
 

 

 

 

 

UNIT 4 

 

 



 168 

Chapter 1 

Strings 

After studying this lesson, students will be able to:  

 Learn how Python inputs strings   

 Understand how Python stores and uses strings 

 Perform slicing operations on strings 

 Traverse strings with a loop 

 Compare strings and substrings 

 Understand the concept of immutable strings 

 Understanding string functions. 

 Understanding string constants 

Introduction 

In python, consecutive sequence of characters is known as a string. An individual 

character in a string is accessed using a subscript (index). The subscript should always 

be an integer (positive or negative). A subscript starts from 0. 

Example 

 # Declaring a string in python 

 >>>myfirst=“Save Earth” 

 >>>print myfirst 

 Save Earth 

Let’s play with subscripts 

To access the first character of the string 

 >>>print myfirst[0] 

 S 



 169 

To access the fourth character of the string 

 >>>print myfirst[3] 

 e 

To access the last character of the string 

 >>>print myfirst[-1] 

 >>h 

To access the third last character of the string 

 >>>print myfirst[-3] 

 r 

Consider the given figure 

String  A H E L L O 

Positive Index 0 1 2 3 4 

Negative Index -5 -4 -3 -2 -1 

Important points about accessing elements in the strings using subscripts 

 Positive subscript helps in accessing the string from the beginning 

 Negative subscript helps in accessing the string from the end. 

 Subscript 0 or –ve n(where n is length of the string) displays the first element. 

 Example : A[0] or A[-5] will display „H‟ 

 Subscript 1 or –ve (n-1) displays the second element. 

Note: Python does not support character data type. A string of size 1 can be treated as 

characters. 

 



 170 

Creating and initializing strings 

A literal/constant value to a string can be assigned using a single quotes, double quotes 

or triple quotes. 

 Enclosing the string in single quotes 

 Example 

  >>>print („A friend in need is a friend indeed‟) 

  A friend in need is a friend indeed 

 Example  

  >>>print(„ This book belongs to Raghav\’s sister‟) 

  This book belongs to Raghav‟s sister 

As shown in example 2, to include the single quote within the string it should be 

preceded by a backslash. 

 Enclosing the string in double quotes 

 Example  

   >>>print(“A room without books is like a body without a soul.”) 

   A room without books is like a body without a soul. 

 Enclosing the string in triple quote 

 Example  

   >>>life=”””\” Live as if you were to die tomorrow. 

           Learn as if you were to live forever.\” 

                  ---- Mahatma Gandhi “”” 

   >>> print life 

    ” Live as if you were to die tomorrow. 

                        Learn as if you were to live forever.” 

                        ---- Mahatma Gandhi “”” 

  Triple quotes are used when the text is multiline. 



 171 

 In the above example, backslash (\) is used as an escape sequence.  An escape 

sequences is nothing but a special character that has a specific function. As shown 

above, backslash (\) is used to escape the double quote. 

 Escape sequence Meaning Example 

  \n   New line >>> print “Hot\nCold” 

Hot  

Cold 

   Tab space >>>print “Hot\tCold” 

Hot  

Cold 

 By invoking raw_input() method 

 Let‟s understand the working of raw input() function 

 Example  

  >>>raw_input() 

  Right to education 

  „Right to education‟ 

 As soon as the interpreter encounters raw_input method, it waits for the user to 

key in the input from a standard input device (keyboard) and press Enter key. The 

input is converted to a string and displayed on the screen. 

Note: raw_input( ) method has been already discussed in previous chapter in detail. 

 By invoking input() method 

        Example 

  >>>str=input("Enter the string") 

  Enter the string hello 

  NameError: name 'hello' is not defined 



 172 

 Python interpreter was not able associate appropriate data type with the entered 

data. So a NameError is shown. The error can be rectified by enclosing the given 

input i.e. hello in quotes as shown below 

>>>str=input("Enter the String") 

Enter the String "hello" 

>>> print str 

Hello 

>>>str=input("Enter the String") 

Enter the String'hello' 

>>> print str 

hello 

Strings are immutable 

Strings are immutable means that the contents of the string cannot be changed after it is 

created. 

Let us understand the concept of immutability with help of an example. 

Example 

 >>>str='honesty' 

 >>>str[2]='p' 

 TypeError: 'str' object does not support item assignment 

Python does not allowthe programmer to change a character in a string. As shown in 

the above example, str has the value „honesty‟. An attempt to replace „n‟ in the string by 

‟p‟ displays a TypeError.  

Traversing a string 

Traversing a string means accessing all the elements of the string one after the other by 

using the subscript.  A string can be traversed using:  for loop or while loop. 

String traversal using for loop String traversal using while loop 

A=‟Welcome‟ 

>>>for i in A: 

             print i 

W 

A=‟Welcome‟ 

>>>i=0 

>>>while i<len(A) 

             print A[i]  



 173 

e 

l 

c 

o 

m 

e 

             i=i+1 

W 

e 

l 

c 

o 

m 

e 

A is assigned a string literal ‟Welcome‟.   

On execution of the for loop, the 

characters in the string are printed till the 

end of the string is not reached. 

A is assigned a string literal „Welcome‟ 

i is assigned value 0 

The len() function calculates the length of 

the string. On entering the while loop, the 

interpreter checks the condition. If the 

condition is true, it enters the loop. The 

first character in the string is displayed. 

The value i is incremented by 1. The loop 

continues till value i is less than len-1. 

The loop finishes as soon as the value of I 

becomes equal to len-1, the loop  

Strings Operations 

Operator Description Example 

+ (Concatenation) The + operator joins the 

text on both sides of the 

operator 

>>> „Save‟+‟Earth‟ 

  „Save Earth‟ 

To give a white space between the 

two words, insert a space before 

the closing single quote of the first 

literal. 

* (Repetition ) The * operator repeats the >>>3*‟Save Earth ‟ 



 174 

string on the left hand side 

times the value on right 

hand side. 

 „Save Earth Save Earth Save Earth 

‟ 

in (Membership) The operator displays 1 if 

the string contains the 

given character or the 

sequence of characters. 

>>>A=‟Save Earth‟ 

>>> „S‟ in A 

True 

>>>‟Save‟ in  A 

True 

>>‟SE‟ in A 

False 

not in The operator displays 1 if 

the string does not contain 

the given character or the 

sequence of characters. 

(working of this operator 

is the reverse of in 

operator discussed above)  

>>>‟SE‟ not in „Save Earth‟ 

 True 

>>>‟Save „ not in „Save Earth‟ 

False 

range (start, stop[, 

step]) 

This function is already 

discussed in previous 

chapter. 

 

Slice[n:m] The Slice[n : m] operator 

extracts sub parts from the 

strings. 

>>>A=‟Save Earth‟ 

>>> print A[1:3] 

av 

The print statement prints the 

substring starting from subscript 1 

and ending at subscript 3 but not 

including subscript 3 

 



 175 

More on string Slicing 

Consider the given figure 

String  A S A V E  E A R T H 

Positive Index 0 1 2 3 4 5 6 7 8 9 

Negative Index -10 -9 -9 -7 -6 -5 -4 -3 -2 -1 

Let‟s understand Slicing in strings with the help of few examples.  

Example  

 >>>A=‟Save Earth‟ 

 >>> print A[1:3] 

 av 

The print statement prints the substring starting from subscript 1 and ending at 

subscript 3 . 

Example  

 >>>print A[3:] 

    „e Earth‟ 

Omitting the second index, directs the python interpreter to extract the substring till the 

end of the string 

Example  

 >>>print A[:3] 

 Sav 

Omitting the first index, directs the python interpreter to extract the substring before 

the second index starting from the beginning. 



 176 

Example  

 >>>print A[:] 

      „Save Earth‟ 

Omitting both the indices, directs the python interpreter to extract the entire string 

starting from 0 till the last index 

Example  

 >>>print A[-2:] 

   „th‟ 

For negative indices the python interpreter counts from the right side (also shown 

above). So the last two letters are printed. 

Example  

 >>>Print A[:-2] 

       „Save Ear‟ 

Omitting the first index, directs the python interpreter to start extracting the substring 

form the beginning. Since the negative index indicates slicing from the end of the string. 

So the entire string except the last two letters is printed. 

Note: Comparing strings using relational operators has already been discussed in the 

previous chapter 

String methods & built in functions  

Syntax Description Example 

len() Returns the length of the 

string. 

>>>A=‟Save Earth‟ 

>>> print len(A) 

>>>10 

capitalize() Returns the exact copy of the 

string with the first letter in 

>>>str=‟welcome‟ 



 177 

upper case >>>print str.capitalize() 

 Welcome 

find(sub[, 

start[, end]]) 

 

The function is used to search 

the first occurrence of the 

substring in the given string. It 

returns the index at which the 

substring starts. It returns -1 if 

the substring does occur in the 

string. 

>>>str='mammals' 

>>>str.find('ma') 

0 

On omitting the start parameters, 

the function starts the search from 

the beginning. 

>>>str.find('ma',2) 

3 

>>>str.find('ma',2,4) 

-1 

Displays -1 because the substring 

could not be found between the 

index 2 and 4-1 

>>>str.find('ma',2,5) 

3 

isalnum() Returns True if the string 

contains only letters and digit. 

It returns False ,If the string 

contains any special character 

like _ , @,#,* etc. 

>>>str='Save Earth' 

>>>str.isalnum() 

False 

The function returns False as space 

is  an alphanumeric character. 

>>>'Save1Earth'.isalnum() 

True 

isalpha() Returns True if the string 

contains only letters. 

Otherwise return False. 

>>> 'Click123'.isalpha() 

False 

>>> 'python'.isalpha() 

True 

isdigit() Returns True if the string >>>print str.isdigit() 



 178 

contains only numbers. 

Otherwise it returns False. 

false 

lower() Returns the exact copy of the 

string with all the letters in 

lowercase. 

>>>print str.lower() 

„save earth‟ 

islower() Returns True if the string is in 

lowercase. 

>>>print str.islower() 

True 

isupper()  Returns True if the string is in 

uppercase. 

>>>print str.isupper() 

False 

upper() Returns the exact copy of the 

string with all letters in 

uppercase. 

>>>print str.upper() 

WELCOME 

lstrip() Returns the string after 

removing the space(s) on the 

left of the string. 

