.

9.2.3.1 Spin–Orbit Coupling

The spin–orbit coupling in hydrogen arises from the interaction between the electron’s spin

magnetic moment, S eS mec , and the proton’s orbital magnetic field B.
The origin of the magnetic field experienced by the electron moving at in a circular orbit

around the proton can be explained classically as follows. The electron, within its rest frame,

sees the proton moving at in a circular orbit around it (Figure 9.1). From classical electro-

dynamics, the magnetic field experienced by the electron is

B
1

c
E

1

mec
p E

1

mec
E p (9.68)

where p me is the linear momentum of the electron and E is the electric field generated
by the proton’s Coulomb’s field: E r e r2 r r er r3. For a more general problem
of hydrogen-like atoms—atoms with one valence electron outside a closed shell—where an

electron moves in the (central) Coulomb potential of a nucleus V r e r , the electric
field is

E r r
1

e
V r

1

e

r

r

dV

dr
(9.69)
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Figure 9.1 (Left) An electron moving in a circular orbit as seen by the nucleus. (Right) The

same motion as seen by the electron within its rest frame; the electron sees the nucleus moving

in a circular orbit around it.

So the magnetic field of the nucleus calculated in the rest frame of the electron is obtained by

inserting (9.69) into (9.68):

B
1

mec
E p

1

emec

1

r

dV

dr
r p

1

emec

1

r

dV

dr
L (9.70)

where L r p is the orbital angular momentum of the electron.
The interaction of the electron’s spin dipole moment S with the orbital magnetic field B

of the nucleus gives rise to the following interaction energy:

HSO S B
e

mec
S B

1

m2ec
2

1

r

dV

dr
S L (9.71)

This energy turns out to be twice the observed spin–orbit interaction. This is due to the fact that

(9.71) was calculated within the rest frame of the electron. This frame is not inertial, for the

electron accelerates while moving in a circular orbit around the nucleus. For a correct treatment,

we must transform to the rest frame of the nucleus (i.e., the lab frame). This transformation,

which involves a relativistic transformation of velocities, gives rise to an additional motion

resulting from the precession of S; this is known as the Thomas precession. The precession
of the electron’s spin moment is a relativistic effect which occurs even in the absence of an

external magnetic field. The transformation back to the rest frame of the nucleus leads to a

reduction of the interaction energy (9.71) by a factor of 2:

HSO
1

2m2ec
2

1

r

dV

dr
S L (9.72)

As this relation was derived from a classical treatment, we can now obtain the corresponding

quantum mechanical expression by replacing the dynamical variables with the corresponding

operators:

HSO
1

2m2ec
2

1

r

dV

dr
S L (9.73)

This is the spin–orbit energy. For a hydrogen’s electron, V r e2 r and dV dr e2 r2,
equation (9.73) reduces to

HSO
e2

2m2ec
2

1

r3
S L (9.74)
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We can now use perturbation theory to calculate the contribution of the spin–orbit interac-

tion in a hydrogen atom:

H
p2

2me

e2

r

e2

2m2ec
2r3
S L H0 HSO (9.75)

where H0 is the unperturbed Hamiltonian and HSO is the perturbation. To apply perturbation
theory, we need to specify the unperturbed states—the eigenstates of H0. Since the spin of the
hydrogen’s electron is taken into account, the total wave function of H0 consists of a direct
product of two parts: a spatial part and a spin part. To specify the eigenstates of H0, we have
two choices: first, the joint eigenstates nlmlms of L2, S2, Lz , and Sz and, second, the joint
eigenstates nl jm of L2, S2, J2, and Jz . While H0 is diagonal in both of these representations,

HSO is diagonal in the second but not in the first, because HSO (or S L to be precise) commutes
with neither Lz nor with Sz (Chapter 7). Thus, if HSO were included, the first choice would
be a bad one, since we would be forced to diagonalize the matrix of HSO within the states
nlmlms ; this exercise is nothing less than tedious and cumbersome. The second choice,

however, is ideal for our problem, since the first-order energy correction is given simply by the

expectation value of the perturbation, because HSO is already diagonal in this representation.
We have shown in Chapter 7 that the states nl jm ,

n l j l 1
2 m

Rnl r
l m 1

2

2l 1
Yl m 1

2

1

2

1

2

l m 1
2

2l 1
Yl m 1

2

1

2

1

2

(9.76)

are eigenstates of S L and that the corresponding eigenvalues are given by

nl jm L S nl jm
h2

2
j j 1 l l 1

3

4
(9.77)

since S L 1
2
J 2 L 2 S 2 .

The eigenvalues of (9.75) are then given to first-order correction by

Enl j E 0
n nl jm j HSO nl jm j

e2

2a0

1

n2
E 1
SO (9.78)

where E 0
n e2 2a0n2 13 6 n2 eV are the energy levels of hydrogen and E 1

SO is

the energy due to spin–orbit interaction:

E 1
SO nl jm j HSO nl jm j

e2h2

4m2ec
2
j j 1 l l 1

3

4
nl

1

r3
nl (9.79)

Using the value of nl r 3 nl calculated in Chapter 6,

nl
1

r3
nl

2

n3l l 1 2l 1 a30
(9.80)

we can rewrite (9.79) as

E 1
SO

e2h2

2m2ec
2

j j 1 l l 1 3
4

n3l l 1 2l 1 a30
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e2

2a0

1

n2
h

meca0

2
1

n

j j 1 l l 1 3
4

l l 1 2l 1
(9.81)

or

E 1
SO

E 0
n

2

n

j j 1 l l 1 3
4

l l 1 2l 1
(9.82)

where is a dimensionless constant called the fine structure constant:

h

meca0

e2

hc

1

137
(9.83)

Since a0 h2 mee2 and hence E 0
n e2 2a0n2 2mec2 2n2 , we can express

(9.82) in terms of as

E 1
SO

4mec2

2n3
j j 1 l l 1 3

4

l l 1 2l 1
(9.84)

9.2.3.2 Relativistic Correction

Although the relativistic effect in hydrogen due to the motion of the electron is small, it can

still be detected by spectroscopic techniques. The relativistic kinetic energy of the electron is

given by T p2c2 m2ec
4 mec2, where mec2 is the rest mass energy of the electron; an

expansion of this relation to p4 yields

p2c2 m2ec
4 mec

2 p2

2me

p4

8m3ec
2

(9.85)

When this term is included, the hydrogen’s Hamiltonian becomes

H
p2

2me

e2

r

p4

8m3ec
2

H0 HR (9.86)

where H0 p2 2me e2 r is the unperturbed Hamiltonian and HR p 4 8m3ec
2 is the

relativistic mass correction which can be treated by first-order perturbation theory:

E 1
R nl jm j HR nl jm j

1

8m3ec
2
nl jm j p

4 nl jm j (9.87)

The value of nl jm j p 4 nl jm j was calculated in the last solved problem of Chapter 6 (see
equation (6.331)):

nl jm j p
4 nl jm j

m4ee
8

h4n4
8n

2l 1
3

4m4ec
4

n4
8n

2l 1
3 (9.88)

An insertion of this value in (9.87) leads to

E 1
R

4mec2

8n4
8n

2l 1
3

2 E 0
n

4n2
8n

2l 1
3 (9.89)
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Note that the spin–orbit and relativistic corrections (9.84) and (9.89) have the same order of

magnitude, 10 3 eV, since 2 E 0
n 10 3 eV.

Remark

For a hydrogenlike atom having Z electrons, and if we neglect the spin–orbit interaction, we
may use (9.89) to infer the atom’s ground state energy:

En Z2 E 0
n E 1

R Z2E 0
n 1

2

n

2

2l 1

3

4n
(9.90)

where E 0
n e4me 2h2n2 2mec2 2n2 13 6 eV n2 is the Bohr energy.

9.2.3.3 The Fine Structure of Hydrogen

The fine structure correction is obtained by adding the expressions for the spin–orbit and rela-

tivistic corrections (9.84) and (9.89):

E 1
FS E 1

SO E 1
R

4mec2

2n3
j j 1 l l 1 3

4

l l 1 2l 1

4mec2

8n4
8n

2l 1
3 (9.91)

where j l 1
2
. If j l 1

2
a substitution of l j 1

2
into (9.91) leads to

E 1
FS

4mec2

8n4

4nj j 1 4n j 1
2

j 1
2

3n

j 1
2

j 1
2

2 j 1 1

8n

2 j 1 1
3

4mec2

8n4
4nj 2n

2 j j 1
2

j 1
2

4n

j
3

4mec2

8n4
2n

j j 1
2

4n

j
3

4mec2

8n4
3

4n

j 1
2

(9.92)

Similarly, if j l 1
2
, and hence l j 1

2
, we can reduce (9.91) to

E 1
FS

4mec2

8n4

4nj j 1 4n j 1
2

j 3
2

3n

j 1
2

j 3
2

2 j 1 1

8n

2 j 1 1
3

4mec2

8n4
4nj 6n

2 j 1
2

j 3
2

j 1

4n

j 1
3

4mec2

8n4
2n

j 1
2

j 1

4n

j 1
3

4mec2

8n4
3

4n

j 1
2

(9.93)
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As equations (9.92) and (9.93) show, the expressions for the fine structure correction corre-

sponding to j l 1
2
and j l 1

2
are the same:

E 1
FS E 1

SO E 1
R

4mec2

8n4
3

4n

j 1
2

2E 0
n

4n2
4n

j 1
2

3 (9.94)

where E 0
n

2mec2 2n2 and j l 1
2
.

Since the bracket-terms in (9.82), (9.89), and (9.94) are of the order of unity, the ratios of

the spin–orbit, relativistic, and fine structure corrections to the energy of the hydrogen atom are

of the order of 2:

E 1
SO

E 0
n

2 E 1
R

E 0
n

2 E 1
FS

E 0
n

2 (9.95)

All these terms are of the order of 10 4 since 2 1 137 2 10 4.

In sum, the hydrogen’s Hamiltonian, when including the fine structure, is given by

H H0 HFS H0 HSO HR
p2

2me

e2

r

e2

2m2ec
2r3
S L

p4

8m3ec
2

(9.96)

A first-order perturbation calculation of the energy levels of hydrogen, when including the fine

structure, yields

Enj E 0
n E 1

FS E 0
n 1

2

4n2
4n

j 1
2

3 (9.97)

where E 0
n 13 6 eV n2. Unlike E 0

n , which is degenerate in l, each energy level Enj is

split into two levels En l 1
2
, since for a given value of l there are two values of j : j l 1

2
.

In addition to the fine structure, there is still another (smaller) effect which is known as

the hyperfine structure. The hydrogen’s hyperfine structure results from the interaction of the
spin of the electron with the spin of the nucleus. When the hyperfine corrections are included,

they would split each of the fine structure levels into a series of hyperfine levels. For instance,

when the hyperfine coupling is taken into account in the ground state of hydrogen, it would

split the 1S1 2 level into two hyperfine levels separated by an energy of 5 89 10 6 eV. This

corresponds, when the atom makes a spontaneous transition from the higher hyperfine level to

the lower one, to a radiation of 1 42 109Hz frequency and 21 cm wavelength. We should note

that most of the information we possess about interstellar hydrogen clouds had its origin in the

radioastronomy study of this 21 cm line.

9.2.3.4 The Anomalous Zeeman Effect

We now consider a hydrogen atom that is placed in an external uniform magnetic field B. The
effect of an external magnetic field on the atom is to cause a shift of its energy levels; this

is called the Zeeman effect. In Chapter 6 we studied the Zeeman effect, but with one major
omission: we ignored the spin of the electron. In this section we are going to take it into

account. The interaction of the magnetic field with the electron’s orbital and spin magnetic
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dipole moments, L and S , gives rise to two energy terms, L B and S B, whose sum
we call the Zeeman energy:

HZ L B S B
e

2mec
L B

e

mec
S B

e

2mec
L 2S B

eB

2mec
Lz 2Sz

(9.98)

with L eL 2mec and S S mec ; for simplicity, we have taken B along the
z-axis: B Bz.
When a hydrogen atom is placed in an external magnetic field, its Hamiltonian is given by

H H0 HFS HZ (9.99)

Like HFS , the correction due to HZ of (9.99) is expected to be small compared to H0; hence
it can be treated perturbatively. We may now consider separately the cases where the magnetic

field B is strong or weak. Strong or weak compared to what? Since HSO and HZ can be written
as HSO WL S (9.74) and since HZ B B L z 2Sz h, we have HZ HSO B B W ,
where B is the Bohr magneton, B eh 2mec . Thus, the cases B W B and B
W B would correspond to the weak and strong magnetic fields, respectively.

The strong-field Zeeman effect

The effect of a strong external magnetic field on the hydrogen atom is called the Paschen–Back
effect. If B is strong, B W B , the term eB L z 2Sz 2mec will be much greater than
the fine structure. Neglecting HFS , we can reduce (9.99) to

H H0 HZ H0
eB

2mec
Lz 2Sz (9.100)

Since H commutes with H0 (because H0 commutes with L z and Sz), they can be diagonalized
by a common set of states, nlmlms :

H nlmlms H0
eB

2mec
L z 2Sz nlmlms Enlmlms nlmlms (9.101)

where

Enlmlms E 0
n

eBh

2mec
ml 2ms

e2

2a0n2
eBh

2mec
ml 2ms (9.102)

The energy levels E 0
n are thus shifted by an amount equal to E B B ml 2ms with

B eh 2mec , known as the Paschen–Back shift (Figure 9.2). When B 0 the degeneracy

of each level of hydrogen is given by gn 2 n 1
l 0 2l 1 2n2; when B 0 states with the

same value of ml 2ms are still degenerate.

The weak-field Zeeman effect

If B is weak, B W B , we need to consider all the terms in the Hamiltonian (9.99); the

fine structure term HFS will be the dominant perturbation. In the case where the Hamiltonian
contains several perturbations at once, we should treat them individually starting with the most

dominant, then the next, and so on. In this case the eigenstate should be selected to be one that

diagonalizes the unperturbed Hamiltonian and the dominant perturbation1. In the weak-field

1When the various perturbations are of approximately equal size, a state that is a joint eigenstate of H0 and any
perturbation would be an acceptable choice.
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Figure 9.2 Splittings of the energy levels n 1 and n 2 of a hydrogen atom when placed

in a strong external magnetic field; B eh 2mec .

Zeeman effect, since HFS is the dominant perturbation, the best eigenstates to use are nl jm j ,

for they simultaneously diagonalize H0 and HFS . Writing Lz 2Sz as Jz Sz , where J L S
represents the total angular momentum of the electron, we may rewrite (9.99) as

H H0 HFS HZ H0 HFS
eB

2mec
Jz Sz (9.103)

In a first-order perturbation calculation, the contribution of HZ is given by

E 1
Z nl jm j HZ nl jm j

eB

2mec
nl jm j Jz Sz nl jm j (9.104)

Since nl jm j Jz nl jm j hm j and using the expression of nl jm j Sz nl jm j that was
calculated in Chapter 7,

nl jm j Sz nl jm j
nl jm j J S nl jm j

h2 j j 1
nl jm j Jz nl jm j

j j 1 l l 1 s s 1

2 j j 1
hm j (9.105)

we can reduce (9.104) to

E 1
Z

eBh

2mec
1

j j 1 l l 1 s s 1

2 j j 1
m j

eBh

2mec
g jm j B Bm jg j

(9.106)

where B eh 2mec is the Bohr magneton for the electron and g j is the Landé factor or the
gyromagnetic ratio:

g j 1
j j 1 l l 1 s s 1

2 j j 1
(9.107)
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This shows that when l 0 and j s we have gs 2 and when s 0 and j l we have
gl 1. For instance, for an atomic state2 such as 2P3 2, (9.107) shows that its factor is given

by g j 3 2
4
3
, since j l s 1 1

2
3
2
; this is how we infer the factor of any state:

State 2S1 2
2P1 2

2P3 2
2D3 2

2D5 2
2F5 2

2F7 2

g j 2 2
3

4
3

4
5

6
5

6
7

8
7

(9.108)

From (9.107), we see that the Landé factors corresponding to the same l but different values
of j (due to spin) are not equal, since for s 1

2
and j l 1

2
we have

g j l 1
2

1
1

2l 1

2l 2
2l 1 for j l 1

2

2l
2l 1 for j l 1

2

(9.109)

Combining (9.97), (9.103), and (9.106), we can write the energy of a hydrogen atom in a

weak external magnetic field as follows:

Enj E 0
n E 1

FS E 1
Z E 0

n

2E 0
n

4n2
4n

j 1
2

3
eBh

2mec
m jg j (9.110)

The effect of the magnetic field on the atom is thus to split the energy levels with a spacing

E B Bm jg j . Unlike the energy levels obtained in Chapter 6, where we ignored the
electron’s spin, the energy levels (9.110) are not degenerate in l. Each energy level j is split
into an even number of 2 j 1 sublevels corresponding to the 2 j 1 values of m j : m j
j , j 1, , j 1, j . As displayed in Figure 9.3, the splittings between the sublevels

corresponding to the same j are constant: the spacings between the sublevels corresponding to
j l 1 2 are all equal to 1 B B 2l 2l 1 , and the spacings between the j l 1 2

sublevels are equal to 2 B B 2l 2 2l 1 . In contrast to the normal Zeeman effect,

however, the spacings between the split levels of the same l (and different values of j) are no
longer constant, 1 2, since they depend on the Landé factor g j ; for a given value of j ,

there are two different values of g j corresponding to l j 1
2
: g j l 1 2 2l 2 2l 1

and g j l 1 2 2l 2l 1 ; see (9.109). This unequal spacing between the split levels is
called the anomalous Zeeman effect.

