Maximum Marks: 200

Time allowed: 45 minutes

General Instructions: As given in Practice Paper - 1.

Section-A

Choose the correct option:

1. If $A = \begin{bmatrix} x & y & z \end{bmatrix}$, $B = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$, $C = \begin{bmatrix} \alpha & \beta & \gamma \end{bmatrix}^T$ then ABC is (a) Not defined (c) 1 × 1 matrix (b) 3 x 3 matrix (d) 3×2 matrix 2. If there are two values of *a* which makes determinant, $\Delta = \frac{1}{2} \begin{vmatrix} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2a \end{vmatrix} = 86$, then the sum of these number

is (a) 4

(b) 5

(c) - 4

(d) 9

If A is a square matrix such that (A – 2I)(A + I) = 0, then A⁻¹ is

(a)
$$\frac{A-I}{2}$$

(b)
$$\frac{A+I}{2}$$

(c) 2(A-I)

(d) 2(A + I)

4. If $x = t^2$, $y = t^3$, then $\frac{d^2y}{dx^2}$ is

(a)
$$\frac{3}{2}$$

(c) $\frac{4}{3t}$

 $(d) \frac{3}{2t}$

5. At (0, 0) the curve $y = x^{1/2}$ has

(a) a horizontal tangent parallel to x-axis

(c) an oblique tangent

(b) a vertical tangent parallel to y-axis

(d) tangent does not exist.