>>> print str 

  Save Earth 

>>>str.lstrip() 

'Save Earth' 

>>>str='Teach India Movement' 

>>> print str.lstrip("T") 

each India Movement 

>>> print str.lstrip("Te") 

ach India Movement 

>>> print str.lstrip("Pt") 

Teach India Movement 

If a string is passed as argument to 

the lstrip() function, it removes 

those characters from the left of 

the string. 

rstrip() Returns the string after 

removing the space(s) on the 

>>>str='Teach India Movement‟    

>>> print str.rstrip() 



 179 

right of the string. Teach India Movement 

isspace() 

 

Returns True if the string 

contains only white spaces and 

False even if it contains one 

character. 

>>> str='   ' 

>>> print str.isspace() 

True 

>>> str='p' 

>>> print str.isspace() 

False 

istitle() Returns True if the string is 

title cased. Otherwise returns 

False 

>>> str='The Green Revolution' 

>>> str.istitle() 

True 

>>> str='The green revolution' 

>>> str.istitle() 

False 

replace(old, 

new) 

The function replaces all the 

occurrences of the old string 

with the new string 

 

>>>str=‟hello‟ 

>>> print str.replace('l','%') 

He%%o 

>>> print str.replace('l','%%') 

he%%%%o 

join () Returns a string in which the 

string elements have been 

joined by  a separator. 

>>> str1=('jan', 'feb' ,'mar') 

>>>str=‟&” 

>>> str.join(str1) 

'jan&feb&mar' 

swapcase() Returns the string with case 

changes 

>>> str='UPPER' 

>>> print str.swapcase() 

upper 

>>> str='lower' 

>>> print str.swapcase() 



 180 

LOWER 

partition(sep) The function partitions the 

strings at the first occurrence 

of separator, and returns the 

strings partition in three parts 

i.e. before the separator, the 

separator itself, and the part 

after the separator. If the 

separator is not found, returns 

the string itself, followed by 

two empty strings 

>>> str='The Green Revolution' 

>>> str.partition('Rev') 

('The Green ', 'Rev', 'olution') 

>>> str.partition('pe') 

('The Green Revolution', '', '') 

>>> str.partition('e') 

('Th', 'e', ' Green Revolution') 

split([sep[, 

maxsplit]]) 

The function splits the string 

into substrings using the 

separator. The second 

argument is optional and its 

default value is zero. If an 

integer value N is given for the 

second argument, the string is 

split in N+1 strings. 

>>>str='The$earth$is$what$we$all

$have$in$common.' 

>>> str.split($,3) 

SyntaxError: invalid syntax 

>>> str.split('$',3) 

['The', 'earth', 'is', 

'what$we$all$have$in$common.'] 

>>> str.split('$') 

['The', 'earth', 'is', 'what', 'we', 'all', 

'have', 'in', 'common.'] 

>>> str.split('e') 

['Th', ' Gr', '', 'n R', 'volution'] 

>>> str.split('e',2) 

['Th', ' Gr', 'en Revolution'] 

 

Note: In the table given above, len( ) is a built in function and so we don‟t need 

import the string module. For all other functions import string statement is required 

for their successful execution.  

 



 181 

Let‟s discuss some interesting strings constants defined in string module: 

string.ascii_uppercase 

The command displays a string containing uppercase characters.  

Example  

 >>> string.ascii_uppercase 

 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 

string.ascii_lowercase  

The command displays a string containing all lowercase characters. 

Example 

 >>> string.ascii_lowercase 

 'abcdefghijklmnopqrstuvwxyz' 

string.ascii_letters 

The command displays a string containing both uppercase and lowercase characters. 

 >>> string.ascii_letters 

 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' 

string.digits 

The command displays a string containing digits. 

 >>> string.digits 

 '0123456789' 

string.hexdigits 

The command displays a string containing hexadecimal characters. 

 >>> string.hexdigits 

 '0123456789abcdefABCDEF' 



 182 

string.octdigits 

The command displays a string containing octal characters. 

 >>> string.octdigits 

 '01234567' 

string.punctuations 

The command displays a string containing all the punctuation characters. 

 >>> string.punctuations 

 '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}-' 

string.whitespace 

The command displays a string containing all ASCII characters that are considered 

whitespace. This includes the characters space, tab, linefeed, return, formfeed, and 

vertical tab. 

 >>> string.whitespace 

 '\t\n\x0b\x0c\r ' 

string.printable 

The command displays a string containing all characters which are considered printable 

like letters, digits, punctuations and whitespaces. 

 >>> string.printable 

 '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!

"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}- \t\n\r\x0b\x0c' 

Note: Import string module to get the desired results with the commands mentioned 

above. 

 



 183 

Programs using string functions and operators 

1. Program to check whether the string is a palindrome or not. 

 defpalin(): 

   str=input("Enter the String") 

       l=len(str) 

      p=l-1 

   index=0 

   while (index<p): 

    if(str[index]==str[p]): 

     index=index+1 

               p=p-1 

   else: 

    print "String is not a palidrome" 

    break 

   else: 

   print "String is a Palidrome"  

2. Program to count no of ‘p’ in the string pineapple. 

 def lettercount(): 

   word = 'pineapple' 

   count = 0 

   for letter in word: 

    if letter == 'p': 

    count = count + 1 

   print(count) 



 184 

Regular expressions and Pattern matching 

A regular expression is a sequence of letters and some special characters (also called 

meta characters). These special characters have symbolic meaning. The sequence 

formed by using meta characters and letters can be used to represent a group of 

patterns.  

Let‟s start by understanding some meta characters. 

For example 

 str= “Ram$”  

The pattern “Ram$” is known as a regular expression. The expression has the meta 

character „$‟. Meta character „$‟ is used to match the given regular expression at the end 

of the string. So the regular expression would match the string „SitaRam‟ or „HeyRam‟ 

but will not match the string „Raman‟. 

Consider the following codes: 

def find(): 

     import re 

     string1='SitaRam' 

     if 

re.search('Ram$',string1): 

          print "String Found" 

     else : 

           print" No Match" 

Output: 

   String Found 

def find(): 

    import re 

    string1='SitaRam' 

    if re.search('Sita$',string1): 

        print "String Found" 

    else : 

        print" No Match" 

Output 

            No Match 

As shown in the above examples, Regular expressions can be used in python for 

matching a particular pattern by importing the re module. 

Note: re module includes functions for working on regular expression. 



 185 

Now let‟s learn how the meta characters are used to form regular expressions. 

S.No Meta 

character 

Usage Example 

1 [ ] Used to match a set of characters. [ram]  

The regular expression 

would match any of the 

characters r, a, or m. 

[a-z]  

The regular expression 

would match only 

lowercase characters. 

2 ^ Used to complementing a set of 

characters  

[^ram] 

The regular expression 

would match any other 

characters than  

r, a or m. 

3 $ Used to match the end of string 

only 

Ram$  

The regular expression 

would match Ram in 

SitaRam but will not match 

Ram in Raman 

4 * Used to specify that the previous 

character can be matched zero or 

more times.  

wate*r 

The regular expression 

would match strings like 

watr, wateer,  wateeer and 

so on. 

5 + Used to specify that the previous 

character can be matched one or 

more times. 

wate+r 

The regular expression 

would match strings like 

water, wateer, wateeer and 

so on. 



 186 

6 ? Used to specify that the previous 

character can be matched either 

once or zero times 

wate?r 

The regular expression 

would only match strings 

like watr or water 

7 { } The curly brackets accept two 

integer value s. The first value 

specifies the minimum no of 

occurrences and second value 

specifies the maximum of 

occurrences 

wate{1,4}r 

The regular expression 

would match only strings 

water, wateer, wateeer or 

wateeeer 

Let‟s learn about few functions from re module 

re.compile() 

The re.compile( ) function will compile the pattern into pattern objects. After the 

compilation the pattern objects will be able to access methods for various operations 

like searching and subsitutions  

Example 

 import re  

 p=re.compile(„hell*o‟) 

re.match() 

The match function is used to determine if the regular expression (RE) matches at the 

beginning of the string. 

re.group() 

The group function is used to return the string matched the RE 

Example 

 >>>P=re.compile(„hell*o‟) 

 >>>m=re.match(„hell*o‟, „ hellooooo world‟) 

 >>>m.group() 

 „hello‟ 



 187 

re.start() 

The start function returns the starting position of the match. 

re.end() 

The end function returns the end position of the match. 

re.span() 

The span function returns the tuple containing the (start, end) positions of the match 

Example 

 >>> import re 

 >>> P=re.compile('hell*o') 

 >>> m=re.match('hell*o', 'hellooooo world') 

 >>> m.start() 

 0 

 >>> m.end() 

 5 

 >>> m.span() 

 (0, 5)  

re.search() 

The search function traverses through the string and determines the position where the 

RE matches the string 

Example 

 >>> m=re.search('hell*o', 'favorite words hellooooo world') 

 >>> m.start() 

 15 

 >>> m.end() 



 188 

 20 

 >>> m.group() 

 'hello' 

 >>> m.span() 

 (15, 20) 

Re.findall() 

The function determines all substrings where the RE matches, and returns them as a list. 

Example 

 >>> m=re.findall('hell*o', 'hello my favorite words hellooooo world') 

 >>> m 

 ['hello', 'hello'] 

re.finditer() 

The function determines all substrings where the RE matches, and returns them as an 

iterator. 

Example  

 >>> m=re.finditer('hell*o', 'hello my favorite words hellooooo world') 

 >>> m 

 <callable-iterator object at 0x0000000002E4ACF8> 

 >>> for match in m: 

       print match.span() 

 (0, 5) 

 (24, 29) 

As shown in the above example, m is a iterator. So m is used in the for loop.  



 189 

Script 1: Write a script to determine if the given substring is present in the string. 

def search_string(): 

     import re 

     substring='water' 

     search1=re.search(substring,'Water water everywhere but not a drop to drink') 

     if search1: 

          position=search1.start() 

          print "matched", substring, "at position", position 

     else: 

          print "No match found" 

Script 2: Write a script to determine if the given substring (defined using meta 

characters) is present in the given string  

def metasearch(): 

    import re 

    p=re.compile('sing+') 

    search1=re.search(p,'Some singers sing well') 

    if search1: 

        match=search1.group() 

        index=search1.start() 

        lindex=search1.end() 

        print "matched", match, "at index", index ,"ending at" ,lindex 

    else: 

        print "No match found" 

 



 190 

EXERCISE 

1. Input a string “Green Revolution”. Write a script to print the string in reverse. 

2. Input the string “Success”. Write a script of check if the string is a palindrome or 

not 

3. Input the string “Successor”. Write a script to split the string at every occurrence of 

the letter s.  

