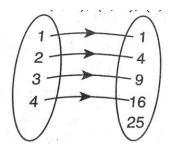
Long Answer Type Question – I

- Q. 1. Let A = {1, 2, 3, 4}, B = {1, 4, 9, 16, 25} and R be a Relation defined from A to B as,
 R = {(x, y) : ∈ A, y ∈ B and y = x²}
- (i) Depict this relation using arrow diagram.
- (ii) Find domain of R.
- (iii) Find range of R.
- (iv) Write co-domain of R. [DDE 2017]
- **Sol.** Given, A = {1, 2, 3, 4} and B = {1, 4, 9, 16, 25} and R = {(x, y): \in A, $y \in$ B and $y = x^2$
- (i) Relation $R = \{(1, 1), (2, 4), (3, 9), (4, 16)\}$



(ii) Domain of R = {1, 2, 3, 4}
(iii) Range of = {1, 4,9, 16}
(iv) Co-domain of R = {1, 4, 9, 16, 25}

Q. 2. If A = {2, 4, 6, 9} B = {4, 6, 18, 27, 54} and a relation R from A to B is defined by R = {(a, b): $a \in A$, $b \in B$ a is factor of b and a < b}, then find in roster from, Also find its domain and range.

Sol. Given, A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54} and R = {(a, b): $a \in A, b \in B, a \text{ is a factor of b and } a < b}$

Roster form $R = \{(2, 4), (2, 6), (2, 18), (2, 54), (6, 18), (6, 54), (9, 18), (9, 27), (9, 54)\}$ Domain of $R = \{2, 6, 9\}$ Range of $R = \{4, 6, 18, 27, 54\}$

Q. 3. Let A = {2, 3, 4, 5, 6, 7, 8, 9}. Let R be the relation on A Defined by {(x, y); x, $y \in A$, x is a multiple of y and $x \neq y$ [KVS 2016, Mumbai]

(a) find the relation.

(b) find the domain of R.

(c) find the range of R.

(d) find the inverse relation. [DDE – 2017]

Sol. (i) R = {(4, 2) (6, 2) (8, 2) (6, 3) (9, 3) (8, 4)} (ii) Domain of R = {4, 6, 8, 9} (iii) Range of R = {2, 3, 4}

(iv)
$$R^{-1} = \frac{1}{R} \{ (2, 4) (2, 6) (2, 8) (3, 6) (3, 9) (4, 8) \}$$

Q. 4. Define a relation R on the set N of natural numbers by $R = \{(x, y): y = 2x - 1; x, y \in N, x \le 5\}$. Depict this relationship using roster form, Write down the domain and range. [KVS 2016, Agra]

Sol. Given y = 2x - 1 and x ≤ 5
for x = 1, y = 2 × 1 - 1 = 1
x = 2, y = 2 × 2 - 1 = 3
x = 3, y = 2 × 3 - 1 = 5
x = 4, y = 2 × 4 - 1 = 7
x = 5, y = 2 × 5 - 1 = 9
Relation R = {(1, 1), (2, 3), (3, 5), (4, 7), (5, 9)}
∴ Domain = {1, 2, 3, 4, 5}
∴ Range = {1, 3, 5, 7, 9}
Q. 5. Let A = {1, 2, 3}, B = {3, 4 and C = {4, 5, 6}. Find
(i) A × (B ∩ C) (ii) (A × C) ∩ (A × C) [KVS 2014 - 15]
Sol. A {1, 2, 3}, B = {3, 4}, C = {4, 5, 6}, B ∩ C = {4}
(i) A × (B ∩ C)
= {1, 2, 3} × {4}
= {(1, 4), (2, 4), 3, 4}}
(ii) (A × B) ∩ (A × C)
= {(1, 2, 3) × {3, 4}} ∩ ({1, 2, 3} × {4, 5, 6})
= {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}
∩ {(1, 4), 1, 5), (1, 6), (2, 4), (2, 5),
(2, 6), (3, 4), (3, 5), (3, 6)}
= {(1, 4), (2, 4), (3, 4)}
Q. 6. Let
$$f(x) = {x^2, when 0 ≤ x ≤ 2.
2x, when 2 ≤ x ≤ 5.
g(x) = {x^2, when 0 ≤ x ≤ 3.
2x, when 3 ≤ x ≤ 5.
Show that f is a function while g is not a function. [DDE - 2017]$$

Sol. The relation f is defined as

$$f(x) = \begin{cases} x^2, when \ 0 \le x \le 3\\ 2x, when \ 3 \le x \le 5 \end{cases}$$

It is observed that for

And

$$0 \le x \le 2, f(x) = x^2$$

$$2 \le x \le 5, f(x) = 2x$$

Also, at x = 2, $f(x) = 2^2 = 4$ or $f(x) = 2 \times 2 = 4$ i,e at x = 2, f(x) = 4.