6. The value of $\int e^x \cos x \, dx$ is

(a)
$$e^x(\cos x + \sin x) + C$$

(c)
$$e^x + C$$

7. The value of
$$\int e^x \left\{ \frac{x^2+1}{(x+1)^2} \right\} dx$$
 is

(b)
$$\frac{e^x}{2}(\cos x + \sin x) + C$$

$$(d) (\sin x)e^x + C$$

(a)	e^x	(x+1)		
		(x-1)	+ (

(b)
$$e^x \left(\frac{x}{x-1} \right) + C$$

(c)
$$e^x \left\{ \frac{x-1}{x+1} \right\} + C$$

(d) None of these

8. The value of integral $\int \frac{dx}{(x+1)\sqrt{2x-3}}$ is

(a)
$$\frac{12}{\sqrt{5}} \tan^{-1} \left(\sqrt{\frac{2x-3}{5}} \right) + C$$

(b)
$$\frac{2}{\sqrt{5}} \tan^{-1} \left(\sqrt{\frac{2x+3}{5}} \right) + C$$

(c)
$$\frac{2}{\sqrt{5}} \tan^{-1} \left(\sqrt{\frac{2x-3}{5}} \right) + C$$

(d)
$$\frac{5}{2} \tan^{-1} \left(\sqrt{\frac{2x-3}{5}} \right) + C$$

9. $\int_2^3 \frac{\sqrt{x} dx}{\sqrt{5-x} + \sqrt{x}}$ is equal to

(a)
$$\frac{1}{2}$$

(b)
$$\frac{1}{3}$$

(d) 0

10. The area of the region bounded by the curve $y^2 = 2 px$, $x^2 = 2 py$ is

(a)
$$\frac{4p^2}{3}$$
 sq. units

(b)
$$4p^2$$
 sq. units

(c)
$$\frac{3p^2}{4}$$
 sq. units

(d) None of these

11. The differential equation for which $y = a \cos x + b \sin x$ is a solution, is

$$(a) \quad \frac{d^2y}{dx^2} + y = 0$$

$$(b) \frac{d^2y}{dx^2} - y = 0$$

(c)
$$\frac{d^2y}{dx^2} + (a+b)y = 0$$

(d)
$$\frac{d^2y}{dx^2} + (a-b)y = 0$$

12. The general solution of differential equation $(e^x + 1) y dy = (y+1)e^x dx$ is

(a)
$$(y + 1) = k(e^x + 1)$$

(b)
$$y + 1 = e^x + k$$

(c)
$$y = \log \{k (y + 1) (e^x + 1)\}$$

(d)
$$y = \log\left(\frac{e^x + 1}{y + 1}\right) + k$$

13. Solution of LPP maximize Z = 2x - y

subject to $x + y \le 2$; $x, y \ge 0$ is

(d) none of these

14. The probability distribution of a discrete random variable X given below:

X	2	3	4	5
P(X)	7/K	5/K	11/K	9/K

Then the value of K is

(d) 48

15. For the binomial distribution $B\left(6,\frac{1}{7}\right)$, standard deviation is

(a)
$$\frac{6}{7}$$

(b)
$$\frac{5}{7}$$

(c)
$$\frac{1}{7}$$

(d)
$$\frac{36}{49}$$

Section-B (B1)

16.			∈ R; set of real numbers}, th	
17	(a) Symmetric	(b) Reflexive	(c) Transitive	(d) All of these
17.	(a) Reflexive	{(a, a), (b, b), (a, c), (c, a)} t (b) Symmetric	(c) Transitive	(d) Equivalence
18.	1 /	$f(x) = (3 - x^3)^{\frac{1}{3}}$, then fof (() 1
	(a) $x^{\frac{1}{3}}$	(b) x^3	(c) x	(d) $(3-x^3)$
19.	If * be a binary operation	on N set of natural numb	pers as $a * b = b^a$, then * is	
	(a) Associative	(b) commutative	(c) not commutative	(d) none of these
20.	Let $f: R \to R$ be defined	1 by $f(x) = x^2 + 1$. Then, pre-	image of 5 and – 5, respectiv	ely are
	(a) ϕ , {-2}	(b) $\{3, -3\}, \phi$	(c) {−2, 2}, φ	$(d)\ \{1,-1\},\{2,-2\}$
21.	The value of $\cot \left[\frac{1}{2} \sin^{-1} \frac{1}{2} \right]$	$\left[\frac{\sqrt{3}}{2}\right]$ is		
	(a) 1	(b) $\frac{1}{\sqrt{3}}$	(c) √3	(d) 0
22.	$\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{5}$	$\frac{1}{7}$ + tan ⁻¹ $\frac{1}{8}$ is equal to		
23.	(a) $\frac{\pi}{4}$ sin (cot ⁻¹ x) is equal to	(b) $\frac{\pi}{3}$	(c) $\frac{3\pi}{4}$	(d) $\frac{-\pi}{4}$
	. ,	(b) x	(c) $(1+x^2)^{-3/2}$	(d) $(1+x^2)^{-1/2}$
24.	The value of $\sin^{-1}(2x\sqrt{1})$	$-x^2$), $x \in \left[\frac{1}{\sqrt{2}}, 1\right]$ is equal t	0	
		(b) 2 cos ⁻¹ x	(c) -2 sin ⁻¹ x	$(d) - 2 \cos^{-1} x$
25.	If $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ read the	following statements		
	Statement I : A^2 will be			
	Statement II : A ³ will be a zero matrix.			
	Choose the correct option. (a) Statement I is correct and II is not correct.			
	(b) Statement II is correct and I is not correct.			
	(c) Both statements I and	II are correct.		
	(d) None of these	[4.4]		
26.	[]	$2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$ then A is equ		
		(b) $\frac{1}{3}\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$		$(d) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
27.	What is the maximum va	alue of $\Delta = \begin{vmatrix} 1 & 1 \\ 1 & 1+\sin\theta \\ 1+\cos\theta & 1 \end{vmatrix}$	$\begin{array}{c c} & 1\\ in \theta & 1\\ & 1 \end{array}$ where θ is real num	ber?
	(a) $\frac{1}{2}$	(b) $\frac{\sqrt{3}}{2}$	(c) √2	(d) $\frac{2\sqrt{3}}{4}$

