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Before this vending machine will deliver
its product, it conducts several tests on
the coins being inserted. How can it de-
termine what material the coins are
made of without damaging them and
without making the customer wait a long
time for the results? (George Semple)

c h a p t e r

31.1 Faraday's Law of Induction
31.2 Motional emf

31.3 Lenz's Law

31.4 Induced emf and Electric Fields

31.5 (Optional) Generators and
Motors

31.6 (Optional) Eddy Currents
31.7 Maxwell’s Wonderful Equations

979



980 CHAPTER 31 Faraday’s Law

he focus of our studies in electricity and magnetism so far has been the elec-

tric fields produced by stationary charges and the magnetic fields produced by

moving charges. This chapter deals with electric fields produced by changing
magnetic fields.

Experiments conducted by Michael Faraday in England in 1831 and indepen-
dently by Joseph Henry in the United States that same year showed that an emf
can be induced in a circuit by a changing magnetic field. As we shall see, an emf
(and therefore a current as well) can be induced in many ways—for instance, by
moving a closed loop of wire into a region where a magnetic field exists. The re-
sults of these experiments led to a very basic and important law of electromagnet-
ism known as Faraday’s law of induction. This law states that the magnitude of the
emf induced in a circuit equals the time rate of change of the magnetic flux
through the circuit.

With the treatment of Faraday’s law, we complete our introduction to the fun-
damental laws of electromagnetism. These laws can be summarized in a set of four
equations called Maxwell’s equations. Together with the Lorentz force law, which we
discuss briefly, they represent a complete theory for describing the interaction of
charged objects. Maxwell’s equations relate electric and magnetic fields to each
other and to their ultimate source, namely, electric charges.

31.1 _~ FARADAY’S LAW OF INDUCTION

(@ To see how an emf can be induced by a changing magnetic field, let us consider a

125 loop of wire connected to a galvanometer, as illustrated in Figure 31.1. When a

127 magnet is moved toward the loop, the galvanometer needle deflects in one direc-
tion, arbitrarily shown to the right in Figure 31.1a. When the magnet is moved
away from the loop, the needle deflects in the opposite direction, as shown in Fig-
ure 31.1c. When the magnet is held stationary relative to the loop (Fig. 31.1b), no
deflection is observed. Finally, if the magnet is held stationary and the loop is
moved either toward or away from it, the needle deflects. From these observations,
we conclude that the loop “knows” that the magnet is moving relative to it because
it experiences a change in magnetic field. Thus, it seems that a relationship exists
between current and changing magnetic field.

These results are quite remarkable in view of the fact that a current is set up
even though no batteries are present in the circuit! We call such a current an
induced current and say that it is produced by an induced emf.

Now let us describe an experiment conducted by Faraday! and illustrated in
Figure 31.2. A primary coil is connected to a switch and a battery. The coil is
wrapped around a ring, and a current in the coil produces a magnetic field when
the switch is closed. A secondary coil also is wrapped around the ring and is con-
nected to a galvanometer. No battery is present in the secondary circuit, and the
secondary coil is not connected to the primary coil. Any current detected in the
secondary circuit must be induced by some external agent.

Initially, you might guess that no current is ever detected in the secondary cir-
cuit. However, something quite amazing happens when the switch in the primary

A demonstration of electromag-
netic induction. A changing poten-

tial difference is applied to the ! A physicist named J. D. Colladon was the first to perform the moving-magnet experiment. To mini-
lower coil. An emf is induced in the mize the effect of the changing magnetic field on his galvanometer, he placed the meter in an adjacent
upper coil as indicated by the illu- room. Thus, as he moved the magnet in the loop, he could not see the meter needle deflecting. By the
minated lamp. What happens to time he returned next door to read the galvanometer, the needle was back to zero because he had
the lamp’s intensity as the upper stopped moving the magnet. Unfortunately for Colladon, there must be relative motion between the
coil is moved over the vertical tube? loop and the magnet for an induced emf and a corresponding induced current to be observed. Thus,

(Courtesy of Central Scientific Company) physics students learn Faraday’s law of induction rather than “Colladon’s law of induction.”
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Galvanometer

()

Figure 31.1 (a) When a magnet is moved toward a loop of wire connected to a galvanometer,
the galvanometer deflects as shown, indicating that a current is induced in the loop. (b) When
the magnet is held stationary, there is no induced current in the loop, even when the magnet is
inside the loop. (c) When the magnet is moved away from the loop, the galvanometer deflects in
the opposite direction, indicating that the induced current is opposite that shown in part (a).
Changing the direction of the magnet’s motion changes the direction of the current induced by
that motion.

circuit is either suddenly closed or suddenly opened. At the instant the switch is
closed, the galvanometer needle deflects in one direction and then returns to
zero. At the instant the switch is opened, the needle deflects in the opposite direc-
tion and again returns to zero. Finally, the galvanometer reads zero when there is
either a steady current or no current in the primary circuit. The key to under-

Galvanometer

Primary Secondary
Battery coil coil
Figure 31.2 Faraday’s experiment. When the switch in the primary circuit is closed, the gal-
vanometer in the secondary circuit deflects momentarily. The emf induced in the secondary cir-
cuit is caused by the changing magnetic field through the secondary coil.
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Michael Faraday (1791-1867)
Faraday, a British physicist and
chemist, is often regarded as the
greatest experimental scientist of the
1800s. His many contributions to the
study of electricity include the inven-
tion of the electric motor, electric
generator, and transformer, as well as
the discovery of electromagnetic in-
duction and the laws of electrolysis.
Greatly influenced by religion, he re-
fused to work on the development of
poison gas for the British military.

(By kind permission of the President and
Council of the Royal Society)
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standing what happens in this experiment is to first note that when the switch is
closed, the current in the primary circuit produces a magnetic field in the region
of the circuit, and it is this magnetic field that penetrates the secondary circuit.
Furthermore, when the switch is closed, the magnetic field produced by the cur-
rent in the primary circuit changes from zero to some value over some finite time,
and it is this changing field that induces a current in the secondary circuit.

As a result of these observations, Faraday concluded that an electric current
can be induced in a circuit (the secondary circuit in our setup) by a chang-
ing magnetic field. The induced current exists for only a short time while the
magnetic field through the secondary coil is changing. Once the magnetic field
reaches a steady value, the current in the secondary coil disappears. In effect, the
secondary circuit behaves as though a source of emf were connected to it for a
short time. It is customary to say that an induced emf is produced in the sec-
ondary circuit by the changing magnetic field.

The experiments shown in Figures 31.1 and 31.2 have one thing in common:
In each case, an emf is induced in the circuit when the magnetic flux through the
circuit changes with time. In general,

the emf induced in a circuit is directly proportional to the time rate of change
of the magnetic flux through the circuit.

This statement, known as Faraday’s law of induction, can be written

P
g= -4 (31.1)
dt

where @5 = [B- dA is the magnetic flux through the circuit (see Section 30.5).

If the circuit is a coil consisting of Nloops all of the same area and if @ is the
flux through one loop, an emf is induced in every loop; thus, the total induced
emf in the coil is given by the expression

dd,,
di

E=-N (31.2)
The negative sign in Equations 31.1 and 31.2 is of important physical significance,
which we shall discuss in Section 31.3.

Suppose that a loop enclosing an area A lies in a uniform magnetic field B, as
shown in Figure 31.3. The magnetic flux through the loop is equal to BA cos 6;

e /i{' _
7~ //(( Figure 31.3 A conducting loop that encloses an area

/ Ain the presence of a uniform magnetic field B. The
-~ angle between B and the normal to the loop is 6.
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hence, the induced emf can be expressed as

d
E = ——(BAcos b) (31.3)
di
From this expression, we see that an emf can be induced in the circuit in several
ways:

¢ The magnitude of B can change with time.

e The area enclosed by the loop can change with time.

e The angle 6 between B and the normal to the loop can change with time.
¢ Any combination of the above can occur.

Equation 31.3 can be used to calculate the emf induced when the north pole of a magnet is
moved toward a loop of wire, along the axis perpendicular to the plane of the loop passing
through its center. What changes are necessary in the equation when the south pole is
moved toward the loop?

Some Applications of Faraday’s Law

The ground fault interrupter (GFI) is an interesting safety device that protects
users of electrical appliances against electric shock. Its operation makes use of
Faraday’s law. In the GFI shown in Figure 31.4, wire 1 leads from the wall outlet to
the appliance to be protected, and wire 2 leads from the appliance back to the wall
outlet. An iron ring surrounds the two wires, and a sensing coil is wrapped around
part of the ring. Because the currents in the wires are in opposite directions, the
net magnetic flux through the sensing coil due to the currents is zero. However, if
the return current in wire 2 changes, the net magnetic flux through the sensing
coil is no longer zero. (This can happen, for example, if the appliance gets wet,
enabling current to leak to ground.) Because household current is alternating
(meaning that its direction keeps reversing), the magnetic flux through the sens-
ing coil changes with time, inducing an emf in the coil. This induced emf is used
to trigger a circuit breaker, which stops the current before it is able to reach a
harmful level.

Another interesting application of Faraday’s law is the production of sound in
an electric guitar (Fig. 31.5). The coil in this case, called the pickup coil, is placed
near the vibrating guitar string, which is made of a metal that can be magnetized.
A permanent magnet inside the coil magnetizes the portion of the string nearest

Alternating
current

Circuit
breaker

Figure 31.4 Essential components of a
ground fault interrupter.
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QuickLab >

A cassette tape is made up of tiny par-
ticles of metal oxide attached to a
long plastic strip. A current in a small
conducting loop magnetizes the par-
ticles in a pattern related to the music
being recorded. During playback, the
tape is moved past a second small
loop (inside the playback head) and
induces a current that is then ampli-
fied. Pull a strip of tape out of a cas-
sette (one that you don’t mind
recording over) and see if it is at-
tracted or repelled by a refrigerator
magnet. If you don’t have a cassette,
try this with an old floppy disk you
are ready to trash.

This electric range cooks food on
the basis of the principle of induc-
tion. An oscillating current is
passed through a coil placed below
the cooking surface, which is made
of a special glass. The current pro-
duces an oscillating magnetic field,
which induces a current in the
cooking utensil. Because the cook-
ing utensil has some electrical resis-
tance, the electrical energy associ-
ated with the induced current is
transformed to internal energy,
causing the utensil and its contents
to become hot. (Courtesy of Corning,
Inc.)