Therefore, for $0 \le x \le 5$, the image of f(x) are unique Thus, the given relation '*f*' is a function.

The relation *g* is defined as $g(x) = \begin{cases} x^2, when \ 0 \le x \le 3\\ 2x, when \ 3 \le x \le 5 \end{cases}$

It can be observed that for x = 3 $g(x) = 3^2 = 9$ and $g(x) = 2 \times 3 = 6$ Hence, element 3 of the domain of relation 'g' corresponds to two different images i.e., 9 and 6. Hence, this relation is not a function.

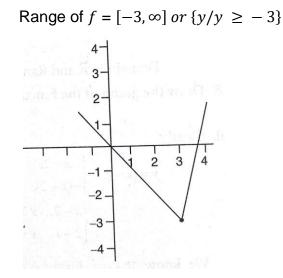
Q. 7. Find the domain and range of f(x) = |2x - 3| - 3 [DDE – 2017]

Sol. Given, f(x) = |2x - 3| - 3

The domain of the expression in all real number expect where the expression is undefined. In this case, there is not real number that makes the expression undefined.

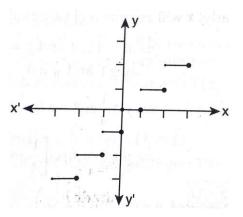
 \therefore Domain of $f = (-\infty, \infty) = R$

The absolute value of expression has a 'V' shape. The range of a positive absolute value expression starts at its vertex and extends to infinity.



Q. 8. Draw the graph of the greatest Integer Function [DDE – 2017]

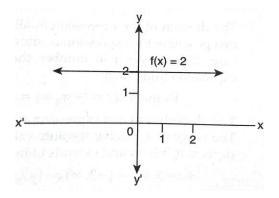
Sol. The greatest integer function is denoted by y = [x]. For all real number, x, the greatest integer function returns the largest integer less than or equal to x.



Value of x	f(x) = [x]
•	
-	-
$-3 \le x < -2$	-3
$-2 \le x < -1$	-2
$-1 \le x < -0$	-1
0 ≤ <i>x</i> < 1	0
1 ≤ <i>x</i> < 2	1
$2 \le x < 3$	2
$3 \le x < 4$	3
•	

Q. 9. Draw the graph of constant function: $R \rightarrow R$; $f(x) = 2 \forall x \in R$. Also, find its domain and range [DDE – 2017]

Sol. Given: $R \rightarrow R$: $f(x) = 2 \forall x \in R$



Domain = R and range = $\{2\}$

Q. 10. Draw the graph of the function |x - 2| [DDE = 2017]

Sol. Clearly,

$$y = |x - 2| = \begin{cases} x - 2 & x - 2 \ge 0\\ -(x - 2), & x - 2 < 0 \end{cases}$$
$$= \begin{cases} x - 2, & x \ge 2\\ 2 - x, & x < 2 \end{cases}$$

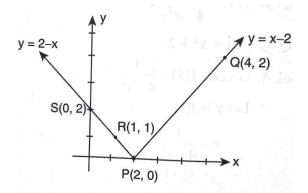
We know that, a linear equation in x and y represents a line for drawing a line, we need only two points for y = x - 2

x	2	4
у	4	2

So, plot the points P (2, 0), Q (4, 2) and join PQ to get the graph of y = x - 2 for y = 2 - x

x	1	0
у	1	2

Plot the points R (1, 1), So (0, 2) and join RS to get the graph of y = y = 2 - x



Find the domain and range of the following real functions (Questions 11 – 16)

Q. 11. $f(x) = \sqrt{x^2 + 4}$ Q. 12. $f(x) = \frac{|x-1|}{x-1}$ Q. 13. $f(x) = \frac{|x-1|}{x-1}$ Q. 14. $f(x) = \frac{x^2 - 9}{x-3}$ Q. 15. $f(x) = \frac{4-x}{x-4}$ Q. 16. f(x) = 1 - |x-3| **Sol. 11.** Given, $f(x) = \sqrt{x^2 + 4}$