4. Input the string “Successor”. Write a script to partition the string at the occurrence 

of the letter s. Also Explain the difference between the function split( ) and 

partition().  

5. Write a program to print the pyramid. 

  1 

  2 2 

  3 3 3 

  4 4 4 4 

  5 5 5 5 5 

6. What will be the output of the following statement? Also justify for answer. 

  >>> print 'I like Gita\'s pink colour dress'. 

7. Give the output of the following statements 

  >>> str='Honesty is the best policy' 

  >>> str.replace('o','*') 

8. Give the output of the following statements 

  >>> str='Hello World' 

  >>>str.istiltle() 

9. Give the output of the following statements. 

  >>> str="Group Discussion" 

  >>> print str.lstrip("Gro") 



 191 

10. Write a program to print alternate characters in a string. Input a string of your own 

choice. 

11. Input a string „Python‟. Write a program to print all the letters except the letter‟y‟. 

12. Consider the string str=”Global Warming” 

 Write statements in python to implement the following 

a) To display the last four characters. 

b) To display the substring starting from index 4  and ending at index 8. 

c) To check whether string has alphanumeric characters or not. 

d) To trim the last four characters from the string. 

e) To trim the first four characters from the string. 

f) To display the starting index for the substring „Wa‟. 

g) To change the case of the given string. 

h) To check if the string is in title case. 

i) To replace all the occurrences of letter „a‟ in the string with „*‟  

13. Study the given script 

 def metasearch(): 

      import re 

        p=re.compile('sing+') 

       search1=re.search(p,'Some singers sing well') 

      if search1: 

            match=search1.group() 

            index=search1.start() 

            lindex=search1.end() 

            print "matched", match, "at index", index ,"ending at", lindex 

      else: 



 192 

           print "No match found" 

  What will be the output of the above script if search() from the re module is 

replaced by match () of the re module. Justify your answer 

14. What will be the output of the script mentioned below? Justify your answer. 

 def find(): 

      import re 

      p=re.compile('sing+') 

      search1=p.findall('Some singer sing well') 

      print search1 

15. Rectify the error (if any) in the given statements. 

  >>> str="Hello World" 

  >>> str[5]='p' 

 

 

 

 



193 

Chapter 2 

Lists 

After studying this lesson, students will be able to:  

 Understand the concept of mutable sequence types in Python.  

 Appreciate the use of list to conveniently store a large amount of data in memory. 

 Create, access & manipulate list objects 

 Use various functions & methods to work with list 

 Appreciate the use of index for accessing an element from a sequence. 

Introduction 

Like a String, list also is sequence data type. It is an ordered set of values enclosed in 

square brackets []. Values in the list can be modified, i.e. it is mutable. As it is set of 

values, we can use index in square brackets [] to identify a value belonging to it. The 

values that make up a list are called its elements, and they can be of any type.  

We can also say that list data type is a container that holds a number of elements in a 

given order. For accessing an element of the list, indexing is used.  

Its syntax is:  

Variable name [index] (variable name is name of the list).  

It will provide the value at „index+1‟ in the list. Index here, has to be an integer value-

which can be positive or negative. Positive value of index means counting forward from 

beginning of the list and negative value means counting backward from end of the list. 

Remember the result of indexing a list is the value of type accessed from the list. 

Index value Element of the list 

0, -size 1st 

1, -size +1 2nd 



194 

2, -size +2 3rd 

. 

. 

. 

size -2, -2 2nd last 

size -1, -1 last 

 

Please note that in the above example size is the total number of elements in the list. 

Let‟s look at some example of simple list:  

i)  >>>L1 = [1, 2, 3, 4]          # list of 4 integer elements.  

ii)  >>>L2 = [“Delhi”, “Chennai”, “Mumbai”] #list of 3 string elements. 

iii)  >>>L3 = [ ]          # empty list i.e. list with no element 

iv)  >>>L4 = [“abc”, 10, 20]   # list with different types of elements 

v)  >>>L5 = [1, 2, [6, 7, 8], 3]                             # A list containing another list known as 

nested list 

You will study about Nested lists in later parts of the chapter.  

To change the value of element of list, we access the element & assign the new value. 

Example 

 >>>print L1  # let‟s get the values of list before change 

 >>> L1 [2] = 5    

 >>> print L1  # modified list 

  [1, 2, 5, 4] 

Here, 3rd element of the list (accessed using index value 2) is given a new value, so 

instead of 3 it will be 5. 

State diagram for the list looks like: 



195 

L1                                                                                                                                                          L2                           L3 
   
 
 
 
 
 
 

Note: List index works the same way as String index, which is:  

 An integer value/expression can be used as index. 

 An Index Error appears, if you try and access element that does not exist in the 

list. 

 An index can have a negative value, in that case counting happens from the end 

of the list.  

Creating a list 

List can be created in many ways: 

i) By enclosing elements in [ ], as we have done in above examples. 

ii) Using other Lists 

Example    

 L5=L1 [:]  

 Here L5 is created as a copy of L1. 

 >>>print L5 

 L6 = L1 [0:2] 

 >>>print L6 

 will create L6 having first two elements of L1. 

iii) List  comprehension 

Example  

 >>>n = 5 

0              1 

1              2 

2               3 

3               4 

0               Delhi 

1             Chennai 

2             Mumbai 

 

 



196 

 >>>l = range(n) 

 >>>print l 

 [0, 1, 2, 3, 4] 

Example  

 >>> S= [x**2 for x in range (10)] 

 >>> print S 

 [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] 

In mathematical terms, S can be defined as S = {x2 for: x in (0.....9)}. So, we can say 

that list comprehension is short-hand for creating list. 

Example  

 >>> A = [3, 4, 5] 

 >>> B = [value *3 for value in A] 

Here B will be created with the help of A and its each element will be thrice of 

element of A. 

 >>> print B 

 [9, 12, 15] 

Comprehensions are functionally equivalent to wrting as: 

 >>>B = [ ] 

 >>>for i in A 

 B. append (i*3) 

Similarly, other comprehensions can be expended. 

Example  

 >>> print B 

 [9, 12, 15] 

Let‟s create a list of even numbers belonging to „S‟ list: 

 >>>C = [i for i in S if i % 2 = = 0] 



197 

 >>>print C 

 [0, 4, 16, 36, 64] 

iv) Using built-in object 

 L = list ( ) will create an empty list 

Example  

 >>>l = list ( ) 

 >>>print l  

 [ ] # empty list 

Or  

 L = list (sequence) 

Example 

 >>>L = list [(1, 2, 3, 4)] 

 >>>print L  

 [1, 2, 3, 4] 

A single new list is created every time, you execute [ ]. We have created many 

different lists each using   [ ]. But if a list is assigned to another variable, a new list 

is not created.  

i) A=B=[  ] 

Creates one list mapped to both A & B 

Example  

 >>>A = B = [10, 20, 30] 

 >>> print A, B 

 [10, 20, 30] [10, 20, 30] 

ii) A = [ ] 

B = A 

Will also create one list mapped to both 



198 

Example 

 >>> A = [1, 2, 3] 

 >>> B = A 

 >>> print A, B 

 [1, 2, 3] [1, 2, 3] 

Accessing an element of list 

For accessing an element, we use index and we have already seen example doing so. To 

access an element of list containing another list, we use pair of index. Lets access 

elements of L5 list. Also a sub-list of list can be accessed using list slice.   

List Slices  

Slice operator works on list also. We know that a slice of a list is its sub-list. For creating 

a list slice, we use 

[n:m] operator. 

 >>>print L5 [0] 

 1 

 >>>print L5 [2] 

 [6, 7, 8] 

as the 3rd element of this list is a list. To access a value from this sub-list, we will use 

 >>>print L5 [2] [0] 

 6  

 >>>print L5 [2] [2] 

 8 

This will return the part of the list from nth element to mth element, including the first 

element but excluding the last element. So the resultant list will have m-n elements in it.  

 >>> L1 [1:2]  

will give 

 [2] 



199 

Slices are treated as boundaries, and the result will contain all the elements between 

boundaries. 

Its Syntax is: 

seq = L [start: stop: step] 

Where start, stop & step- all three are optional. If you omit first index, slice starts from 

„0‟ and omitting of stop will take it to end. Default value of step is 1. 

Example 

For list L2 containing [“Delhi”, “Chennai”, “Mumbai”] 

 >>>L2 [0:2] 

 [“Delhi”, “Chennai”] 

Example 

 >>>list = [10, 20, 30, 40, 50, 60] 

 >>> list [::2]     # produce a list with every alternate element 

 [10, 30, 50] 

 >>>list [4:]  # will produce a list containing all the elements from 5th position 

till end 

 [50, 60]   

Example 

 >>>list [:3] 

 [10, 20, 30] 

 >>>list [:] 

 [10, 20, 30, 40, 50, 60] 

Example 

 >>> list [-1]     # „-1‟ refers to last elements of list 

 60 

will produce a list with every other element 



200 

Note: Since lists are mutable, it is often recommended to make a copy of it before 

performing operation that change a list. 

Traversing a List 

Let us visit each element (traverse the list) of the list to display them on screen. This can 

be done in many ways:  

(i)  i = 0 

    while i < 4: 

 print L1 [i], 

 i + = 1 

   will produce following output 

    1 2 5 4 

(ii)  for i in L1: 

        print i,  

 will also produce the same output 

(iii)  i=0 

 while i < len [L1]: 

 print L1 [i],  

 i + = 1 

        OR 

 i= 0 

 L = len (L1) 

 while i < L : 

 print L1 [i], 

 i + = 1 

 will also produce the same output. 



201 

 Here len( ) function is used to get the length of list L1. As length of L1 is 4, i will take 

value from 0 to 3. 

(iv) for i in range ( len (L1)): 

 print L1 [i], 

Using 2nd way for transversal will only allow us to print the list, but other ways can also 

be used to write or update the element of the list.  