984

CHAPTER 31 Faraday’s Law

coil

NJ's
Magnetized

portion of
string

Guitar string
(a)
Figure 31.5

Pickup

» To amplifier

Magnet
S

(b)

(a) In an electric guitar, a vibrating string induces an emf in a pickup coil.

(b) The circles beneath the metallic strings of this electric guitar detect the notes being played
and send this information through an amplifier and into speakers. (A switch on the guitar allows
the musician to select which set of six is used.) How does a guitar “pickup” sense what music is
being played? (b, Charles D. Winters)

the coil. When the string vibrates at some frequency, its magnetized segment pro-
duces a changing magnetic flux through the coil. The changing flux induces an
emf in the coil that is fed to an amplifier. The output of the amplifier is sent to the
loudspeakers, which produce the sound waves we hear.

ExXAMPLE 31.1

A coil consists of 200 turns of wire having a total resistance of
2.0 . Each turn is a square of side 18 cm, and a uniform
magnetic field directed perpendicular to the plane of the coil
is turned on. If the field changes linearly from 0 to 0.50 T in
0.80 s, what is the magnitude of the induced emf in the coil
while the field is changing?

Solution The area of one turn of the coil is (0.18 m)? =
0.032 4 m% The magnetic flux through the coil at ¢= 0 is
zero because B = 0 at that time. At ¢ = 0.80 s, the magnetic
flux through one turn is @5z = BA = (0.50 T) (0.032 4 m?) =
0.016 2 T-m?2. Therefore, the magnitude of the induced emf

One Way to Induce an emf in a Coil

is, from Equation 31.2,

& = NAD, 200(0.016 2 T-m? — 0 T-m?)
At 0.80 s
=41T-m%/s= 41V

You should be able to show that 1 T-m2/s = 1 V.

Exercise What is the magnitude of the induced current in
the coil while the field is changing?

Answer 2.0 A.

EXAMPLE 31.2  AnExponentially Decaying B Field

Aloop of wire enclosing an area A is placed in a region where
the magnetic field is perpendicular to the plane of the loop.
The magnitude of B varies in time according to the expres-
sion B = B¢ “ where ais some constant. That is, at t = 0
the field is By,x, and for ¢ > 0, the field decreases exponen-

tially (Fig. 31.6). Find the induced emf in the loop as a func-
tion of time.

Solution Because B is perpendicular to the plane of the
loop, the magnetic flux through the loop at time ¢ > 0 is



max

t

Figure 31.6 Exponential decrease in the magnitude of the mag-
netic field with time. The induced emf and induced current vary with
time in the same way.

31.2 Motional EMF 985

@y = BAcos0 = AB ¢ ™

Because AB,.x and a are constants, the induced emf calcu-
lated from Equation 31.1 is

ad® d
——E = —ABy— =

€= nax
dt R

aABpy e @

This expression indicates that the induced emf decays expo-
nentially in time. Note that the maximum emf occurs at ¢ =
0, where &, = aAB,,«. The plot of € versus ¢ is similar to

the Bversus-t curve shown in Figure 31.6.

CONCEPTUAL EXAMPLE 31.3 ~ Whatls Connected to What?

Two bulbs are connected to opposite sides of a loop of wire,
as shown in Figure 31.7. A decreasing magnetic field (con-
fined to the circular area shown in the figure) induces an
emf in the loop that causes the two bulbs to light. What hap-
pens to the brightness of the bulbs when the switch is closed?

Solution Bulb 1 glows brighter, and bulb 2 goes out. Once
the switch is closed, bulb 1 is in the large loop consisting of
the wire to which it is attached and the wire connected to the
switch. Because the changing magnetic flux is completely en-
closed within this loop, a current exists in bulb 1. Bulb 1 now
glows brighter than before the switch was closed because it is

now the only resistance in the loop. As a result, the current in
bulb 1 is greater than when bulb 2 was also in the loop.

Once the switch is closed, bulb 2 is in the loop consisting
of the wires attached to it and those connected to the switch.
There is no changing magnetic flux through this loop and
hence no induced emf.

Exercise 'What would happen if the switch were in a wire lo-
cated to the left of bulb 1?

Answer Bulb 1 would go out, and bulb 2 would glow
brighter.

/
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Figure 31.7

31.2_~ MOTIONAL EMF

In Examples 31.1 and 31.2, we considered cases in which an emf is induced in a
stationary circuit placed in a magnetic field when the field changes with time. In
this section we describe what is called motional emf, which is the emf induced in
a conductor moving through a constant magnetic field.

The straight conductor of length € shown in Figure 31.8 is moving through a
uniform magnetic field directed into the page. For simplicity, we assume that the
conductor is moving in a direction perpendicular to the field with constant veloc-
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Y ¥ Bin
x x [ x X
X X X X
€
— V
X X X X
FB
X x I X
A

Figure 31.8 A straight electrical
conductor of length € moving with
a velocity v through a uniform
magnetic field B directed perpen-
dicular to v. A potential difference
AV = B{vis maintained between
the ends of the conductor.

Motional emf

CHAPTER 31 Faraday’s Law

ity under the influence of some external agent. The electrons in the conductor ex-
perience a force Fy = gv X B that is directed along the length €, perpendicular to
both vand B (Eq. 29.1). Under the influence of this force, the electrons move to
the lower end of the conductor and accumulate there, leaving a net positive
charge at the upper end. As a result of this charge separation, an electric field is
produced inside the conductor. The charges accumulate at both ends until the
downward magnetic force guB is balanced by the upward electric force gE. At this
point, electrons stop moving. The condition for equilibrium requires that

qE = quB or E=vB

The electric field produced in the conductor (once the electrons stop moving and
E is constant) is related to the potential difference across the ends of the conduc-
tor according to the relationship AV = E€ (Eq. 25.6). Thus,

AV=FE{ = Blv (31.4)

where the upper end is at a higher electric potential than the lower end. Thus, a
potential difference is maintained between the ends of the conductor as
long as the conductor continues to move through the uniform magnetic
field. If the direction of the motion is reversed, the polarity of the potential differ-
ence also is reversed.

A more interesting situation occurs when the moving conductor is part of a
closed conducting path. This situation is particularly useful for illustrating how a
changing magnetic flux causes an induced current in a closed circuit. Consider a
circuit consisting of a conducting bar of length € sliding along two fixed parallel
conducting rails, as shown in Figure 31.9a.

For simplicity, we assume that the bar has zero resistance and that the station-
ary part of the circuit has a resistance R. A uniform and constant magnetic field B
is applied perpendicular to the plane of the circuit. As the bar is pulled to the
right with a velocity v, under the influence of an applied force F,,,, free charges
in the bar experience a magnetic force directed along the length of the bar. This
force sets up an induced current because the charges are free to move in the
closed conducting path. In this case, the rate of change of magnetic flux through
the loop and the corresponding induced motional emf across the moving bar are
proportional to the change in area of the loop. As we shall see, if the bar is pulled
to the right with a constant velocity, the work done by the applied force appears as
internal energy in the resistor R (see Section 27.6).

Because the area enclosed by the circuit at any instant is €x, where x is the
width of the circuit at any instant, the magnetic flux through that area is

(I)B = fo

Using Faraday’s law, and noting that x changes with time at a rate dx/dt = v, we
find that the induced motional emf is

Ad d d
e=-"8__% By =-Bt-=

dt dt dt
€ = —Blv (31.5)

Because the resistance of the circuit is R, the magnitude of the induced current is

_ €] _ Blw
R R

1 (31.6)

The equivalent circuit diagram for this example is shown in Figure 31.9b.
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Let us examine the system using energy considerations. Because no battery is
in the circuit, we might wonder about the origin of the induced current and the
electrical energy in the system. We can understand the source of this current and
energy by noting that the applied force does work on the conducting bar, thereby
moving charges through a magnetic field. Their movement through the field
causes the charges to move along the bar with some average drift velocity, and
hence a current is established. Because energy must be conserved, the work done
by the applied force on the bar during some time interval must equal the electrical
energy supplied by the induced emf during that same interval. Furthermore, if the
bar moves with constant speed, the work done on it must equal the energy deliv-
ered to the resistor during this time interval.

As it moves through the uniform magnetic field B, the bar experiences a mag-
netic force Fp of magnitude 7€B (see Section 29.2). The direction of this force is
opposite the motion of the bar, to the left in Figure 31.9a. Because the bar moves
with constant velocity, the applied force must be equal in magnitude and opposite
in direction to the magnetic force, or to the right in Figure 31.9a. (If Fp acted in
the direction of motion, it would cause the bar to accelerate. Such a situation
would violate the principle of conservation of energy.) Using Equation 31.6 and
the fact that F,,, = I€B, we find that the power delivered by the applied force is

B202,2 &2

= (H{Bv=—"F7"T""=—+ (31.7)

P =F
“va R R

From Equation 27.23, we see that this power is equal to the rate at which energy is
delivered to the resistor I2R, as we would expect. It is also equal to the power €
supplied by the motional emf. This example is a clear demonstration of the con-
version of mechanical energy first to electrical energy and finally to internal en-
ergy in the resistor.

| Quick Quiz 31.2 4

As an airplane flies from Los Angeles to Seattle, it passes through the Earth’s magnetic
field. As a result, a motional emf is developed between the wingtips. Which wingtip is posi-
tively charged?

EXAMPLE 31.4 Motional emf Induced in a Rotating Bar

A conducting bar of length £ rotates with a constant angular

speed w about a pivot at one end. A uniform magnetic field B * *
is directed perpendicular to the plane of rotation, as shown
in Figure 31.10. Find the motional emf induced between the
ends of the bar.

Solution Consider a segment of the bar of length dr hav-
ing a velocity v. According to Equation 31.5, the magnitude
of the emf induced in this segment is

d€ = Buvdr

Because every segment of the bar is moving perpendicular h h
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Figure 31.9 (a) A conducting
bar sliding with a velocity v along
two conducting rails under the ac-
tion of an applied force F,,,. The
magnetic force Fp opposes the mo-
tion, and a counterclockwise cur-
rent / is induced in the loop.

(b) The equivalent circuit diagram
for the setup shown in part (a).