9.3 The Variational Method

There exist systems whose Hamiltonians are known, but they cannot be solved exactly or by a

perturbative treatment. That is, there is no closely related Hamiltonian that can be solved ex-

actly or approximately by perturbation theory because the first order is not sufficiently accurate.

One of the approximation methods that is suitable for solving such problems is the variational
method, which is also called the Rayleigh–Ritz method. This method does not require knowl-
edge of simpler Hamiltonians that can be solved exactly. The variational method is useful for

determining upper bound values for the eigenenergies of a system whose Hamiltonian is known

2We use here the spectroscopic notation where 2s 1 L j designates an atomic state whose spin is s, its total angular
momentum is j , and whose orbital angular momentum is L where the values L 0 1 2 3 4 5 are designated,

respectively, by the capital letters S, P, D, F, G, H, (see Chapter 8).
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Figure 9.3 Splittings of a level l due to the spin–orbit interaction and to a weak external

magnetic field, with Enj E0n E 1
SO . All the lower sublevels are equally spaced, 1

B B 2l 2l 1 , and so are the upper sublevels, 2 B B 2l 2 2l 1 , with B

eh 2mec .

whereas its eigenvalues and eigenstates are not known. It is particularly useful for determining

the ground state. It becomes quite cumbersome to determine the energy levels of the excited

states.

In the context of the variational method, one does not attempt to solve the eigenvalue prob-

lem

H E (9.111)

but rather one uses a variational scheme to find the approximate eigenenergies and eigenfunc-

tions from the variational equation

E 0 (9.112)

where E is the expectation value of the energy in the state :

E
H

(9.113)

If depends on a parameter , E will also depend on . The variational ansatz (9.112)

enables us to vary so as to minimize E . The minimum value of E provides an upper

limit approximation for the true energy of the system.

The variational method is particularly useful for determining the ground state energy and

its eigenstate without explicitly solving the Schrödinger equation. Note that for any (arbitrary)

trial function we choose, the energy E as given by (9.113) is always larger than the exact
energy E0:

E
H

E0 (9.114)
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the equality condition occurs only when is proportional to the true ground state 0 . To

prove this, we simply expand the trial function in terms of the exact eigenstates of H :

n

an n (9.115)

with

H n En n (9.116)

and since E0 En for nondegenerate one-dimensional bound systems, we have

E
H n an

2En

n an
2

E0 n an
2

n an
2

E0 (9.117)

which proves (9.114).

To calculate the ground state energy, we need to carry out the following four steps:

First, based on physical intuition, make an educated guess of a trial function that takes

into account all the physical properties of the ground state (symmetries, number of nodes,

smoothness, behavior at infinity, etc.). For the properties you are not sure about, include

in the trial function adjustable parameters 1, 2, (i.e., 0 0 1 2 )

which will account for the various possibilities of these unknown properties.

Second, using (9.113), calculate the energy; this yields an expression which depends on

the parameters 1, 2, :

E0 1 2
0 1 2 H 0 1 2

0 1 2 0 1 2
(9.118)

In most cases 0 1 2 will be assumed to be normalized; hence the denominator

of this expression is equal to 1.

Third, using (9.118) search for the minimum of E0 1 2 by varying the adjustable

parameters i until E0 is minimized. That is, minimize E 1 2 with respect to

1, 2 :

E0 1 2

i i

0 1 2 H 0 1 2

0 1 2 0 1 2
0 (9.119)

with i 1 2 . This gives the values of 10 20 that minimize E0.

Fourth, substitute these values of 10 20 into (9.118) to obtain the approximate

value of the energy. The value E0 10 20 thus obtained provides an upper bound

for the exact ground state energy E0. The exact ground state eigenstate 0 will then be

approximated by the state 0 10 20 .

What about the energies of the excited states? The variational method can also be used to find

the approximate values for the energies of the first few excited states. For instance, to find the

energy and eigenstate of the first excited state that will approximate E1 and 1 , we need to

choose a trial function 1 that must be orthogonal to 0 :

1 0 0 (9.120)
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Then proceed as we did in the case of the ground state. That is, solve the variational equation

(9.112) for 1 :

i

1 1 2 H 1 1 2

1 1 2 1 1 2
0 i 1 2 (9.121)

Similarly, to evaluate the second excited state, we solve (9.112) for 2 and take into

account the following two conditions:

2 0 0 2 1 0 (9.122)

These conditions can be included in the variational problem by means of Lagrange multipliers,
that is, by means of a constrained variational principle.

In this way, we can in principle evaluate any other excited state. However, the variational

procedure becomes increasingly complicated as we deal with higher excited states. As a result,

the method is mainly used to determine the ground state.

Remark

In those problems where the first derivative of the wave function is discontinuous at a given

value of x , one has to be careful when using the expression

h2

2m

d2

dx2
h2

2m
x
d2 x

dx2
dx (9.123)

A straightforward, careless use of this expression sometimes leads to a negative kinetic energy

term (Problem 9.6 on page 541). One might instead consider using the following form:

h2

2m

d2

dx2
h2

2m

d x

dx

2

dx (9.124)

Note that (9.123) and (9.124) are identical; an integration by parts leads to

d x

dx

2

dx x
d x

dx
x
d2 x

dx2
dx x

d2 x

dx2
dx

(9.125)

since x d x dx goes to zero as x (this is the case whenever x is a bound

state, but not so when x is a plane wave).
What about the calculation of h2 2m in three dimensions? We might con-

sider generalizing (9.124). For this, we need simply to invoke Gauss’s theorem3 to show that

r r d3r r r d3r (9.126)

To see this, an integration by parts leads to the following relation:

S
r r d A

V
r r r r d3r (9.127)

3Gauss’s theorem states that the surface integral of a vector B over a closed surface S is equal to the volume integral
of the divergence of that vector integrated over the volume V enclosed by the surface S: S B dS V B dV .
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and since, as S , the surface integral S r r dS vanishes if r is a bound
state, we recover (9.126). So the kinetic energy term (9.124) is given in three dimensions by

h2

2m

h2

2m
r r d3r (9.128)

Example 9.4

Show that (9.112) is equivalent to the Schrödinger equation (9.111) .

Solution

Using (9.113), we can rewrite (9.112) as

H E 0 (9.129)

Since is a complex function, we can view and as two independent functions;

hence we can carry out the variations over and independently. Varying first over

, equation (9.129) yields

H E 0 (9.130)

Since is arbitrary, then (9.130) is equivalent to H E . The variation over

leads to the same result. Namely, varying (9.129) over , we get

H E 0 (9.131)

from which we obtain the complex conjugate equation H E , since H is Hermitian.

Example 9.5

Consider a one-dimensional harmonic oscillator. Use the variational method to estimate the

energies of (a) the ground state, (b) the first excited state, and (c) the second excited state.

Solution

This simple problem enables us to illustrate the various aspects of the variational method within

a predictable setting, because the exact solutions are known: E0 h 2, E1 3h 2,

E2 5h 2.

(a) The trial function we choose for the ground state has to be even and smooth everywhere,

it must vanish as x , and it must have no nodes. A Gaussian function satisfies these

requirements. But what we are not sure about is its width. To account for this, we include in

the trial function an adjustable scale parameter :

0 x Ae x2 (9.132)

A is a normalization constant. Using x2ne ax2dx a 1 3 5 2n 1 2a n , we

can show that A is given by A 2 1 4. The expression for E0 is thus given by

0 H 0 A2 e x2 h2

2m

d2

dx2
1

2
m 2x2 e x2dx
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-

6

0
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Figure 9.4 Shape of E0 h2 2m m 2 8 .

A2
h2

m
e 2 x2dx A2

1

2
m 2 2h2 2

m
x2e 2 x2dx

h2

m

1

4

1

2
m 2 2h2 2

m

h2

2m

m 2

8
(9.133)

or

E0
h2

2m

m 2

8
(9.134)

Its shape is displayed in Figure 9.4. The value of 0, corresponding to the lowest point of the

curve, can be obtained from the minimization of E with respect to ,

E0 h2

2m

m 2

8 2
0 (9.135)

yields 0 m 2h which, when inserted into (9.134) and (9.132), leads to

E0 0
h

2
and 0 x 0

m

h

1 4

e m x2 2h (9.136)

The ground state energy and wave function obtained by the variational method are identical to

their exact counterparts.

(b) Let us now find the approximate energy E1 for the first excited state. The trial function

1 x we need to select must be odd, it must vanish as x , it must have only one node,

and it must be orthogonal to 0 x 0 of (9.136). A candidate that satisfies these requirements

is

1 x Bxe x2 (9.137)

B is the normalization constant. We can show that B 32 3 1 4. Note that 0 1 is

zero,

0 1 B
m

h

1 4

xe x2e m x2 2hdx 0 (9.138)

since the symmetric integration of an odd function is zero; 0 x is even and 1 x is odd.
Proceeding as we did for E0 , and since 1 x is normalized, we can show that

E1 1 H 1 B2 xe x2 h2

2m

d2

dx2
1

2
m 2x2 xe x2dx

3h2

2m

3m 2

8
(9.139)
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The minimization of E1 with respect to (i.e., E1 0) leads to 0 m 2h.
Hence the energy and the state of the first excited state are given by

E1 0
3h

2
1 x 0

4m3 3

h3

1 4

xe m x2 2h (9.140)

They are in full agreement with the exact expressions.

(c) The trial function

2 x C x2 1 e x2 (9.141)

which includes two adjustable parameters and , satisfies all the properties of the second

excited state: even under parity, it vanishes as x and has two nodes. The term x2 1

ensures that 2 x has two nodes x 1 and the normalization constant C is given
by

C
2

1 4
3 2

16 2 2
1

1 2

(9.142)

The trial function 2 x must be orthogonal to both 0 x and 1 x . First, notice that it
is indeed orthogonal to 1 x , since 2 x is even while 1 x is odd:

1 2 C
4m3 3

h3

1 4

x x2 1 e x2e m x2 2hdx 0 (9.143)

As for the orthogonality condition of 2 x with 0 x , it can be written as

0 2 0 x 2 x dx
m

h

1 4

C x2 1 e m 2h x2dx

m

h

1 4

C
2 m 2h

1
m 2h

0 (9.144)

This leads to a useful condition between and :

m

h
2 (9.145)

Now let us focus on determining the energy E2 2 H 2 :

E2 C2 x2 1 e x2 h2

2m

d2

dx2
1

2
m 2x2 x2 1 e x2dx (9.146)

After lengthy but straightforward calculations, we obtain

h2

2m
2
d2

dx2
2

h2

2m 2

7 2

16
C2

2
(9.147)

1

2
m 2

2 x
2

2 m 2 15 2

128 3

3

16 2

1

8
C2

2
(9.148)

hence

E2 C2
2

h2

2m

h2

4m

7h2 2

32m

15m 2 2

128 3

3m 2

16 2

m 2

8
(9.149)



514 CHAPTER 9. APPROXIMATION METHODS FOR STATIONARY STATES

To extract the approximate value of E2, we need to minimize E2 with respect to and

to : E2 0 and E2 0. The two expressions we obtain will enable

us to extract (by solving a system of two linear equations with two unknowns) the values of

0 and 0 that minimize E2 . This method is lengthy and quite cumbersome; 0 and 0

have to satisfy the condition (9.145). We can, however, exploit this condition to come up with

a much shorter approach: it consists of replacing the value of as displayed in (9.145) into the

energy relation (9.149), thereby yielding an expression that depends on a single parameter :

E2
15h2

18m

9h

8

7m 2

16

15m3 4

128h2 3

9m2 3

32h 2

3m2 2

16h2 2

m

4h

3

4

1

(9.150)

in deriving this relation, we have substituted (9.145) into the expression for C as given by
(9.142), which in turn is inserted into (9.149). In this way, we need to minimize E2 with
respect to one parameter only, . This yields 0 m 2h which, when inserted into (9.145)
leads to 0 2m h. Thus, the energy and wave function are given by

E2 0 0
5

2
h 2 x 0 0

m

4 h

1 4
2m

h
x2 1 e

m
2h x

2

(9.151)

These are identical with the exact expressions for the energy and the wave function.

Example 9.6

Use the variational method to estimate the ground state energy of the hydrogen atom.

Solution

The ground state wave function has no nodes and vanishes at infinity. Let us try

r e r (9.152)

where is a scale parameter; there is no angular dependence of r since the ground state

function is spherically symmetric. The energy is given by

E
H h2 2m 2 e2 r

(9.153)

where

0

r2e 2r dr
0

sin d
2

0

d 3 (9.154)

and
e2

r
4 e2

0

re 2r dr e2 2 (9.155)

To calculate the kinetic energy term, we may use (9.128)

h2

2m
2 h2

2m
r r d3r (9.156)

where

r r
d r

dr
r

1
e r r (9.157)
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hence

h2

2m
2 4

2

h2

2m 0

r2e 2r dr
h2

2m
(9.158)

Inserting (9.154), (9.155), and (9.158) into (9.153), we obtain

E
h2

2m 2

e2
(9.159)

Minimizing this relation with respect to , dE d h2 m 3
0 e2 2

0 0, we obtain

0 h2 me2 which, when inserted into (9.159), leads to the ground state energy

E 0
me4

2h2
(9.160)

This is the correct ground state energy for the hydrogen atom. The variational method has given

back the correct energy because the trial function (9.152) happens to be identical with the exact

ground state wave function. Note that the scale parameter 0 h2 me2 has the dimensions
of length; it is equal to the Bohr radius.

9.4 The Wentzel–Kramers–Brillouin Method

The Wentzel–Kramers–Brillouin (WKB) method is useful for approximate treatments of sys-

tems with slowly varying potentials; that is, potentials which remain almost constant over a
region of the order of the de Broglie wavelength. In the case of classical systems, this prop-

erty is always satisfied since the wavelength of a classical system approaches zero. The WKB

method can thus be viewed as a semiclassical approximation.