In 4th way, range ( ) function is used to generate, indices from 0 to len -1; with each 

iteration i gets the index of next element and values of list are printed.  

Note:  for loop in empty list is never executed:  

Example  

for i in [ ]:  

 print i 

 Accessing list with negative index 

 i = 1 

 while i < len (L1): 

 print L1 [-i],  

 i += 1 

In this case, Python will add the length of the list to index and then return the 

index value and accesses the desired element. In this loop execution for a positive 

value of „i‟ L1 [-i] will result into L1 [len (L1)-i] for i=1, L1 [4-1] will be printed. So 

resultant of the loop will be 4 5 2. 

Appending in the list  

Appending a list is adding more element(s) at the end of the list. To add new elements 

at the end of the list, Python provides a method append ( ).  

Its Syntax is: 

List. append (item) 



202 

L1. append (70) 

This will add 70 to the list at the end, so now 70 will be the 5th element of the list, as it 

already have 4 elements.   

 >>> print L1  

will produce following on screen 

 [1, 2, 5, 4, 70] 

Example  

 >>>L4.append (30)              # will add 30 at the end of the list 

 >>>print L4 

 [„abc‟, 10, 20, 30] 

Using append ( ), only one element at a time can be added. For adding more than one 

element, extend ( ) method can be used, this can also be used to add elements of another 

list to the existing one.   

Example 

 >>>A = [100, 90, 80, 50] 

 >>> L1. extend (A) 

 >>> print L1 

will add all the elements of list „A‟ at the end of the list „L1‟.  

 [1, 2, 5, 4, 70, 100, 90, 80, 50] 

 >>>print A 

 [100, 90, 80, 50] 

Example 

 >>>B=[2009, 2011, „abc‟] 

 >>>C=[„xyz‟, „pqr‟, „mn‟] 

 >>>B.extend (c) 

 >>>print B 



203 

 [2009, 2011, „abc‟, „xyz‟, „pqr‟, „mn‟] 

Remember: „A‟ remains unchanged 

Updating array elements  

Updating an element of list is, accomplished by accessing the element & modifying its 

value in place. It is possible to modify a single element or a part of list. For first type, we 

use index to access single element and for second type, list slice is used. We have seen 

examples of updations of an element of list. Lets update a slice.  

Example  

 >>> L1 [1:2] = [10, 20] 

 >>> print L1 

 will produce 

 [1, 10, 20, 4, 70, 100, 90, 80, 50] 

Example 

 >>>A=[10, 20, 30, 40] 

 >>>A [1:4] = [100] 

 >>>print A 

 will produce 

 [10, 100] 

As lists are sequences, they support many operations of strings. For example, operator + 

& * results in concatenation & repetition of lists. Use of these operators generate a new 

list.  

Example  

 >>> a= L1+L2 

 will produce a 3rd list a containing elements from L1 & then L2. a will contain  

 [1, 10, 20, 4, 70, 100, 90, 80, 50, “Delhi”, “Chennai”, “Mumbai”] 

  



204 

Example 

 >>> [1, 2, 3] + [4, 5, 6] 

 [1, 2, 3, 4, 5, 6] 

Example 

 >>> b = L1*2 

 >>> print b 

 [[1, 10, 20, 4, 70, 100, 90, 80, 50, 1, 10, 20, 4, 70, 100, 90, 80, 50] 

Example 

 >>> [„Hi!‟]* 3  

 [„Hi!‟, „Hi!‟, „Hi!‟] 

It is important to know that ‘+’ operator in lists expects the same type of sequence on 

both the sides otherwise you get a type error.  

If you want to concatenate a list and string, either you have to convert the list to string 

or string to list. 

Example 

 >>> str([11, 12]) + “34”    or  >>>“[11,12]” + “34” 

 „[11, 12] 34‟ 

 >>> [11, 12] + list (“34”)    or >>>[11, 12] + [“3”, “4”] 

[11, 12, „3‟, „4‟]   

Deleting Elements  

It is possible to delete/remove element(s) from the list. There are many ways of doing 

so: 

(i) If index is known, we can use pop ( ) or del 

(ii) If the element is known, not the index, remove ( ) can be used.  

(iii) To remove more than one element, del ( ) with list slice can be used. 

(iv) Using assignment operator 



205 

Let us study all the above methods in details: 

Pop ( )  

It removes the element from the specified index, and also return the element which was 

removed.  

Its syntax is: 

List.pop ([index]) 

Example  

 >>> L1 = [1, 2, 5, 4, 70, 10, 90, 80, 50] 

 >>> a= L1.pop (1)  # here the element deleted will be returned to ‘a’ 

 >>> print L1 

 [1, 5, 4, 70, 10, 90, 80, 50] 

 >>> print a 

 2 

 If no index value is provided in pop ( ), then last element is deleted.     

 >>>L1.pop ( ) 

 50 

 del removes the specified element from the list, but does not return the deleted 

value.  

 >>> del L1 [4] 

 >>> print L1 

 [1, 5, 4, 70, 90, 80] 

remove ( ) 

In case, we know the element to be deleted not the index, of the element, then remove ( 

) can be used.  

 >>> L1. remove (90) 

  will remove the value 90 from the list  



206 

  >>> print L1 

  [1, 5, 4, 70, 80] 

del () with slicing 

Consider the following example: 

Examples 

 >>> del L1 [2:4] 

 >>>print L1 

 [1, 5, 80] 

will remove 2nd and 3rd element from the list. As we know that slice selects all the 

elements up to 2nd index but not the 2nd index element. So 4th element will remain in the 

list. 

 >>> L5 [1:2] = [ ] 

Will delete the slice 

 >>>print L5 

 [1, [6, 7, 8], 3] 

Note:  

(i)  All the methods, modify the list, after deletions.  

(ii)  If an out of range index is provided with del ( ) and pop ( ), the code will result 

in to run-time error. 

(iii)  del can be used with negative index value also. 

Other functions & methods 

insert ( )  

This method allows us to insert an element, at the given position specified by its index, 

and the remaining elements are shifted to accommodate the new element. Insert ( 

() requires two arguments-index value and item value. 



207 

Its syntax is  

 list. insert (index, item) 

Index specifies the position (starting from 0) where the element is to be inserted. Item is 

the element to be inserted in the list. Length of list changes after insert operation. 

Example  

 >>> L1.insert (3,100) 

 >>>print L1 

 will produce 

 [1, 5, 80, 100] 

Note: If the index specified is greater then len (list) the object is inserted in the last 

and if index is less than zero, the object is inserted at the beginning.   

 >>> print len(L1) 

 4 

 >>> L1.insert (6, 29) 

 >>> L1.insert (-2, 46) 

 >>>print L1 

 will produce 

 [46, 1, 5, 80, 100, 29] 

reverse ( )  

This method can be used to reverse the elements of the list in place 

Its syntax is: 

 list.reverse ( ) 

Method does not return anything as the reversed list is stored in the same variable. 

Example 

 >>> L1.reverse ( ) 



208 

 >>> print L1 

 will produce 

 [29, 100, 80, 5, 1, 46] 

Following will also result into reversed list. 

 >>>L1 [: : -1] 

As this slices the whole sequence with the step of -1 i.e. in reverse order. 

sort ( )  

For arranging elements in an order Python provides a method sort ( ) and a function 

sorted ( ). sort ( ) modifies the list in place and sorted ( ) returns a new sorted list.  

Its Syntax are:  

 sort ([cmp [, key [, reverse]]]) 

 sorted (list [, cmp [, key [, reverse]]]) 

Parameters mentioned in [ ] are optional in both the cases. These parameters allow us to 

customize the function/method. 

cmp, argument allow us to override the default way of comparing elements of list. By 

default, sort determines the order of elements by comparing the elements in the list 

against each other. To overside this, we can use a user defined function which should 

take two values and return -1 for ‘less than’, 0 for ‘equal to’ and 1 for „greater than‟.  

„Key’ argument is preferred over ‘cmp’ as it produces list faster.  

Example 

The parameter ‘key’ is for specifying a function that transforms each element of list 

before comparison. We can use predefined functions or a user defined function here. If 

its user defined then, the function should take a single argument and return a key 

which can be used for sorting purpose.  

Reverse parameter can have a boolean value which is used to specify the order of 

arranging the elements of list. Value ‘True’ for reverse will arrange the elements of list 

in descending order and value ‘False’ for reverse will arrange the elements in ascending 

order. Default value of this parameter is False.   



209 

sorted ( ) function also behaves in similar manner except for it produce a new sorted 

list, so original is not changed. This function can also be used to sort any iterable 

collection. As sort ( ) method does not create a new list so it can be little faster.  

Example  

 >>> L1.sort ( ) 

 >>> print L1 

 will produce 

 [1, 5, 29, 46, 80, 100] 

 >>> L2.sort ( ) 

 >>> print L2 

 will produce 

 [„Chennai‟, „Delhi‟, „Mumbai‟] 

 >>> L2.sort (key=len) 

 will produce 

 [„Delhi‟, „Mumbai‟, „Chennai‟] 

Here we have specified len ( ) built in function, as key for sorting. So the list will get 

sorted by the length of the strings, i.e., from shorted to longest. 

sort will call len ( ) function for each element of list and then these lengths will be used 

for arranging elements.   

 
 

 >>> L4.sort ( ) 

 >>> print L4 

 will produce 



210 

 [10, 20, 30, „abc‟] 

 >>>L4.sort (reverse = True) 

 [„abc‟, 30, 20, 10] 

 >>> def compare (str): 

 ... return len (str) 

 >>> L2.sort (key=compare) 

 >>> L2 

 [„Delhi‟, „Mumbai‟, „Chennai‟]  

List as arguments 

When a list is passed to the function, the function gets a reference to the list. So if the 

function makes any changes in the list, they will be reflected back in the list.  

Example  

 def add_Const (L): 

 for i in range (len (l)): 

 L [i] += 10 

 >>> X = [1, 2, 3, 4, 5] 

 >>> add_Const (X) 

 >>> print X 

 [11, 12, 13, 14, 15] 

Here parameter „L‟ and argument „X‟ are alias for same object. Its state diagram will 

look like 

 

So any changes made in L will be reflected to X as lists as mutable.  



211 

Note: Here, it becomes important to distinguish between the operations which 

modifies a list and operation which creates a new list. Operations which create a new 

list will not affect the original (argument) list. 