X X X X

to B, an emf d€ of the same form is generated across  Figure 31.10 A conducting bar rotating around a pivot at one
each. Summing the emfs induced across all segments, which  end in a uniform magnetic field that is perpendicular to the plane of
are in series, gives the total emf between the ends of rotation. A motional emf is induced across the ends of the bar.
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8=vadr

To integrate this expression, we must note that the linear

the bar:

speed of an element is related to the angular speed w

Faraday’s Law

through the relationship v = rw. Therefore, because Band
are constants, we find that

{
E = BJvdr: Ba)f rdr= %Ba)f2
0

ExAMpPLE 31.5

The conducting bar illustrated in Figure 31.11, of mass m and
length €, moves on two frictionless parallel rails in the pres-
ence of a uniform magnetic field directed into the page. The
bar is given an initial velocity v; to the right and is released at
¢ = 0. Find the velocity of the bar as a function of time.

Solution The induced current is counterclockwise, and
the magnetic force is Fz = — I{ B, where the negative sign de-
notes that the force is to the left and retards the motion. This
is the only horizontal force acting on the bar, and hence New-
ton’s second law applied to motion in the horizontal direc-
tion gives

dv
F,=ma=m—=—I{B
dt

From Equation 31.6, we know that / = Bfv/R, and so we can
write this expression as

dv B%¢2
m— = — v
di R
dv B2
—_—= = di
v mR

Integrating this equation using the initial condition that
v = v;att = 0, we find that

v du 73262 t
= |
u U mR 0

()= )= -
Inl—)=— t=——
U; mR T

where the constant T = mR/B2€2%. From this result, we see

Magnetic Force Acting on a Sliding Bar

that the velocity can be expressed in the exponential form
v= e /T

This expression indicates that the velocity of the bar de-
creases exponentially with time under the action of the mag-
netic retarding force.

Exercise Find expressions for the induced current and the
magnitude of the induced emf as functions of time for the
bar in this example.

Bty

Answer = Ly /7, & = Blv;e /" (They both de-

crease exponentially with time.)

X X X m X X X X
X X X X X X X
X X X X X X X

Fj vi
X X X X X X X
X X X X X X X

Figure 31.11 A conducting bar of length ¢ sliding on two fixed
conducting rails is given an initial velocity v; to the right.

31.3 - LENZ’S LAW

@j Faraday’s law (Eq. 31.1) indicates that the induced emf and the change in flux
127 have opposite algebraic signs. This has a very real physical interpretation that has
come to be known as Lenz’s law”:

2 Developed by the German physicist Heinrich Lenz (1804-1865).
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The polarity of the induced emf is such that it tends to produce a current that
creates a magnetic flux to oppose the change in magnetic flux through the area
enclosed by the current loop.

That is, the induced current tends to keep the original magnetic flux through the
circuit from changing. As we shall see, this law is a consequence of the law of con-
servation of energy.

To understand Lenz’s law, let us return to the example of a bar moving to the
right on two parallel rails in the presence of a uniform magnetic field that we shall
refer to as the external magnetic field (Fig. 31.12a). As the bar moves to the right,
the magnetic flux through the area enclosed by the circuit increases with time be-
cause the area increases. Lenz’s law states that the induced current must be di-
rected so that the magnetic flux it produces opposes the change in the external
magnetic flux. Because the external magnetic flux is increasing into the page, the
induced current, if it is to oppose this change, must produce a flux directed out of
the page. Hence, the induced current must be directed counterclockwise when
the bar moves to the right. (Use the right-hand rule to verify this direction.) If the
bar is moving to the left, as shown in Figure 31.12b, the external magnetic flux
through the area enclosed by the loop decreases with time. Because the flux is di-
rected into the page, the direction of the induced current must be clockwise if it is
to produce a flux that also is directed into the page. In either case, the induced
current tends to maintain the original flux through the area enclosed by the cur-
rent loop.

Let us examine this situation from the viewpoint of energy considerations.
Suppose that the bar is given a slight push to the right. In the preceding analysis,
we found that this motion sets up a counterclockwise current in the loop. Let us
see what happens if we assume that the current is clockwise, such that the direc-
tion of the magnetic force exerted on the bar is to the right. This force would ac-
celerate the rod and increase its velocity. This, in turn, would cause the area en-
closed by the loop to increase more rapidly; this would result in an increase in the
induced current, which would cause an increase in the force, which would pro-
duce an increase in the current, and so on. In effect, the system would acquire en-
ergy with no additional input of energy. This is clearly inconsistent with all experi-
ence and with the law of conservation of energy. Thus, we are forced to conclude
that the current must be counterclockwise.

Let us consider another situation, one in which a bar magnet moves toward a
stationary metal loop, as shown in Figure 31.13a. As the magnet moves to the right
toward the loop, the external magnetic flux through the loop increases with time.
To counteract this increase in flux to the right, the induced current produces a
flux to the left, as illustrated in Figure 31.13b; hence, the induced current is in the
direction shown. Note that the magnetic field lines associated with the induced
current oppose the motion of the magnet. Knowing that like magnetic poles repel
each other, we conclude that the left face of the current loop is in essence a north
pole and that the right face is a south pole.

If the magnet moves to the left, as shown in Figure 31.13c, its flux through the
area enclosed by the loop, which is directed to the right, decreases in time. Now
the induced current in the loop is in the direction shown in Figure 31.13d because
this current direction produces a magnetic flux in the same direction as the exter-
nal flux. In this case, the left face of the loop is a south pole and the right face is a
north pole.
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Figure 31.12 (a) As the conduct-
ing bar slides on the two fixed con-
ducting rails, the magnetic flux
through the area enclosed by the
loop increases in time. By Lenz’s law,
the induced current must be coun-
terclockwise so as to produce a coun-
teracting magnetic flux directed out
of the page. (b) When the bar
moves to the left, the induced cur-
rent must be clockwise. Why?

QuickLab >

This experiment takes steady hands, a
dime, and a strong magnet. After ver-
ifying that a dime is not attracted to
the magnet, carefully balance the
coin on its edge. (This won’t work
with other coins because they require
too much force to topple them.)
Hold one pole of the magnet within a
millimeter of the face of the dime,
but don’t bump it. Now very rapidly
pull the magnet straight back away
from the coin. Which way does the
dime tip? Does the coin fall the same
way most of the time? Explain what is
going on in terms of Lenz’s law. You
may want to refer to Figure 31.13.
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Figure 31.13 (a) When the magnet is moved toward the stationary conducting loop, a current
is induced in the direction shown. (b) This induced current produces its own magnetic flux that
is directed to the left and so counteracts the increasing external flux to the right. (c) When the
magnet is moved away from the stationary conducting loop, a current is induced in the direction
shown. (d) This induced current produces a magnetic flux that is directed to the right and so
counteracts the decreasing external flux to the right.

| Quick Quiz 31.3 g

Figure 31.14 shows a magnet being moved in the vicinity of a solenoid connected to a gal-
vanometer. The south pole of the magnet is the pole nearest the solenoid, and the gal-

Figure 31.14 When a magnet is moved
toward or away from a solenoid attached to
a galvanometer, an electric current is in-
duced, indicated by the momentary deflec-
tion of the galvanometer needle. (Richard
Megna/Fundamental Photographs)
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vanometer indicates a clockwise (viewed from above) current in the solenoid. Is the person
inserting the magnet or pulling it out?

CONCEPTUAL EXAMPLE 31.6

A metal ring is placed near a solenoid, as shown in Figure
31.15a. Find the direction of the induced current in the ring
(a) at the instant the switch in the circuit containing the sole-
noid is thrown closed, (b) after the switch has been closed
for several seconds, and (c) at the instant the switch is thrown
open.

Solution (a) At the instant the switch is thrown closed, the
situation changes from one in which no magnetic flux passes
through the ring to one in which flux passes through in the
direction shown in Figure 31.15b. To counteract this change
in the flux, the current induced in the ring must set up a
magnetic field directed from left to right in Figure 31.15b.
This requires a current directed as shown.

(b) After the switch has been closed for several seconds,
no change in the magnetic flux through the loop occurs;
hence, the induced current in the ring is zero.

(c) Opening the switch changes the situation from one in
which magnetic flux passes through the ring to one in which
there is no magnetic flux. The direction of the induced cur-
rent is as shown in Figure 31.15c because current in this di-

Application of Lenz's Law

rection produces a magnetic field that is directed right to left
and so counteracts the decrease in the field produced by the
solenoid.

Figure 31.15

CONCEPTUAL EXAMPLE 31.7

A rectangular metallic loop of dimensions € and w and resis-
tance R moves with constant speed v to the right, as shown in
Figure 31.16a, passing through a uniform magnetic field B
directed into the page and extending a distance 3w along the
x axis. Defining x as the position of the right side of the loop
along the x axis, plot as functions of x (a) the magnetic flux
through the area enclosed by the loop, (b) the induced mo-
tional emf, and (c) the external applied force necessary to
counter the magnetic force and keep v constant.

Solution (a) Figure 31.16b shows the flux through the
area enclosed by the loop as a function x. Before the loop en-
ters the field, the flux is zero. As the loop enters the field, the
flux increases linearly with position until the left edge of the
loop is just inside the field. Finally, the flux through the loop
decreases linearly to zero as the loop leaves the field.

(b) Before the loop enters the field, no motional emf is
induced in it because no field is present (Fig. 31.16c). As
the right side of the loop enters the field, the magnetic
flux directed into the page increases. Hence, according to
Lenz’s law, the induced current is counterclockwise because
it must produce a magnetic field directed out of the page.
The motional emf — Bfv (from Eq. 31.5) arises from the mag-

A Loop Moving Through a Magnetic Field

netic force experienced by charges in the right side of the
loop. When the loop is entirely in the field, the change in
magnetic flux is zero, and hence the motional emf vanishes.
This happens because, once the left side of the loop enters
the field, the motional emf induced in it cancels the motional
emf present in the right side of the loop. As the right side of
the loop leaves the field, the flux inward begins to decrease, a
clockwise current is induced, and the induced emf is B€v. As
soon as the left side leaves the field, the emf decreases to
zero.

(c) The external force that must be applied to the loop to
maintain this motion is plotted in Figure 31.16d. Before the
loop enters the field, no magnetic force acts on it; hence, the
applied force must be zero if v is constant. When the right
side of the loop enters the field, the applied force necessary
to maintain constant speed must be equal in magnitude and
opposite in direction to the magnetic force exerted on that
side: Fy = —I{B = — B2¢%y/R. When the loop is entirely in
the field, the flux through the loop is not changing with
time. Hence, the net emf induced in the loop is zero, and the
current also is zero. Therefore, no external force is needed to
maintain the motion. Finally, as the right side leaves the field,
the applied force must be equal in magnitude and opposite
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the loop.

of loop position.