9.4.1 General Formalism

Consider the motion of a particle in a time-independent potential V r ; the Schrödinger equa-
tion for the corresponding stationary state is

h2

2m
2 r V r r E r (9.161)

or
2 r

1

h2
p2 r r 0 (9.162)

where p r is the classical momentum at r : p r 2m E V r . If the particle is moving

in a region where V r is constant, the solution of (9.162) is of the form r Ae i p r h . But

how does one deal with those cases where V r is not constant? The WKB method provides
an approximate treatment for systems whose potentials, while not constant, are slowly varying
functions of r . That is, V r is almost constant in a region which extends over several de

Broglie wavelengths; we may recall that the de Broglie wavelength of a particle of mass m and
energy E that is moving in a potential V r is given by h p h 2m E V r .
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In essence, the WKB method consists of trying a solution to (9.162) in the following form:

r A r ei S r h (9.163)

where the amplitude A r and the phase S r , which are real functions, are yet to be determined.
Substituting (9.163) into (9.162) we obtain

A
h2

A
2A S 2 p2 r ih 2 A S A 2S 0 (9.164)

The real and imaginary parts of this equation must vanish separately:

S 2 p2 r 2m E V r (9.165)

2 A S A 2S 0 (9.166)

In deriving (9.165) we have neglected the term that contains h (i.e., h2 A 2A), since it is
small compared to S 2 and to p2 r ; h is considered to be very small for classical systems.
To illustrate the various aspects of the WKB method, let us consider the simple case of the

one-dimensional motion of a single particle. We can thus reduce (9.165) and (9.166), respec-
tively, to

dS

dx
2m E V p x (9.167)

2
d

dx
ln A p x

d

dx
p x 0 (9.168)

Let us find the solutions of (9.167) and (9.168). Integration of (9.167) yields

S x dx 2m E V x p x dx (9.169)

We can reduce (9.168) to
d

dx
2 ln A ln p x 0 (9.170)

which in turn leads to

A x
C

p x
(9.171)

where C is an arbitrary constant. So (9.169) and (9.171) give, respectively, the phase S x and
amplitude A x of the WKB wave function (9.163).
Inserting (9.171) and (9.169) into (9.163), we obtain two approximate solutions to equation

(9.162):

x
C

p x
exp

i

h

x

p x dx (9.172)

The amplitude of this wave function is proportional to 1 p x ; hence the probability of find-
ing the particle between x and x dx is proportional to 1 p x . This is what we expect for
a “classical” particle because the time it will take to travel a distance dx is proportional to the
inverse of its speed (or its momentum).
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We can now examine two separate cases corresponding to E V x and E V x . First,
let us consider the case E V x , which is called the classically allowed region. Here p x is
a real function; the most general solution of (9.162) is a combination of x and x :

x
C

p x
exp

i

h

x

p x dx
C

p x
exp

i

h

x

p x dx (9.173)

Second, in the case where E V x , which is known as the classically forbidden region,
the momentum p x is imaginary and the exponents of (9.172) become real:

x
C

p x
exp

1

h x
p x dx

C

p x
exp

1

h

x

p x dx (9.174)

Equations (9.173) and (9.174) give the system’s wave function in the allowed and forbidden

regions, respectively. But what about the structure of the wave function near the regions E
V x ? At the points xi , we have E V xi ; hence the momentum (9.167) vanishes, p xi 0.

These points are called the classical turning points, because classically the particle stops at xi
and then turns back to resume its motion in the opposite direction. At these points the wave

function (9.172) becomes infinite since p xi 0. One then needs to examine how to find the

wave function at the turning points. Before looking into that, let us first study the condition of

validity for the WKB approximation.

Validity of the WKB approximation

To obtain the condition of validity for the WKB method, let us examine the size of the various

terms in (9.164), notably A S 2 and ihA 2S. Since quantities of the order of h are too small
in the classical limit, the quasi-classical region is expected to be given by the condition4

h 2S S 2 (9.175)

which can be written in one dimension as

h
S

S 2
1 (9.176)

or
d

dx

h

S
1 (9.177)

since 2S d2S dx2 S and S dS x dx S . In what follows we are going to
verify that this relation yields the condition of validity for the WKB approximation.

Since S p x (see (9.167)), we can reduce (9.177) to

d x

dx
1 (9.178)

where x x 2 and x is the de Broglie wavelength of the particle:

x
h

p x

h

2m E V x
(9.179)

4The condition (9.175) can be found as follows. Substituting r ei S r h into (9.162) and multiplying by h2,
we get ih 2S r S 2 p2 r 0. In the classical limit, the term containing h, ih 2S r , must be small
compared to the terms that do not, S 2; i.e., h 2S r S 2.
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The condition (9.178) means that the rate of change of the de Broglie wavelength is small (i.e.,

the wavelength of the particle must vary only slightly over distances of the order of its size).

But this condition is always satisfied for classical systems. So the condition of validity for the

WKB method is given by

d x

dx

d

dx

h

p x
1 (9.180)

This condition clearly breaks down at the classical turning points, E V xi , since p xi 0;

classically, the particle stops at x xi and then moves in the opposite direction. As p x
becomes small, the wavelength (9.179) becomes large and hence violates the requirement that

it remains small and varies only slightly; when p x is too small, the condition (9.180) breaks

down. So the WKB approximation is valid in both the allowed and forbidden regions but not at

the classical turning points.

How does one specify the particle’s wave function at x xi? Or how does one connect the
allowed states (9.173) with their forbidden counterparts (9.174)? As we go through the classical

turning point, from the allowed to the forbidden region and vice versa, we need to examine how

to determine the particle’s wave function everywhere and notably at the turning points. This

is the most difficult issue of the WKB method, for it breaks down at the turning points. In the

following section we are going to deal with this issue by solving the Schrödinger equation near

and at x xi . We will do so by resorting to an approximation: we consider the potential to be
given, near the turning points, by a straight line whose slope is equal to that of the potential at

the turning point.

In what follows, we want to apply the WKB approximation to find the energy levels and the

wave function of a particle moving in a potential well. We are going to show that the formulas

giving the energy levels depend on whether or not the potential well has rigid walls. In fact, it

even depends on the number of rigid walls the potential has. For this, we are going to consider

three separate cases pertaining to the potential well with: no rigid walls, a single rigid wall, and

two rigid walls.

9.4.2 Bound States for Potential Wells with No Rigid Walls

Consider a potential well that has no rigid walls as displayed in Figure 9.5. Here the classically

forbidden regions are specified by x x1 and x x2, the classically allowed region by
x1 x x2; x1 and x2 are the classical turning points. This is a suitable and simple example
to illustrate the various aspects of the WKB method, notably how to determine the particle’s

wave function at the turning points. We will see how this method yields the Bohr–Sommerfeld

quantization rule from which the bound state energies are to be extracted.

The WKB method applies everywhere in the three regions 1 , 2 , and 3 , except near the

two turning points x x1 and x x2 at which E V x1 V x2 . TheWKB approximation
to the wave function in regions 1 and 3 can be inferred from (9.174) and the approximation

in region 2 from (9.173): the wave function must decay exponentially in regions (1) and (3)

as x and x , respectively, but must be oscillatory in region (2):

1WK B x
C1
p x

exp
1

h

x1

x
p x dx x x1 (9.181)

2WK B x
C2
p x

exp
i

h x
p x dx

C2
p x

exp
i

h x
p x dx x1 x x2

(9.182)
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6

1 2 3

x1 x2

E

x

V x

Figure 9.5 Potential with no rigid walls: regions 1 and 3 are classically forbidden, while

2 is classically allowed.

3WKB x
C3
p x

exp
1

h

x

x2

p x dx x x2 (9.183)

the coefficients C1, C2, C2 , and C3 have yet to be determined. For this, we must connect
the solutions 1 x , 2 x , and 3 x when passing from one region into another through the

turning points x x1 and x x2 where the quasi-classical approximation ceases to be valid.
That is, we need to connect 3 x to 2 x as we go from region (3) to (2), and then connect

1 x to 2 x as we go from (1) to (2). Since the WKB approximation breaks down at x1 and
x2, we need to look for the exact solutions of the Schrödinger equation near x1 and x2.

9.4.2.1 Connection of 3WKB x to 2WK B x

The WKB approximation to the wave function in region (2) can be inferred from (9.182):

2WKB x
C2
p x

exp
i

h

x2

x
p x dx

C2
p x

exp
i

h

x2

x
p x dx x1 x x2

(9.184)

this can be written as

2WKB x
C2
p x

sin
1

h

x2

x
p x dx x1 x x2 (9.185)

where is a phase to be determined. Since the WKB approximation breaks down near the

turning point x2 (i.e., on both sides of x x2), we need to find a scheme for determining the
wave function near x2.
For this, let us now look for the exact solution of the Schrödinger equation near x x2. As

mentioned above, if x x2 is small enough, within the region x x2 , we can approximately
represent the potential by a straight line whose slope is equal to that of the potential at the

classical turning point x x2. That is, expanding V x to first order around x x2, we obtain

V x V x2 x x2
dV x

dx x x2

E x x2 F0 (9.186)

where we have used the fact that V x2 E and where F0 is given by F0
dV x
dx x x2

.

Equation (9.186) means that V x is approximated by a straight line x x2 F0, where F0 is
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the slope of V x at x x2. The Schrödinger equation for the potential (9.186) can be written
as

d2 x

dx2
2mF0

h2
x x2 x 0 (9.187)

Using the change of variable

y
2mF0

h2

1 3

x x2 (9.188)

we can transform (9.187) into

2mF0

h2

2 3 d2 y

dy2
y y 0 (9.189)

or
d2 y

dy2
y y 0 (9.190)

This is a well-known differential equation whose solutions are usually expressed in terms of the

Airy functions5 Ai y :

y A Ai y
A

0

cos
z3

3
yz dz (9.191)

where A is a normalization constant.
From the properties of the Airy function Ai y 1 0 cos z3 3 yz dz, the asymptotic

behavior of Ai y is given for large positive and large negative values of y by

Ai y
1
y 1 4

sin 2
3

y 3 2
4

y 0

1
2 y1 4

exp 2
3
y3 2 y 0

(9.192)

The asymptotic expression of (9.191) is therefore given for large positive and large negative

values of y by

y
A
y 1 4

sin 2
3

y 3 2
4

y 0

A
2 y1 4

exp 2
3
y3 2 y 0

(9.193)

Since F0 0 equation (9.188) implies that the cases y 0 and y 0 correspond to x x2
and x x2, respectively.
Now near the turning point x x2, (9.186) shows that E V x x x2 F0; hence

the square of the classical momentum p2 x is given by

p2 x 2m E V x 2m x x2 F0 (9.194)

which is negative for x x2 and positive for x x2. Combining equations (9.188) and (9.194),
we obtain

p2 x 2mhF0
2 3 y (9.195)

5The solution to the differential equation d2 y dy y y is given by the Airy function y Ai y
1
0 cos z3 3 yz dz.
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Now since dx h2 2mF0 1 3dy (see (9.188)), we use (9.195) to infer the following expres-
sion:

1

h

x2

x
p x dx

1

h
2mhF0

1 3 h2

2mF0

1 3
0

y
y dy

0

y
y dy

2

3
y 3 2

(9.196)

Inserting this into (9.193), we obtain

x
A
p x

sin 1
h

x2
x p x dx

4
x x2

A
2 p x

exp 1
h

x2
x p x dx x x2

(9.197)

where A 2mhF0 1 6A . A comparison of (9.197a) with (9.185) and (9.197b) with

(9.183) reveals that

A 2C3 C2 A
4

(9.198)

these expressions are known as the connection formulas, for they connect the WKB solutions
at either side of a turning point. Since 4, 2WK B x of (9.185) becomes

2WK B x
C2
p x

sin
1

h

x2

x
p x dx

4
(9.199)

9.4.2.2 Connection of 1WKB x to 2WK B x

The WKB wave function for x x1 is given by (9.181); the WKB solution for x x1 can be
inferred from (9.182):

2WK B x
C2
p x

exp
i

h

x

x1

p x dx
C2
p x

exp
i

h

x1

x
p x dx x1 x x2

(9.200)

which can be written as

2WK B x
D

p
sin

1

h

x

x1

p x dx (9.201)

Recall that near x x1 the WKB approximation breaks down.
The shape of the wave function near x x1 can, however, be found from an exact solution

of the Schrödinger equation. For this, we proceed as we did for x x2. That is, we look for
the exact solution of the Schrödinger equation for small values of x x1 . Expanding V x
near x x1, we obtain a Schrödinger equation similar to (9.190). Its solutions for x x1 and
x x1 are given by expressions that are similar to (9.197b) and (9.197a) respectively:

x
E

2 p x
exp 1

h
x
x1
p x dx x x1

E
p x

sin 1
h

x
x1
p x dx

4
x x1

(9.202)

Again, comparing (9.202a) with (9.181) and (9.202b) with (9.201), we obtain the other set of

connection formulas:

E 2C1 E D
4

(9.203)
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hence 2 x of (9.201) becomes

2WK B x
D

p x
sin

1

h

x

x1

p x dx
4

(9.204)

9.4.2.3 Quantization of the Energy Levels of the Bound States

Since the two solutions (9.199) and (9.204) represent the same wave function in the same re-

gion, they must be equal:

2WK B x
D

p x
sin

1

h

x

x1

p x dx
4

C2
p x

sin
1

h

x2

x
p x dx

4
(9.205)

This is an equation of the form D sin 1 C2 sin 2. Its solutions must satisfy the following

two relations. The first is 1 2 n 1 , i.e.,

1

h

x

x1

p x dx
4

1

h

x2

x
p x dx

4
n 1 (9.206)

or
1

h

x2

x1

p x dx n
1

2
n 0 1 2 3 (9.207)

and the second is

D 1 nC2 (9.208)

Since the integral between the turning points
x2
x1
p x dx is equal to half the integral over a

complete period of the quasi-classical motion of the particle, i.e.,
x2
x1
p x dx 1

2
p x dx ,

we can reduce (9.207) to

p x dx 2
x2

x1

p x dx n
1

2
h n 0 1 2 3 (9.209)

This relation determines the quantized (WKB) energy levels En of the bound states of a semi-
classical system. It is similar to the Bohr–Sommerfeld quantization rule, which in turn is known
to represent an improved version of the Wilson–Sommerfeld rule p x dx nh, because the
Wilson–Sommerfeld rule does not include the zero-point energy term h 2 (in the case of large
values of n, where the classical approximation becomes reliable, we have n 1 2 n; hence
(9.209) reduces to p x dx nh). We can interpret this relation as follows: since the integral
p x dx gives the area enclosed by the closed trajectory of the particle in the xp phase space,

the condition (9.209) provides the mechanism for selecting, from the continuum of energy val-

ues of the semiclassical system, only those energies En for which the areas of the contours
p x En 2m En V x are equal to n 1

2
h:

p x En dx 2
x2

x1

2m En V x dx n
1

2
h (9.210)

with n 0, 1, 2, 3, . So in the xp phase space, the area between two successive bound states
is equal to h: p x En 1 dx p x En dx h. Each single state therefore corresponds
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to an area h in the phase space. Note that the number n present in this relation is equal to the
number of bound states; that is, the number of nodes of the wave function x .
In summary, for a particle moving in a potential well like the one shown in Figure 9.5, the

bound state energies can be extracted from the quantization rule (9.210) and the wave function

is given in regions (1) and (3) by (9.181) and (9.183), respectively, and in region (2) either by

(9.199) or (9.204). Combining the connection relations (9.198), (9.203), and (9.208) with the
wave functions (9.181), (9.183), (9.199), and (9.204), we get the WKB approximation to the

wave function:

WK B x
1WK B x

1 nC3
p x

exp 1
h

x1
x p x dx x x1

3WK B x
C3
p x

exp 1
h

x
x2
p x dx x x2

(9.211)

In the region x1 x x2, 2WKB x is given either by (9.199) or by (9.204)

2WK B x

2 1 nC3
p x

sin 1
h

x
x1
p x dx

4
x1 x x2

2C3
p x

sin 1
h

x2
x p x dx

4
x1 x x2

(9.212)

The coefficient C3 has yet to be found from the normalization of WK B x . This is the wave
function of the nth bound state.

Remark

An important application of the WKB method consists of using the quantization rule (9.210) to

calculate the energy levels of central potentials. The energy of a particle of mass m bound in a
central potential V r is given by

E
p2r
2m

Veff r
p2r
2m

V r
h2

2m

l l 1

r2
(9.213)

The particle is bound to move between the turning points r1 and r2 whose values are given by
E Veff r1 Veff r2 and its bound state energy levels can be obtained from

r2

r1

dr pr E r
r2

r1

dr 2m E V r
h2

2m

l l 1

r2
n

1

2
h (9.214)

where n 0, 1, 2, 3, .

Example 9.7

Use the WKB method to estimate the energy levels of a one-dimensional harmonic oscillator.

Solution

The classical energy of a harmonic oscillator

E x p
p2

2m

1

2
m 2x2 (9.215)

leads to p E x 2mE m2 2x2. At the turning points, xmin and xmax , the energy is
given by E V x 1

2
m 2x2 where xmin a and xmax a with a 2E m 2 . To



524 CHAPTER 9. APPROXIMATION METHODS FOR STATIONARY STATES

-

6

x1 x2

E
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Figure 9.6 Potential well with one rigid wall located at x x1.

obtain the quantized energy expression of the harmonic oscillator, we need to use the Bohr–

Sommerfeld quantization rule (9.210):

p dx 2
a

a
2mE m2 2x2dx 4m

a

0

a2 x2dx (9.216)

Using the change of variable x a sin , we have

a

0

a2 x2dx a2
2

0

cos2 d
a2

2

2

0

1 cos 2 d
a2

4

E

2m 2
(9.217)

hence

p dx
2 E

(9.218)

Since p dq n 1
2
h or 2 E n 1 2 h, we obtain

EWK Bn n
1

2
h (9.219)

This expression is identical with the exact energy of the harmonic oscillator.

