Principle of Mathematical Induction

Question 1. For all $n \in \mathbb{N}$, $3n^5 + 5n^3 + 7n$ is divisible by (a) 5 (b) 15 (c) 10 (d) 3 Answer: (b) 15 Given number = $3n^5 + 5n^2 + 7n$ Let $n = 1, 2, 3, 4, \dots$ $3n^5 + 5n^3 + 7n = 3 \times 1^2 + 5 \times 1^3 + 7 \times 1 = 3 + 5 + 7 = 15$ $3n^5 + 5n^3 + 7n = 3 \times 2^5 + 5 \times 2^3 + 7 \times 2 = 3 \times 32 + 5 \times 8 + 7 \times 2 = 96 + 40 + 14 = 150 = 15 \times 10$ $3n^5 + 5n^3 + 7n = 3 \times 3^5 + 5 \times 3^3 + 7 \times 3 = 3 \times 243 + 5 \times 27 + 7 \times 3 = 729 + 135 + 21 = 885 = 15 \times 59$ Since, all these numbers are divisible by 15 for $n = 1, 2, 3, \dots$ So, the given number is divisible by 15

Question 2. $\{1 - (1/2)\}\{1 - (1/3)\}\{1 - (1/4)\} \dots \{1 - 1/(n + 1)\} =$ (a) 1/(n + 1) for all $n \in \mathbb{N}$. (b) 1/(n + 1) for all $n \in \mathbb{R}$ (c) n/(n + 1) for all $n \in \mathbb{N}$. (d) n/(n + 1) for all $n \in \mathbb{R}$ Answer: (a) 1/(n + 1) for all $n \in \mathbb{N}$. Let the given statement be P(n). Then, P(n): $\{1 - (1/2)\}\{1 - (1/3)\}\{1 - (1/4)\} \dots \{1 - 1/(n + 1)\} = 1/(n + 1)$. When n = 1, LHS = $\{1 - (1/2)\} = \frac{1}{2}$ and RHS = $1/(1 + 1) = \frac{1}{2}$. Therefore LHS = RHS. Thus, P(1) is true. Let P(k) be true. Then, P(k): $\{1 - (1/2)\}\{1 - (1/3)\}\{1 - (1/4)\}$ $[1 - \{1/(k + 1)\}] = 1/(k + 1)$ Now, $[\{1 - (1/2)\}\{1 - (1/3)\}\{1 - (1/4)\}$ $[1 - \{1/(k + 1)\}] \cdot [1 - \{1/(k + 2)\}]$ = $[1/(k + 1)] \cdot [\{(k + 2) - 1\}/(k + 2)\}]$ = $[1/(k + 1)] \cdot [(k + 1)/(k + 2)]$ = 1/(k + 2)Therefore p(k + 1): $[\{1 - (1/2)\}\{1 - (1/3)\}\{1 - (1/4)\}$ $[1 - \{1/(k + 1)\}] = 1/(k + 2)$ \Rightarrow P(k + 1) is true, whenever P(k) is true. Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true. Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Question 3. For all $n \in N$, $3^{2n} + 7$ is divisible by (a) non of these (b) 3 (c) 11 (d) 8 Answer: (d) 8 Given number = 32n + 7Let n = 1, 2, 3, 4, $3^{2n} + 7 = 3^2 + 7 = 9 + 7 = 16$ $3^{2n} + 7 = 3^4 + 7 = 81 + 7 = 88$ $3^{2n} + 7 = 3^6 + 7 = 729 + 7 = 736$ Since, all these numbers are divisible by 8 for n = 1, 2, 3,So, the given number is divisible by 8

Question 4. The sum of the series $1 + 2 + 3 + 4 + 5 + \dots + n$ is (a) n(n + 1)(b) (n + 1)/2(c) n/2(d) n(n + 1)/2Answer: (d) n(n + 1)/2Given, series is series $1 + 2 + 3 + 4 + 5 + \dots + n$ Sum = n(n + 1)/2

Question 5. The sum of the series $1^2 + 2^2 + 3^2 + \dots + n^2$ is (a) n(n + 1) (2n + 1)(b) n(n + 1) (2n + 1)/2(c) n(n + 1) (2n + 1)/3(d) n(n + 1) (2n + 1)/6Answer: (d) n(n + 1) (2n + 1)/6Given, series is $1^2 + 2^2 + 3^2 + \dots + n^2$ Sum = n(n + 1)(2n + 1)/6