Figure 31.16 (a) A conducting rectangular loop of width
w and length € moving with a velocity v through a uniform
magnetic field extending a distance 3w. (b) Magnetic flux
through the area enclosed by the loop as a function of loop
position. (c) Induced emf as a function of loop position.

(d) Applied force required for constant velocity as a function

CHAPTER 31 Faraday’s Law

in direction to the magnetic force acting on the left side of  Furthermore, this example shows that the motional emf in-

duced in the loop can be zero even when there is motion

From this analysis, we conclude that power is supplied through the field! A motional emf is induced only when the
only when the loop is either entering or leaving the field. magnetic flux through the loop changes in time.
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Figure 31.17 A conducting loop
of radius rin a uniform magnetic
field perpendicular to the plane of
the loop. If B changes in time, an
electric field is induced in a direc-
tion tangent to the circumference
of the loop.

31.4 _~ INDUCED EMF AND ELECTRIC FIELDS

(@ We have seen that a changing magnetic flux induces an emf and a current in a
128 conducting loop. Therefore, we must conclude that an electric field is created

in the conductor as a result of the changing magnetic flux. However, this in-
duced electric field has two important properties that distinguish it from the elec-
trostatic field produced by stationary charges: The induced field is nonconserva-
tive and can vary in time.

We can illustrate this point by considering a conducting loop of radius 7 situ-
ated in a uniform magnetic field that is perpendicular to the plane of the loop, as
shown in Figure 31.17. If the magnetic field changes with time, then, according to
Faraday’s law (Eq. 31.1), an emf € = — d®p/dt is induced in the loop. The induc-
tion of a current in the loop implies the presence of an induced electric field E,
which must be tangent to the loop because all points on the loop are equivalent.
The work done in moving a test charge ¢ once around the loop is equal to ¢€. Be-
cause the electric force acting on the charge is ¢E, the work done by this force in
moving the charge once around the loop is ¢E(277), where 2ris the circumfer-
ence of the loop. These two expressions for the work must be equal; therefore, we
see that

q€ = qE(2m)
&
E =
2y

Using this result, along with Equation 31.1 and the fact that ®3 = BA = 7r?B for a
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circular loop, we find that the induced electric field can be expressed as

1 dd,
E=— - _
2mr  dit

r daB
2 dt

(31.8)

If the time variation of the magnetic field is specified, we can easily calculate the
induced electric field from Equation 31.8. The negative sign indicates that the in-
duced electric field opposes the change in the magnetic field.

The emf for any closed path can be expressed as the line integral of E - ds over
that path: € = #E - ds. In more general cases, £ may not be constant, and the path
may not be a circle. Hence, Faraday’s law of induction, &€ = — d®p/dt, can be writ-

ten in the general form
dd
ng-ds = - tB

p) (31.9)

It is important to recognize that the induced electric field E in Equation
31.9 is a nonconservative field that is generated by a changing magnetic
field. The field E that satisfies Equation 31.9 cannot possibly be an electrostatic
field for the following reason: If the field were electrostatic, and hence conserva-
tive, the line integral of E - ds over a closed loop would be zero; this would be in
contradiction to Equation 31.9.

Faraday’s law in general form

993

ExAMPLE 31.8

A long solenoid of radius R has n turns of wire per unit
length and carries a time-varying current that varies si-
nusoidally as I = I,,x cos wi, where Iy, is the maximum cur-
rent and w is the angular frequency of the alternating current
source (Fig. 31.18). (a) Determine the magnitude of the in-
duced electric field outside the solenoid, a distance r > R
from its long central axis.

Solution First let us consider an external point and take
the path for our line integral to be a circle of radius r cen-
tered on the solenoid, as illustrated in Figure 31.18. By sym-

Path of
integration

(i
o |

Figure 31.18 A long solenoid carrying a time-varying current
given by / = I, cos wt. An electric field is induced both inside and
outside the solenoid.

Electric Field Induced by a Changing Magnetic Field in a Solenoid

metry we see that the magnitude of E is constant on this path
and that E is tangent to it. The magnetic flux through the
area enclosed by this path is BA = BwR% hence, Equation
31.9 gives

d dB
fﬁE-ds —— (BwR?) = — wR2 —
dt dt

(1) ng ds = EQmr) = — WRQ%

The magnetic field inside a long solenoid is given by Equa-
tion 30.17, B = wonl. When we substitute I = I, cos i into
this equation and then substitute the result into Equation (1),
we find that

. d ; .
EQm) = —aR?ugnl E(COS ot) = TR ponl o sin ot
Inax WR?
(2) E= %sin wt (for r> R)
r

Hence, the electric field varies sinusoidally with time and its
amplitude falls off as 1/r outside the solenoid.

(b) What is the magnitude of the induced electric field in-

side the solenoid, a distance r from its axis?

Solution For an interior point (r < R), the flux threading
an integration loop is given by Barr?. Using the same proce-
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dure as in part (a), we find that

Exercise Show that Equations (2) and (3) for the exterior
and interior regions of the solenoid match at the boundary,

dB
EQ2mr) = — 7772? = 7r2uond o sin wt r=R.

Exercise Would the electric field be different if the sole-

oM L@ . .
S noid had an iron core?

2

E= rsin wt (for r< R)

(3)

This shows that the amplitude of the electric field induced in-
side the solenoid by the changing magnetic flux through the
solenoid increases linearly with r and varies sinusoidally with
time.

Answer Yes, it could be much stronger because the maxi-
mum magnetic field (and thus the change in flux) through
the solenoid could be thousands of times larger. (See Exam-
ple 30.10.)

Optional Section

31.5 _~ GENERATORS AND MOTORS

Electric generators are used to produce electrical energy. To understand how they
work, let us consider the alternating current (ac) generator, a device that con-
verts mechanical energy to electrical energy. In its simplest form, it consists of a
loop of wire rotated by some external means in a magnetic field (Fig. 31.19a).

In commercial power plants, the energy required to rotate the loop can be de-
rived from a variety of sources. For example, in a hydroelectric plant, falling water
directed against the blades of a turbine produces the rotary motion; in a coal-fired
plant, the energy released by burning coal is used to convert water to steam, and
this steam is directed against the turbine blades. As a loop rotates in a magnetic
field, the magnetic flux through the area enclosed by the loop changes with time;
this induces an emf and a current in the loop according to Faraday’s law. The ends
of the loop are connected to slip rings that rotate with the loop. Connections from
these slip rings, which act as output terminals of the generator, to the external cir-
cuit are made by stationary brushes in contact with the slip rings.

Turbines turn generators at a hy-
droelectric power plant. (Luis Cas-
taneda/The Image Bank)

Slip rings
p g\ N

l

e
External

rotator

External
circuit

(b)

Figure 31.19 (a) Schematic diagram of an ac generator. An emf is induced in a loop that ro-
tates in a magnetic field. (b) The alternating emf induced in the loop plotted as a function of
time.



31.5 Generators and Motors

Suppose that, instead of a single turn, the loop has N turns (a more practical
situation), all of the same area A, and rotates in a magnetic field with a constant
angular speed w. If 6 is the angle between the magnetic field and the normal to
the plane of the loop, as shown in Figure 31.20, then the magnetic flux through
the loop at any time ¢ is

®p = BA cos § = BA cos wt

where we have used the relationship 6 = wt between angular displacement and an-
gular speed (see Eq. 10.3). (We have set the clock so that ¢ = 0 when 6 = 0.)
Hence, the induced emf in the coil is

dd,

d
E=-N = _NABE (cos wt) = NABw sin wt (31.10)
This result shows that the emf varies sinusoidally with time, as was plotted in Fig-
ure 31.19b. From Equation 31.10 we see that the maximum emf has the value

€, = NABw (31.11)

which occurs when wt = 90° or 270°. In other words, € = €,,,, when the mag-
netic field is in the plane of the coil and the time rate of change of flux is a
maximum. Furthermore, the emf is zero when wt = 0 or 180°, that is, when B
is perpendicular to the plane of the coil and the time rate of change of flux is
zero.

The frequency for commercial generators in the United States and Canada is
60 Hz, whereas in some European countries it is 50 Hz. (Recall that w = 27f,
where fis the frequency in hertz.)

ExAMPLE 31.9 emf Induced in a Generator

0.090 0 m2, and the total resistance of the wire is 12.0 Q. The we have
loop rotates in a 0.500-T magnetic field at a constant fre-

rent vary with time.

€. = NABw = 8(0.090 0 m2) (0.500 T) (377s™') = 136V

(b) What is the maximum induced current when the out-
put terminals are connected to a low-resistance conductor?

995

Figure 31.20 A loop enclosing
an area A and containing N turns,
rotating with constant angular
speed w in a magnetic field. The
emf induced in the loop varies si-
nusoidally in time.

An ac generator consists of 8 turns of wire, each of area A = Solution From Equation 27.8 and the results to part (a),

E 136 V
f60.0 Hz. Find th i induced emf. I = —% = 11.3A
quency o z. (a) Find the maximum induced em max R 1200
Solution First, we note that w = 27 = 27(60.0 Hz) = ) ) ) ]
377 s~1. Thus Equation 31.11 gives Exercise Determine how the induced emf and induced cur-

Answer & = €, sin ot = (136 V)sin 377¢;
I= I, sinwt = (11.3 A)sin 3771.

The direct current (dc) generator is illustrated in Figure 31.21a. Such gener-
ators are used, for instance, in older cars to charge the storage batteries used. The
components are essentially the same as those of the ac generator except that the
contacts to the rotating loop are made using a split ring called a commutator.

In this configuration, the output voltage always has the same polarity and pul-
sates with time, as shown in Figure 31.21b. We can understand the reason for this
by noting that the contacts to the split ring reverse their roles every half cycle. At
the same time, the polarity of the induced emf reverses; hence, the polarity of the
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Brush w

S

Commutator
Armature K @ t

() (b)

Figure 31.21 (a) Schematic diagram of a dc generator. (b) The magnitude of the emf varies in
time but the polarity never changes.

split ring (which is the same as the polarity of the output voltage) remains the
same.