Let‟s look at some examples to see when we have different lists and when an alias is 

created. 

 >>> a = [2, 4, 6] 

 >>> b = a 

  
 
will map b to a. To check whether two variables refer to same object (i.e. having same 

value), we can use „is‟ operator. So in our example:  

 >>> a is b  

 will return „True‟ 

 >>> a = [2, 4, 6] 

 >>> b = [2, 4, 6] 

 >>> a is b  

False  

  

  

In first example, Python created one list, reference by a & b. So there are two references 

to the same object b. We can say that object [2, 4, 6] is aliased as it has more than one 

name, and since lists are mutable. So changes made using „a‟ will affect „b‟. 

 >>> a [1] = 10 

 >>> print b 

 will print 

 [2, 10, 6] 



212 

Matrix implementation using list 

We can implement matrix operation using list. Matrix operation can be implemented 

using nested list. List inside another list is called nested list. 

Its syntax is: 

a=[[random.random() for row in range(number of row)]for col in range(number 

of column)] 

Here random function is used. So we need to import random file. 

Example 

Write a program to input any matrix with mXn, and print the number on the output 

screen in matrix format. 

Matrix creation 

Program 1 

 m=input ("Enter total number of rows") 

 n=input ("Enter total number of columns") 

 l=range (m*n) 

 k=0 

 print "Input all matrix elements one after other" 

 for i in range(m): 

 for j in range(n): 

 l[k]=input("Enter new element") 

 k=k+1 

 print "output is" 

 k=0 

 for i in range(m): 

 for j in range(n): 

 print l[k],'\t', 

 k=k+1 

 print 



213 

Output 

 >>>  

 Enter total number of rows3 

 Enter total number of columns3 

 Input all matrix elements one after other 

 Enter new element10 

 Enter new element20 

 Enter new element30 

 Enter new element40 

 Enter new element50 

 Enter new element60 

 Enter new element70 

 Enter new element80 

 Enter new element90 

 output is 

 10  20  30   

 40  50  60   

 70  80  90   

 >>> 
    
Program 2 

 import random 

 m=input("Enter total number of rows in the first matrix") 

 n=input("Enter total number of columns in the first  matrix") 

 a=[[random.random()for row in range(m)]for col in range(n)] 

 print "Enter all elements one after other" 

 for i in range(m): 



214 

 for j in range(n): 

 a[i][j]=input() 

 print "output is" 

 for i in range(m): 

 for j in range(n): 

 print a[i][j],'\t', 

 print 

Output 

 >>>  

 Enter total number of rows in the first matrix3 

 Enter total number of columns in the first matrix3 

 Enter all elements one after other 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 output is 

 1  2  3   

 4  5  6   

 7  8  9   

 >>> 



215 

Matrix Addition 

Write a program to input any two matrices and print sum of matrices. 

 import random 

 m1=input ("Enter total number of rows in the first matrix") 

 n1=input ("Enter total number of columns in the first matrix") 

 a=[[random.random()for row in range(m1)]for col in range(n1)] 

 for i in range(m1): 

 for j in range(n1): 

 a[i][j]=input() 

 m2=input("Enter total number of rows in the second matrix") 

 n2=input("Enter total number of columns in the second matrix") 

 b=[[random.random()for row in range(m1)]for col in range(n1)] 

 for i in range(2): 

 for j in range(2): 

 b[i][j]=input() 

 c=[[random.random()for row in range(m1)]for col in range(n1)] 

 if ((m1==m2) and (n1==n2)): 

 print "output is" 

 for i in range(m1): 

 for j in range(n1): 

 c[i][j]=a[i][j]+b[i][j] 

 print c[i][j],'\t', 

 print  

 else 

 print “Matrix addition not possible” 



216 

Output 

 >>>  

 Enter total number of rows in the first matrix2 

 Enter total number of columns in the first matrix2 

 1 

 1 

 1 

 1 

 Enter total number of rows in the second matrix2 

 Enter total number of columns in the second matrix2 

 2 

 2 

 2 

 2 

 output is 

 3                3   

 3               3 

Example 

Write a program to input any two matrices and print product of matrices. 

 import random 

 m1=input ("Enter total number of rows in the first matrix") 

 n1=input ("Enter total number of columns in the first  matrix") 

 a=[[random.random()for row in range(m1)]for col in range(n1)] 

 for i in range(m1): 

 for j in range(n1): 

 a[i][j]=input() 



217 

 m2=input ("Enter total number of rows in the second matrix") 

 n2=input ("Enter total number of columns in the second matrix") 

 b=[[random.random()for row in range(m1)]for col in range(n1)] 

 for i in range(m2): 

 for j in range(n2): 

 b[i][j]=input() 

 c=[[random.random()for row in range(m1)]for col in range(n2)] 

 if (n1==m2): 

 for i in range(m1): 

 for j in range(n2): 

 c[i][j]=0 

 for k in range(n1): 

 c[i][j]+=a[i][k]*b[k][j] 

 print c[i][j],'\t', 

 print 

 else: 

 print "Multiplication not possible" 

Output 

 >>>  

 Enter total number of rows in the first matrix2 

 Enter total number of columns in the first  matrix2 

 1 

 1 

 1 

 1 

 Enter total number of rows in the second matrix2 



218 

 Enter total number of columns in the second matrix2 

 2 

 2 

 2 

 2 

 4              4   

 4              4   

 >>> 

Example 

Write a program to input any matrix and print both diagonal values of the matrix. 

 import random 

 m=input ("Enter total number of rows in the first matrix") 

 n=input ("Enter total number of columns in the first  matrix") 

 a=[[random.random()for row in range(m)] for col in range(n)] 

 if (m==n): 

 for i in range(m): 

 for j in range(n): 

 a[i][j]=input() 

 print "First diagonal" 

 for i in range(m): 

 print a[i][i],'\t', 

 print 

 k=m-1 

 print "Second diagonal" 

 for j in range(m): 

 print a[j][k],'\t', 



219 

 k-=1 

 else: 

 print "Diagonal values are not possible" 

Output 

 >>>  

 Enter total number of rows in the first matrix3 

 Enter total number of columns in the first matrix3 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 First diagonal 

 1     5     9   

 Second diagonal 

 3      5     7   

 >>> 

Functions with list 

We can pass list value to function.  Whatever modification we are doing with in 

function will affect list. 

Example 

Write a program to pass any list and to arrange all numbers in descending order. 



220 

 def arrange (l,n): 

 for i in range(n-1): 

 for j in range(n-i-1): 

 if l[j]>l[j+1]: 

 temp=l[j] 

 l[j]=l[j+1] 

 l[j+1]=temp 

Output 

 >>>  

 >>> l=[7,5,8,2,9,10,3] 

 >>> arrange (l) 

 >>> print l 

 [10, 9, 8, 7, 5, 3, 2] 

 >>> 

Function pass nested list also: 

Example 

Write a program to input nXm matrix and find sum of all numbers using function. 

Function: 

 def summat(a,m,n): 

 s=0 

 for i in range(m): 

 for j in range(n): 

 s+=a[i][j] 

 return s     

Note: This function is stored in mataddition.py  

 



221 

Function call 

 import random 

 import mataddition 

 m=input("Enter total number of rows in the first matrix") 

 n=input("Enter total number of columns in the first  matrix") 

 a=[[random.random()for row in range(m)]for col in range(n)] 

 for i in range(m): 

 for j in range(n): 

 a[i][j]=input() 

 s=mataddition.summat(a,m,n) 

 print s 

Output 

 >>>  

 Enter total number of rows in the first matrix2 

 Enter total number of columns in the first matrix2 

 1 

 2 

 3 

 4 

 10 

 >>> 

Example 

 # Accessing the elements of a sublist 

 a = [[1, 2, 3], [4, 5], [6, 7, 8]] 

 count = -1 

 for list in a: 



222 

 count + = 1 

 print “elements of the list at index”, count, “are:” 

 for item in list: 

 print item,  

 print 

 will produce the result     

 elements of the list at index 0 are 

 1 2 3 

 elements of the list at index 1 are 

 4 5 

 elements of the list at index 2 are 

 6 7 8 

  



223 

EXERCISE 

1. Define list 

2. What is the output of the following code: 

a) print type ([1,2]) 

(i) <type „complex‟> 

(ii) <type „int‟> 

(iii) <type „list‟> 

b)   a= [1, 2, 3, None, ( ), [ ]} 

print len(a) 

(i) Syntax error  (ii) 4 

(iii) 5   (iv) 6 

(v) 7 

3. Write the output from the following code: 

A=[2,4,6,8,10] 

L=len(L) 

S=0 

for I in range(1,L,2): 

S+=A[I] 

print “Sum=”,S 

4. Find the errors from the following program 

n=input (Enter total number of elements) 

l=range(n) 

print l 

for i in (n); 

l[i]=input("enter element") 



224 

print "All elements in the list on the output screen" 

for i on range(n): 

print l[i] 

5. Write a function group of list (list, size) that takes a list and splits into smaller list 

of given size. 

6. Write a function to find all duplicates in the list. 

7. For each of the expression below, specify its type and value. If it generates error, 

write error. 

Assume that expressions are evaluated in order. 

x= [1, 2, [3, „abc‟, 4], „Hi‟] 

(i) x[0] 

(ii) x[2] 

(iii) x[-1] 

(iv) x[0:1] 

(v) 2 in x 

(vi) x[0]=8 

8. For each of the expression below, specify its type and value. If it generates error, 

write error: 

List A= [1, 4, 3, 0] 

List B= [„x‟, „z‟, „t‟, „q‟] 

(i) List A.sort ( ) 

(ii) List A 

(iii) List A.insert (0, 100) 

(iv) List A.remove (3) 

(v) List A.append (7) 

(vi) List A+List B 



225 

(vii) List B.pop ( ) 

(viii) List A.extend ([4, 1, 6, 3]) 

LAB EXERCISE 

1. We can use list to represent polynomial. 

For Example  

p (x) = -13.39 + 17.5 x + 3 x2 + x4 

can be stored as 

[-13.39, 17.5, 3, 1.0] 

Here „index‟ is used to represent power of „x‟ and value at the index used to 

represent the coefficient of the term. 

Write a function to evaluate the polynomial for a given „x‟. 

