
PB 249

Learning Objectives
After learning this chapter, the students will be able to
• Understand the purpose of overloading
• Construct C++ programs using function, constructor and operator overloading
• Execute and debug programs which contains the concept of polymorphism

15.1 Introduction
 The word polymorphism means many forms (poly – many, morph – shapes)
Polymorphism is the ability of a message or function to be displayed in more than one form. In
C++, polymorphism is achieved through function overloading and operator overloading. The
term overloading means a name having two or more distinct meanings. Thus an ‘overloaded
function’ refers to a function having more than one distinct meaning.

15.2 Function overloading
 The ability of the function to process the message or data in more than one form is
called as function overloading. In other words function overloading means two or more
functions in the same scope share the same name but their parameters are different. In this
situation, the functions that share the same name are said to be overloaded and the process
is called function overloading . The number and types of a function's parameters are called
the function's signature. When you call an overloaded function, the compiler determines the
most appropriate definition to use, by comparing the argument types you have used to call
the function with the parameter types specified in the definitions. The process of selecting the
most appropriate overloaded function or operator is called overload resolution
15.2.1 Need For Function overloading
 Sometimes it's hard to find many different meaningful names for a single action.
 Consider the situation to find the area of circle ,triangle and rectangle the following
function prototype is given
float area_circle(float radius) // to calculate the area of a circle
float area_triangle(float half,floatbase,float height) // to calculate the area of a triangle
float area_rectangle(float length , float breadth) // to calculate the area of a rectangle

CHAPTER 15
Polymorphism

Unit IV Object Oriented
Programming with C++

Chapter 15 Page 249-259.indd 249 3/24/2020 9:23:24 AM

250 251

This can be rewritten using a single function header in the following manner
float area (float radius);
float area (float half, float base, float height);
float area (float length , float breadth);

#include <iostream>
using namespace std;
void print(int i)
 {cout<< " It is integer " << i <<endl;}
void print(double f)
{ cout<< " It is float " << f <<endl;}
void print(string c)
{ cout<< " It is string " << c <<endl;}
int main() {
 print(10);
 print(10.10);
 print("Ten");
 return 0;
}
Output:
It is integer 10
 It is float 10.1
It is string Ten

Illustration 15.1 C++ Program to demonstrate function overloading

Tip Notes

Function overloading is not only implementing polymorphism but also
reduces the number of comparisons in a program and makes the program
to execute faster. It also helps the programmer by reducing the number of
function names to be remembered.

15.2.2 Rules for function overloading

1. The overloaded function must differ in the number of its arguments or data types
2. The return type of overloaded functions are not considered for overloading same data type

3. The default arguments of overloaded functions are not considered as part of the parameter
list in function overloading.

Chapter 15 Page 249-259.indd 250 3/24/2020 9:23:24 AM

250 251

#include <iostream>
using namespace std;
long add(long, long);
long add(long,long,long);
float add(float, float);
int main()
{
 long a, b, c,d;
 float e, f, g;
 cout << "Enter three integers\n";
cin >> a >> b>>c;
d=add(a,b,c); //number of arguments different but same data type
cout << "Sum of 3 integers: " << d << endl;
cout << "Enter two integers\n";
cin >> a >> b;
c = add(a, b); //two arguments with same data type
cout << "Sum of 2 integers: " << c << endl;
cout << "Enter two floating point numbers\n";
 cin >> e >> f;
 g = add(e, f); //two arguments with different data type
cout << "Sum of floats: " << g << endl;
}
long add(long c, long g)
{
 long sum;
 sum = c + g;
 return sum;
}
float add(float c, float g)
{
 float sum;
 sum = c + g;
 return sum;
}
long add(long c, long g,long h)
{
 long sum;
 sum = c + g+h;
 return sum;
}
Output
Enter three integers
3 4 5
Sum of 3 integers: 12
Enter two integers
4 6
Sum of 2 integers: 10
Enter two floating point numbers
2.1 3.1
Sum of floats: 5.2

Illustration 15.2 C++ Program to demonstrate function overloading

Chapter 15 Page 249-259.indd 251 3/24/2020 9:23:24 AM

252 253

15.3 Constructor overloading

 Function overloading can be applied for constructors, as constructors are special
functions of classes .A class can have more than one constructor with different signature.
Constructor overloading provides flexibility of creating multiple type of objects for a class.