Domain of f: We observe that f(x) is defined for all x satisfying $x^2 + 4 \ge 0$ \therefore Domain = The set of all real number $= \mathbb{R}$ \therefore Range of: Let y = f(x) $y = \sqrt{x^2 + 4}$ $x = \sqrt{y^2 - 4}$ x is defined, $y^2 - 4 \ge 0$ $(y + 2)(y - 2) \ge 0$ \therefore Range of $f = (-\infty, -2] \cup [2, \infty)$ x + 1

Sol. 12. Given, $f(x) = \frac{x+1}{x-2}$

Domain: We known that f(x) is defined when $x - 2 \neq 0$ i.e., $x \neq 2$

 \therefore The Domain is all values of x that makes the expression defined i.e.,

Domain of $f = R - \{2\}$ Range:

Let y = f(x)

$$\therefore y = \frac{x+1}{x-2}$$

$$Y (x-2) = x + 1$$

$$x (y-1) = 2y + 1$$

$$x = \frac{2y+1}{y-1}$$

 $\therefore x$ is defined, when y - 1 \neq 0 i. e., y \neq 1

 $\therefore \text{ Range of } f = \mathbb{R} - \{1\}$

Sol. 13. Given, $f(x) = \frac{|x-1|}{x-1}$

Domain: Clearly, f(x) is defined for all $x \leftarrow R$ except x = 1 $\therefore \text{ Domain of } f = \mathsf{R} - \left\{ \overrightarrow{1} \right\}$

Range: Now, $f(x) = \frac{x-1}{x-1} = 1$, when x > 1

And
$$f(x) = \frac{-(x-1)}{x-1} = -1$$
, when $x < 1$

: Range of $f = \{-1, 1\}$

Sol. 14. Given, $f(x) = \frac{x^2 - 9}{x - 3}$

Domain: Clearly, f(x) is defined for all $x \in \mathbb{R}$ expect x = 3

: Domain of $f = R - \{3\} = (-\infty, 3), \cup (3, \infty)$ Range: Let y = f(x)

$$\therefore y = \frac{x^2 - 9}{x - 3} \Rightarrow y = x + 3$$

It follow from the above relation that y takes all real values except 6 when x takes values in the set $R - \{3\}$

 \therefore Range of $f = R - \{6\}$

Sol. 15. Given, $f(x) = \frac{4-x}{x-4}$

Domain: Clearly, f(x) is defined for all $x \in \mathbb{R}$ expect x = 4

 \therefore Domain of $f = \mathsf{R} - \{4\} = (-\infty, 4), \cup (4, \infty)$

Range: Let y = f(x)

$$\Rightarrow y = \frac{4-x}{x-4}$$
$$\Rightarrow y = \frac{-(x-4)}{x-4} = -1$$
$$\therefore \text{ Range of } f = \{-1\}$$

Sol. 16. Given, f(x) = 1 - |x - 3|Domain: We observe that f(x) is defined for all $x \in \mathbb{R}$ \therefore Domain of $f = \mathbb{R}$

Range: Now,

$$0 \le |x - 3| < \infty \forall \in R$$

$$\Rightarrow -\infty < -|x - 3| \le 0 \forall x \in R$$

$$\Rightarrow -\infty < -|\forall - 3| \le 1 \forall x \in R$$

$$\Rightarrow -\infty < f(x) \le 1 \forall x \in R$$

Hence, Range of $f = (-\infty, 1)$

Q. 17. Determine a quadratic function (f) is defined by $f(x) = ax^2 + bx + c$. If f(0)= 6, f(2) = 1, f(-3) = 6.[DDE - 2017] **Sol.** Given, $f(x) = ax^2 + bx + c$. At x = 0, f(0) = 6 (given) $\therefore a \times 0 + b \times 0 + c = 6$ $\therefore c = 6$ (i) At x = 2, f(2) = 1 (given) $\therefore a(2)^2 + b(2) + c = 1$ \Rightarrow 4a + 2b + 6 = 1 (using (i)) \Rightarrow 4a + 2b = -5 (ii) At x = -3, f(-3) = 6 $\therefore a(-3)^2 + b(-3) + c = 6$ \Rightarrow 9a - 3b + 6 = 6 (using (i)) \Rightarrow 9a - 3b = 0 (iii) On solving eqs. (ii) And (iii), we get $a = -\frac{1}{2}$ and $a = -\frac{3}{2}$

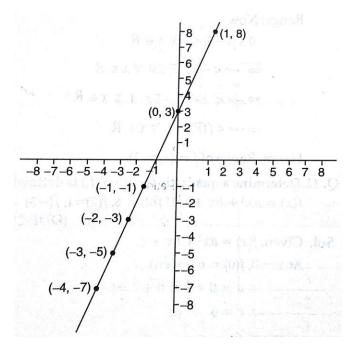
: Required quadratic function $(f) = \frac{-1}{2}x^2 + \frac{-3}{2}x + 6$

Q. 18. $f(x) = \begin{cases} 1+2x & x < 0 \\ 3+5x, & x \ge 0 \end{cases}$

Also, find its range.