9.4.3 Bound States for Potential Wells with One Rigid Wall

Consider a particle moving in a potential well that has a rigid wall at x x1 (Figure 9.6); it is
given by V x for x x1 and by a certain function V x for x x1. The classically
allowed region is specified by x1 x x2; x1 and x2 are the turning points.
To obtain the quantization rule which gives the bound state energy levels for this potential,

we proceed as we did in obtaining (9.210). The WKB wave function in region x1 x x2 has
an oscillatory form; it can be inferred from (9.201):

WK B x
A

p x
sin

1

h
p x dx x1 x x2 (9.220)

where is a phase factor that needs to be specified. For this, we need to find the WKB wave

function near the two turning points x1 and x2.
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First, near x2 (i.e., for x x2) we can determine the value of as we did in obtaining

(9.199). That is, expand V x around x x2 and then match the WKB solutions at x x2;
this leads to a phase factor 4 and hence

WK B x
B

p x
sin

1

h

x2

x
p x dx

4
x1 x x2 (9.221)

Second, since the wave function has to vanish at the rigid wall, WK B x1 0, the phase

factor must be zero; then (9.220) yields

WK B x
A

p x
sin

1

h

x

x1

p x dx x1 x x2 (9.222)

Now, since (9.221) and (9.222) represent the same wave function in the same region, the

sum of their arguments must be equal to n 1 and A 1 nB (see Eq. (9.208)):

1

h

x

x1

p x dx
1

h

x2

x
p x dx

4
n 1 (9.223)

Thus, the quantization rule which gives the bound state energy levels for potential wells with

one single rigid wall is given by

x2

x1

p x dx n
3

4
h n 0 1 2 3 lcdots (9.224)

Remark

From the study carried out above, we may state that the phase factor of the WKB solution

(9.220) is in general equal to

zero for turning points located at the rigid walls

4 for turning points that are not located at the rigid walls.

9.4.4 Bound States for Potential Wells with Two Rigid Walls

Consider a potential well that has two rigid walls at x x1 and x x2. That is, as shown in
Figure 9.7, V x is infinite for x x1 and x x2 and given by a certain function V x for

x1 x x2. The wave function of a particle that is confined to move between the two rigid
walls must vanish at the walls: x1 x2 0.

To obtain the quantization rule which gives the bound state energy levels for this potential,

we proceed as we did in obtaining (9.224). The WKB wave function has an oscillatory form in

x1 x x2 and vanishes at both x1 and x2; the phase factor is zero at x1 and x2. By analogy
with the procedure that led to (9.222), we can show that the WKB wave function in the vicinity

of x1 (i.e., in the region x x1) is given by

WK B x
A

p x
sin

1

h

x

x1

p x dx x1 x x2 (9.225)

and in the vicinity of x2 (i.e., in the region x x2) it is given by

WK B x
B

p x
sin

1

h

x2

x
p x dx x1 x x2 (9.226)
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Figure 9.7 Potential well with two rigid walls located at x1 and x2.

Note that the last two wave functions satisfy the correct boundary conditions at x1 and x2:

WK B x1 WK B x2 0.

Since equations (9.225) and (9.226) represent the same wave function in the same region,

the sum of the arguments must then be equal to n 1 and A 1 nB (see Eq. (9.208)):

1

h

x

x1

p x dx
1

h

x2

x
p x dx n 1 (9.227)

hence the quantization rule for potential wells with two rigid walls is given by

x2

x1

p x dx n 1 h n 0 1 2 3 (9.228)

or by
x2

x1

p x dx n h n 1 2 3 (9.229)

The only difference between (9.228) and (9.229) is in the minimum value of the quantum num-

ber n: the lowest value of n is n 0 in (9.228) and n 1 in (9.229).

Remark

In this section we have derived three quantization rules (9.210), (9.224), and (9.229); they

provide the proper prescriptions for specifying the energy levels for potential wells with zero,

one, and two rigid walls, respectively. These rules differ only in the numbers 1
2
, 3
4
, and 0 that are

added to n. In the cases where n is large, which correspond to the semiclassical domain, these
three quantization rules become identical; the semiclassical approximation is most accurate for

large values of n.

Example 9.8

Use the WKB approximation to calculate the energy levels of a spinless particle of mass m
moving in a one-dimensional box with walls at x 0 and x L .

Solution

This potential has two rigid walls, one at x 0 and the other at x L. To find the energy
levels, we make use of the quantization rule (9.229). Since the momentum is constant within



9.4. THE WENTZEL–KRAMERS–BRILLOUIN METHOD 527

the well p E x 2mE , we can easily infer the WKB energy expression of the particle
within the well. The integral is quite simple to calculate:

L

0

p dx 2mE
L

0

dx L 2mE (9.230)

Now since
L
0 p dx n h we obtain

L 2mEWK Bn n h (9.231)

hence

EWK Bn

2h2

2mL2
n2 (9.232)

This is the exact value of the energy of a particle in an infinite well.

Example 9.9 (WKB method for the Coulomb potential)

Use the WKB approximation to calculate the energy levels of the s states of an electron that is

bound to a Ze nucleus.

Solution

The electron moves in the Coulomb field of the Ze nucleus: V r Ze2 r . Since the
electron is bound to the nucleus, it can be viewed as moving between two rigid walls 0 r a
with E V a , a Ze2 E ; the energy of the electron is negative, E 0.

The energy levels of the s states (i.e., l 0) can thus be obtained from (9.229):

a

0

2m E
Ze2

r
dr n h (9.233)

Using the change of variable x a r , we have

a

0

2m E
Ze2

r
dr 2mE

a

0

a

r
1 dr a 2mE

1

0

1

x
1dx

2
a 2mE Ze2

m

2E
(9.234)

In deriving this relation, we have used the integral
1
0 1 x 1 dx 2; this can be easily

obtained by the application of the residue theorem. Combining (9.233) and (9.234) we end up

with

En
mZ2e4

2h2
1

n2
Z2e2

2a0

1

n2
(9.235)

where a0 h2 me2 is the Bohr radius. This is the correct (Bohr) expression for the energy
levels.
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Figure 9.8 A potential barrier whose classically allowed regions are specified by x x1 and
x x2 and the forbidden region by x1 x x2.

9.4.5 Tunneling through a Potential Barrier

Consider the motion of a particle of momentum p0 2mE incident from left onto a po-
tential barrier V x , shown in Figure 9.8, with an energy E that is smaller than the potential’s
maximum value Vmax .
Classically, the particle can in no way penetrate inside the barrier; hence it will get reflected

backwards. Quantum mechanically, however, the probability corresponding to the particle’s

tunneling through the barrier and “emerging” to the right of the barrier is not zero. In what

follows we want to use the WKB approximation to estimate the particle’s probability of passing

through the barrier.

In regions (1) and (3) of Figure 9.8 the particle is free:

1 x incident x re f lected x Aei p0x h Be i p0x h (9.236)

3 x transmitted x Eei p0x h (9.237)

where A, B, and E are the amplitudes of the incident, reflected, and transmitted waves, respec-
tively; in region (3) we have outgoing waves only.

What about the wave function in the classically forbidden region (2)? The WKB method

provides the answer. Since the particle energy is smaller than Vmax , i.e., E Vmax , and if the
potential V x is a slowly varying function of x , the wave function in region (2) is given by the
WKB approximation (see (9.174))

2 x
C

p x
exp

1

h

x

x1

p x dx
D

p x
exp

1

h

x

x1

p x dx (9.238)

where p x i 2m V x E . The term D p x exp 1 h x
x1
p x dx increases

exponentially when the barrier is very wide and is therefore unphysical. We shall be considering

the case where the barrier is wide enough so that the approximation D 0 is valid; hence 2 x
becomes

2 x
C

p x
exp

1

h

x

x1

p x dx (9.239)

The probability corresponding to the particle’s passage through the barrier is given by the
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transmission coefficient

T
trans

inc

trans x 2

inc x 2

E 2

A 2
(9.240)

since trans inc (the speeds of the incident and transmitted particles are equal). In what

follows we are going to calculate the coefficient E in terms of A. For this, we need to use the
continuity of the wave function and its derivative at x1 and x2. First, using (9.236) and (9.239),
the continuity relations 1 x1 2 x1 and 1 x1 2 x1 lead, respectively, to

Aeip0x1 h Be i p0x1 h
C

a1
(9.241)

i

h
p0 Ae

i p0x1 h Be i p0x1 h
a1
h a1

C (9.242)

where a1 i 2m V x1 E . The continuity of the wave function and its derivative at x2,

2 x2 3 x2 , and 2 x2 3 x2 lead to

C

a2
exp

1

h

x2

x1

p x dx Eeip0x2 h (9.243)

a2
h a2

C exp
1

h

x2

x1

p x dx
ip0
h
Eei p0x2 h (9.244)

where a2 i 2m V x2 E .
Adding (9.241) and (9.242) we get C 2A a1eip0x1 h 1 a1 i p0 which, when inserted

into (9.243), yields

E

A

2

1 a1 i p0

a1
a2
eip0 x1 x2 h exp

1

h

x2

x1

p x dx (9.245)

which in turn leads to

E 2

A 2
4

a2 a1 a1a2 p20
exp

2

h

x2

x1

p x dx (9.246)

The substitution of this expression into (9.240) finally yields an approximate value for the

transmission coefficient through a potential barrier V x :

T e 2 1

h

x2

x1

2m V x E dx (9.247)

Tunneling phenomena are common at the microscopic scale; they occur within nuclei,

within atoms, and within solids. In nuclear physics, for instance, there are nuclei that decay

into an -particle (helium nucleus with Z 2) and a daughter nucleus. This process can be

viewed as the tunneling of an -particle through the potential (Coulomb) barrier between the

-particle and the daughter nucleus; once formed inside the nucleus, the -particle cannot es-

cape unless it tunnels through (penetrates) the Coulomb barrier surrounding it. Tunneling also

occurs within metals; when a metal is subject to an external electric field, electrons can be

emitted from the metal. This is known as cold emission; we will study it in Example 9.10.
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Example 9.10

Use the WKB approximation to estimate the transmission coefficient of a particle of mass m
and energy E moving in the following potential barrier:

V x
0 x 0

V0 x x 0

Solution

The transmission coefficient is given by (9.247), where x1 0 and the value of x2, which can
be obtained from the relation V0 x2 E , is given by x2 V0 E . Setting the values

of x1 and x2 into (9.247), and since V x E V0 E x , we get

1

h

x2

x1

2m V x E dx
2m

h

V0 E

0

V0 E x dx

2 2m

3h
V0 E 3 2 (9.248)

The transmission coefficient is thus given by

T e 2 exp
4 2m

3h
V0 E 3 2 (9.249)

This problem is useful for the study of cold emission of electrons from metals. In the
absence of any external electric field, the electrons are bound by a potential of the type V x
V0 for x 0, known as the work function of the metal. When we turn on an external electric

field E , the potential seen by the electron is no longer V0 but V x V0 eEx . This potential
barrier has a width through which the electrons can escape: every electron of energy E eEx
can escape. The quantity eEx2, where x2 V0 E , is known as the work function of the

metal; the width of the potential barrier of the metal is given by 0 x x2.

9.5 Concluding Remarks

In this chapter we have studied three approximation methods that apply to stationary Hamilto-

nians. As we saw, approximation methods offer efficient, short ways for obtaining energy levels

that are, at times, identical with the exact results. For instance, in the calculation of the energy

levels of the harmonic oscillator and the hydrogen atom, we have seen in a number of solved

examples how the variational method and the WKB method lead to the correct energies without
resorting to solve the Schrödinger equation; the approximation methods deal merely with the

solution of a few simple integrals. In Chapters 4 and 7, however, we have seen that, to solve the

Schrödinger equation for the harmonic oscillator and for the hydrogen atom, one has to carry

out lengthy, laborious calculations.

Approximation methods offer, in general, powerful economical prescriptions for determin-

ing reliable results for systems that cannot be solved exactly. In the next chapter we are going

to study approximation methods that apply to time-dependent processes such as atomic transi-

tions, decays, and so on.
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9.6 Solved Problems

The topic of approximation methods touches on almost all areas of quantummechanics, ranging

from one- to three-dimensional problems, as well as on the various aspects of the formalism of

quantum mechanics.

Problem 9.1

Using first-order perturbation theory, calculate the energy of the nth excited state for a spinless
particle of mass m moving in an infinite potential well of length 2L, with walls at x 0 and

x 2L:

V x
0 0 x 2L

otherwise

which is modified at the bottom by the following two perturbations:

(a) Vp x V0 sin x 2L ; (b) Vp x V0 x L , where 1.

Solution

The exact expressions of the energy levels and of the wave functions for this potential are given

by

En
h2 2

8mL2
n2 n x

1

L
sin

n x

2L
(9.250)

According to perturbation theory, the energy of the nth state is given to first order by

En
h2 2

8mL2
n2 E 1

n (9.251)

where

E 1
n n Vp x n

1

L

2L

0

sin2
n x

2L
Vp x dx (9.252)

(a) Using the relation

cos nx sinmxdx
cos m n x

2 m n

cos m n x

2 m n
m n (9.253)

along with (9.252), we can calculate E 1
n for Vp x V0 sin x 2L as follows:

E 1
n

V0
L

2L

0

sin2
n x

2L
sin

x

2L
dx

V0
2L

2L

0

1 cos
n x

L
sin

x

2L
dx

V0
cos

x

2L

cos[ 1 2n x 2L ]

2 1 2n

cos[ 1 2n x 2L ]

2 1 2n

2L

0

2 V0 4n2

4n2 1
(9.254)

Thus, the energy (9.251) would become

En
h2 2

8mL2
n2

2 V0 4n2

4n2 1
(9.255)
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(b) In the case of Vp x V0 x L , (9.252) leads to

E 1
n

V0
L

2L

0

sin2
n x

2L
x L dx

V0
L
sin2

n

2
(9.256)

hence, depending on whether the quantum number n is even or odd, we have

En
h2 2

8mL2
n2

0 if n is even
V0 L if n is odd

(9.257)

Problem 9.2

Consider a system whose Hamiltonian is given by H E0

1 0 0 0

0 8 0 0

0 0 3 2

0 0 2 7

,

where 1.

(a) By decomposing this Hamiltonian into H H0 Hp, find the eigenvalues and eigen-

states of the unperturbed Hamiltonian H0.
(b) Diagonalize H to find the exact eigenvalues of H ; expand each eigenvalue to the second

power of .

(c) Using first- and second-order nondegenerate perturbation theory, find the approximate

eigenergies of H and the eigenstates to first order. Compare these with the exact values obtained
in (b).

Solution

(a) The matrix of H can be separated as follows:

H H0 Hp E0

1 0 0 0

0 8 0 0

0 0 3 0

0 0 0 7

E0

0 0 0

0 0 0 0

0 0 0 2

0 0 2 0

(9.258)

Notice that H0 is already diagonal; hence its eigenvalues are given by

E 0
1 E0 E 0

2 8E0 E 0
3 3E0 E 0

4 7E0 (9.259)

and its eigenstates by

1

1

0

0

0

2

0

1

0

0

3

0

0

1

0

4

0

0

0

1

(9.260)

(b) The diagonalization of H leads to the following secular equation:

1 E0 E 0 0 0

0 8E0 E 0 0

0 0 3E0 E 2 E0
0 0 2 E0 7E0 E

0 (9.261)
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or

E0 E0 E 8E0 E 3E0 E 7E0 E 4 2E20 0 (9.262)

which in turn leads to the following exact eigenenergies:

E1 1 E0 E2 8E0 E3 5 2 1 2 E0 E4 5 2 1 2 E0
(9.263)

Since 1 we can expand 1 2 to second order in : 1 2 1 2 2. Hence E3
and E4 are given to second order in by

E3 3 2 E0 E4 7 2 E0 (9.264)

(c) From nondegenerate perturbation theory, we can write the first-order corrections to the

energies as follows:

E 1
1 1 Hp 1 E0 1 0 0 0

0 0 0

0 0 0 0

0 0 0 2

0 0 2 0

1

0

0

0

E0 (9.265)

Similarly, we can verify that the second, third, and fourth eigenvalues have no first-order cor-

rections:

E 1
2 2 Hp 2 0 E 1

3 3 Hp 3 0 E 1
4 4 Hp 4 0

(9.266)

Let us now consider the second-order corrections to the energy. From nondegenerate perturba-

tion theory, we have

E 2
1

m 2 3 4

m Hp 1

2

E 0
1 E 0

m

0 (9.267)

since 2 Hp 1 3 Hp 1 4 Hp 1 0. Similarly, we can verify that

E 2
2

m 1 3 4

m Hp 2

2

E 0
2 E 0

m

0 (9.268)

and

E 2
3

m 1 2 4

m Hp 3

2

E 0
3 E 0

m

4 Hp 3

2

E 0
3 E 0

4

2 E0 2

3 7 E0
2E0 (9.269)

because

4 Hp 3 E0 0 0 0 1

0 0 0

0 0 0 0

0 0 0 2

0 0 2 0

0

0

1

0

2 E0 (9.270)
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Similarly, since

3 Hp 4 E0 0 0 1 0

0 0 0

0 0 0 0

0 0 0 2

0 0 2 0

0

0

0

1

2 E0 (9.271)

we can ascertain that

E 2
4

m 1 2 3

m Hp 4

2

E 0
4 E 0

m

3 Hp 4

2

E 0
4 E 0

3

2 E0 2

7 3 E0
2E0 (9.272)

Now, combining (9.265)-(9.272), we infer that the values of the energies to second-order non-

degenerate perturbation theory are given by

E1 E 0
1 E 1

1 E 2
1 1 E0 (9.273)

E2 E 0
2 E 1

2 E 2
2 8E0 (9.274)

E3 E 0
3 E 1

3 E 2
3 3 2 E0 (9.275)

E4 E 0
4 E 1

4 E 2
4 7 2 E0 (9.276)

All these values are identical with their corresponding exact expressions (9.263) and (9.264).