Ouestion 6. For all positive integers n, the number $n(n^2 - 1)$ is divisible by: (a) 36 (b) 24 (c) 6(d) 16 Answer: (c) 6 Given. number = $n(n^2 - 1)$ Let n = 1, 2, 3, 4... $n(n^2 - 1) = 1(1 - 1) = 0$ $n(n^2 - 1) = 2(4 - 1) = 2 \times 3 = 6$ $n(n^2 - 1) = 3(9 - 1) = 3 \times 8 = 24$ $n(n^2 - 1) = 4(16 - 1) = 4 \times 15 = 60$ Since all these numbers are divisible by 6 for $n = 1, 2, 3, \dots$ So, the given number is divisible 6

Question 7. If n is an odd positive integer, then $a^n + b^n$ is divisible by : (a) $a^2 + b^2$ (b) a + b(c) a - b(d) none of these Answer: (b) a + bGiven number = $a^n + b^n$ Let $n = 1, 3, 5, \dots$ $a^n + b^n = a + b$ $a^n + b^n = a^3 + b^3 = (a + b) \times (a^2 + b^2 + ab)$ and so on. Since, all these numbers are divisible by (a + b) for $n = 1, 3, 5, \dots$

Ouestion 8. n(n + 1) (n + 5) is a multiple of for all $n \in N$ (a) 2(b) 3 (c) 5(d) 7 Answer: (b) 3 Let P(n): n(n + 1)(n + 5) is a multiple of 3. For n = 1, the given expression becomes $(1 \times 2 \times 6) = 12$, which is a multiple of 3. So, the given statement is true for n = 1, i.e. P(1) is true. Let P(k) be true. Then, P(k): k(k + 1)(k + 5) is a multiple of 3 \Rightarrow K(k + 1) (k + 5) = 3m for some natural number m, (i) Now, (k + 1) (k + 2) (k + 6) = (k + 1) (k + 2)k + 6(k + 1) (k + 2)= k(k + 1) (k + 2) + 6(k + 1) (k + 2)= k(k + 1) (k + 5 - 3) + 6(k + 1) (k + 2)= k(k + 1) (k + 5) - 3k(k + 1) + 6(k + 1) (k + 2)= k(k + 1)(k + 5) + 3(k + 1)(k + 4) [on simplification] = 3m + 3(k + 1)(k + 4) [using (i)] = 3[m + (k + 1) (k + 4)], which is a multiple of 3 \Rightarrow P(k+1) (k+1) (k+2) (k+6) is a multiple of 3 \Rightarrow P(k + 1) is true, whenever P(k) is true. Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true. Hence, by the principle of mathematical induction, P(n) is true for all $n \in N$.

Question 9. For any natural number n, $7^n - 2^n$ is divisible by (a) 3 (b) 4 (c) 5 (d) 7 Answer: (c) 5 Given, $7^n - 2^n$ Let n = 1 $7^n - 2^n = 7^1 - 2^1 = 7 - 2 = 5$ which is divisible by 5 Let n = 2 $7^n - 2^n = 72 - 22 = 49 - 4 = 45$ which is divisible by 5 Let n = 3 $7^n - 2^n = 7^3 - 2^3 = 343 - 8 = 335$ which is divisible by 5 Hence, for any natural number n, $7^n - 2^n$ is divisible by 5

Question 10. The sum of the series $1^3 + 2^3 + 3^3 + ... n^3$ is (a) $\{(n+1)/2\}^2$ (b) $\{n/2\}^2$ (c) n(n + 1)/2(d) $\{n(n+1)/2\}^2$ Answer: (d) $\{n(n + 1)/2\}^2$ Given, series is $1^3 + 2^3 + 3^3 + \dots + n^3$ Sum = $\{n(n + 1)/2\}^2$ Question 11. $(1^2 + 2^2 + \dots + n^2)$ for all values of $n \in N$ (a) = $n^{3}/3$ (b) $< n^{3}/3$ (c) > $n^{3}/3$ (d) None of these Answer: (c) $> n^{3}/3$ Let P(n): $(1^2 + 2^2 + + n^2) > n^3/3$. When = 1, LHS = $1^2 = 1$ and RHS = $1^3/3 = 1/3$. Since 1 > 1/3, it follows that P(1) is true. Let P(k) be true. Then, P(k): $(1^2 + 2^2 + \dots + k^2) > k^3/3 \dots (i)$ Now. $1^2 + 2^2 + \ldots + k^2$ $+(k+1)^{2}$ $= \{1^2 + 2^2 + \dots + k^2 + (k+1)^2\}$ $> k^{3}/3 + (k + 1)^{3}$ [using (i)] $= 1/3 \cdot (k^3 + 3 + (k+1)^2) = 1/3 \cdot \{k^2 + 3k^2 + 6k + 3\}$ $= 1/3[k^3 + 1 + 3k(k + 1) + (3k + 2)]$ $= 1/3 \cdot [(k+1)^3 + (3k+2)]$ $> 1/3(k+1)^3$ P(k + 1): $1^2 + 2^2 + \dots + k^2 + (k+1)^2$ $> 1/3 \cdot (k+1)^3$ P(k + 1) is true, whenever P(k) is true.