#include<iostream>
using namespace std;
class add
{ int num1, num2, sum;
public:
add()
{ cout<<"\n Constructor without parameters.. ";
num1= 0; num2= 0; sum = 0; }
add (int s1, int s2)
{ cout<<"\n Parameterized constructor... ";
 num1= s1; num2=s2; sum=0; }
add (add &a)
{ cout<<"\n Copy Constructor ... ";
 num1= a.num1;
 num2=a.num2;
 sum = 0; }
void getdata()
{ cout<<"\nEnter data ... "; cin>>num1>>num2; }
void addition()
{ sum=num1+num2; }
void putdata() {
cout<<"\n The numbers are..";
cout<<num1<<'\t'<<num2;
cout<<"\n The sum of the numbers are.. "<< sum; } };
int main() {
add a, b (10, 20) , c(b);
a.getdata();
a.addition();
b.addition();
c.addition();
cout<<"\n Object a : ";
a.putdata();
cout<<"\n Object b : ";
b.putdata();
cout<<"\n Object c.. ";
c.putdata();
return 0; }

Illustration 15.3 Constructor overloading

Compiler identifies a given member function is
a constructor by its name and the return type.

Chapter 15 Page 249-259.indd 252 3/24/2020 9:23:24 AM

252 253

Output
Constructor without parameters..
 Parameterized constructor...
 Copy Constructor ...
Enter data ... 20 30
 Object a :
 The numbers are..20 30
 The sum of the numbers are.. 50
 Object b :
 The numbers are..10 20
 The sum of the numbers are.. 30
 Object c..
 The numbers are..10 20
 The sum of the numbers are.. 30

Note

Since, there are multiple constructors present, argument to the constructor
should also be passed while creating an object.

15.4 Operator overloading
The term Operator overloading, refers to giving additional functionality to the normal C++
operators like +,++,-,—,+=,-=,*.<,>. It is also a type of polymorphism in which an operator is
overloaded to give user defined meaning to it .
 For example '+' operator can be overloaded to perform addition on various data types,
like for Integer, String(concatenation) etc.
 Almost all operators can be overloaded in C++. However there are few operator which
can not be overloaded. Operator that are not overloaded are follows
• Scope operator (::)
• Sizeof
• Member selector (.)
• Member pointer selector (✳)
• Ternary operator (?:)
Operator Overloading Syntax

ReturnType classname :: Operator Operator Symbol (argument list)
{ \\ Function body }

Keyword Operator to be overloaded

Chapter 15 Page 249-259.indd 253 3/24/2020 9:23:24 AM

254 255

15.4.1 Restrictions on Operator Overloading
 Following are some restrictions to be kept in mind while implementing operator
overloading.
1. Precedence and Associativity of an operator cannot be changed.
2. No new operators can be created, only existing operators can be overloaded.
3. Cannot redefine the meaning of an operator’s procedure. You cannot change how integers

are added.Only additional functions can be given to an operator
4. Overloaded operators cannot have default arguments.
5. When binary operators are overloaded, the left hand object must be an object of the relevant

class

#include<iostream>
using namespace std;
class complex
{ int real,img;
 public:
void read()
{
cout<<"\nEnter the REAL PART : ";
cin>>real;
cout<<"\nEnter the IMAGINARY PART : ";
cin>>img;
}
complex operator +(complex c2)
{

complex c3;
c3.real=real+c2.real;
c3.img=img+c2.img;
return c3;

}
void display()

{ cout<<real<<"+"<<img<<"i"; }
};
int main()
{

complex c1,c2,c3;
int choice, cont;
cout<<"\n\nEnter the First Complex Number";
c1.read();
cout<<"\n\nEnter the Second Complex Number";
c2.read();
c3=c1+c2; // binary + overloaded
cout<<"\n\nSUM = ";
c3.display();
return 0;

 }

Output
Enter the First Complex Number
Enter the REAL PART : 3
Enter the IMAGINARY PART : 4
Enter the Second Complex Number
Enter the REAL PART : 5
Enter the IMAGINARY PART : 8
SUM = 8+12i