2. Write a function that takes a list of numbers and returns the cumulative sum; that 

is, a new list where the its element is the sum of the first i+1 elements from the 

original list. For example, the cumulative sum of [1, 2, 3] is [1, 3, 6]. 

3. Write a function called chop that takes a list and modifies it, removing the first and 

last elements, and returns None. Then write a function called middle that takes a list 

and returns a new list that contains all but the first and last elements.  

4. Write a function called is_sorted that takes a list as a parameter and returns True if 

the list is sorted in ascending order and False otherwise. You can assume (as a 

precondition) that the elements of the list can be compared with the relational 

operators <, >, etc.  

 For example, is_sorted ([1, 2, 2]) should return True and is_sorted ([‘b’, ‘a’]) should 

return False.  

5. Write a function called remove_duplicates that takes a list and returns a new list 

with only the unique elements from the original. Hint: they don‟t have to be in the 

same order. 

6. Write a function that takes in two sorted lists and merges them. The lists may not 

be of same length and one or both may be empty. Don‟t use any Python built-in 

methods or functions. 



226 

7. Create a list that contains the names of 5 students of your class. (Do not ask for 

input to do so) 

(i) Print the list 

(ii) Ask the user to input one name and append it to the list 

(iii) Print the list 

(iv) Ask user to input a number. Print the name that has the number as index 

(Generate error message if the number provided is more than last index 

value). 

(v) Add “Kamal” and “Sanjana” at the beginning of the list by using „+‟. 

(vi) Print the list 

(vii) Ask the user to type a name. Check whether that name is in the list. If exist, 

delete the name, otherwise append it at the end of the list. 

(viii) Create a copy of the list in reverse order 

(ix) Print the original list and the reversed list. 

(x) Remove the last element of the list. 

8. Use the list of student names from the previous exercise. Create a for loop that asks 

the user for every name whether they would like to keep the name or delete it. 

Delete the names which the user no longer wants. Hint: you cannot go through a 

list using a for loop and delete elements from the same list simultaneously because 

in that way the for loop will not reach all elements. You can either use a second 

copy of the list for the loop condition or you can use a second empty list to which 

you append the elements that the user does not want to delete. 

9. Write a function to find product of the element of a list. What happens when the 

function is called with list of strings? 

10. Write a program to input NXM matrix and find sum of all even numbers in the 

matrix. 

11. Write a program to print upper triangle matrix. 

12. Write a program to print lower triangle matrix. 

13. Write a program to find sum of rows and columns of the matrix. 



227 

Chapter 3 

Dictionaries 

After studying this lesson, the students will be able to 

 understand the need of dictionaries; 

 solve problems by using dictionaries; 

 get clear idea about dictionaries functions; and 

 understand the difference between list and dictionary. 

What is dictionary? 

A dictionary is like a list, but more in general. In a list, index value is an integer, while 

in a dictionary index value can be any other data type and are called keys. The key will 

be used as a string as it is easy to recall. A dictionary is an extremely useful data storage 

construct for storing and retrieving all key value pairs, where each element is accessed 

(or indexed) by a unique key.  However, dictionary keys are not in sequences and hence 

maintain no left-to right order. 

Key-value pair 

We can refer to a dictionary as a mapping between a set of indices (which are called 

keys) and a set of values. Each key maps a value. The association of a key and a value is 

called a key-value pair. 

Syntax: 

 my_dict = {'key1': 'value1','key2': 'value2','key3': 'value3'…'keyn': 'valuen'} 

Note: Dictionary is created by using curly brackets(ie. {}).  

Example 

 >>> A={1:"one",2:"two",3:"three"} 

 >>> print A 

 {1: 'one', 2: 'two', 3: 'three'} 



228 

In the above example, we have created a list that maps from numbers to English words, 

so the keys values are in numbers and values are in strings. 

  
 
                                          A     = 
 
 
 
 
                                                Map between keys and values 
Example 

 >>>computer={'input':'keybord','output':'mouse','language':'python','os':'windows-

8',} 

 >>> print computer 

 {'input': 'keyboard', 'os': 'windows-8', 'language': 'python', 'output': 'mouse'} 

 >>> 

In the above example, we have created a list that maps from computer related things 

with example, so here the keys and values are in strings. The order of the key-value 

pairs is not in same order (ie. input and output orders are not same). We can get 

different order of items in different computers.  Thus, the order of items in a dictionary 

is unpredictable. 

Example 

 >>> 

D={'sun':'Sunday','mon':'Monday','tue':'Tuesday','wed':'Wednesday','thu':'Thursda

y','fri':'Friday','sat':'Saturday'} 

 >>> print D 

 {'wed': 'Wednesday', 'sun': 'Sunday', 'thu': 'Thursday', 'tue': 'Tuesday', 'mon': 

'Monday', 'fri': 'Friday', 'sat': 'Saturday'} 

Creation, initializing and accessing the elements in a Dictionary 

The function dict ( ) is used to create a new dictionary with no items. This function is 

called built-in function. We can also create dictionary using {}. 

1             one 
 
2              two 
 
3             three 



229 

>>> D=dict() 

>>> print D 

{} 

{} represents empty string. To add an item to the dictionary (empty string), we can use 

square brackets for accessing and initializing dictionary values. 

Example 

>>> H=dict() 

>>> H["one"]="keyboard" 

>>> H["two"]="Mouse" 

>>> H["three"]="printer" 

>>> H["Four"]="scanner" 

>>> print H 

{'Four': 'scanner', 'three': 'printer', 'two': 'Mouse', 'one': 'keyboard'} 

>>> 

Traversing a dictionary 

Let us visit each element of the dictionary to display its values on screen. This can be 

done by using ‘for-loop’. 

Example 

Code 

 H={'Four': 'scanner', 'three': 'printer', 'two': 'Mouse', 'one': 'keyboard'} 

 for i in H: 

 print i,":", H[i],"   ", 

Output 

 >>>  

 Four: scanner     one: keyboard     three: printer     two: Mouse     

 >>> 



230 

 OR 

Code 

 H = {'Four': 'scanner', 'three': 'printer', 'two': 'Mouse', 'one': 'keyboard'} 

 print "i value","\t","H[i] value" 

 for i in H: 

 print i,"\t", H[i] 

Output 

 i value  H[i] value 

 Four  scanner 

 one  keyboard 

 three  printer 

 two  Mouse 

As said previously, the order of items in a dictionary is unpredictable.  

Creating, initializing values during run time (Dynamic allocation) 

We can create a dictionary during run time also by using dict () function. This way of 

creation is called dynamic allocation. Because, during the run time, memory keys and 

values are added to the dictionary. 

Example 

Write a program to input total number of sections and class teachers’ name in 11th class 

and display all information on the output screen. 

Code 

 classxi=dict() 

 n=input("Enter total number of section in xi class") 

 i=1 

 while i<=n: 

 a=raw_input("enter section") 



231 

 b=raw_input ("enter class teacher name") 

 classxi[a]=b 

 i=i+1 

 print "Class","\t","Section","\t","teacher name" 

 for i in classxi: 

 print "XI","\t",i,"\t",classxi[i] 

Output 

 >>>  

 Enter total number of section in xi class3 

 enter sectionA 

 enter class teacher nameLeena 

 enter sectionB 

 enter class teacher nameMadhu 

 enter sectionC 

 enter class teacher nameSurpreeth 

 Class  Section     teacher name 

 XI  A   Leena 

 XI  C   Surpreeth 

 XI  B   Madhu 

 >>>       

Appending values to the dictionary 

We can add new elements to the existing dictionary, extend it with single pair of values 

or join two dictionaries into one. If we want to add only one element to the dictionary, 

then we should use the following method. 

Syntax: 

 Dictionary name [key]=value 



232 

Example 

 >>> a={"mon":"monday","tue":"tuesday","wed":"wednesday"} 

 >>> a["thu"]="thursday" 

 >>> print a 

 {'thu': 'thursday', 'wed': 'wednesday', 'mon': 'monday', 'tue': 'tuesday'} 

 >>> 

Merging dictionaries: An update ( ) 

Two dictionaries can be merged in to one by using update ( ) method.  It merges the 

keys and values of one dictionary into another and overwrites values of the same key.  

Syntax: 

 Dic_name1.update (dic_name2) 

Using this dic_name2 is added with Dic_name1. 

Example 

 >>> d1={1:10,2:20,3:30} 

 >>> d2={4:40,5:50} 

 >>> d1.update(d2) 

 >>> print d1 

 {1: 10, 2: 20, 3: 30, 4: 40, 5: 50} 

Example 

 {1: 10, 2: 30, 3: 30, 5: 40, 6: 60}  # k>>> d1={1:10,2:20,3:30}   # key 2 value is 20 

 >>> d2={2:30,5:40,6:60}  #key 2 value is 30 

 >>> d1.update(d2) 

 >>> print d1 

 ey 2 value is replaced with 30 in d1 



233 

Removing an item from dictionary 

We can remove item from the existing dictionary by using del key word.  

Syntax: 

 del  dicname[key] 

Example 

 >>> A={"mon":"monday","tue":"tuesday","wed":"wednesday","thu":"thursday"} 

 >>> del A["tue"] 

 >>> print A 

 {'thu': 'thursday', 'wed': 'wednesday', 'mon': 'monday'} 

 >>> 

Dictionary functions and methods 

cmp ( ) 

This is used to check whether the given dictionaries are same or not. If both are same, it 

will return ‘zero’, otherwise return 1 or -1.  If the first dictionary having more number of 

items, then it will return 1, otherwise return  -1. 

Syntax: 

 cmp(d1,d2)                #d1and d2 are dictionary.  

 returns 0 or 1 or -1  

Example 

 >>> 

D1={'sun':'Sunday','mon':'Monday','tue':'Tuesday','wed':'Wednesday','thu':'Thursd

ay','fri':'Friday','sat':'Saturday'} 

 >>> 

D2={'sun':'Sunday','mon':'Monday','tue':'Tuesday','wed':'Wednesday','thu':'Thursd

ay','fri':'Friday','sat':'Saturday'} 

 >>> D3={'mon':'Monday','tue':'Tuesday','wed':'Wednesday'} 

 >>> cmp(D1,D3)  #both are not equal 



234 

 1 

 >>> cmp(D1,D2) #both are  equal 

 0 

 >>> cmp(D3,D1) 

 -1 

len( ) 

This method returns number of key-value pairs in the given dictionary. 