A pulsating dc current is not suitable for most applications. To obtain a more
steady dc current, commercial dc generators use many coils and commutators dis-
tributed so that the sinusoidal pulses from the various coils are out of phase. When
these pulses are superimposed, the dc output is almost free of fluctuations.

Motors are devices that convert electrical energy to mechanical energy. Essen-
tially, a motor is a generator operating in reverse. Instead of generating a current
by rotating a loop, a current is supplied to the loop by a battery, and the torque
acting on the current-carrying loop causes it to rotate.

Useful mechanical work can be done by attaching the rotating armature to
some external device. However, as the loop rotates in a magnetic field, the chang-
ing magnetic flux induces an emf in the loop; this induced emf always acts to re-
duce the current in the loop. If this were not the case, Lenz’s law would be vio-
lated. The back emf increases in magnitude as the rotational speed of the
armature increases. (The phrase back emf is used to indicate an emf that tends to
reduce the supplied current.) Because the voltage available to supply current
equals the difference between the supply voltage and the back emf, the current in
the rotating coil is limited by the back emf.

When a motor is turned on, there is initially no back emf; thus, the current is
very large because it is limited only by the resistance of the coils. As the coils begin
to rotate, the induced back emf opposes the applied voltage, and the current in
the coils is reduced. If the mechanical load increases, the motor slows down; this
causes the back emf to decrease. This reduction in the back emf increases the cur-
rent in the coils and therefore also increases the power needed from the external
voltage source. For this reason, the power requirements for starting a motor and
for running it are greater for heavy loads than for light ones. If the motor is al-
lowed to run under no mechanical load, the back emf reduces the current to a
value just large enough to overcome energy losses due to internal energy and fric-
tion. If a very heavy load jams the motor so that it cannot rotate, the lack of a back
emf can lead to dangerously high current in the motor’s wire. If the problem is
not corrected, a fire could result.
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ExamMpPLE 31.10

Assume that a motor in which the coils have a total resistance
of 10 € is supplied by a voltage of 120 V. When the motor is
running at its maximum speed, the back emfis 70 V. Find the
current in the coils (a) when the motor is turned on and
(b) when it has reached maximum speed.

The Induced Current in a Motor

duced to

E- 8back

120V —70V 50V
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(b) At the maximum speed, the back emf has its maxi-
mum value. Thus, the effective supply voltage is that of the
external source minus the back emf. Hence, the current is re-

I = =
Solution (a) When the motor is turned on, the back emf R

is zero (because the coils are motionless). Thus, the current
in the coils is a maximum and equal to
€ 120V

== =
R 10 Q

12 A
Answer 40 V.

10 O

= bOA
10 Q

Exercise If the current in the motor is 8.0 A at some in-
stant, what is the back emf at this time?

Optional Section

31.6_~ €EDDY CURRENTS

As we have seen, an emf and a current are induced in a circuit by a changing mag-
netic flux. In the same manner, circulating currents called eddy currents are in-
duced in bulk pieces of metal moving through a magnetic field. This can easily be
demonstrated by allowing a flat copper or aluminum plate attached at the end of a
rigid bar to swing back and forth through a magnetic field (Fig. 31.22). As the
plate enters the field, the changing magnetic flux induces an emf in the plate,
which in turn causes the free electrons in the plate to move, producing the
swirling eddy currents. According to Lenz’s law, the direction of the eddy currents
must oppose the change that causes them. For this reason, the eddy currents must
produce effective magnetic poles on the plate, which are repelled by the poles of
the magnet; this gives rise to a repulsive force that opposes the motion of the
plate. (If the opposite were true, the plate would accelerate and its energy would

Figure 31.22 Formation of eddy currents in a conducting
plate moving through a magnetic field. As the plate enters or
leaves the field, the changing magnetic flux induces an emtf,
which causes eddy currents in the plate.

QuickLab >

Hang a strong magnet from two
strings so that it swings back and
forth in a plane. Start it oscillating
and determine approximately how
much time passes before it stops
swinging. Start it oscillating again and
quickly bring the flat surface of an
aluminum cooking sheet up to within
a millimeter of the plane of oscilla-
tion, taking care not to touch the
magnet. How long does it take the os-
cillating magnet to stop now?
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Figure 31.23 As the conducting
plate enters the field (position 1),
the eddy currents are counterclock-
wise. As the plate leaves the field
(position 2), the currents are clock-
wise. In either case, the force on
the plate is opposite the velocity,
and eventually the plate comes to
rest.

Figure 31.24 When slots are cut
in the conducting plate, the eddy
currents are reduced and the plate
swings more freely through the
magnetic field.

CHAPTER 31 Faraday’s Law

increase after each swing, in violation of the law of conservation of energy.) As you
may have noticed while carrying out the QuickLab on page 997, you can “feel” the
retarding force by pulling a copper or aluminum sheet through the field of a
strong magnet.

As indicated in Figure 31.23, with B directed into the page, the induced eddy
current is counterclockwise as the swinging plate enters the field at position 1.
This is because the external magnetic flux into the page through the plate is in-
creasing, and hence by Lenz’s law the induced current must provide a magnetic
flux out of the page. The opposite is true as the plate leaves the field at position 2,
where the current is clockwise. Because the induced eddy current always produces
a magnetic retarding force Fz when the plate enters or leaves the field, the swing-
ing plate eventually comes to rest.

If slots are cut in the plate, as shown in Figure 31.24, the eddy currents and the
corresponding retarding force are greatly reduced. We can understand this by real-
izing that the cuts in the plate prevent the formation of any large current loops.

The braking systems on many subway and rapid-transit cars make use of elec-
tromagnetic induction and eddy currents. An electromagnet attached to the train
is positioned near the steel rails. (An electromagnet is essentially a solenoid with
an iron core.) The braking action occurs when a large current is passed through
the electromagnet. The relative motion of the magnet and rails induces eddy cur-
rents in the rails, and the direction of these currents produces a drag force on the
moving train. The loss in mechanical energy of the train is transformed to internal
energy in the rails and wheels. Because the eddy currents decrease steadily in mag-
nitude as the train slows down, the braking effect is quite smooth. Eddy-
current brakes are also used in some mechanical balances and in various ma-
chines. Some power tools use eddy currents to stop rapidly spinning blades once
the device is turned off.

; { N Magnets
Speed
sensors

Coin
insert

Figure 31.25 As the coin enters the vending machine, a potential difference is applied across
the coin at A, and its resistance is measured. If the resistance is acceptable, the holder drops
down, releasing the coin and allowing it to roll along the inlet track. Two magnets induce eddy
currents in the coin, and magnetic forces control its speed. If the speed sensors indicate that the
coin has the correct speed, gate B swings up to allow the coin to be accepted. If the coin is not
moving at the correct speed, gate C opens to allow the coin to follow the reject path.
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31.7 Maxwell’s Wonderful Equations

Eddy currents are often undesirable because they represent a transformation
of mechanical energy to internal energy. To reduce this energy loss, moving con-
ducting parts are often laminated —that is, they are built up in thin layers sepa-
rated by a nonconducting material such as lacquer or a metal oxide. This layered
structure increases the resistance of the possible paths of the eddy currents and ef-
fectively confines the currents to individual layers. Such a laminated structure is
used in transformer cores and motors to minimize eddy currents and thereby in-
crease the efficiency of these devices.

Even a task as simple as buying a candy bar from a vending machine involves
eddy currents, as shown in Figure 31.25. After entering the slot, a coin is stopped
momentarily while its electrical resistance is checked. If its resistance falls within
an acceptable range, the coin is allowed to continue down a ramp and through a
magnetic field. As it moves through the field, eddy currents are produced in the
coin, and magnetic forces slow it down slightly. How much it is slowed down de-
pends on its metallic composition. Sensors measure the coin’s speed after it moves
past the magnets, and this speed is compared with expected values. If the coin is
legal and passes these tests, a gate is opened and the coin is accepted; otherwise, a
second gate moves it into the reject path.

31.7_~ MAXWELL’S WONDERFUL EQUATIONS

We conclude this chapter by presenting four equations that are regarded as the ba-

1210sis of all electrical and magnetic phenomena. These equations, developed by

James Clerk Maxwell, are as fundamental to electromagnetic phenomena as New-
ton’s laws are to mechanical phenomena. In fact, the theory that Maxwell devel-
oped was more farreaching than even he imagined because it turned out to be in
agreement with the special theory of relativity, as Einstein showed in 1905.

Maxwell’s equations represent the laws of electricity and magnetism that we
have already discussed, but they have additional important consequences. In
Chapter 34 we shall show that these equations predict the existence of electromag-
netic waves (traveling patterns of electric and magnetic fields), which travel with a
speed ¢ = 1/Vuoey = .00 X 108 m/s, the speed of light. Furthermore, the theory
shows that such waves are radiated by accelerating charges.

For simplicity, we present Maxwell’s equations as applied to free space, that
is, in the absence of any dielectric or magnetic material. The four equations are

fﬁE-dA - L (31.12)
€0
S
fn-dA -0 (31.13)
S
3€E-ds __ 1% (31.14)
dl

ddy,
%B' ds = Mol‘i‘ GOM()TtE (31.15)

Gauss’s law

Gauss’s law in magnetism

Faraday’s law

Ampére—Maxwell law
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Lorentz force law
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Equation 31.12 is Gauss’s law: The total electric flux through any closed
surface equals the net charge inside that surface divided by €. This law re-
lates an electric field to the charge distribution that creates it.

Equation 31.13, which can be considered Gauss’s law in magnetism, states that
the net magnetic flux through a closed surface is zero. That is, the number of
magnetic field lines that enter a closed volume must equal the number that leave
that volume. This implies that magnetic field lines cannot begin or end at any
point. If they did, it would mean that isolated magnetic monopoles existed at
those points. The fact that isolated magnetic monopoles have not been observed
in nature can be taken as a confirmation of Equation 31.13.

Equation 31.14 is Faraday’s law of induction, which describes the creation of
an electric field by a changing magnetic flux. This law states that the emf, which
is the line integral of the electric field around any closed path, equals the
rate of change of magnetic flux through any surface area bounded by that
path. One consequence of Faraday’s law is the current induced in a conducting
loop placed in a time-varying magnetic field.