Illustration 15.5 Binary operator overloading using ‘+’in Complex number addition

Chapter 15 Page 249-259.indd 254 3/24/2020 9:23:24 AM

254 255

#include<string.h>
#include<iostream>
using namespace std;
class strings
{
 public:
 char s[20];
 void getstring(char str[])
{
 strcpy(s,str);
 }
 void operator+(strings);
};
void strings::operator+(strings ob)
{
 strcat(s,ob.s);
 cout<<"\nConcatnated String is:"<<s;
}
int main()
{
 strings ob1, ob2;
 char string1[10], string2[10];
 cout<<"\nEnter First String:";
 cin>>string1;
 ob1.getstring(string1);
 cout<<"\nEnter Second String:";
 cin>>string2;
 ob2.getstring(string2);
 //Calling + operator to Join/Concatnate strings
 ob1+ob2;
 return 0;
}
Output
Enter First String:COMPUTER
Enter Second String:SCIENCE
Concatnated String is:COMPUTERSCIENCE

Illustration 15.6 Concatenation of string using operator overloading

Chapter 15 Page 249-259.indd 255 3/24/2020 9:23:24 AM

256 257

Evaluation

SECTION – A
Choose the correct answer
1. Which of the following refers to a function having more than one distinct meaning?
 (A) Function Overloading (B) Member overloading
 (C) Operator overloading (D) Operations overloading

2. Which of the following reduces the number of comparisons in a program ?
 (A) Operator overloading (B) Operations overloading
 (C) Function Overloading (D) Member overloading

3. void dispchar(char ch=’$’,int size=10)

 {

 for(int i=1;i<=size;i++)

 cout<<ch;

 }

• In C++, polymorphism is achieved
through function overloading and
operator overloading.

• The term overloading means a name
having two or more distinct meanings.

• Overloaded function’ refers to a function
having more than one distinct meaning.

• Overloaded functions have same name
but different signatures (Number of
argument and type of argument)

• A function’s argument list is known as a
function signature

• Two function cannot be overloaded
when the only difference is that one takes
a reference parameter and the other takes
a normal, call-by-value parameter.

• Ordinary functions as well member
functions can be overloaded

• A class can have overloaded constructors
where as destructor function cannot be
overloaded.

• The mechanism of giving special
meaning to an operator is known as
operator overloading.

• Operator overloading provides new
definitions for most of the C++ operators.

• Even user defined types (objects) can be
overloaded.

• The definition of the overloaded operator
is given using the keyword 'operator'
followed by an operator symbol.

• We can overload all the C++ operators
except the following:

• Scope resolution operator (::), sizeof (),
Conditional operator (?:), Member
selection(.) and Member pointer selector
(✳) operator

Points to Remember

Chapter 15 Page 249-259.indd 256 3/24/2020 9:23:24 AM

256 257

How will you invoke the function dispchar() for the following input?

To print $ for 10 times

 (A) dispchar(); (B) dispchar(ch,size);

 (C) dispchar($,10); (D)dispchar(‘$’,10 times);

4. Which of the following is not true with respect to function overloading?
 (A) The overloaded functions must differ in their signature.
 (B) The return type is also considered for overloading a function.
 (C) The default arguments of overloaded functions are not considered for Overloading.
 (D) Destructor function cannot be overloaded.

5. Which of the following is invalid prototype for function overloading

(A) void fun (intx);
 void fun (char ch) ;

(B) void fun (intx);
 void fun (inty);

(C) void fun (double d);
 void fun (char ch);

(D) void fun (double d);
 void fun (inty);

SECTION-B

Very Short Answers

1. What is function overloading?
2. List the operators that cannot be overloaded.
3. class add{int x; public: add(int)}; Write an outline definition for the constructor.
4. Does the return type of a function help in overloading a function?
5. What is the use of overloading a function?