Finally, the first-order corrections to the eigenstates are given by

1
n

m n

m Hp n

E 0
m E 0

n
m (9.277)

and hence

1
1

m 2 3 4

m Hp 1

E 0
m E 0

1

m

0

0

0

0

(9.278)

Similarly, we can show that
1
2 is also given by a zero column matrix, but

1
3 and

1
4 are not:

1
3

m 1 2 4

m Hp 3

E 0
m E 0

3

m
4 Hp 3

E 0
4 E 0

3

4

0

0

0

2

(9.279)

1
4

m 1 2 3

m Hp 4

E 0
m E 0

4

m
3 Hp 4

E 0
3 E 0

4

3

0

0

1

2

(9.280)

Finally, the states are given to first order by n n
1
n :

1

1

0

0

0

2

0

1

0

0

3

0

0

1

2

4

0

0

2

1
(9.281)
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Problem 9.3

(a) Find the exact energies and wave functions of the ground and first excited states and

specify their degeneracies for the infinite cubic potential well

V x y z
0 if 0 x L 0 y L 0 z L,

otherwise.

Now add the following perturbation to the infinite cubic well:

Hp V0L
3 x

L

4
y

3L

4
z

L

4

(b) Using first-order perturbation theory, calculate the energy of the ground state.

(c) Using first-order (degenerate) perturbation theory, calculate the energy of the first ex-

cited state.

Solution

The energy and wave function for an infinite, cubic potential well of size L are given by

Eexactnx ny nz

2h2

2mL2
n2x n2y n2z (9.282)

nx ny nz x y z
8

L3
sin

nx
L
x sin

ny
L
y sin

nz
L
z (9.283)

(a) The ground state is not degenerate; its exact energy and wave function are

Eexact111

3 2h2

2mL2
111 x y z

8

L3
sin

L
x sin

L
y sin

L
z (9.284)

The first excited state is threefold degenerate: 112 x y z , 121 x y z , and 211 x y z
correspond to the same energy, Eexact112 Eexact121 Eexact211 3 2h2 mL2 .
(b) The first-order correction to the ground state energy is given by

E 1
1 111 Hp 111

8V0
L

0

x
L

4
sin2

L
x dx

L

0

y
3L

4
sin2

L
y dy

L

0

z
L

4
sin2

L
z dz 8V0 sin

2

4
sin2

3

4
sin2

4

V0 (9.285)

Thus, the ground state energy is given to first-order perturbation by

E0
3 2h2

2mL2
V0 (9.286)

(c) To calculate the energy of the first excited state to first order, we need to use degenerate

perturbation theory. The values of this energy are equal to 3 2h2 mL2 plus the eigenvalues
of the matrix

V11 V12 V13
V21 V22 V23
V31 V32 V33

(9.287)
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with Vnm n Hp m , and where the following notations are used:

1 211 x y z
8

L3
sin

2

L
x sin

L
y sin

L
z (9.288)

2 121 x y z
8

L3
sin

L
x sin

2

L
y sin

L
z (9.289)

3 112 x y z
8

L3
sin

L
x sin

L
y sin

2

L
z (9.290)

The calculations of the terms Vnm are lengthy but straightforward. Let us show how to calculate
two such terms. First, V11 can be calculated in analogy to (9.285):

V11 8V0
L

0

x
L

4
sin2

2

L
x dx

L

0

y
3L

4
sin2

L
y dy

L

0

z
L

4
sin2

L
z dz 8V0 sin

2

2
sin2

3

4
sin2

4

2V0 (9.291)

V12 and V13 are given by

V12 8V0
L

0

x
L

4
sin

2

L
x sin

L
x dx

L

0

y
3L

4
sin

L
y

sin
2

L
y dy

L

0

z
L

4
sin2

L
z dz 2V0 (9.292)

V13 8V0
L

0

x
L

4
sin

2

L
x sin

L
x dx

L

0

y
3L

4
sin2

L
y dy

L

0

z
L

4
sin

L
z sin

2

L
z dz 2V0 (9.293)

Following this procedure, we can obtain the remaining terms:

V 2V0

1 1 1

1 1 1

1 1 1

(9.294)

The diagonalization of this matrix yields a doubly degenerate eigenvalue and a nondegenerate

eigenvalue,

E 1
1 E 1

2 0 E 1
3 6V0 (9.295)

which lead to the energies of the first excited state:

E1 E2
3 2h2

mL2
E3

3 2h2

mL2
6V0 (9.296)

So the perturbation has only partially lifted the degeneracy of the first excited state.
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Problem 9.4

Consider a hydrogen atom which is subject to two weak static fields: an electric field in the
xy planes E E i j and a magnetic field along the z-axis B Bk, where E and B are
constant. Neglecting the spin–orbit interaction, calculate the energy levels of the n 2 states

to first-order perturbation.

Solution

In the absence of any external field, and neglecting spin–orbit interactions, the energy of the

n 2 state is fourfold degenerate: four different states nlm 200 , 211 , 210 , and

21 1 correspond to the same energy E2 R 4, where R mee4 2h2 13 6 eV is

the Rydberg constant.

When the atom is placed in an external electric field E E i j , the energy of interaction
between the electron’s dipole moment (d er) and E is given by d E eE x y
eEr sin cos sin . On the other hand, when subjecting the atom to an external magnetic

field B Bk, the linear momentum of the electron becomes p p eA c , where A is
the vector potential corresponding to B. So when subjecting a hydrogen atom to both E and B,
its Hamiltonian is given by

H
1

2
p

e

c
A
2 e2

r
eEr sin cos sin

p2

2

e2

r

e

2 c
B L

e

2 c
A2 eEr sin cos sin

(9.297)

Since the magnetic field is weak, we can ignore the term eA2 2 c ; hence we can write H as
H H0 Hp, where H0 is the Hamiltonian of an unperturbed hydrogen atom, while Hp can
be treated as a perturbation:

H0
p2

2

e2

r
Hp

eB

2 c
Lz eEr sin cos sin (9.298)

To calculate the energy levels of the n 2 state, we need to use degenerate perturbation

theory, since the n 2 state is fourfold degenerate; for this, we need to diagonalize the matrix

1 Hp 1 1 Hp 2 1 Hp 3 1 Hp 4

2 Hp 1 2 Hp 2 2 Hp 3 2 Hp 4

3 Hp 1 3 Hp 2 3 Hp 3 3 Hp 4

4 Hp 1 4 Hp 2 4 Hp 3 4 Hp 4

(9.299)

where 1 200 , 2 211 , 3 210 , and 4 21 1 . We therefore need to

calculate the term

2l m Hp 2lm
eB

2 c
mh l l m m eE 2l m r sin cos sin 2lm (9.300)

Since x r sin cos and y r sin sin are both odd, the only terms that survive among

2l m x 2lm and 2l m y 2lm are 200 x 21 1 , 200 y 21 1 , and their complex

conjugates. That is, x and y can couple only states of different parities (l l 1) and whose



538 CHAPTER 9. APPROXIMATION METHODS FOR STATIONARY STATES

azimuthal quantum numbers satisfy this condition: m m 1. So we need to calculate only

200 x 21 1
0

R20 r R21 r r
3dr Y00 sin cos Y1 1 d (9.301)

200 y 21 1
0

R20 r R21 r r
3dr Y00 sin sin Y1 1 d (9.302)

where

0

R20 r R21 r r
3dr 3 3a0 (9.303)

a0 is the Bohr radius, a0 h2 mee2 . Using the relations

sin cos
2

3
Y1 1 Y11 sin sin i

2

3
Y1 1 Y11

(9.304)

along with

Yl m Ylm d l l m m (9.305)

we obtain

Y00 sin cos Y11 d
1

4
sin cos Y11 d

1

6
Y1 1 Y11 d

1

6
(9.306)

Y00 sin sin Y11 d
i

6
Y1 1 Y11 d

i

6
(9.307)

Similarly, we have

Y00 sin cos Y1 1 d
1

6
(9.308)

Y00 sin sin Y1 1 d
i

6
(9.309)

Now, substituting (9.303), (9.306), and (9.308) into (9.301), we end up with

200 x 21 1
3

2
a0 200 y 21 1

3i

2
a0 (9.310)

hence

21 1 x 200
3

2
a0 21 1 y 200

3i

2
a0 (9.311)

The matrix (9.299) thus becomes

0 i 0 i
i 0 0

0 0 0 0

i 0 0

(9.312)
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where and stand for 3eEa0 2 and ehB 2 c .
The diagonalization of (9.312) yields the following eigenvalues:

1
e2h2B2

4 2c2
18e2E2a20 2 3 0 4

e2h2B2

4 2c2
18e2E2a20 (9.313)

Finally, the energy levels of the n 2 states are given to first-order approximation by

E 1
21

R

4

e2h2B2

4 2c2
18e2E2a20 E 1

22

R

4
(9.314)

E 1
23

R

4
E 1
24

R

4

e2h2B2

4 2c2
18e2E2a20 (9.315)

So the external electric and magnetic fields have lifted the degeneracy of the n 2 level only

partially.

Problem 9.5

A system, with an unperturbed Hamiltonian H0, is subject to a perturbation H1 with

H0 E0

15 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3

H1
E0
100

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

(a) Find the eigenstates of the unperturbed Hamiltonian H0 as well as the exact eigenvalues
of the total Hamiltonian H H0 Hp.

(b) Find the eigenenergies of H to first-order perturbation. Compare them with the exact
values obtained in (a).

Solution

(a) First, a diagonalization of H0 yields the eigenstates

1

1

0

0

0

2

0

1

0

0

3

0

0

1

0

4

0

0

0

1

(9.316)

The values of the unperturbed energies are given by a nondegenerate value E 0
1 15E0 and a

threefold degenerate value E 0
2 E 0

3 E 0
4 3E0.

The exact eigenvalues of H can be obtained by diagonalizing H . Adopting the notation
1 100, we can write the secular equation as

15E0 E 0 0 0

0 3E0 E E0 0

0 E0 3E0 E 0

0 0 0 3E0 E

0 (9.317)
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or

15E0 E 3E0 E 3E0 E 2 2E20 0 (9.318)

which in turn leads to the exact values of the eigenenergies:

E1 15E0 E2 3E0 E3 3 E0 E4 3 E0 (9.319)

(b) To calculate the energy eigenvalues of H to first-order degenerate perturbation, and

since H0 has one nondegenerate eigenvalue, 15E0, and a threefold degenerate eigenvalue, 3E0,
we need to make use of both nondegenerate and degenerate perturbative treatments. First, let

us focus on the nondegenerate state; its energy is given by

E1 15E0 1 H1 1

15E0
E0
100

1 0 0 0

0 0 0 0

0 0 E0 0

0 E0 0 0

0 0 0 0

1

0

0

0

15E0 (9.320)

This is identical with the exact eigenvalue (9.319) obtained in (a).
Second, to find the degenerate states, we need to diagonalize the matrix

V
V11 V12 V13
V21 V22 V23
V31 V32 V33

(9.321)

where

V11 2 Hp 2 0 1 0 0

0 0 0 0

0 0 E0 0

0 E0 0 0

0 0 0 0

0

1

0

0

0 (9.322)

V12 2 Hp 3 0 1 0 0

0 0 0 0

0 0 E0 0

0 E0 0 0

0 0 0 0

0

0

1

0

E0 (9.323)

V13 2 Hp 4 0 1 0 0

0 0 0 0

0 0 E0 0

0 E0 0 0

0 0 0 0

0

0

0

1

0 (9.324)

Similarly, we can show that

V21 3 Hp 2 E0 V22 3 Hp 3 0 V23 3 Hp 4 0

(9.325)

V31 4 Hp 2 0 V32 4 Hp 3 0 V33 4 Hp 4 0

(9.326)
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Figure 9.9 Shapes of 0 x Ae x , d 0 x dx , and d2 0 x dx2.

So the diagonalization of

V
0 E0 0

E0 0 0

0 0 0

(9.327)

leads to the corrections E 1
2 0, E 1

3 E0, and E
1
4 E0. Thus, the energy eigenvalues

to first-order degenerate perturbation are

E2 E 0
2 E 1

2 3E0 E3 E 0
3 E 1

3 3 E0 (9.328)

E4 E 0
4 E 1

4 3 E0 (9.329)

These are indeed identical with the exact eigenenergies (9.319) obtained in (a).

Problem 9.6

Use the variational method to estimate the energy of the ground state of a one-dimensional

harmonic oscillator by making use of the following two trial functions:

(a) 0 x Ae x , (b) 0 x A x2 ,

where is a positive real number and where A is the normalization constant.

Solution

(a) This wave function, whose shape is displayed in Figure 9.9a, is quite different from a

Gaussian: it has a cusp at x 0; hence its first derivative is discontinuous at x 0.

The normalization constant A can be calculated at once:

0 0 A2
0

e2 xdx A2
0

e 2 xdx 2A2
0

e 2 xdx
A2

(9.330)

hence A . To find E0 we need to calculate the potential and the kinetic terms. Using

the integral 0 xne axdx n! an 1 we can easily calculate the potential term:

0 V x 0
1

2
m 2A2 x2e 2 x dx m 2A2

0

x2e 2 xdx
m 2

4 2

(9.331)
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But the kinetic energy term h2 2m 0 d2 dx2 0 is quite tricky to calculate. Since the

first derivative of 0 x is discontinuous at x 0, a careless, straightforward calculation of

0 d2 dx2 0 , which makes use of (9.123), leads to a negative kinetic energy:

h2

2m
0
d2

dx2
0

h2

2m
A2 e x d

2e x

dx2
dx

h2

m
A2

0

e x d
2e x

dx2
dx

h2 2

m
A2

0

e 2 xdx
h2 2

2m
(9.332)

So when the first derivative of the wave function is discontinuous, the correct way to calculate

the kinetic energy term is by using (9.124):

h2

2m
0
d2

dx2
0

h2

2m
A2

de x

dx

2

dx
h2 2

2m
A2 e 2 x dx

h2 2

2m
(9.333)

because A2 e 2 x dx 1.

Why do expressions (9.332) and (9.333) yield different results? The reason is that the

correct expression of d2e x dx2 must involve a delta function (Figures 9.9a and 9.9b). That
is, the correct form of d x dx is given by

d 0 x

dx
A
de x

dx
0 x

d x

dx
0 x

1 x 0

1 x 0
(9.334)

or
d 0 x

dx
[ x x ] 0 x (9.335)

where x is the Heaviside function

x
0 x 0

1 x 0
(9.336)

The second derivative of 0 x therefore contains a delta function:

d2 0 x

dx2
d

dx
[ x x ] 0 x (9.337)

and since
d x

dx
x [ x x ]2 1 (9.338)

and since x x , we have

d2 0 x

dx2
2 [ x x ]2 0 x [ x x ] 0 x

2
0 x 2 0 x x (9.339)
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So the substitution of (9.339) into (9.332) leads to the same (correct) expression as (9.333):

h2

2m
0
d2

dx2
0

h2

2m 0 x
d2 0 x

dx2
dx

h2

2m 0 x
2
0 x 2 0 x x dx

h2

2m
2 h2

m
0 0

2 h2

2m
2 h2

m
2

h2

2m
2 (9.340)

Now, adding (9.331) and (9.340), we get

E0
h2

2m
2 m 2

4 2
(9.341)

The minimization of E0 ,

0
E0 h2

m
0

m 2

2 3
0

(9.342)

leads to 2
0 m 2h which, when inserted into (9.341), leads to

E0 0
h2

2m

m

2h

m 2

4

2h

m

h

2
0 707h (9.343)

This inaccurate result was expected; it is due to the cusp at x 0.