Equation 31.15, usually called the Ampere—Maxwell law, is the generalized
form of Ampere’s law, which describes the creation of a magnetic field by an elec-
tric field and electric currents: The line integral of the magnetic field around
any closed path is the sum of y, times the net current through that path
and €yuy times the rate of change of electric flux through any surface
bounded by that path.

Once the electric and magnetic fields are known at some point in space, the
force acting on a particle of charge ¢ can be calculated from the expression

F=¢E +¢gvxB (31.16)

This relationship is called the Lorentz force law. (We saw this relationship earlier
as Equation 29.16.) Maxwell’s equations, together with this force law, completely
describe all classical electromagnetic interactions.

It is interesting to note the symmetry of Maxwell’s equations. Equations 31.12
and 31.13 are symmetric, apart from the absence of the term for magnetic mono-
poles in Equation 31.13. Furthermore, Equations 31.14 and 31.15 are symmetric in
that the line integrals of E and B around a closed path are related to the rate of
change of magnetic flux and electric flux, respectively. “Maxwell’s wonderful equa-
tions,” as they were called by John R. Pierce,® are of fundamental importance not
only to electromagnetism but to all of science. Heinrich Hertz once wrote, “One
cannot escape the feeling that these mathematical formulas have an independent
existence and an intelligence of their own, that they are wiser than we are, wiser
even than their discoverers, that we get more out of them than we put into them.”

SUMMARY

Faraday’s law of induction states that the emf induced in a circuit is directly pro-
portional to the time rate of change of magnetic flux through the circuit:

dd,

&= —
dt

(31.1)

where @ = [B - dA is the magnetic flux.

3‘]ohn R. Pierce, Electrons and Waves, New York, Doubleday Science Study Series, 1964. Chapter 6 of this
interesting book is recommended as supplemental reading.



where E is the nonconservative electric field

Questions 1001

When a conducting bar of length € moves at a velocity v through a magnetic
field B, where B is perpendicular to the bar and to v, the motional emf induced
in the bar is

E = —Blv

(31.5)

Lenz’s law states that the induced current and induced emf in a conductor
are in such a direction as to oppose the change that produced them.

A general form of Faraday’s law of induction is

)
gzéE.ds:_u
dt

magnetic flux.
When used with the Lorentz force law, F = ¢E + gv X B, Maxwell’s equa-
tions describe all electromagnetic phenomena:

%E-dA:g

€o
S
f#B'dA= 0
S
dd,,
E.d e
fﬁ S di

dd
%B' ds = [.L0[+ €M dtb

(31.9)

that is produced by the changing

(31.12)

(31.13)

(31.14)

(31.15)

The Ampeére—Maxwell law (Eq. 31.15) describes how a magnetic field can be pro-
duced by both a conduction current and a changing electric flux.

QUESTIONS

1.

A'loop of wire is placed in a uniform magnetic field. For
what orientation of the loop is the magnetic flux a maxi-
mum? For what orientation is the flux zero? Draw pic-
tures of these two situations.

. As the conducting bar shown in Figure Q31.2 moves to

the right, an electric field directed downward is set up in
the bar. Explain why the electric field would be upward if
the bar were to move to the left.

. As the bar shown in Figure Q31.2 moves in a direction

perpendicular to the field, is an applied force required to
keep it moving with constant speed? Explain.

The bar shown in Figure Q31.4 moves on rails to the
right with a velocity v, and the uniform, constant mag-
netic field is directed out of the page. Why is the induced
current clockwise? If the bar were moving to the left, what
would be the direction of the induced current?

. Explain why an applied force is necessary to keep the bar

shown in Figure Q31.4 moving with a constant speed.

. Alarge circular loop of wire lies in the horizontal plane.

A bar magnet is dropped through the loop. If the axis of

the magnet remains horizontal as it falls, describe the emf
induced in the loop. How is the situation altered if the
axis of the magnet remains vertical as it falls?

Bin
X X X X
+
X x [+ x X
+
X X X X
—
X X X x vV
X x | =] x X
X X X X

Figure 031.2 (Questions 2 and 3).
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Figure 031.4 (Questions 4 and 5).

7. When a small magnet is moved toward a solenoid, an emf
is induced in the coil. However, if the magnet is moved
around inside a toroid, no emf is induced. Explain.

8. Will dropping a magnet down a long copper tube pro-
duce a current in the walls of the tube? Explain.

How is electrical energy produced in dams (that is, how is
the energy of motion of the water converted to alternat-
ing current electricity)?

10. In a beam—balance scale, an aluminum plate is some-
times used to slow the oscillations of the beam near equi-
librium. The plate is mounted at the end of the beam and
moves between the poles of a small horseshoe magnet at-
tached to the frame. Why are the oscillations strongly
damped near equilibrium?

11. What happens when the rotational speed of a generator
coil is increased?

12. Could a current be induced in a coil by the rotation of a
magnet inside the coil? If so, how?

13. When the switch shown in Figure Q31.13a is closed, a cur-

PROBLEMS

rent is set up in the coil, and the metal ring springs up-
ward (Fig. Q31.13b). Explain this behavior.

Iron core
Metal ring

_o/sé_T “\J_';f"“*

(a) (b)

Figure 031.13 (Questions 13 and 14). (Photo courtesy of Central Scien-
tific Company)

14.

15.

Assume that the battery shown in Figure Q31.13a is re-
placed by an alternating current source and that the
switch is held closed. If held down, the metal ring on top
of the solenoid becomes hot. Why?

Do Maxwell’s equations allow for the existence of mag-
netic monopoles? Explain.

1, 2, 3 = straightforward, intermediate, challenging D = full solution available in the Student Solutions Manual and Study Guide
WeB = solution posted at http:/ /www.saunderscollege.com/physics/ [ ] = Computer useful in solving problem a = Interactive Physics

I:l = paired numerical/symbolic problems

Section 31.1 Faraday’s Law of Induction
Section 31.2 Motional emf
Section 31.3 Lenz's Law

1. A 50-turn rectangular coil of dimensions 5.00 cm X
10.0 cm is allowed to fall from a position where B = 0 to
a new position where B = 0.500 T and is directed per-
pendicular to the plane of the coil. Calculate the magni-
tude of the average emf induced in the coil if the dis-
placement occurs in 0.250 s.

2. Aflatloop of wire consisting of a single turn of cross-
sectional area 8.00 cm? is perpendicular to a magnetic
field that increases uniformly in magnitude from
0.500 T to 2.50 T in 1.00 s. What is the resulting in-
duced current if the loop has a resistance of 2.00 ()?

3. A 25-turn circular coil of wire has a diameter of 1.00 m.

It is placed with its axis along the direction of the
Earth’s magnetic field of 50.0 uT, and then in 0.200 s it
is flipped 180°. An average emf of what magnitude is
generated in the coil?

4. Arectangular loop of area A is placed in a region where

the magnetic field is perpendicular to the plane of the
loop. The magnitude of the field is allowed to vary in
time according to the expression B = By ,x¢~ 7 where
B.x and 7 are constants. The field has the constant
value B, for t < 0. (a) Use Faraday’s law to show that
the emf induced in the loop is given by

E = (AB, /T e YT

(b) Obtain a numerical value for € at t = 4.00 s when



A = 0.160 m2, By, = 0.350 T, and 7 = 2.00 s. (c) For
the values of A, By,,x, and 7 given in part (b), what is
the maximum value of E?

wee |5.] A strong electromagnet produces a uniform field of

1.60 T over a cross-sectional area of 0.200 m?. A coil hav-
ing 200 turns and a total resistance of 20.0 €} is placed
around the electromagnet. The current in the electro-
magnet is then smoothly decreased until it reaches zero
in 20.0 ms. What is the current induced in the coil?

6. A magnetic field of 0.200 T exists within a solenoid of

500 turns and a diameter of 10.0 cm. How rapidly (that
is, within what period of time) must the field be re-
duced to zero if the average induced emf within the coil
during this time interval is to be 10.0 kV?

wes | 7.] An aluminum ring with a radius of 5.00 cm and a resis-

tance of 3.00 X 10~% Q is placed on top of a long air-
core solenoid with 1 000 turns per meter and a radius
of 3.00 cm, as shown in Figure P31.7. Assume that the
axial component of the field produced by the solenoid
over the area of the end of the solenoid is one-half as
strong as at the center of the solenoid. Assume that the
solenoid produces negligible field outside its cross-
sectional area. (a) If the current in the solenoid is in-
creasing at a rate of 270 A/s, what is the induced cur-
rent in the ring? (b) At the center of the ring, what is
the magnetic field produced by the induced current in
the ring? (c) What is the direction of this field?

8. An aluminum ring of radius r; and resistance R is

placed on top of a long air-core solenoid with n turns
per meter and smaller radius r9, as shown in Figure
P31.7. Assume that the axial component of the field
produced by the solenoid over the area of the end of
the solenoid is one-half as strong as at the center of the
solenoid. Assume that the solenoid produces negligible
field outside its cross-sectional area. (a) If the current in
the solenoid is increasing at a rate of AI/A¢, what is the
induced current in the ring? (b) At the center of the
ring, what is the magnetic field produced by the in-
duced current in the ring? (c¢) What is the direction of
this field?

9. Aloop of wire in the shape of a rectangle of width w

and length L and a long, straight wire carrying a cur-
rent [ lie on a tabletop as shown in Figure P31.9.

(a) Determine the magnetic flux through the loop due
to the current 1. (b) Suppose that the current is chang-
ing with time according to I = a + bt, where aand b
are constants. Determine the induced emf in the loop if
b=10.0A/s, h=1.00 cm, w = 10.0 cm, and L =

100 cm. What is the direction of the induced current in
the rectangle?

10. A coil of 15 turns and radius 10.0 cm surrounds a long

solenoid of radius 2.00 cm and 1.00 X 10% turns per me-
ter (Fig. P31.10). If the current in the solenoid changes
as I = (5.00 A) sin(120¢), find the induced emf in the
15-turn coil as a function of time.

Problems 1003

T5.00 cm
|
L DY

J

2L

3.00 cm

Figure P31.7 Problems 7 and 8.

e

| L i

Figure P31.9 Problems 9 and 73.

15-turn coil

Figure P31.10

11. Find the current through section PQ of length a =
65.0 cm shown in Figure P31.11. The circuit is located
in a magnetic field whose magnitude varies with time
according to the expression B = (1.00 X 1073 T/s)¢.
Assume that the resistance per length of the wire is
0.100 /m.
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12.