SECTION-C

Short Answers

1. What are the rules for function overloading?
2. How does a compiler decide as to which function should be invoked when there are

many functions? Give an example.
3. What is operator overloading? Give some examples of operators which can be

overloaded.
4. Discuss the benefits of constructor overloading ?
5. class sale (int cost, discount ;public: sale(sale &); Write a non inline definition for

constructor specified;

Chapter 15 Page 249-259.indd 257 3/24/2020 9:23:24 AM

258 259

SECTION - D

Explain in detail

1. What are the rules for operator overloading?
2. Answer the question (i) to (v) after going through the following class.

class Book {
int BookCode ; char Bookname[20];float fees;
public:
Book() //Function 1
{ fees=1000;
 BookCode=1;
 strcpy(Bookname,"C++"); }
void display(float C) //Function 2
{ cout<<BookCode<<":"<<Bookname<<":"<<fees<<endl; }
~Book() //Function 3
{ cout<<"End of Book Object"<<endl; }
 Book (intSC,char S[],float F) ; //Function 4
};

(i) In the above program, what are Function 1 and Function 4 combined together referred as?
(ii) Which concept is illustrated by Function3? When is this function called/ invoked?
(iii) What is the use of Function3?
(iv) Write the statements in main to invoke function1 and function2
 (v) Write the definition for Function4 .
3. Write the output of the following program

include<iostream>
using namespace std;
class Seminar
{ int Time;
public:
Seminar()
 { Time=30;cout<<"Seminar starts now"<<endl; }
void Lecture()
{ cout<<"Lectures in the seminar on"<<endl; }
Seminar(int Duration)
{ Time=Duration;cout<<"Welcome to Seminar "<<endl; }
Seminar(Seminar &D)
{ Time=D.Time;cout<<"Recap of Previous Seminar Content "<<endl;}
~Seminar()

Chapter 15 Page 249-259.indd 258 3/24/2020 9:23:24 AM

258 259

{cout<<"Vote of thanks"<<endl; } };
int main()
{ Seminar s1,s2(2),s3(s2);
 s1.Lecture();
 return 0;
}

4. Answer the questions based on the
following program

#include<iostream>
#include<string.h>
using namespace std;
class comp {
public:
char s[10];
void getstring(char str[10])
 { strcpy(s,str); }
void operator==(comp);
};
void comp::operator==(comp ob)
{ if(strcmp(s,ob.s)==0)
 cout<<"\nStrings are Equal";
else
 cout<<"\nStrings are not Equal"; }
int main()
{ comp ob, ob1;
char string1[10], string2[10];
cout<<"Enter First String:";
cin>>string1;
ob.getstring(string1);
cout<<"\nEnter Second String:";
cin>>string2;
ob1.getstring(string2);
ob==ob1;
return 0; }

(i) Mention the objects which will have the
scope till the end of the program.

(ii) Name the object which gets destroyed in
between the program

(iii) Name the operator which is over loaded
and write the statement that invokes it.

(iv) Write out the prototype of the overloaded

member function
(v) What types of operands are used for the

overloaded operator?
(vi) Which constructor will get executed in

the above program? Write the output of
the program

CASE STUDY

 Suppose you have a Kitty Bank with
an initial amount of Rs500 and you have
to add some more amount to it. Create a
class 'Deposit' with a data member named
'amount' with an initial value of Rs500.
Now make three constructors of this class as
follows:

1. without any parameter - no amount will
be added to the Kitty Bank

2. having a parameter which is the amount
that will be added to the Kitty Bank

3. whenever amount is added an additional
equal amount will be deposited
automatically

Create an object of the 'Deposit’ and
display the final amount in the Kitty Bank.

Reference:

1. Object Oriented Programming with
C++ (4th Edition), Dr. E. Balagurusamy,
Mc.Graw Hills.

2. The Complete Reference C++ (Forth
Edition), Herbert Schildt. Mc.Graw
Hills.

3. The C++ Programming
Language,BjarneStroustrup

Chapter 15 Page 249-259.indd 259 3/24/2020 9:23:24 AM

	Introduction Folder
	Chapter 1 Page 001-013
	Chapter 2 Page 014-040
	Chapter 3 Page 041-049
	Chapter 4 Page 050-056
	Chapter 5 Page 057-075
	Chapter 6 Page 076-087
	Chapter 7 Page 088-101
	Chapter 8 Page 102-114
	Chapter 9 Page 115-151
	Chapter 10 Page 152-179
	Chapter 11 Page 180-205
	Chapter 12 Page 206-227
	Chapter 13 Page 228-232
	Chapter 14 Page 233-248
	Chapter 15 Page 249-259