28.	. If A is an invertible matrix of order 2, then $det(A^{-1})$ is equal to				
		uei A	(c) 1	(d) 0	
29.	If $f(x) = \begin{cases} mx + 1, & \text{if } x \\ \sin x + n, & \text{if } \end{cases}$	$x \le \frac{\pi}{2}$ $x > \frac{\pi}{2}$ is continuous at	$x = \frac{\pi}{2}$ then		

30. If
$$y = \log\left(\frac{1-x^2}{1+x^2}\right)$$
, then $\frac{dy}{dx}$ is equal to

(a) m = 1, n = 0 (b) $m = \frac{n\pi}{2} + 1$

(a)
$$\frac{4x^3}{1-x^4}$$
 (b) $\frac{-4x}{1-x^4}$ (c) $\frac{1}{4-x^4}$ (d) $\frac{-4x^3}{1-x^4}$

(c) $n = \frac{m\pi}{2}$

(d) $m = n = \frac{\pi}{2}$

31. If
$$y = \sqrt{\sin x + y}$$
, then $\frac{dy}{dx}$ is equal to

(a)
$$\frac{\cos x}{2y-1}$$
 (b) $\frac{\cos x}{1-2y}$ (c) $\frac{\sin x}{1-2y}$ (d) $\frac{\sin x}{2y-1}$

32. The derivatives of $\cos^{-1}(2x^2-1)$ w.r.t. $\cos^{-1}x$ is

(a) 2 (b)
$$\frac{-1}{2\sqrt{1-x^2}}$$
 (c) $\frac{2}{x}$ (d) $1-x^2$

33. Let the $f: R \to R$ be defined by $f(x) = 2x + \cos x$, then f

(a) has a maximum, at
$$x = 0$$
 (b) has a minimum, at $x = \pi$

(c) is an increasing function (d) is a decreasing function

34.
$$\int \frac{3x-2}{(x+1)^2(x+3)} dx \text{ equals to}$$
(a) $\frac{11}{4} \log \left| \frac{x+1}{x+3} \right| + \frac{5}{2} \left\{ \frac{1}{x+1} \right\} + C$
(b) $\frac{3}{4} \log \left| \frac{x-1}{x+3} \right| + \frac{5}{2} \log \left| \frac{x}{3} \right| + C$

$$(c) \ \frac{4}{5} \log \left| \frac{x+1}{x+3} \right| + \frac{5}{2} \left\{ \frac{1}{x-1} \right\} + C \\ (d) \ \frac{11}{4} \log \left| \frac{x+1}{x-3} \right| + \frac{5}{2} \left\{ \frac{1}{x+1} \right\} + C$$

35. The value of integral $\int \sqrt{x^2 + 2x + 6} dx$ is

(a)
$$\frac{1}{2} \{ (x+1)\sqrt{x^2+2x+6} + 5\log | (x+1) + \sqrt{x^2+2x+6} | \} + C$$

(b)
$$\frac{1}{2} \{ (x-1)\sqrt{x^2+2x+6} - 5\log | (x-1) + \sqrt{x^2+2x+6} | \} + C$$

(c)
$$\frac{1}{2} \{ (x+1)\sqrt{x^2-2x+6} + 5\log | (x+1) + \sqrt{x^2+2x+6} | \} + C$$

(d)
$$\frac{1}{2} \{ (x+1)\sqrt{x^2+2x+6} - 5\log | (x+1) + \sqrt{x^2+2x+6} | \} + C$$

