

DPP No. 3

Total Marks : 29

Max. Time : 29 min.

Topics : Complex Number, Sequence & Progression, Permutation & Combination, Fundamentals of Mathematics, Quadratic Equation

Туре о	ype of Questions								Min.
Single Short Match	choice Subjec the Fo	e Objective (no tive Questions llowing (no	o negative marking) (s (no negative markin negative marking) Q	Q. 1, 2, 3, 4 ng) Q. 5, 6, 7 8	(3 marks (3 marks (8 marks	s, 3 min s, 3 min s, 8 min	.) .) .)	[12, [9, [8,	12] 9] 8]
1.	If z_1 , z_2 , z_3 are the vertices of the \triangle ABC on the complex plane and are also the roots of the $z^3 - 3\alpha z^2 + 3\beta z + \gamma = 0$ then the condition for the \triangle ABC to be equilateral triangle is : (A) $\alpha^2 = \beta$ (B) $\alpha = \beta^2$ (C) $\alpha^2 = 3\beta$ (D) $\alpha = 3\beta^2$							equatior	1
2.	The sui (A) 101	m of first 100 teri 100	ms common to the serie (B) 111000	s 17, 21, 25, (C) 110010	& 16, 21,	26 is (D) 100	101		
3.	How many seven digit number is to be formed using the digits 1 to 9 (without repetition) which is divisi by 9								visible
	(A) 4.7!		(B) ⁹ P ₇	(C) 7!		(D) 9 ⁶			
4.	The co (A) 0 <	mplete solution x < 1	set of the equation x^8 - (B) – 1 < x < 1	$-x^{5} + x^{2} - x + \frac{1}{2}$ (C) x > 1	1 > 0 is gi	ven by (D) x ∈	R.		
5.	If the inequality sin ² x + a cosx + a ² \ge 1 + cosx holds for any x \in R, find the range of values of a .								
6.	If α , β are the roots of the equation $ax^2 + bx + c = 0$. Find the quadratic equation whose roots are $(a\alpha + b)^{-2}$, $(a\beta + b)^{-2}$.								
7.	Find the solution of the equation, $2\log_9\left(2\left(\frac{1}{2}\right)^x - 1\right) = \log_{27}\left(\left(\frac{1}{4}\right)^x - 4\right)^3$. Also state whether the solution								
	is rational or irrational.								
8.	Match the column								
	Column – I Column						– II		
	(A) The number of integral solutions of the inequality (p)						(p)	4	
		$\frac{(e^{x}-1)(x-2)(x-2)(x-2)(x-2)(x-2)(x-2)(x-2)(x-2$	$\frac{(x-1)^7}{(x-5)} \le 0$						

- (D) Number of solution of x = tan x in $x \in (-\pi, \pi)$ (s) 1
 - (t) 0

Answers Key

- **1.** (A) **2.** (A) **3.** (A) **4.** (D)
- **5.** $(-\infty, -2] \cup [1, \infty)$ **6.** $a^2c^2x^2 (b^2 2ac)x + 1 = 0$
- **7.** $-\log_2 3$, Irrational
- 8. $(A \rightarrow r), (B \rightarrow r), (C \rightarrow q), (D \rightarrow s)$