Thus P(1) is true and P(k + 1) is true whenever p(k) is true. Hence, by the principle of mathematical induction, P(n) is true for all $n \in N$.

Ouestion 12. $\{1/(3 \cdot 5)\} + \{1/(5 \cdot 7)\} + \{1/(7 \cdot 9)\} + \dots + 1/\{(2n+1)(2n+3)\} =$ (a) n/(2n+3)(b) $n/\{2(2n+3)\}$ (c) $n/{3(2n+3)}$ (d) $n/{4(2n+3)}$ Answer: (c) $n/{3(2n+3)}$ Let the given statement be P(n). Then, $P(n): \{1/(3 \cdot 5) + 1/(5 \cdot 7) + 1/(7 \cdot 9) + \dots + 1/\{(2n+1)(2n+3)\} = n/\{3(2n+3)\}.$ Putting n = 1 in the given statement, we get and LHS = $1/(3 \cdot 5) = 1/15$ and RHS = $1/{3(2 \times 1 + 3)} = 1/15$. LHS = RHSThus, P(1) is true. Let P(k) be true. Then, P(k): $\{1/(3 \cdot 5) + 1/(5 \cdot 7) + 1/(7 \cdot 9) + \dots + 1/\{(2k+1)(2k+3)\} = k/\{3(2k+3)\} \dots$ (i) Now, $1/(3 \cdot 5) + 1/(5 \cdot 7) + \dots + 1/[(2k+1)(2k+3)] + 1/[(2(k+1)+1)(2(k+1)+3)]$ $= \{1/(3 \cdot 5) + 1/(5 \cdot 7) + \dots + \lceil 1/(2k+1)(2k+3) \rceil\} + 1/\{(2k+3)(2k+5)\}$ = k/[3(2k+3)] + 1/[2k+3)(2k+5)] [using (i)] $= \{k(2k+5)+3\}/\{3(2k+3)(2k+5)\}$ $=(2k^{2}+5k+3)/[3(2k+3)(2k+5)]$ $= \{(k+1)(2k+3)\}/\{3(2k+3)(2k+5)\}$ $= (k + 1)/{3(2k + 5)}$ $= (k+1)/[3\{2(k+1)+3\}]$ $= P(k+1): 1/(3 \cdot 5) + 1/(5 \cdot 7) + \dots + 1/[2k+1)(2k+3)] + 1/[\{2(k+1)+1\}\{2(k+1)+3\}]$ $= (k + 1)/\{3\{2(k + 1) + 3\}\}$ \Rightarrow P(k + 1) is true, whenever P(k) is true. Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true. Hence, by the principle of mathematical induction, P(n) is true for $n \in N$.

Question 13.

If n is an odd positive integer, then $a^n + b^n$ is divisible by :

(a) $a^2 + b^2$

(b) a + b

(c) a - b

(d) none of these

Answer: (b) a + bGiven number = $a^n + b^n$ Let $n = 1, 3, 5, \dots$ $a^n + b^n = a + b$ $a^n + b^n = a^3 + b^3 = (a + b) \times (a^2 + b^2 + ab)$ and so on. Since, all these numbers are divisible by (a + b) for $n = 1, 3, 5, \dots$ So, the given number is divisible by (a + b)