(b) We can show that the normalization constant A is given by A 4 3 2 1 4. Unlike

Ae x , the first derivative of the trial A 1 x2 is continuous; hence we can use (9.123) to
calculate the kinetic energy term. The ground state energy is given by

E0 0 H 0

A2
1

x2
h2

2m

d2

dx2
1

2
m 2x2

1

x2
dx

A2h2

2m

6x2 2

x2 4
dx

1

2
m 2A2

x2

x2 2
dx

h2

4m

1

2
m 2 (9.344)

The minimization of E0 with respect to (i.e., E 0) yields 0 h 2m
which, when inserted into (9.344), leads to

E0 0
h

2
(9.345)

This energy, which is larger than the exact value h 2 by a factor of 2, is similar to that of

part (a); this is a pure coincidence. The size of this error is due to the fact that the trial function

A x2 is not a good approximation to the exact wave function, which has a Gaussian form.
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Problem 9.7

For a particle of mass m moving in a one-dimensional box with walls at x 0 and x L, use
the variational method to estimate

(a) its ground state energy and

(b) its first excited state energy.

Solution

The exact solutions of this problem are known: Eexactn
2h2n2 2mL2 .

(a) The trial function for the ground state must vanish at the walls, it must have no nodes,

and must be symmetric (i.e., even) with respect to x L 2. These three requirements can be
satisfied by the following parabolic trial function:

0 x x L x (9.346)

no scale parameter is needed here. Since no parameter is involved, we can calculate the energy

directly (no variation is required): E0 0 H 0 0 0 , where

0 0

L

0

2
0 x dx

L

0

x2 L2 2Lx x2 dx
1

30
L5 (9.347)

and

0 H 0
h2

2m

L

0

d 0 x

dx

2

dx
h2

2m

L

0

L2 4Lx 4x2 dx
h2L3

6m
(9.348)

Thus, the ground state energy is given by

EVM0
0 H 0

0 0
10

h2

2mL2
(9.349)

This is a very accurate result, for it is higher than the exact result by a mere 1%:

EVM0
10
2
Eexact (9.350)

(b) The properties of the exact wave function of the first excited state are known: it has

one node at x L 2 and must be odd with respect to x L 2; this last property makes
it orthogonal to the ground state which is even about L 2. Let us try a polynomial function.
Since the wave function vanishes at x 0, L 2, and L, the trial function must be at least cubic.
The following polynomial function satisfies all these conditions:

1 x x x
L

2
x L (9.351)

Again, no scale parameter is needed.

To calculate EVM1 , we need to find

1 1

L

0

2
1 x dx

L

0

x2 x
L

2

2

x L 2dx
1

840
L7 (9.352)
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and

1 H 1
h2

2m

L

0

d 1 x

dx

2

dx
h2

2m

L

0

3x2 3Lx
L2

2

2

dx

h2L5

40m
(9.353)

Dividing the previous two expressions, we obtain the energy of the first excited state:

EVM1
1 H 1

1 1
42

h2

2mL2
(9.354)

This too is a very accurate result; since Eexact1 2 2h2 2mL2 we can write EVM1 as

EVM1 42Eexact1 2 2; hence EVM1 is higher than Eexact1 by 6%.

Problem 9.8

Consider an infinite, one-dimensional potential well of length L, with walls at x 0 and x L,
that is modified at the bottom by a perturbation Vp x :

V x
0 0 x L

elsewhere
Vp x

V0 0 x L 2
0 elsewhere

where V0 1.

(a) Using first-order perturbation theory, calculate the energy En .
(b) Calculate the energy En in the WKB approximation. Compare this energy with the

expression obtained in (a).

Solution

The exact energy Eexactn and wave function n x for a potential well are given by

Eexactn

2h2

2mL2
n2 n x

2

L
sin

n x

L

(a) Since the first-order correction to the energy caused by the perturbation Vp x is given

by

E 1
n n Vp n

2

L
V0

L 2

0

sin2
n x

L
dx

1

L
V0

L 2

0

1 cos
2n x

L
dx

V0
2

(9.355)

hence the energy is given to first-order perturbation by

E PTn

2h2

2mL2
n2

V0
2

(9.356)

(b) Since this potential has two rigid walls, the energy within theWKB approximation needs

to be extracted from the quantization condition
L
0 p En x dx n h, where

L

0

p En x dx 2m En V0
L 2

0

dx 2mEn
L

L 2
dx

L

2
2m En V0 En (9.357)
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hence L 2m En V0 En 2n h or

En V0 En
2n h

L 2m
(9.358)

Squaring both sides of this equation and using the notation n 2n2 2h2 mL2 , we have

2 En En V0 n 2En V0 (9.359)

Squaring both sides of this equation, we obtain

4E2n 4EnV0
2
n 4E2n V 20 4 nEn 2 nV0 4EnV0 (9.360)

which, solving for En , leads to

En
n

4

V0
2

V 20
4 n

(9.361)

or

EWK Bn

2h2

2mL2
n2

V0
2

mL2V 20
8 2h2

1

n2
(9.362)

When n 1, and since V0 is very small, the WKB energy relation (9.362) gives back the
expression (9.356) that was derived from a first-order perturbative treatment:

EWK Bn E PTn

2h2

2mL2
n2

V0
2

Problem 9.9

Consider a particle of mass m that is bouncing vertically and elastically on a reflecting hard

floor where V z
mgz z 0

z 0
and g is the gravitational constant.

(a) Use the variational method to estimate the ground state energy of this particle.

(b) Use the WKB method to estimate the ground state energy of this particle.

(c) Compare the results of (a) and (b) with the exact ground state energy.

Solution

(a) The ground state wave function of this particle has no nodes and must vanish at z 0

and be finite as z . The following trial function satisfies these conditions:

0 z Aze z (9.363)

where is a parameter and A is the normalization constant. We can show that A 2 3 2 and

hence

0 z 2 3ze z (9.364)

The energy is given by

EVM0 4 3

0

ze z h2

2m

d2

dz2
mgz ze z dz

4 3 h
2

2m 0

2 z 2z2 e 2 z dz 4 3mg
0

z3e 2 z dz

2 3 h
2

m

1

2

1

4
4mg 3 3

8 4
(9.365)
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or

EVM0
h2

2m
2 3

2
mg (9.366)

The minimization of E0 yields 0 3m2g 2h2 1 3 and hence

EVM0 0
3

2

9

2

1 3
1

2
mg2h2

1 3

(9.367)

(b) Since this potential has one rigid wall at x 0, the correct quantization rule is given by

(9.224):
E mg
0 p dz n 3

4
h; the turning point occurs at E mgz and hence z E mg.

Now, since E p2 2m mgz we have p E z 2mE 1 mgz E , and therefore

E mg

0

p En z dz 2mE
E mg

0

1
mg

E
z dz 2mE

2E

3mg

8E3

9mg2
(9.368)

Inserting this relation into the quantization condition
E mg
0 p dz n 3

4
h gives

8E3

9mg2
n

3

4
h (9.369)

and we obtain the WKB approximation for the energy:

EWK Bn
9 2

8
mg2 2h2 n

3

4

2 1 3

(9.370)

Hence the ground state energy is given by

EWK B0

3

4
3 2

1 3 1

2
mg2h2

1 3

(9.371)

(c) Recall that the exact ground state energy, calculated in Problem 4.18, page 275, for a
particle of mass m moving in the potential V z mgz is given by

Eexact0 2 338
1

2
mg2h2

1 3

(9.372)

Combining this relation with (9.367) and (9.371), we see that the variational method overesti-

mates the energy by a 5 9% error, while the WKB method underestimates it by a 0 8% error:

EVM0
3

2

9

2

1 3 Eexact0

2 338
1 059Eexact0 (9.373)

EWK B0

3

4
3 2

1 3 Eexact0

2 338
0 992Eexact0 (9.374)

The variational method has given a reasonably accurate result because we succeeded quite well

in selecting the trial function. As for the WKB method, it has given a very accurate result

because we have used the correct quantization rule (9.224). Had we used the quantization rule

(9.210), which contains a factor of 1
2
instead of 1

4
in (9.224), the WKB method would have

given a very inaccurate result with a 24 3% error, i.e., EWK B0 0 757Eexact0 .
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Problem 9.10

Using first-order perturbation theory, and ignoring the spin of the electron, calculate the energy

of the 2p level of a hydrogen atom when placed in a weak quadrupole field whose principal

axes are along the xyz axes: Hp
2
2 Q r2Y2 , where Q are real numbers, with

Q 1 Q1 0 and Q 2 Q2, and Y2 are spherical harmonics.

Solution

In the absence of the field, the energy levels of the 2 1 m states are threefold degenerate:

2 1 1 , 2 1 0 , and 2 1 1 , and hence correspond to the same energy E2 R 4,

whereR 13 6 eV is the Rydberg constant.

When the quadrupole field is turned on, and since Q 2, Q0, and Q2 are small, we can
treat the quadrupole interaction Hp Q 2r2Y2 2 Q0r2Y20 Q2r2Y22 as a

perturbation. To calculate the p split, we need to use degenerate perturbation theory, which, in

a first step, requires calculating the matrix

2 1 1 Hp 2 1 1 2 1 1 Hp 2 1 0 2 1 1 Hp 2 1 1

2 1 0 Hp 2 1 1 2 1 0 Hp 2 1 0 2 1 0 Hp 2 1 1

2 1 1 Hp 2 1 1 2 1 1 Hp 2 1 0 2 1 1 Hp 2 1 1
(9.375)

where

2 1 m Hp 2 1 m 2 1 r2 2 1 1 m Q 2Y2 2 Q0Y20 Q2Y22 1 m (9.376)

The radial part is easy to obtain (Chapter 6):

n l r2 n l
0

r4 Rnl
2 dr

1

2
n2 5n2 1 3l l 1 a20 (9.377)

hence

2 1 r2 2 1 30a20 (9.378)

As for the angular part, it can be inferred from the Wigner–Eckart theorem:

l m Y2 1 m l 2 m l m l Y2 1 (9.379)

the reduced matrix element l Y2 1 was calculated in Chapter 7: l Y2 1

5 4 2l 1 2l 1 l 2 0 0 l 0 and hence

l m Y2 1 m
5

4

2l 1

2l 1
l 2 0 0 l 0 l 2 m l m (9.380)

Using the coefficients l 2 m 0 l m [3m2 l l 1 ] l 2l 1 l 1 2l 3 and

l 2 m 2 2 l m 3 l m 1 l m l m 1 l m 2
2l 2l 1 l 1 2l 3 , we have

1 1 Y2 2 1 1 1 1 Y22 1 1
3

10
(9.381)

1 1 Y20 1 1 1 1 Y20 1 1
1

20
(9.382)

1 0 Y20 1 0
1

5
(9.383)
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These expressions can also be obtained from the following relations:

Ylm Y20 Ylm d
5

4

l l 1 3m2

2l 1 2l 3
(9.384)

Ylm 2 Y22 Ylm d Ylm Y2 2 Ylm 2 d

15

8

l m 1 l m l m 1 l m 2

2l 1 2l 3

(9.385)

Combining (9.376) to (9.383) we can write the matrix (9.375) as

30a20

Q0
20

0 Q2
3
10

0 Q0
5

0

Q2
3
10

0 Q0
20

(9.386)

The diagonalization of this matrix leads to the following eigenvalues:

E 1
1 30

a20
10

Q0

2
Q2 3 (9.387)

E 1
2 30

Q0a20
5

(9.388)

E 1
3 30

a20
10

Q0

2
Q2 3 (9.389)

Thus, to first-order perturbation theory, the energies of the p level are given by

E21
R

4
30

a20
10

Q0

2
Q2 3 (9.390)

E22
R

4
30
Q0a20
5

(9.391)

E23
R

4
30

a20
10

Q0

2
Q2 3 (9.392)

So the quadrupole interaction has lifted all the degeneracies of the p level.

Problem 9.11

Two protons, located on the z-axis and separated by a distance d (i.e., r dk), are subject to a
z-oriented magnetic field B Bk.
(a) Ignoring all interactions between the two protons, find the energy levels and stationary

states of this system.

(b) Treating the dipole–dipole magnetic interaction energy between the protons,

Hp
1

r3
1 2 3

1 r 2 r

r2

as a perturbation, calculate the energy using first-order perturbation theory.
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Solution

(a) Since the magnetic moments of the protons are 1 2 0S1 h and 2 2 0S2 h
where 0 he 2Mpc is the proton magnetic moment, the Hamiltonian of the two-proton
system, ignoring all the interactions between the two protons, is due to the interaction of the

magnetic moments of the protons with the external magnetic field:

H0 1 2 B
2 0

h
S1 S2 B

2 0B

h
Sz (9.393)

As shown in Chapter 7, the eigenstates of a system consisting of two spin 1
2
particles are a

triplet state and singlet state; the stationary eigenstates of H0 are therefore given by

1 1 1
1

2

1

2

1

2

1

2
(9.394)

2 1 1
1

2

1

2

1

2

1

2
(9.395)

3 1 0
1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
(9.396)

4 0 0
1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
(9.397)

The eigenenergies of 1 , 2 , 3 , and 4 are respectively

E 0
1 2 0B E 0

2 2 0B E 0
3 E 0

4 0 (9.398)

So 3 and 4 are (doubly) degenerate, whereas 1 and 2 are not.

(b) To calculate the energy to first order, we need to calculate the matrix elements of Hp:

HPi j i Hp j , with i j 1 2 3 4. For this, since r dk, we have 1 r 2 0dS1z h

and 2 r 2 0dS2z h. Thus, we can write Hp as

Hp
1

r3
1 2 3

1 r 2 r

r2
4 2
0

d3h2
S1 S2 3S1z S2z (9.399)

Using the relations

2S1 S2 S Sz S1 S2
2

S21 S21 S Sz

h2 [S S 1 S1 S1 1 S2 S2 1 ] S Sz

h2 S S 1
3

2
S Sz (9.400)

2S1z S2z S Sz Sz
2 S1z

2S2z
2 S Sz h2 S2z

1

2
S Sz (9.401)

along with (9.399), we can rewrite

Hp S Sz
2 2
0

d3
S S 1

3

2
3 S2z

1

2
S Sz

2 2
0

d3
S S 1 3S2z S Sz (9.402)
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Since the values of S and Sz are given for the triplet state by S 1, Sz 1, 0, 1, and by

S 0 Sz 0 for the singlet, the matrix elements of Hp are

E 1
1 1 Hp 1

2 2
0

d3
E 1
2 2 Hp 2

2 2
0

d3
(9.403)

E 1
3 3 Hp 3

4 2
0

d3
E 1
4 4 Hp 4 0 (9.404)

All the other matrix elements of Hp are zero: i Hp j 0 for i j .
Finally, the energy levels of the two-proton system can be obtained at once from (9.398)

along with (9.403) and (9.404):

E1 E 0
1 E 1

1 2 0B
2 2
0

d3
(9.405)

E2 E 0
2 E 1

2 2 0B
2 2
0

d3
(9.406)

E3 E 0
3 E 1

3

4 2
0

d3
(9.407)

E4 E 0
4 E 1

4 0 (9.408)

So the dipole–dipole magnetic interaction has lifted the degeneracy of the energy levels in the

two-proton system.

Problem 9.12

A spin 1
2
particle of mass m, which is moving in an infinite, symmetric potential well V x of

length 2L , is placed in an external weak magnetic field B with

V x
0 L x L

otherwise
B

Bz L x 0

Bx 0 x L

Using first-order perturbation theory, calculate the energy of the nth excited state of this particle.