36. If $\{x\}$ represents the fractional part of x, then $\int_0^{100} \{\sqrt{x}\} dx$ is equal to

(a)
$$\frac{200}{3}$$
 (b) $-\frac{5}{4}$ (c) 100 (d) 0

37. The area of the region bounded by the curves $y = x^3$, y = x + 6 and x = 0 is

	M
	A
	Ϊ
l	E
l	M
	A
	C
,	S

38.	The curve for which the slope of the tangent at any point is equal to the ratio of the abscissa to the ordinate of the point is			
	(a) an ellipse	(b) parabola	(c) circle	(d) hyperbola
39.	39. The solution of differential equation $\frac{dy}{dx} + \frac{2x}{(1+x^2)}y = \frac{1}{(1+x^2)^2}$ is			
	(a) $y(1+x^2) = C + \tan^{-1} x$		(b) $\frac{y}{1+x^2} = C + \tan^{-1}x$	
	(c) $y \log (1+x^2) = C + \tan^{-1}$	x	(d) $y(1+x^2) = C + \sin^{-1} x$.	
40.	If $\vec{a} \perp \vec{b}$ then $\vec{a} \times \{\vec{a} \times \{\vec{a}\}\}$	$\times \{\vec{a} \times \{a \times (\vec{a} \times \vec{b})\}\}\}\$ equal	ls	
	(a) $- \vec{a} ^2\vec{b}$	(b) \$\vec{a} 6 \vec{b}\$	(c) $- \vec{a} ^6\vec{b}$	(d) $ \vec{a} ^2 \vec{b}$
41.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors such	ch that $\vec{c} = \vec{a} + \vec{b}$ and $\vec{a} \cdot \vec{b} = \vec{b}$	0 then	
	(a) $a^2 + b^2 + c^2 = 0$			$(d) \ \vec{c} = \vec{a} \times \vec{b}$
42.	If $\overrightarrow{a'_{1'}}, \overrightarrow{a'_{2'}}, \overrightarrow{a'_{3}}$ are reciproc	al of the non-coplanar vect	or \vec{a}_1 , \vec{a}_2 , \vec{a}_3 then $[\vec{a}_1 \vec{a}_2 \vec{a}_3]$	$\left[\overrightarrow{a'_{1}},\overrightarrow{a'_{2'}}\overrightarrow{a'_{3}}\right]$ equals
	(a) $-\frac{1}{2}$	(b) 1	(c) 4	(d) 0
43.	Let <i>a</i> , <i>b</i> , <i>c</i> be distinct as plane, then <i>c</i> is	nd non-negative numbers.	If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$,	$\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ lie in a
	(a) AM of a and b	(b) GM of a and b	(c) Zero	(d) None of these
44.	The angle between the lines whose direction cosines are given by the equation $l + m + n = 0$ and $l^2 + m^2 - n^2 = 0$ is			
	(a) $\theta = \frac{\pi}{4}$	(b) $\theta = \frac{\pi}{2}$	(c) $\theta = \frac{\pi}{3}$	(d) $\theta = \pi$
45.	The equation of the plan	ne through the points (2, 1,	-1), (-1, 3, 4) and perpendicu	ilar to the plane $x - 2y + 4z =$
	(a) $18x + 17y + 4z = 49$	(b) $20x - 12y + 3z = 11$	(c) $3x - 2y - 4z = 17$	(d) $7x - 2y - 3z = 0$
46.	The equation of the plane which bisects perpendicularly the line joining the points A (2, 3, 4) and B (4, 5, 8) at right angles is			
		(b) $x + y + 2z = 19$	(c) $x - y - 2z = 19$	(d) - x + 2y - 3z = 7
47.	The equation of a plane which is at a distance $3\sqrt{3}$ units from origin and the normal to which is equally inclined to coordinate axes is			normal to which is equally
	(a) $x + y - z = 9$		(c) $x - 2y - z = 1$	(d) $x - 5y - 3z = 7$
48.	If $P(A) = 0.4$, $P(B) = p$, $P(A \cup B) = 0.6$ and A , B are independent events, the value of p is			
	(a) 17/19	(b) 1/3	(c) 0	(d) None of these
49.	-	problems given in a book a lem, selected at random fro	-	obability that at least one of
	(a) 0.02	(b) 0.97	(c) 0.005	(d) 0.5
50.		acher will give an un-anno vility that he will miss atlea		meeting is 1/5. If a student is
	(a) $\frac{9}{25}$	(b) 7 17	(c) $\frac{11}{25}$	(d) 11/17