Sol. Given, $f(x) = \begin{cases} 1+2x & x < 0\\ 3+5x, & x \ge 0 \end{cases}$ Here, f(x) = 1 + 2x, x < 0, this given f(-4) = 1 + 2(-4) = -7f(-3) = -1 + 2(-3) = -5f(-2) = 1 + 2(-2) = -3f(-1) = 1 + 2(-1) = -1and $f(x) = 3 + 5x, x \ge 0$ f(0) = 3 + 5(0) = 3 f(1) = 3 + 5(1) = 8 f(2) = 3 + 5(2) = 13 f(3) = 3 + 5(3) = 18f(4) = 3 + 5(4) = 23

Now the graph of f is as shown in following figure.



Range Let y, f (x), x < 0

$$\therefore y_{1} = 1 + 2x, x < 0$$

$$\therefore x = \frac{y_{1}-1}{2}, x < 0$$

$$\therefore < 0 \Rightarrow y_{1} - 1 < 0 \Rightarrow y_{1} < 1$$
Let $y_{2} = f(x), x \ge 0$

$$\Rightarrow y_{2} = 3 + 5x, x \ge 0$$

$$\Rightarrow x = \frac{y_{2}-3}{5}, x \ge 0$$

$$\therefore x \ge 0 \Rightarrow y_{2} - 3 \ge 0 \Rightarrow y_{2} \ge 3$$
Therefore, range of $f(-\infty, 1), \cup [3, \infty)$

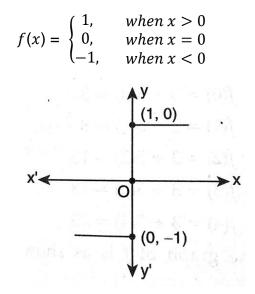
Q. 19. Draw the graph of the function

$$f(x)\begin{cases} \frac{|x|}{x} & x \neq 0\\ 0, & x = 0 \end{cases}$$

Also, find its range. [DDE – 2017]

Sol. Given
$$f(x) \begin{cases} \frac{|x|}{x} & x \neq 0\\ 0, & x = 0 \end{cases}$$

The given function is called the signum function and can be write as



The domain of f = R and the range of $f = \{-1, 0, 1\}$

Find the domain of the following functions: (Question 20 – 21)

Q. 20. $f(x) = \frac{1}{\sqrt{x+ x }}$				
Q. 21. $f(x) = \frac{1}{\sqrt{x - x }}$				
Sol. 20. Given, $f(x) = \frac{1}{\sqrt{x+ x }}$				
We know that,				
$ x = \begin{cases} x, \\ -x, \end{cases}$	when $x \ge 0$ when $x < 0$			
$x+ x =\begin{cases} x,\\ -x,\end{cases}$	when $x \ge 0$ when $x < 0$			
(2r)	when $x > 0$			

$$x + |x| = \begin{cases} 2x, & \text{when } x \ge 0\\ 0, & \text{when } x < 0 \end{cases}$$

Now, $f(x) = \frac{1}{\sqrt{x+|x|}}$ assume real values, if

$$x + |x| > 0$$

$$\Rightarrow x > 0$$

$$\Rightarrow x \in (0, \infty)$$

Hence, Domain $(f) = (0, \infty)$

Sol. 21. Given,
$$f(x) \frac{1}{\sqrt{x-|x|}}$$

We know that,

$$|x| = \begin{cases} x, & \text{when } x \ge 0\\ -x, & \text{when } x < 0 \end{cases}$$
$$x - |x| = \begin{cases} x - x & \text{when } x \ge 0\\ x + x, & \text{when } x < 0 \end{cases}$$
$$x - |x| = \begin{cases} 0, & \text{when } x \ge 0\\ 2x, & \text{when } x < 0 \end{cases}$$
$$= x - |x| \le 0 \text{ For all } x$$

 $\frac{1}{\sqrt{x - |x|}}$ does not take real values for any *x* ∈ R 1 ⇒ *f*(*x*) is not defined for any *x* ∈ R Hence, Domain (*f*) = ϕ