Solution

First, let us discuss the physics of this particle before placing it in a magnetic field. As seen in

Chapter 4, the energy and wave function of a spinless particle of massm moving in a symmetric
potential well of length 2L are

En
h2 2

8mL2
n2 n x

1

L

cos n x
2L n 1 3 5

sin n x
2L n 2 4 6

(9.409)

When the spin of the particle is considered, its wave function is the product of a spacial part

n x and a spin part :

n x n x
1

L
cos n x

2L n 1 3 5

1

L
sin n x

2L n 2 4 6
(9.410)
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where represent the spinor fields corresponding to the spin-up and spin-down states, re-

spectively:
1

2

1

2

1

0

1

2

1

2

0

1
(9.411)

Each energy level, En h2 2n2 8mL2 , of this particle is doubly degenerate, for it corre-
sponds to two different states.

Let us now consider the case where the particle is placed in the magnetic field B. The
interaction between the external magnetic field and the particle’s magnetic moment is given

by

Hp B B 0
z L x 0

x 0 x L
(9.412)

where we have made use of 2 0S h 0 ; recall that the matrices of x and z are

x
0 1

1 0 z
1 0

0 1
(9.413)

To estimate the energy of this particle by means of the degenerate perturbation theory, we

need to calculate first the matrix

n Hp n n Hp n

n Hp n n Hp n
(9.414)

where

n Hp n

0

L
n x

2 Hp dx
L

0
n x

2 Hp dx

0B z

0

L
n x

2 dx x

L

0
n x

2 dx

(9.415)

Using
0
L n x

2 dx L
0 n x

2 dx 1
2
and since

z 0 1
1 0

0 1

0

1
1

x 0 1
0 1

1 0

0

1
0 (9.416)

we have

n Hp n
0B

2
(9.417)

Following this procedure, we can obtain the remaining matrix elements of (9.414):

0B

2

1 1

1 1
(9.418)

The diagonalization of this matrix leads to

0B

2
E 1 0B

2
E 1 0B

2

2

0 (9.419)
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or E 1
0B 2. Thus, the energy of the nth excited state to first-order degenerate pertur-

bation theory is given by

En
h2 2

8mL2
n2

0B

2
(9.420)

The magnetic field has completely removed the degeneracy of the energy spectrum of this

particle.

Problem 9.13

Consider a particle of mass m moving in the potential V x
x 0

1
2
m 2x2 x 0

Estimate the ground state energy of this particle using

(a) the variational method and (b) the WKB method.

Solution

(a) As seen in Problem 4.9, page 266, the ground state wave function of this potential must

be selected from the harmonic oscillator wave functions that vanish at x 0. Only the odd
wave functions vanish at x 0. So a trial function that, besides being zero at x 0, is finite as

x is given by

0 x xe x2 (9.421)

Using the results

0 0
0

x2e 2 x2 dx
1

8 2
(9.422)

0
1

2
m 2x2 0

1

2
m 2

0

x4e 2 x2 dx
3m 2

64 2 2
(9.423)

0
h2

2m

d2

dx2
0

h2

2m 0

3 x2 2 2x4 e 2 x2 dx
3h2

16m 2
(9.424)

we obtain the ground state energy

E0
0 H 0

0 0

3h2

2m

3m 2

8
(9.425)

The minimization of E0 with respect to yields 0 m 2h and hence E0 0
3
2
h .

This energy is identical to the exact value obtained in Chapter 4.

(b) This potential contains a single rigid wall at x 0. Thus the proper quantization rule

for this potential is given by (9.224):
a
0 p dx n 3

4
h; the turning point occurs at x a

with E 1
2
m 2a2 and hence a 2E m 2 .

The calculation of
a
0 p dx goes as follows:

a

0

p dx
a

0

2mE m2 2x2dx m
a

0

a2 x2dx (9.426)

The change of variable x a sin leads to

a

0

a2 x2 dx a2
2

0

cos2 d
a2

2

2

0

1 cos 2 d
a2

4
(9.427)
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hence
a

0

p dx m
a2

4

E

2
(9.428)

Since
a
0 p dx n 3

4
h, that is, E 2 n 3

4
h, we obtain

EWK Bn 2n
3

2
h n 0 1 2 3 (9.429)

This relation is identical with the exact expression obtained in Chapter 4. The WKB ground
state energy is thus given by EWK B0

3
2
h .

Problem 9.14

Consider an H2 molecule where the protons are separated by a wide distance R and both are
located on the z-axis. Ignoring the spin degrees of freedom and treating the dipole–dipole
interaction as a perturbation, use perturbation theory to estimate an upper limit for the ground

state energy of this molecule.

Solution

Assuming the protons are fixed in space and separated by a distance R, we can write the Hamil-
tonian of this molecule as follows:

H H0 Hp H A0 H B0 Hp (9.430)

where H A0 and H
B
0 are the unperturbed Hamiltonians of atoms A and B, and Hp is

Hp
e2

R

e2

R rA rB

e2

R rA

e2

R rB
(9.431)

where rA and rB are the position vectors of the electrons of atoms A and B as measured from
the protons. If R a0, where a0 h2 e2 is the Bohr radius, an expansion of (9.431)

in powers of rA R and rB R yields, to first nonvanishing terms, an expression of the order of
1 R3:

Hp
e2

R3
rA rB 3

rA R rB R

R2
(9.432)

This is the dipole–dipole interaction energy between the dipole moments of the two atoms.

Since R Rz we can write (9.432) as

Hp
e2

R3
X AXB YAYB 2ZAZB (9.433)

The ground state energy and wave function of the (unperturbed) molecule are

E0 E A0 E B0 2E100
e2

a0
0

A
0

B
0 100 A 100 B (9.434)

The first-order correction to the molecule’s energy, E 1
0 Hp 0 , is given by

E 1 e2

R3
A
0 X A

A
0

B
0 XB

B
0

A
0 YA

A
0

B
0 YB

B
0

2 A
0 ZA

A
0

B
0 ZB

B
0 (9.435)
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Since the operators X , Y , and Z are odd and the states A
0 and B

0 are spherically symmetric,

then all the terms in (9.435) are zero; hence E 1 0.

Let us now calculate the second-order correction:

E 2

n l m n l m 1 0 0

n l m n l m Hp 0

2

2E100 En En
(9.436)

where

n l m n l m Hp 0
e2

R3
n l m X A 1 0 0 A n l m XB 1 0 0 B

n l m YA 1 0 0 A n l m YB 1 0 0 B

2 n l m ZA 1 0 0 A n l m ZB 1 0 0 B

(9.437)

The terms of this expression are nonzero only if l l 1, since the X , Y , and Z operators
are proportional to Y1m . We can evaluate E 2 using a crude approximation where we assume

the denominator of (9.436) is constant and we take En En . Note that, for n 2, we have

Enlm E200. In this case we can rewrite (9.436) as

E 2 1

2 E100 E200 n l m n l m 1 0 0

n l m n l m Hp 0

2
(9.438)

since the diagonal term is zero (i.e., 1 0 0 1 0 0 Hp 1 0 0 1 0 0 0), we have

n l m n l m

n l m n l m Hp 0

2

n l m n l m

1 0 0 1 0 0 Hp n l m n l m n l m n l m Hp 1 0 0 1 0 0

1 0 0 1 0 0 Hp
2 1 0 0 1 0 0

e4

R6
1 0 0 1 0 0 X AXB YAYB 2ZAZB

2 1 0 0 1 0 0

(9.439)

The calculation of 1 0 0 1 0 0 XAXB YAYB 2ZAZB
2 1 0 0 1 0 0 can be made

easier by the use of symmetry. Due to spherical symmetry, the cross terms are zero:

X AYA A X AZA A YAZA A XBYB B YBZB B 0 (9.440)

while the others are given as follows (see (9.45)):

X2A A Y 2A A Z2A A X2B B Y 2B B Z2B B a20 (9.441)

where C A
A
0 C

A
0 and D B

B
0 D

B
0 . We can thus obtain

1 0 0 1 0 0 X AXB YAYB 2ZAZB
2 1 0 0 1 0 0 6a40 (9.442)
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-

6

a

E

r

V r Ze2 r

Figure 9.10 Coulomb barrier, V r Ze2 r , seen by a proton of energy E while approaching
from the right a nucleus of charge Ze located at the origin.

Inserting (9.442) into (9.439) and then the resultant expression into (9.438), we get

E 2 1 0 0 1 0 0 Hp 2 1 0 0 1 0 0

2 E100 E200

3e4a40
R6

1

E100 E200
(9.443)

or

E 2 8e2a50
R6

(9.444)

because E100 e2 2a0 and E200 e2 8a0. Finally, the upper limit for the ground state
energy of this molecule to second-order perturbation theory is given by

E2 2E100
8e2a50
R6

E2
e2

a0
1 8

a60
R6

(9.445)

Problem 9.15

A proton of energy E is incident from the right on a nucleus of charge Ze. Estimate the
transmission coefficient associated with the penetration of the proton inside the nucleus.

Solution

To penetrate inside the nucleus (i.e., to the left of the turning point r a as shown in Fig-
ure 9.10), the proton has to overcome the repulsive Coulomb force of the nucleus. That is, it

has to tunnel through the Coulomb barrier V r Ze2 r . The transmission coefficient is given
in the WKB approximation by (9.247), where x1 a and x2 0:

T e 2 1

h

0

a
2m V r E dr (9.446)

where a is given by E V a : a Ze2 E . Since V r Ze2 r we get

1

h

0

a
2m

Ze2

r
E dr

2mE

h

0

Ze2 E

Ze2

Er
1 dr (9.447)
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The change of variable x Er Ze2 gives

Ze2

h

2m

E

1

0

1

x
1 dx

Ze2

h

m

2E
(9.448)

in deriving this relation, we have used the integral
1
0 1 x 1dx 2.

The transmission coefficient is thus given by

T e 2 exp
Ze2

h

2m

E
(9.449)

The value of this coefficient describes how difficult it is for a positively charged particle, such

as a proton, to approach a nucleus.

Problem 9.16

Two identical particles of spin 1
2
are enclosed in a one-dimensional box potential of length L

with walls at x 0 and x L.
(a) Find the energies of the three lowest states.

(b) Then, subjecting the particles to a perturbation

Hp x1 x2 V0L
2 x1

L

2
x2

L

3

calculate its ground state energy using first-order time-independent perturbation theory.

Solution

Since the two particles have the same spin, the spin wave function of the system, s s1 s2 ,
must be symmetric, so s is any one of the triplet states:

s

1 1 1
2

1
2 1

1
2

1
2 2

1 0 1

2

1
2

1
2 1

1
2

1
2 2

1
2

1
2 1

1
2

1
2 2

1 1 1
2

1
2 1

1
2

1
2 2

(9.450)

In addition, since this two-particle system is a system of identical fermions, its wave function
must be antisymmetric. Since the spin part is symmetric, the spatial part of the wave function
has to be antisymmetric:

x1 x2 A x1 x2 s s1 s2 (9.451)

that is,

A x1 x2
1

2
n1 x1 n2 x2 n2 x1 n1 x2

1

L
sin

n1 x1
L

sin
n2 x2
L

sin
n2hx1
L

sin
n1 x2
L

(9.452)

The energy levels of this two-particle system are

E
2h2

2mL2
n21 n22 E0 n

2
1 n22 (9.453)
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where E0 2h2 2mL2 . Note that these energy levels are threefold degenerate because of
the spin part of the wave function; that is, there are three different spin states that correspond to

the same energy level 2h2 n21 n22 2mL2 .
(a) Having written the general expressions for the energies and the wave functions, it is now

easy to infer the energy levels and wave functions of the three lowest states. First, we should

note that the ground state cannot correspond to n1 n2 1, for the spatial wave function

would be zero. The ground state corresponds then to n1 1, n2 2; its energy follows from

(9.453),

E 0 E0 1
2 22 5E0

5 2h2

2mL2
(9.454)

and the wave function 0 x1 x2 follows from (9.452).
The first excited state corresponds to n1 1, n2 3. So the wave function 1 x1 x2 can

be inferred from (9.452) and the energy from (9.453):

E 1 E0 1
2 32 10E0

5 2h2

mL2
(9.455)

The second excited state corresponds to n1 2, n2 3; hence the energy is given by

E 2 13E0
13 2h2

2mL2
(9.456)

(b) Introducing the perturbation Hp V0L2 x1 L 2 x2 L 3 , and since Hp is
diagonal in the spin space, the ground state energy to first-order perturbation theory is given by

E
5 2h2

2mL2
0 Hp 0 (9.457)

where

0 Hp 0

L

0

dx1
L

0

dx2 0 x1 x2 Hp x1 x2 0 x1 x2 (9.458)

Since

0 x1 x2 0 x1 x2
1

L
sin

x1
L

sin
2 x2
L

sin
2 x1
L

sin
x2
L
(9.459)

we have

0 Hp 0
V0L2

L2

L

0

dx1 x1
L

2

L

0

dx2 x2
L

3

sin
x1
L

sin
2 x2
L

sin
2 x1
L

sin
x2
L

2

V0 sin
2
sin

2

3
sin sin

3

2

3

4
V0 (9.460)
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hence

E
5 2h2

2mL2
3

4
V0 (9.461)

Problem 9.17

Neglecting the spin–orbit interaction, find the ground state energy of a two-electron atom in

these two ways:

(a) Use a first-order perturbation calculation; treat the Coulomb interaction between the two

electrons as a perturbation.

(b) Use the variational method.

Compare the results and discuss the merits of the two approximation methods.

Solution

Examples of such a system are the helium atom (Z 2), the singly ionized Li ion (Z 3),

the doubly ionized Be2 ion (Z 4), and so on. Each electron of these systems feels the

effects of two Coulomb fields: one from the Ze nucleus, V r Ze2 r , and the other from
the other electron, V12 e2 r12 e2 r1 r2 ; here we consider the nucleus to be located at
the origin and the electrons at r1 and r2. Neglecting the spin–orbit interaction, we can write the
Hamiltonian of the two-electron system as

H H0 V12 H0
e2

r1 r2
(9.462)

where

H0
h2

2
2
1

2
2 Ze2

1

r1

1

r2
(9.463)

is the Hamiltonian of the atom when the interaction between the two electrons is neglected.

We have seen in Chapter 8 that, when the interaction between the two electrons is neglected,

the ground state energy and wave function are given by

E0 2
Z2e2

2a
27 2Z2 eV (9.464)

0 r1 S1 r2 S2 0 r1 r2 singlet S1 S2 (9.465)

where the spin part is antisymmetric,

singlet S1 S2
1

2

1

2

1

2 1

1

2

1

2 2

1

2

1

2 1

1

2

1

2 2

(9.466)

and the spatial part is symmetric, 0 r1 r2 100 r1 100 r2 , with

100 r R10 r Y00
1 Z

a

3 2

e Zr1 a (9.467)

that is,

0 r1 r2
1 Z

a

3

e Z r1 r2 a (9.468)
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(a) To calculate the ground state energy using first-order perturbation theory, we have to

treat V12 as a perturbation. A first-order treatment yields

E E0 0 V12 0 2
Z2e2

2a
0 V12 0 (9.469)

where

0 V12 0 d3r1 d3r2 0 r1 r2 V12 0 r1 r2

d3r1 d3r2 100 r1
2 e2

r1 r2
100 r2

2

(9.470)

The calculation of this integral is quite involved (I left it as an exercise); the result is

0 V12 0
5

8

Ze2

a
(9.471)

which, when combined with (9.469), leads to

E
Ze2

a
Z

5

8
(9.472)

In the case of helium, Z 2, we have

E 108 8 eV 34 eV 74 8 eV (9.473)

this result disagrees with the experimental value, Eexp 78 975 eV, by 4 eV or by a 5 3%

relative error. Physically, this may be attributed to the fact that, in our calculation, we have not

taken into account the “screening” effect: the presence of one electron tends to decrease the net

charge “seen” by the other electron. Suppose electron 1 is “between” the nucleus and electron

2; then electron 2 will not “see” Z protons but Z 1 protons (i.e., electron 2 feels an effective

charge Z 1 e coming from the nucleus).
(b) By analogy with the exact form of the ground state function (9.468), we can choose a

trial function that takes into account the screening effect. For this, we need simply to replace Z
in (9.468) by a variational parameter :

0 r1 r2 Ae r1 r2 a (9.474)

where A is a normalization. Using the integral 0 xne bxdx n! bn 1, we can show that

A a 3 ; hence

r1 r2
1

a

3
e r1 r2 a (9.475)

A combination of this relation with (9.471) leads to

E H0 V12 H0
5

8

e2

a
(9.476)
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The calculation of H0 can be simplified by writing it as

H0
h2

2
2
1

2
2 Ze2

1

r1

1

r2

h2

2
2
1

2
2 e2

1

r1

1

r2

Z e2
1

r1

1

r2
(9.477)

This form is quite suggestive; since h2 0 0 2 Ze2 0 1 r 0 Z2e2 2a
we can write

h2

2
2
1

2
2 e2

1

r1

1

r2
2

2e2

2a
(9.478)

Now since
1

r1

1

r2
4
a

3

0

re 2 r adr
a

(9.479)

we can reduce (9.477) to

H0 2
2e2

2a
2 Z e2

a
(9.480)

which, when combined with (9.476), leads to

E 2
2e2

2a
2 Z e2

a

5

8

e2

a
2 2 Z

5

16

e2

a
(9.481)

The minimization of E , dE d 0, yields

0 Z
5

16
(9.482)

hence the ground state energy is

E 0 1
5

8Z

5

16Z

2 Z2e2

a
(9.483)

and

r1 r2
1 Z

a

5

16a

3

exp
Z

a

5

16a
r1 r2 (9.484)

As a numerical illustration, the ground state energy of a helium atom is obtained by sub-

stituting Z 2 into (9.483). This yields E0 77 456 eV, in excellent agreement with the

experimental value Eexp 78 975 eV. The variational method, which overestimates the cor-

rect result by a mere 1 9%, is significantly more accurate than first-order perturbation theory.