P
X X X X X X X X X X X X
X X X X X X X X X X X X
a B
X X X X X X X X X X X X
X X X X X X X X X X X X
2a Q a
Figure P31.11

A 30-turn circular coil of radius 4.00 cm and resistance
1.00 Q is placed in a magnetic field directed perpendic-
ular to the plane of the coil. The magnitude of the mag-
netic field varies in time according to the expression

B = 0.010 0¢ + 0.040 0¢2, where ¢ is in seconds and B is
in tesla. Calculate the induced emf in the coil at
t=15.00s.

A long solenoid has 400 turns per meter and carries a

14.

current I = (30.0 A) (1 — ¢ 16%) Inside the solenoid
and coaxial with it is a coil that has a radius of 6.00 cm
and consists of a total of 250 turns of fine wire (Fig.
P31.13). What emf is induced in the coil by the chang-
ing current?

Along solenoid has n turns per meter and carries a cur-
rent [ = I, (1 — ¢ ). Inside the solenoid and coaxial
with it is a coil that has a radius R and consists of a total
of N turns of fine wire (see Fig. P31.13). What emf is in-
duced in the coil by the changing current?

n turns/m

Nturns

Figure P31.13 Problems 13 and 14.

A coil formed by wrapping 50 turns of wire in the shape

16.

of a square is positioned in a magnetic field so that the
normal to the plane of the coil makes an angle of 30.0°
with the direction of the field. When the magnetic field
is increased uniformly from 200 uT to 600 uT in

0.400 s, an emf of magnitude 80.0 mV is induced in the
coil. What is the total length of the wire?

A closed loop of wire is given the shape of a circle with a
radius of 0.500 m. It lies in a plane perpendicular to a
uniform magnetic field of magnitude 0.400 T. If in
0.100 s the wire loop is reshaped into a square but re-
mains in the same plane, what is the magnitude of the
average induced emf in the wire during this time?

17. A toroid having a rectangular cross-section (a =

2.00 cm by & = 3.00 cm) and inner radius R = 4.00 cm
consists of 500 turns of wire that carries a current

I = I, sin wt, with I;,,, = 50.0 A and a frequency

f= w/2m = 60.0 Hz. A coil that consists of 20 turns of
wire links with the toroid, as shown in Figure P31.17.
Determine the emf induced in the coil as a function of
time.

Figure P31.17

18. A single-turn, circular loop of radius R is coaxial with a

long solenoid of radius rand length ¢ and having N
turns (Fig. P31.18). The variable resistor is changed so
that the solenoid current decreases linearly from 7; to Iy
in an interval At. Find the induced emf in the loop.

Variable
resistor

Figure P31.18

19. A circular coil enclosing an area of 100 cm? is made of

200 turns of copper wire, as shown in Figure P31.19. Ini-

B;=1.10T (upward)

Figure P31.19



20.

tially, a 1.10-T uniform magnetic field points in a per-
pendicular direction upward through the plane of the
coil. The direction of the field then reverses. During the
time the field is changing its direction, how much
charge flows through the coil if R = 5.00 Q?

Consider the arrangement shown in Figure P31.20.
Assume that R = 6.00 ), € = 1.20 m, and a uniform
2.50-T magnetic field is directed into the page. At what
speed should the bar be moved to produce a current of
0.500 A in the resistor?

app

Figure P31.20 Problems 20, 21, and 22.

Figure P31.20 shows a top view of a bar that can slide

22.

23.

24.

without friction. The resistor is 6.00 ) and a 2.50-T
magnetic field is directed perpendicularly downward,
into the paper. Let £ = 1.20 m. (a) Calculate the ap-
plied force required to move the bar to the right ata
constant speed of 2.00 m/s. (b) At what rate is energy
delivered to the resistor?

A conducting rod of length £ moves on two horizontal,
frictionless rails, as shown in Figure P31.20. If a constant
force of 1.00 N moves the bar at 2.00 m/s through a mag-
netic field B that is directed into the page, (a) what is the
current through an 8.00-Q) resistor R? (b) What is the
rate at which energy is delivered to the resistor? (c) What
is the mechanical power delivered by the force F,,?

A Boeing-747 jet with a wing span of 60.0 m is flying
horizontally at a speed of 300 m/s over Phoenix, Ari-
zona, at a location where the Earth’s magnetic field is
50.0 uT at 58.0° below the horizontal. What voltage is
generated between the wingtips?

The square loop in Figure P31.24 is made of wires with
total series resistance 10.0 €). It is placed in a uniform

A

3.00 m

B
Figure P31.24

Problems 1005

0.100-T magnetic field directed perpendicular into the
plane of the paper. The loop, which is hinged at each
corner, is pulled as shown until the separation between
points A and Bis 3.00 m. If this process takes 0.100 s,
what is the average current generated in the loop? What
is the direction of the current?

A helicopter has blades with a length of 3.00 m extending

26.

outward from a central hub and rotating at 2.00 rev/s. If
the vertical component of the Earth’s magnetic field is
50.0 uT, what is the emf induced between the blade tip
and the center hub?

Use Lenz’s law to answer the following questions con-
cerning the direction of induced currents: (a) What is
the direction of the induced current in resistor R shown
in Figure P31.26a when the bar magnet is moved to the
left? (b) What is the direction of the current induced in
the resistor R right after the switch S in Figure P31.26b
is closed? (c) What is the direction of the induced cur-
rent in Rwhen the current / in Figure P31.26¢ decreases
rapidly to zero? (d) A copper bar is moved to the right
while its axis is maintained in a direction perpendicular
to a magnetic field, as shown in Figure P31.26d. If the
top of the bar becomes positive relative to the bottom,
what is the direction of the magnetic field?

S U T
, L

(c) (d)
Figure P31.26

A rectangular coil with resistance R has N turns, each of

length € and width w as shown in Figure P31.27. The coil
moves into a uniform magnetic field B with a velocity v.
What are the magnitude and direction of the resultant
force on the coil (a) as it enters the magnetic field, (b) as
it moves within the field, and (c) as it leaves the field?
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w X X X X X X X
i X X X X X X X

Figure P31.27

28. In 1832 Faraday proposed that the apparatus shown in

Figure P31.28 could be used to generate electric cur-
rent from the water flowing in the Thames River.* Two
conducting plates of lengths ¢ and widths 4 are placed
facing each other on opposite sides of the river, a dis-
tance w apart, and are immersed entirely. The flow ve-
locity of the river is v and the vertical component of the
Earth’s magnetic field is B. (a) Show that the current in
the load resistor R is

_ abuB
p + abR/w

where p is the electrical resistivity of the water. (b) Cal-
culate the short-circuit current (R = 0) if « = 100 m,
b=5.00m, v=3.00m/s, B=50.0uT,and p =

100 Q- m.

Figure P31.28

29. In Figure P31.29, the bar magnet is moved toward the

loop. Is V, — V, positive, negative, or zero? Explain.

30. A metal bar spins at a constant rate in the magnetic

field of the Earth as in Figure 31.10. The rotation oc-
curs in a region where the component of the Earth’s
magnetic field perpendicular to the plane of rotation is
3.30 X 1073 T. If the bar is 1.00 m in length and its an-
gular speed is 5.00 7 rad/s, what potential difference is
developed between its ends?

* The idea for this problem and Figure P31.28 is from Oleg D. Jefi-
menko, Electricity and Magnetism: An Introduction to the Theory of Electric
and Magnetic Fields. Star City, WV, Electret Scientific Co., 1989.

Motion toward

31.

N

the loop

Figure P31.29

Two parallel rails with negligible resistance are 10.0 cm
apart and are connected by a 5.00-() resistor. The circuit
also contains two metal rods having resistances of

10.0 © and 15.0 () sliding along the rails (Fig. P31.31).
The rods are pulled away from the resistor at constant
speeds 4.00 m/s and 2.00 m/s, respectively. A uniform
magnetic field of magnitude 0.010 0 T is applied per-
pendicular to the plane of the rails. Determine the cur-
rent in the 5.00-Q) resistor.

| |
X X X X X X X X X X X
X X X X X X X X X X X
4.00 m/s - "B X§?3.()()XQ “ e 2.00 m/s
X X X X X X X X X X X
X X X X X X X X X X X
X X X X X X X X X X X
| |
10.0 Q 15.0 Q
Figure P31.31

Section 31.4
32. For the situation described in Figure P31.32, the mag-

Induced emf and Electric Fields

netic field changes with time according to the expres-
sion B = (2.00¢% — 4.00¢2 + 0.800) T, and ry = 2R =
5.00 cm. (a) Calculate the magnitude and direction of

X X X X X

X X X X
X

Figure P31.32 Problems 32 and 33.



the force exerted on an electron located at point Py
when ¢ = 2.00 s. (b) At what time is this force equal to
Zero?

A magnetic field directed into the page changes with
time according to B = (0.030 02 + 1.40) T, where tis
in seconds. The field has a circular cross-section of ra-
dius R = 2.50 cm (see Fig. P31.32). What are the mag-
nitude and direction of the electric field at point P
when ¢ = 3.00 s and r; = 0.020 0 m?

34. Asolenoid has a radius of 2.00 cm and 1 000 turns per
meter. Over a certain time interval the current varies
with time according to the expression 7 = 3¢%%, where 7
is in amperes and ¢is in seconds. Calculate the electric
field 5.00 cm from the axis of the solenoid at £ = 10.0 s.

35. Along solenoid with 1 000 turns per meter and
radius 2.00 cm carries an oscillating current / =
(5.00 A) sin(1007r¢). (a) What is the electric field induced
ataradius r = 1.00 cm from the axis of the solenoid?

(b) What is the direction of this electric field when the
current is increasing counterclockwise in the coil?

(Optional)
Section 31.5 Generators and Motors

36. In a 250-turn automobile alternator, the magnetic flux
in each turn is @5 = (2.50 X 107* T-m?) cos(wt),
where w is the angular speed of the alternator. The al-
ternator is geared to rotate three times for each engine
revolution. When the engine is running at an angular
speed of 1 000 rev/min, determine (a) the induced emf
in the alternator as a function of time and (b) the maxi-
mum emf in the alternator.

wes A coil of area 0.100 m? is rotating at 60.0 rev/s with the

axis of rotation perpendicular to a 0.200-T magnetic
field. (a) If there are 1 000 turns on the coil, what is the
maximum voltage induced in it? (b) What is the orien-
tation of the coil with respect to the magnetic field
when the maximum induced voltage occurs?