Syntax: 

 len(d)       #d dictionary 

returns number of items in the list. 

Example 

 >>> H={'Four': 'scanner', 'three': 'printer', 'two': 'Mouse', 'one': 'keyboard'} 

 >>> len(H) 

4 

clear ( )  

It removes all items from the particular dictionary. 

Syntax: 

 d.clear( )    #d dictionary 

Example 

 >>> D={'mon':'Monday','tue':'Tuesday','wed':'Wednesday'} 

 >>> print D 

 {'wed': 'Wednesday', 'mon': 'Monday', 'tue': 'Tuesday'} 

 >>> D.clear( ) 

 >>> print D 

 {} 

  



235 

get(k, x )  

There are two arguments (k, x) passed in ‘get( )’ method. The first argument is key 

value, while the second argument is corresponding value. If a dictionary has a given 

key (k), which is equal to given value (x), it returns the corresponding value (x) of given 

key (k). However, if the dictionary has no key-value pair for given key (k), this method 

returns the default values same as given key value. The second argument is optional. If 

omitted and the dictionary has no key equal to the given key value, then it returns 

None.  

Syntax: 

 D.get (k, x)     #D dictionary, k key and x value 

Example 

>>> 

D={'sun':'Sunday','mon':'Monday','tue':'Tuesday','wed':'Wednesday','thu':'Thursda

y','fri':'Friday','sat':'Saturday'} 

 >>> D.get('wed',"wednesday")    # corresponding value wed 

 'Wednesday' 

 >>> D.get("fri","monday")        # default value of fri 

 'Friday' 

 >>> D.get("mon")   # default value of mon  

 'Monday'  

 >>> D.get("ttu")                        # None 

 >>> 

has_key( ) 

This function returns ‘True’, if dictionary has a key, otherwise it returns ‘False’. 

Syntax: 

 D.has_key(k)    #D dictionary and k key 

Example 

 >>> 



236 

D={'sun':'Sunday','mon':'Monday','tue':'Tuesday','wed':'Wednesday','thu':'Thursda

y','fri':'Friday','sat':'Saturday'} 

>>> D.has_key("fri") 

 True 

 >>> D.has_key("aaa") 

 False 

 >>> 

items( ) 

It returns the content of dictionary as a list of key and value.  The key and value pair 

will be in the form of a tuple, which is not in any particular order.  

Syntax: 

 D.items()         # D dictionary 
 
Example 

>>> 

D={'sun':'Sunday','mon':'Monday','tue':'Tuesday','wed':'Wednesday','thu':'Thursda

y','fri':'Friday','sat':'Saturday'} 

 >>> D.items() 

 [('wed', 'Wednesday'), ('sun', 'Sunday'), ('thu', 'Thursday'), ('tue', 'Tuesday'), ('mon', 

'Monday'), ('fri', 'Friday'), ('sat', 'Saturday')] 

Note: items () is different from print command because, in print command dictionary 

values are written in {} 

keys() 

It returns a list of the key values in a dictionary, , which is not in any particular order. 

Syntax: 

 D.keys( ) #D dictionary 

Example 

 >>> 



237 

 D={'sun':'Sunday','mon':'Monday','tue':'Tuesday','wed':'Wednesday','thu':'Thursda

y','fri':'Friday','sat':'Saturday'} 

 >>> D.keys() 

 ['wed', 'sun', 'thu', 'tue', 'mon', 'fri', 'sat'] 

 >>> 

values() 

It returns a list of values from key-value pairs in a dictionary, which is not in any 

particular order. However, if we call both the items () and values() method without 

changing the dictionary's contents between these two (items() and values()), Python 

guarantees that the order of the two results will be the  same.  

Syntax: 

 D.values() #D values 

Example 

 >>> 

 D={'sun':'Sunday','mon':'Monday','tue':'Tuesday','wed':'Wednesday','thu':'Thursda

y','fri':'Friday','sat':'Saturday'} 

 >>> D.values() 

 ['Wednesday', 'Sunday', 'Thursday', 'Tuesday', 'Monday', 'Friday', 'Saturday'] 

 >>> D.items() 

 [('wed', 'Wednesday'), ('sun', 'Sunday'), ('thu', 'Thursday'), ('tue', 'Tuesday'), ('mon', 

'Monday'), ('fri', 'Friday'), ('sat', 'Saturday')] 

Solved Examples 

1.  Write a python program to input ‘n’ names and phone numbers to store it in a 

dictionary and to input any name and to print the phone number of that particular 

name. 

Code 

 phonebook=dict() 



238 

 n=input("Enter total number of friends") 

 i=1 

 while i<=n: 

 a=raw_input("enter name") 

 b=raw_input("enter phone number") 

 phonebook[a]=b 

 i=i+1 

 name=raw_input("enter name") 

 f=0 

 l=phonebook.keys() 

 for i in l: 

 if (cmp(i,name)==0): 

 print "Phone number= ",phonebook[i] 

 f=1         

 if (f==0): 

 print "Given name not exist" 

Output 

 >>>  

 Enter total number of friends3 

 enter nameMona 

 enter phone number23456745 

 enter nameSonu 

 enter phone number45678956 

 enter nameRohan 

 enter phone number25678934 

 enter nameSonu 



239 

 Phone number=  45678956 

 >>> 

2.  Write a program to input ‘n’ employee number and name and to display all 

employee’s information in ascending order based upon their number. 

Code 

 empinfo=dict() 

 n=input("Enter total number of employees") 

 i=1 

 while i<=n: 

 a=raw_input("enter number") 

 b=raw_input("enter name") 

 empinfo[a]=b 

 i=i+1 

 l=empinfo.keys() 

 l.sort() 

 print "Employee Information" 

 print "Employee Number",'\t',"Employee Name" 

 for i in l: 

 print i,'\t',empinfo[i] 

    

Output 

 >>>  

 Enter total number of employees5 

 enter number555 

 enter nameArpit 

 enter number333 



240 

 enter nameShilpa 

 enter number777 

 enter nameKush 

 enter number222 

 enter nameAnkita 

 enter number666 

 enter nameArun 

 Employee Information 

 Employee Number  Employee Name 

 222                            Ankita 

 333                            Shilpa 

 555                            Arpit 

 666                             Arun 

 777                             Kush 

 >>> 

3.  Write the output for the following Python codes.  

 A={1:100,2:200,3:300,4:400,5:500} 

 print A.items() 

 print A.keys() 

 print A.values() 

Output 

 [(1, 100), (2, 200), (3, 300), (4, 400), (5, 500)] 

 [1, 2, 3, 4, 5] 

 [100, 200, 300, 400, 500] 



241 

4. Write a program to create a phone book and delete particular phone number using 

name. 

Code 

 phonebook=dict() 

 n=input("Enter total number of friends") 

 i=1 

 while i<=n: 

 a=raw_input("enter name") 

 b=raw_input("enter phone number") 

 phonebook[a]=b 

 i=i+1 

 name=raw_input("enter name") 

 del phonebook[name] 

 l=phonebook.keys() 

 print "Phonebook Information" 

 print "Name",'\t',"Phone number" 

 for i in l: 

 print i,'\t',phonebook[i] 

Output 

 >>>  

 Enter total number of friends5 

 enter nameLeena 

 enter phone number 9868734523 

 enter nameMadhu 

 enter phone number 9934567890 

 enter nameSurpreeth 



242 

 enter phone number 9678543245 

 enter nameDeepak 

 enter phone number 9877886644 

 enter nameAnuj 

 enter phone number 9655442345 

 enter nameDeepak 

 Phonebook Information 

 Name   Phone number 

 Leena   9868734523 

 Surpreeth  9678543245 

 Madhu   9934567890 

 Anuj   9655442345 

 >>> 



243 

EXERCISE 

1.  Write the code to input any 5 years and the population of any city and print it on 

the screen. 

2.  Write a code to input ‘n’ number of subject and head of the department and also 

display all information on the output screen. 

3.  Write the output for the following codes. 

A={10:1000,20:2000,30:3000,40:4000,50:5000} 

print A.items() 

print A.keys() 

print A.values() 

4.  Write a code to create customer’s list with their number & name and delete any 

particular customer using his /her number. 

5.  Write a Python program to input ‘n’ names and phone numbers to store it in a 

dictionary and print the phone number of a particular name. 

6.  Find errors from the following codes: 

c=dict() 

n=input(Enter total number ) 

i=1 

while i<=n 

     a=raw_input("enter place") 

     b=raw_input("enter number") 

     c(a)=b 

     i=i+1 

print "place","\t","number" 

for i in c: 

     print   i,"\t",cla[i] 

 



244 

Chapter 4 

Tuples 

After studying this lesson, the students will be able to 

 understand the need of Tuples; 

 solve problems by using Tuples; 

 get clear idea about Tuple functions; and 

 understand the difference between list, dictionary and tuples. 

What is a Tuple? 

A tuple is a sequence of values, which can be of any type and they are indexed by 

integer. Tuples are just like list, but we can’t change values of tuples in place. Thus 

tuples are immutable. The index value of tuple starts from 0. 

A tuple consists of a number of values separated by commas. For example:  

 >>> T=10, 20, 30, 40 

 >>> print T 

 (10, 20, 30, 40) 

But in the result, same tuple is printed using parentheses. To create a tuple with single 

element, we have to use final comma. A value with in the parenthesis is not tuple. 

Example 

 >>> T=(10) 

 >>> type(T) 

 <type 'int'> 

Example 

>>> t=10, 

>>> print t 

(10,) 



245 

Example  

>>> T=(10,20) 

>>> type(T) 

<type 'tuple'> 

Example  

Tuple with string values 

>>> T=('sun','mon','tue') 

>>> print T 

('sun', 'mon', 'tue') 

Example  

Tuples with single character 

>>> T=('P','Y','T','H','O','N') 

>>> print T 

('P', 'Y', 'T', 'H', 'O', 'N') 

Tuple Creation 

If we need to create a tuple with a single element, we need to include a final comma. 

Example 

 >>> t=10, 

 >>> print t 

 (10,) 

Another way of creating tuple is built-in function tuple (). 

Syntax: 

    T = tuple() 

Example 

 >>> T=tuple() 



246 

 >>> print T 

 () 

Add new element to Tuple 

We can add new element to tuple using + operator. 