Question 14. $(2 \cdot 7^{N} + 3 \cdot 5^{N} - 5)$ is divisible by for all $N \in N$ (a) 6 (b) 12 (c) 18 (d) 24 Answer: (d) 24 Let P(n): $(2 \cdot 7^n + 3 \cdot 5^n - 5)$ is divisible by 24. For n = 1, the given expression becomes $(2 \cdot 7^1 + 3 \cdot 5^1 - 5) = 24$, which is clearly divisible by 24. So, the given statement is true for n = 1, i.e., P(1) is true. Let P(k) be true. Then, P(k): $(2 \cdot 7^{n} + 3 \cdot 5^{n} - 5)$ is divisible by 24. \Rightarrow (2 · 7ⁿ + 3 · 5ⁿ - 5) = 24m, for m = N Now, $(2 \cdot 7^n + 3 \cdot 5^n - 5)$ $= (2 \cdot 7^k \cdot 7 + 3 \cdot 5^k \cdot 5 - 5)$ $= 7(2 \cdot 7^{k} + 3 \cdot 5^{k} - 5) = 6 \cdot 5^{k} + 30$ $=(7 \times 24m) - 6(5^k - 5)$ $= (24 \times 7m) - 6 \times 4p$, where $(5^k - 5) = 5(5^{k-1} - 1) = 4p$ [Since $(5^{k-1} - 1)$ is divisible by (5 - 1)] $= 24 \times (7m - p)$ = 24r, where $r = (7m - p) \in N$ \Rightarrow P (k + 1): (2 · 7^k + 13 · 5^k + 1 - 5) is divisible by 24. \Rightarrow P(k + 1) is true, whenever P(k) is true. Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true. Hence, by the principle of mathematical induction, P(n) is true for all $n \in N$.

Question 15. For all $n \in \mathbb{N}$, $5^{2n} - 1$ is divisible by (a) 26 (b) 24 (c) 11 (d) 25

Answer: (b) 24 Given number = $5^{2n} - 1$ Let n = 1, 2, 3, 4, $5^{2n} - 1 = 5^2 - 1 = 25 - 1 = 24$ $5^{2n} - 1 = 5^4 - 1 = 625 - 1 = 624 = 24 \times 26$ $5^{2n} - 1 = 5^6 - 1 = 15625 - 1 = 15624 = 651 \times 24$ Since, all these numbers are divisible by 24 for n = 1, 2, 3, So, the given number is divisible by 24

Ouestion 16. $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) =$ (a) n(n+1)(n+2)(b) ${n(n+1)(n+2)}/{2}$ (c) ${n(n + 1)(n + 2)}/{3}$ (d) ${n(n+1)(n+2)}/{4}$ Answer: (c) ${n(n + 1)(n + 2)}/{3}$ Let the given statement be P(n). Then, $P(n): 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = (1/3)\{n(n+1)(n+2)\}$ Thus, the given statement is true for n = 1, i.e., P(1) is true. Let P(k) be true. Then, $P(k): 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + k(k+1) = (1/3)\{k(k+1)(k+2)\}.$ Now, $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + k(k+1) + (k+1)(k+2)$ $= (1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + k(k+1)) + (k+1)(k+2)$ = (1/3) k(k+1) (k+2) + (k+1)(k+2) [using (i)]= (1/3) [k(k+1) (k+2) + 3(k+1)(k+2)] $= (1/3)\{(k+1)(k+2)(k+3)\}$ \Rightarrow P(k + 1): 1 · 2 + 2 · 3 + 3 · 4 +....+ (k + 1) (k + 2) $= (1/3)\{k+1\}(k+2)(k+3)\}$ \Rightarrow P(k + 1) is true, whenever P(k) is true. Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true. Hence, by the principle of mathematical induction, P(n) is true for all values of $\in N$.

Question 17. $1/(1 \cdot 2 \cdot 3) + 1/(2 \cdot 3 \cdot 4) + \dots + 1/\{n(n+1)(n+2)\} =$ (a) $\{n(n+3)\}/\{4(n+1)(n+2)\}$ (b) $(n+3)/\{4(n+1)(n+2)\}$ (c) $n/{4(n + 1)(n + 2)}$ (d) None of these