The reason is quite obvious; while the perturbation treatment does not account for the screening

effect, the variational method includes it quite accurately. The wave function (9.484) shows that

the second electron does not see a charge Ze, but a lower charge Z 5 16 e.
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9.7 Exercises

Exercise 9.1

Calculate the energy of the nth excited state to first-order perturbation for a one-dimensional
box potential of length 2L , with walls at x L and x L, which is modified at the bottom
by the following perturbations with V0 1:

(a) Vp x
V0 L x L

0 elsewhere
,

(b) Vp x
V0 L 2 x L 2

0 elsewhere
,

Exercise 9.2

Calculate the energy of the nth excited state to first-order perturbation for a one-dimensional
box potential of length 2L , with walls at x L and x L, which is modified at the bottom
by the following perturbations with V0 1:

(a) Vp x
V0 L 2 x 0

0 elsewhere

(b) Vp x
V0 0 x L 2
0 elsewhere

(c) Vp x
V0 L 2 x 0

V0 0 x L 2
0 elsewhere

Exercise 9.3

Calculate the energy of the nth excited state to second-order perturbation and the wave function
to first-order perturbation for a one-dimensional box potential of length 2L, with walls at x
L and x L, which is modified at the bottom by the following perturbations with V0 1:

(a) Vp x
0 L x 0

V0 0 x L
(b) Vp x

V0 1 x2 L2 x L
0 elsewhere

Exercise 9.4

Consider a system whose Hamiltonian is given by H E0

3 2 0 0

2 3 0 0

0 0 7 2

0 0 2 7

,

where 1.

(a) Calculate the exact eigenvalues of H ; expand each of these eigenvalues to the second
power of .

(b) Calculate the energy eigenvalues to second-order perturbation theory and compare them

with the exact results obtained in (a).

(c) Calculate the eigenstates of H up to the first-order correction.

Exercise 9.5

Consider a particle of mass m that moves in a three-dimensional potential V r kr , where
k is a constant having the dimensions of a force. Use the variational method to estimate its

ground state energy; you may take R r e r2 2 2
as the trial radial function where is an

adjustable parameter.
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Exercise 9.6

Use the WKB method to estimate the ground state energy of a particle of mass m that moves
in a three-dimensional potential V r kr , where k is a constant having the dimensions of a
force.

Exercise 9.7

Consider a two-dimensional harmonic oscillator Hamiltonian:

H
1

2m
P2x P2y

1

2
m 2 X2 Y 2 1 XY

where 1.

(a) Give the wave functions for the three lowest energy levels when 0.

(b) Using perturbation theory, evaluate the first-order corrections of these energy levels

when 0.

Exercise 9.8

Consider a particle that has the Hamiltonian H H0 h a2 a†
2

, where H0 is the

Hamiltonian of a simple one-dimensional harmonic oscillator, and where a and a† are the usual

annihilation and creation operators which obey [a a†] 1; is a very small real number.

(a) Calculate the ground state energy to second order in .

(b) Find the energy of the nth excited state, En , to second order in and the corresponding

eigenstate n to first order in .

Exercise 9.9

Consider two identical particles of spin 1
2
that are confined in an isotropic three-dimensional

harmonic oscillator potential of frequency .

(a) Find the ground state energy and the corresponding wave function of this system when

the two particles do not interact.

(b) Consider now that there exists a weakly attractive spin-dependent potential between

the two particles, V r1 r2 kr1r2 S1zS2z , where k and are two small positive real

numbers. Find the ground state to first-order time-independent perturbation theory.

(c) Use the variational method to estimate the ground state energy of this system of two

noninteracting spin 1
2
particles confined to an isotropic three-dimensional harmonic oscillator.

How does your result compare with that obtained in (a).

Exercise 9.10

Two identical spin 1
2
particles are confined to a one-dimensional box potential of size L with

walls at x 0 and x L.
(a) Find the ground state energy and the first excited state energy and their respective wave

functions for this system when the two particles do not interact.

(b) Consider now that there exists a weakly attractive potential between the two particles:

Vp x
V0 0 x L 2

0 L 2 x L

Find the ground state and first excited state energies to first-order perturbation theory.

(c) Find numerical values for the ground state and first excited state energies calculated in

(a) in the case where L 10 10m, V0 2 eV, and the mass of each individual particle is to be
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taken equal to the electron mass. Compare the sizes of the first order energy corrections with

the ground state energy and the first excited state energy (you may simply calculate the ratios

between the first-order corrections with the ground state and first excited state energies).

Exercise 9.11

Consider an isotropic three-dimensional harmonic oscillator.

(a) Find the energy of the first excited state and the different states corresponding to this

energy.

(b) If we now subject this oscillator to a perturbation Vp x y x y, where is a small

real number, find the energy of the first excited state to first-order degenerate time-independent

perturbation theory. Hint: You may use x h
2m ax a

†
x , y h

2m ay a
†
y ,

z h
2m az a

†
z , with ax nx nx nx 1 , and a

†
x nx nx 1 nx 1 .

Exercise 9.12

Use the variational method to estimate the ground state energy of the spherical harmonic oscil-

lator by means of the following radial trial functions:

(a) R r Ae r2 and

(b) R r Ae r , where A is a normalization constant that needs to be found in each case
and is an adjustable parameter.

(c) Using the fact that the exact ground state energy is Eexact0 3h 2, find the relative

errors corresponding to the energies derived in (a) and (b).

Exercise 9.13

Consider a particle of mass m that is bouncing vertically and elastically on a smooth reflecting
floor in the Earth’s gravitational field

V z
mgz z 0

z 0

where g is a constant (the acceleration due to gravity). Use the variational method to esti-
mate the ground state energy of this particle by means of the trial wave function, z
z exp z4 , where is an adjustable parameter that needs to be determined. Compare your

result with the exact value Eexact0 2 338 1
2
mg2h2

1 3
by calculating the relative error.

Exercise 9.14

Calculate the energy of the ground state to first-order perturbation for a particle which is moving

in a one-dimensional box potential of length L , with walls at x 0 and x L, when a weak
potential Hp x2 is added, where 1.

Exercise 9.15

Consider a semiclassical system whose energy is given by

E a2
1

2

b2

4
a2 p2

1

2

4a2

b2 4 a2
q2

where a and b are positive, real constants. Use the Bohr–Sommerfeld quantization rule to
extract the expression of the bound state energy En for the nth excited state in terms of a.
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Exercise 9.16

Use the variational method to estimate the ground state energy of a particle of mass m that is
moving in a one-dimensional potential V x V0x4; you may use the trial function 0 x

Ae x2 2, where A is the normalization constant and is an adjustable parameter that needs to

be determined.

Exercise 9.17

Consider a particle of mass m which is moving in a one-dimensional potential V x V0x4.
Estimate the ground state energy of this particle by means of the WKB method.

Exercise 9.18

Using 100 r 1 Z a 3 2e Zr a , show that

2
100 r1

1

r1 r2
2
100 r2 d

3r1d
3r2

5Z

8a

Exercise 9.19

Calculate the ground state energy of the doubly ionized beryllium atom Be2 by means of the

following two methods and then compare the two results:

(a) a first-order perturbation theory treatment,

(b) the variational method with a trial function r1 r2 A exp[ r1 r2 a], where
A is the normalization constant, is an adjusted parameter, and a is the Bohr radius.

Exercise 9.20

Use the variational method to estimate the energy of the second excited state of a particle of

mass m moving in a one-dimensional infinite well with walls at x 0 and x L. Calculate
the relative error between your result and the exact value (recall that the energy of the second

excited state is given by Eexact3 9 2h2 2mL2 ).

Exercise 9.21

Consider a spinless particle of orbital angular momentum l 1 whose Hamiltonian is

H0
E

h2
L2x L2y

where E is a constant having the dimensions of energy.

(a) Calculate the exact energy levels and the corresponding eigenstates of this particle.

(b) We now add a perturbation Hp L z h, where is a small constant (small compared

to E) having the dimensions of energy. Calculate the energy levels of this particle to second-

order perturbation theory.

(c) Diagonalize the matrix of H H0 Hp and find the exact energy eigenvalues. Then
expand each eigenvalue to second power in and compare them with the results derived from

perturbation theory in (b).

Exercise 9.22

Consider a system whose Hamiltonian is given by H E0

5 3 0 0

3 5 0 0

0 0 8

0 0 8

, where

1.
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(a) By decomposing this Hamiltonian into H H0 Hp, find the eigenvalues and eigen-

states of the unperturbed Hamiltonian H0.
(b) Diagonalize H to find the exact eigenvalues of H ; expand each eigenvalue to the second

power of .

(c) Using first- and second-order nondegenerate perturbation theory, find the approximate

eigenergies of H . Compare these with the exact values obtained in (b).

Exercise 9.23

Estimate the ground state energy of the hydrogen atom by means of the variational method

using the following two trial functions, find the relative errors, compare the two results, and

discuss the merit of each trial function.

(a) r
1 r r
0 r

where is an adjustable parameter. Find a relation between min and the Bohr radius.

(b) r Ae r2 .

Exercise 9.24

(a) Calculate to first-order perturbation theory the energy of the nth excited state of a one-
dimensional harmonic oscillator which is subject to the following small perturbation: Hp
V0x3 V1x4 , where V0, V1, and a are constants and 1.

(b) Use the relation derived in (a) to find the energies of the three lowest states (i.e., n
0 1 2) to first-order perturbation theory.

Exercise 9.25

Use the trial function 0 x
A 2 x2 2 x
0 x

to estimate the ground state energy of a one-dimensional harmonic oscillator by means of the

variational method; is an adjustable parameter and A is the normalization constant. Calculate
the relative error and assess the accuracy of the result.

Exercise 9.26

Use the WKB approximation to estimate the transmission coefficient of a particle of mass m
and energy E moving in the following potential barrier:

V x
V0 x a 1 a x 0

V0 1 x a 0 x a
0 elsewhere

with 0 E V0; sketch this potential.

Exercise 9.27

Use the variational method to estimate the energy of the ground state of a one-dimensional

harmonic oscillator taking the following trial function:

0 x A 1 x e x

where is an adjustable parameter and A is the normalization constant.
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Exercise 9.28

Use the WKB approximation to estimate the transmission coefficient of a particle of mass m
and energy E moving in the following potential barrier:

V x
V0 1 x2 a2 x a
0 x a

where 0 E V0.

Exercise 9.29

Use the WKB approximation to find the energy levels of a particle of mass m moving in the
following potential:

V x
V0 x2 a2 1 x a
0 x a

Exercise 9.30

A particle of mass m is moving in a one-dimensional harmonic oscillator potential, V x
m 2x2 2. Calculate
(a) the ground state energy, and

(b) the first excited state energy

to first-order perturbation theory when a small perturbation Hp x is added to the poten-
tial, with 1.

Exercise 9.31

A particle of mass m is moving in a one-dimensional harmonic oscillator potential, V x
m 2x2 2. Calculate
(a) the ground state energy and

(b) the first excited state energy

to first-order perturbation theory when a small perturbation Hp x6 is added to the potential,
with 1.

Exercise 9.32

A particle of mass m is moving in a three-dimensional harmonic oscillator potential, V x
m 2 x2 y2 z2 2. Calculate the energy of the nth excited state to first-order perturbation
theory when a small perturbation Hp X2Y 4Z2 is added to the potential, with 1.

Exercise 9.33

Use the following two trial functions:

(a) Ae x (b) A 1 x e x

to estimate, by means of the variational method, the ground state energy of a particle of mass

m moving in a one-dimensional potential V x x ; is a scale parameter, is a constant,

and A is the normalization constant. Compare the results obtained.

Exercise 9.34

Three distinguishable particles of equal massm are enclosed in a one-dimensional box potential
with rigid walls at x 0 and x L. If the three particles are subject to a weak, short-range
attractive potential

Hp V0 [ x1 x2 x2 x3 x3 x1 ]
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use first-order perturbation theory to calculate the system’s energy levels of

(a) the ground state, and

(b) the first excited state.

Exercise 9.35

Three distinguishable particles of equal mass m are in a one-dimensional harmonic oscillator
potential H0

3
i 1 p

2
i 2m

1
2
m 2x2i . If the three particles are subject to a weak, short-

range attractive potential

Hp V0 [ x1 x2 x2 x3 x3 x1 ]

use first-order perturbation theory to calculate the system’s energy levels of

(a) the ground state and

(b) the first-excited state.

Exercise 9.36

Consider a positronium which is subject to a weak static magnetic field in the xz-plane, B
B i k , where B is a small constant. Neglecting the spin–orbit interaction, calculate the
energy levels of the n 2 states to first-order perturbation.

Exercise 9.37

Consider a spherically symmetric top with principal moments of inertia I .
(a) Find the energy levels of the top.

(b) Assuming that the top is in the l 1 angular momentum state, find its energy to first-

order perturbation theory when a weak perturbation, Hp
E
I L

2
x L2y , is added where E 1.

Exercise 9.38

Estimate the approximate values of the ground state energy of a particle of mass m moving in
the potential V x V0 x , where V0 0, by means of: (a) the variational method and (b)

the WKB approximation. Compare the two results.

Exercise 9.39

Calculate to first-order perturbation theory the relativistic correction to the ground state of a

spinless particle of mass m moving in a one-dimensional harmonic oscillator potential. Hint:
You need first to show that the Hamiltonian can be written as H H0 Hp, where H0
P2 2m m 2X2 2 and Hp P4 8m3c2 is the leading relativistic correction term which
can be treated as a perturbation.

Exercise 9.40

Consider a hydrogen atom which is subject to a small perturbation Hp r2. Use a first-order
perturbation theory to calculate the energy corrections to

(a) the ground state and

(b) the 2p state.

Exercise 9.41

(a) Calculate to first-order perturbation theory the contribution due to the spin–orbit inter-

action for the nth excited state for a positronium atom.
(b) Use the result of part (a) to obtain numerical values for the spin–orbit correction terms

for the 2p level and compare them to the energy of n 2.
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Exercise 9.42

Ignoring the spin of the electron, calculate to first-order perturbation theory the energy of the

n 2 level of a hydrogen atom when subject to a weak quadrupole field Hp i Q y2 x2 ,
where Q is a small, real number Q 1.

Exercise 9.43

Calculate the energy levels of the n 2 states of positronium in a weak external electrical field

E along the z-axis: E Ek; positronium consists of an electron and a positron bound by the
electric interaction.

Exercise 9.44

(a) Calculate to first-order perturbation theory the contributions due to the spin–orbit inter-

action for a hydrogen-like ion having Z protons.
(b) Use the result of part (a) to find the spin-orbit correction for the 2p state of a C5 carbon

ion and compare it with the energy of the n 2 level.

Exercise 9.45

Two identical particles of spin 1
2
are enclosed in a cubical box of side L.

(a) Calculate to first-order perturbation theory the ground state energy when the two parti-

cles are subject to weak short-range, attractive interaction:

V r1 r2
4

3
a3V0 r1 r2

(b) Find a numerical value for the energy derived in (a) for L 10 10m, a 10 12m,

V0 10 3 eV, and the mass of each individual particle is to be taken to be the mass of the

electron.