Example 

>>> t=(10,20,30,40) 

>>> t+(60,)     # this will not create modification of t. 

(10, 20, 30, 40, 60) 

>>> print t 

(10, 20, 30, 40) 

>>> t=t+(60,) # this will do modification of t. 

>>> print t 

(10, 20, 30, 40, 60) 

Example 

Write a program to input ‘n’ numbers and store it in tuple. 

Code 

t=tuple() 

n=input("Enter any number") 

print " enter all numbers one after other" 

for i in range(n): 

a=input("enter number") 

t=t+(a,) 

print "output is" 

print t 

  



247 

Output 

 >>>  

 Enter any number3 

 enter all numbers one after other 

 enter number10 

 enter number20 

 enter number30 

 output is 

 (10, 20, 30) 

 >>> 

Another version of the above program: 

Code 

t=tuple() 

n=input("Enter any number") 

print " enter all numbers one after other" 

for i in range(n): 

a=input("enter number") 

t=t+(a,) 

print "output is" 

for i in range(n): 

print t[i] 

Output 

>>>  

Enter any number3 

enter all numbers one after other 

enter number10 



248 

enter number20 

enter number30 

output is 

10 

20 

30 

>>> 

We can also add new element to tuple by using list.  For that we have to convert the 

tuple into a list first and then use append() function to add new elements to the list. 

After completing the addition, convert the list into tuple. Following example illustrates 

how to add new elements to tuple using a list. 

>>> T=tuple() #create empty tuple 

>>> print T 

() 

>>> l=list(T)          #convert tuple into list 

>>> l.append(10) #Add new elements to list 

>>> l.append(20) 

>>> T=tuple(l)       #convert list into tuple 

>>> print T 

(10, 20) 

Initializing tuple values: 

 >>> T=(0,)*10 

>>> print T 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

Tuple Assignment 

If we want to interchange (swap) any two variable values, we have to use temporary 

variable. For example; 



249 

>>> A=10 

>>> B=20 

>>> print A,B 

10 20 

>>> T=A 

>>> A=B 

>>> B=T 

>>> print A,B 

20 10 

But in python, tuple assignment is more elegant: 

Example 

>>> T1=(10,20,30) 

>>> T2=(100,200,300,400) 

>>> print T1 

(10, 20, 30) 

>>> print T2 

(100, 200, 300, 400) 

>>> T1,T2=T2,T1      # swap T1 and T2 

>>> print T1 

(100, 200, 300, 400) 

>>> print T2 

(10, 20, 30) 

The left side is a tuple of variables, while the right side is a tuple of expressions. Each 

value is assigned to its respective variable. All the expressions on the right side are 

evaluated before any of the assignments. 



250 

The number of variables on the left and the number of values on the right have to be the 

same: 

Example 

>>> T1=(10,20,30) 

>>> T2=(100,200,300) 

>>> t3=(1000,2000,3000) 

>>> T1,T2=T2,T1,t3 

Traceback (most recent call last): 

File "<pyshell#3>", line 1, in <module> 

T1,T2=T2,T1,t3 

ValueError: too many values to unpack 

Here, two tuples are in the left side and three tuples are in right side. That is why, we 

get errors.  Thus, it is required to have same number of tuples in both sides to get the 

correct result. 

Example 

>>> T1,T2,t3=t3,T1,T2 

>>> print T1 

(1000, 2000, 3000) 

>>> print T2 

(10, 20, 30) 

>>> print t3 

(100, 200, 300) 

Tuple Slices 

Slice operator works on Tuple also. This is used to display more than one selected value 

on the output screen. Slices are treated as boundaries and the result will contain all the 

elements between boundaries. 



251 

Syntax is: 

 Seq = T [start: stop: step] 

Where start, stop & step all three are optional. If we omit first index, slice starts from ‘0’. 

On omitting stop, slice will take it to end. Default value of step is 1. 

Example 

 >>> T=(10,20,30,40,50) 

 >>> T1=T[2:4] 

 >>> print T1 

 (30, 40) 

In the above example, starting position is 2 and ending position is 3(4-1), so the selected 

elements are 30 & 40. 

 >>> T[:] 

 (10, 20, 30, 40, 50) 

Will produce a copy of the whole tuple. 

 >>> T[::2] 

 (10, 30, 50) 

Will produce a Tuple with every alternate element. 

 >>> T[:3] 

 (10, 20, 30) 

Will produce 0 to 2(3-1) 

 >>> T[2:] 

 (30, 40, 50) 

Will produce from 2 to end. 

  



252 

Tuple Functions 

cmp( ) 

This is used to check whether the given tuples are same or not. If both are same, it will 

return ‘zero’, otherwise return 1 or -1. If the first tuple is big, then it will return 1, 

otherwise return -1. 

Syntax: 

 cmp(t1,t2)                #t1and t2 are tuples.  

 returns 0 or 1 or -1  

Example 

 >>> T1=(10,20,30) 

 >>> T2=(100,200,300) 

 >>> T3=(10,20,30) 

 >>> cmp(T1,T2) 

 -1 

 >>> cmp(T1,T3) 

 0 

 >>> cmp(T2,T1) 

 1 

len( ) 

It returns the number of items in a tuple. 

Syntax: 

 len(t)        #t tuples 

returns number of items in the tuple. 

Example 

 >>> T2=(100,200,300,400,500) 

 >>> len(T2) 

 5 



253 

max( ) 

It returns its largest item in the tuple. 

Syntax: 

 max(t)        #t tuples 

returns maximum value among the given tuple. 

Example 

 >>> T=(100,200,300,400,500) 

 >>> max(T) 

 500 

min( ) 

It returns its smallest item in the tuple. 

Syntax: 

 min(t)        #t tuples 

returns minimum value among the given tuple. 

Example 

 >>> T=(100,200,300,400,500) 

 >>> min(T) 

 100 

tuple( ) 

It is used to create empty tuple.  

Syntax: 

    T=tuple()        #t tuples 

Create empty tuple. 

Example 

 >>> t=tuple() 

 >>> print t 

 () 



254 

Solved Examples 

1. Write a program to input 5 subject names and put it in tuple and display that tuple 

information on the output screen. 

Code 

 t=tuple() 

 print " enter all subjects one after other"; 

 for i in range(5): 

 a=raw_input("enter subject") 

 t=t+(a,) 

 print "output is" 

 print t 

Output 

 >>>  

 enter all subjects one after other 

 enter subjectEnglish 

 enter subjectHindi 

 enter subjectMaths 

 enter subjectScience 

 enter subjectSocial Science 

 output is 

 ('English', 'Hindi', 'Maths', 'Science', 'Social Science') 

 >>> 

2.  Write a program to input any two tuples and interchange the tuple values. 
 

Code 

 t1=tuple() 

 n=input("Total number of values in first tuple") 



255 

 for i in range(n): 

 a=input("enter elements") 

 t1=t1+(a,) 

 t2=tuple() 

 m=input("Total number of values in first tuple") 

 for i in range(m): 

 a=input("enter elements") 

 t2=t2+(a,) 

 print "First Tuple" 

 print t1 

 print "Second Tuple" 

 print t2 

 t1,t2=t2,t1 

 print "AFTER SWAPPING" 

 print "First Tuple" 

 print t1 

 print "Second Tuple" 

 print t2 

Output  

 >>>  

 Total number of values in first tuple3 

 enter elements100 

 enter elements200 

 enter elements300 

 Total number of values in first tuple4 

 enter elements10 



256 

 enter elements20 

 enter elements30 

 enter elements40 

 First Tuple 

 (100, 200, 300) 

 Second Tuple 

 (10, 20, 30, 40) 

 AFTER SWAPPING 

 First Tuple 

 (10, 20, 30, 40) 

 Second Tuple 

 (100, 200, 300) 

 >>> 

3.  Write a program to input ‘n’ numbers and store it in a tuple and find maximum & 

minimum values in the tuple. 

Code 

 t=tuple() 

 n=input("Total number of values in  tuple") 

 for i in range(n): 

 a=input("enter elements") 

 t=t+(a,) 

 print "maximum value=",max(t) 

 print "minimum value=",min(t) 

Output 

 >>>  

 Total number of values in  tuple3 



257 

 enter elements40 

 enter elements50 

 enter elements10 

 maximum value= 50 

 minimum value= 10 

 >>> 

4.  Find the output from the following code: 

 T=(10,30,2,50,5,6,100,65) 

  print max(T) 

 print min(T) 

Output 

 100 

 2 

5. Find the output from the following code: 

 t=tuple() 

 t = t +(PYTHON,) 

 print t 

 print len(t) 

 t1=(10,20,30) 

 print len(t1) 

Output 

 ('PYTHON',) 

 1 

 3 

  



258 

EXERCISE 

1.  Write the output from the following codes; 

 (i)  t=(10,20,30,40,50) 

      print  len(t) 

 (ii)  t=('a','b','c','A','B') 

        max(t) 

       min(t) 

 (iii)  T1=(10,20,30,40,50) 

         T2 =(10,20,30,40,50) 

         T3 =(100,200,300) 

         cmp(T1,T2) 

       cmp(T2,T3) 

         cmp(T3,T1) 

 (iv)  t=tuple() 

          Len(t) 

 (v)  T1=(10,20,30,40,50) 

        T2=(100,200,300) 

        T3=T1+T2 

        print T3 

2.  Write a program to input two set values and store it in tuples and also do the 

comparison. 

3.  Write a program to input ‘n’ employees’ salary and find minimum & maximum 

salary among ‘n’ employees. 

4.  Find the errors from the following code: 

 t=tuple{} 



259 

 n=input(Total number of values in  tuple) 

 for i in range(n) 

 a=input("enter elements") 

 t=t+(a) 

 print "maximum value=",max(t) 

 print "minimum value=",min(t) 

5.  Write a program to input ‘n’ customers’ name and store it in tuple and display all 

customers’ names on the output screen. 

6.  Write a program to input ‘n’ numbers and separate the tuple in the following 

manner. 

 Example 

 T=(10,20,30,40,50,60) 

 T1 =(10,30,50) 

 T2=(20,40,60) 



C
o
m
p
u
te

r
 S

c
ie

n
c
e 

- 
C

la
ss

 X
I

C
o
m
p
u
te

r
 S

c
ie

n
c
e 

- 
C

la
ss

 X
I