Answer: (a) ${n(n+3)}/{4(n+1)(n+2)}$ Let P (n): $1/(1 \cdot 2 \cdot 3) + 1/(2 \cdot 3 \cdot 4) + \dots + 1/\{n(n+1)(n+2)\} = \{n(n+3)\}/\{4(n+1)(n+2)\}$ Putting n = 1 in the given statement, we get LHS = $1/(1 \cdot 2 \cdot 3) = 1/6$ and RHS = $\{1 \times (1+3)\}/[4 \times (1+1)(1+2)] = (1 \times 4)/(4 \times 2 \times 3) = 1/6$. Therefore LHS = RHS. Thus, the given statement is true for n = 1, i.e., P(1) is true. Let P(k) be true. Then, $P(k): \frac{1}{(1 \cdot 2 \cdot 3)} + \frac{1}{(2 \cdot 3 \cdot 4)} + \dots + \frac{1}{k(k+1)(k+2)} = \frac{k(k+3)}{4(k+1)(k+2)}.$(i) Now, $1/(1 \cdot 2 \cdot 3) + 1/(2 \cdot 3 \cdot 4) + \dots + 1/\{k(k+1)(k+2)\} + 1/\{(k+1)(k+2)(k+3)\}$ $= [1/(1 \cdot 2 \cdot 3) + 1/(2 \cdot 3 \cdot 4) + \dots + 1/\{k(k+1)(k+2)\} + 1/\{(k+1)(k+2)(k+3)\}$ $= [\{k(k+3)\}/\{4(k+1)(k+2)\} + 1/\{(k+1)(k+2)(k+3)\}] [using(i)]$ $= \{k(k+3)^2 + 4\}/\{4(k+1)(k+2)(k+3)\}$ $= (k^{3} + 6k^{2} + 9k + 4)/\{4(k + 1)(k + 2)(k + 3)\}$ $= {(k+1)(k+1)(k+4)}/{4(k+1)(k+2)(k+3)}$ $= {(k+1)(k+4)}/{4(k+2)(k+3)}$ $\Rightarrow P(k+1): \frac{1}{(1 \cdot 2 \cdot 3) + \frac{1}{(2 \cdot 3 \cdot 4) + \dots + \frac{1}{(k+1)(k+2)(k+3)}}$ $= \{(k+1)(k+2)\}/\{4(k+2)(k+3)\}$ \Rightarrow P(k + 1) is true, whenever P(k) is true. Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true. Hence, by the principle of mathematical induction, P(n) is true for all $n \in N$.

Question 18. For any natural number n, $7^n - 2^n$ is divisible by (a) 3 (b) 4 (c) 5(d) 7Answer: (c) 5 Given, $7^n - 2^n$ Let n = 1 $7^{n} - 2^{n} = 7^{1} - 2^{1} = 7 - 2 = 5$ which is divisible by 5 Let n = 2 $7^{n} - 2^{n} = 7^{2} - 2^{2} = 49 - 4 = 45$ which is divisible by 5 Let n = 3 $7^{n} - 2^{n} = 7^{3} - 2^{3} = 343 - 8 = 335$

which is divisible by 5 Hence, for any natural number n, $7^n - 2^n$ is divisible by 5

Question 19. The sum of n terms of the series $1^2 + 3^2 + 5^2 + \dots$ is (a) $n(4n^2 - 1)/3$ (b) $n^2(2n^2 + 1)/6$ (c) none of these. (d) $n^2(n^2 + 1)/3$ Answer: (a) $n(4n^2 - 1)/3$ Let $S = 1^2 + 3^2 + 5^2 + \dots (2n - 1)^2$ $\Rightarrow S = \{1^2 + 2^2 + 3^2 + 4^2 \dots (2n - 1)^2 + (2n)^2\} - \{2^2 + 4^2 + 6^2 + \dots + (2n)^2\}$ $\Rightarrow S = \{2n \times (2n + 1) \times (4n + 1)\}/6 - \{4n \times (n + 1) \times (2n + 1)\}/6$ $\Rightarrow S = n(4n^2 - 1)/3$

Question 20. For all $n \in N$, $3n^5 + 5n^3 + 7n$ is divisible by: (a) 5 (b) 15 (c) 10 (d) 3 Answer: (b) 15 Given number = $3n^5 + 5n^3 + 7n$ Let $n = 1, 2, 3, 4, \dots$ $3n^5 + 5n^3 + 7n = 3 \times 1^2 + 5 \times 1^3 + 7 \times 1 = 3 + 5 + 7 = 15$ $3n^5 + 5n^3 + 7n = 3 \times 2^5 + 5 \times 2^3 + 7 \times 2 = 3 \times 32 + 5 \times 8 + 7 \times 2 = 96 + 40 + 14 = 150 = 15 \times 10$ $3n^5 + 5n^3 + 7n = 3 \times 3^5 + 5 \times 3^3 + 7 \times 3 = 3 \times 243 + 5 \times 27 + 7 \times 3 = 729 + 135 + 21 = 885 = 15 \times 59$ Since, all these numbers are divisible by 15 for $n = 1, 2, 3, \dots$ So, the given number is divisible by 15