38. A square coil (20.0 cm X 20.0 cm) that consists of
100 turns of wire rotates about a vertical axis at
1 500 rev/min, as indicated in Figure P31.38. The hori-
zontal component of the Earth’s magnetic field at the
location of the coil is 2.00 X 107 T. Calculate the maxi-
mum emf induced in the coil by this field.

L=
) / .0 cm

Figure P31.38

39.

40.

41.

42.

Problems 1007

Along solenoid, with its axis along the x axis, consists
of 200 turns per meter of wire that carries a steady cur-
rent of 15.0 A. A coil is formed by wrapping 30 turns of
thin wire around a circular frame that has a radius of
8.00 cm. The coil is placed inside the solenoid and
mounted on an axis that is a diameter of the coil and
coincides with the y axis. The coil is then rotated with
an angular speed of 4.007 rad/s. (The plane of the coil
is in the yz plane at ¢ = 0.) Determine the emf devel-
oped in the coil as a function of time.

A bar magnet is spun at constant angular speed
around an axis, as shown in Figure P31.40. A flat rectan-
gular conducting loop surrounds the magnet, and at

t = 0, the magnet is oriented as shown. Make a qualita-
tive graph of the induced current in the loop as a func-
tion of time, plotting counterclockwise currents as posi-
tive and clockwise currents as negative.

Figure P31.40

(a) What is the maximum torque delivered by an elec-
tric motor if it has 80 turns of wire wrapped on a rectan-
gular coil of dimensions 2.50 cm by 4.00 cm? Assume
that the motor uses 10.0 A of current and that a uni-
form 0.800-T magnetic field exists within the motor.

(b) If the motor rotates at 3 600 rev/min, what is the
peak power produced by the motor?

A semicircular conductor of radius R = 0.250 m is
rotated about the axis AC at a constant rate of

120 rev/min (Fig. P31.42). A uniform magnetic field in
all of the lower half of the figure is directed out of the
plane of rotation and has a magnitude of 1.30 T.

(a) Calculate the maximum value of the emf induced in
the conductor. (b) What is the value of the average in-
duced emf for each complete rotation? (c) How would
the answers to parts (a) and (b) change if B were al-
lowed to extend a distance R above the axis of rotation?
Sketch the emf versus time (d) when the field is as
drawn in Figure P31.42 and (e) when the field is ex-
tended as described in part (c).
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Figure P31.42

The rotating loop in an ac generator is a square 10.0 cm
on a side. It is rotated at 60.0 Hz in a uniform field of
0.800 T. Calculate (a) the flux through the loop as a
function of time, (b) the emf induced in the loop,

(c) the current induced in the loop for a loop resis-
tance of 1.00 (2, (d) the power in the resistance of the
loop, and (e) the torque that must be exerted to rotate
the loop.

(Optional)
Section 31.6 Eddy Currents

44.

WEB

A 0.150-kg wire in the shape of a closed rectangle

1.00 m wide and 1.50 m long has a total resistance of
0.750 Q. The rectangle is allowed to fall through a mag-
netic field directed perpendicular to the direction of
motion of the rectangle (Fig. P31.44). The rectangle ac-
celerates downward as it approaches a terminal speed of
2.00 m/s, with its top not yet in the region of the field.
Calculate the magnitude of B.

w
¢
. ° )
. . ° ) °
° . ° . . . o
- © o Bou
. . . . ° o
. [ . o
L] 3

v

Figure P31.44 Problems 44 and 45.

A conducting rectangular loop of mass M, resistance R,
and dimensions w by ¢ falls from rest into a magnetic
field B as in Figure P31.44. The loop approaches termi-

Faraday’s Law

46.

nal speed v,. (a) Show that

MgR
B%u?

v =

(b) Why is v, proportional to R? (c) Why is it inversely
proportional to B2?

Figure P31.46 represents an electromagnetic brake that
utilizes eddy currents. An electromagnet hangs from a
railroad car near one rail. To stop the car, a large steady
current is sent through the coils of the electromagnet.
The moving electromagnet induces eddy currents in
the rails, whose fields oppose the change in the field of
the electromagnet. The magnetic fields of the eddy cur-
rents exert force on the current in the electromagnet,
thereby slowing the car. The direction of the car’s mo-
tion and the direction of the current in the electromag-
net are shown correctly in the picture. Determine which
of the eddy currents shown on the rails is correct. Ex-
plain your answer.

Figure P31.46

Section 31.7 Maxwell's Wonderful Equations
A proton moves through a uniform electric field

48.

E = 50.0j V/m and a uniform magnetic field B =
(0.200i + 0.300j + 0.400k) T. Determine the accelera-
tion of the proton when it has a velocity v = 200i m/s.
An electron moves through a uniform electric field E =
(2.501 + 5.00j) V/m and a uniform magnetic field B =
0.400k T. Determine the acceleration of the electron
when it has a velocity v = 10.0i m/s.

ADDITIONAL PROBLEMS

49.

A steel guitar string vibrates (see Fig. 31.5). The compo-
nent of the magnetic field perpendicular to the area of



50.

51.

52.

a pickup coil nearby is given by
B =50.0mT + (3.20 mT) sin (27523 #/s)

The circular pickup coil has 30 turns and radius

2.70 mm. Find the emf induced in the coil as a function
of time.

Figure P31.50 is a graph of the induced emf versus time
for a coil of N turns rotating with angular velocity w in a
uniform magnetic field directed perpendicular to the
axis of rotation of the coil. Copy this graph (on a larger
scale), and on the same set of axes show the graph of
emf versus ¢ (a) if the number of turns in the coil is
doubled, (b) if instead the angular velocity is doubled,
and (c) if the angular velocity is doubled while the
number of turns in the coil is halved.

E(mV)

10—

10+

Figure P31.50

A technician wearing a brass bracelet enclosing an area
of 0.005 00 m? places her hand in a solenoid whose
magnetic field is 5.00 T directed perpendicular to the
plane of the bracelet. The electrical resistance around
the circumference of the bracelet is 0.020 0 (). An unex-
pected power failure causes the field to drop to 1.50 T
in a time of 20.0 ms. Find (a) the current induced in
the bracelet and (b) the power delivered to the resis-
tance of the bracelet. (Note: As this problem implies,
you should not wear any metallic objects when working
in regions of strong magnetic fields.)

Two infinitely long solenoids (seen in cross-section)
thread a circuit as shown in Figure P31.52. The magni-

FO.SO m ﬂ% 0.50 m ﬂ

A
7 =0.10m 7 =0.15m
6.0 Q§ 3.0 Q§ 5.0 Q§ 0.50 m
Bin BOUI
Figure P31.52

53.

54.

55.
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tude of B inside each is the same and is increasing at
the rate of 100 T/s. What is the current in each resistor?
A conducting rod of length € = 35.0 cm is free to slide
on two parallel conducting bars, as shown in Figure
P31.53. Two resistors Ry = 2.00 ) and Ry = 5.00 () are
connected across the ends of the bars to form a loop. A
constant magnetic field B = 2.50 T is directed perpen-
dicular into the page. An external agent pulls the rod to
the left with a constant speed of v = 8.00 m/s. Find

(a) the currents in both resistors, (b) the total power
delivered to the resistance of the circuit, and (c) the
magnitude of the applied force that is needed to move
the rod with this constant velocity.

L 1
X X X X X X X X
X B X X X X X X X
X X X X X X X X

2.00 Q§ v — §5.oo Q

X X X X X X X X
X X X X X X X X
X X X X X X X X

L 1

Figure P31.53

Suppose you wrap wire onto the core from a roll of cel-
lophane tape to make a coil. Describe how you can use
a bar magnet to produce an induced voltage in the coil.
What is the order of magnitude of the emf you gener-
ate? State the quantities you take as data and their val-
ues.

A bar of mass m, length d, and resistance R slides with-
out friction on parallel rails, as shown in Figure P31.55.
A battery that maintains a constant emf € is connected
between the rails, and a constant magnetic field B is di-
rected perpendicular to the plane of the page. If the
bar starts from rest, show that at time ¢ it moves with a
speed

i a - efBgd‘-’t/mR)

" Bd

le—— . —>
.

T

Figure P31.55

. An automobile has a vertical radio antenna 1.20 m long.

The automobile travels at 65.0 km/h on a horizontal
road where the Earth’s magnetic field is 50.0 uT di-
rected toward the north and downward at an angle of
65.0° below the horizontal. (a) Specify the direction
that the automobile should move to generate the maxi-
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mum motional emf in the antenna, with the top of the
antenna positive relative to the bottom. (b) Calculate
the magnitude of this induced emf.

57.| The plane of a square loop of wire with edge length

a = 0.200 m is perpendicular to the Earth’s magnetic
field at a point where B = 15.0 uT, as shown in Figure
P31.57. The total resistance of the loop and the wires
connecting it to the galvanometer is 0.500 ). If the loop
is suddenly collapsed by horizontal forces as shown,
what total charge passes through the galvanometer?

Figure P31.57

58. Magnetic field values are often determined by using a

59.

device known as a search coil. This technique depends on
the measurement of the total charge passing through a
coil in a time interval during which the magnetic flux
linking the windings changes either because of the mo-
tion of the coil or because of a change in the value of B.
(a) Show that as the flux through the coil changes from
@, to &y, the charge transferred through the coil will
be given by Q = N(®y — ®,)/R, where Ris the resis-
tance of the coil and associated circuitry (galvanome-
ter) and N is the number of turns. (b) As a specific ex-
ample, calculate Bwhen a 100-turn coil of resistance
200  and cross-sectional area 40.0 cm? produces the
following results. A total charge of 5.00 X 10~* C passes
through the coil when it is rotated in a uniform field
from a position where the plane of the coil is perpen-
dicular to the field to a position where the coil’s plane is
parallel to the field.

In Figure P31.59, the rolling axle, 1.50 m long, is
pushed along horizontal rails at a constant speed

v = 3.00 m/s. A resistor R = 0.400 () is connected to
the rails at points @ and b, directly opposite each other.
(The wheels make good electrical contact with the rails,
and so the axle, rails, and R form a closed-loop circuit.
The only significant resistance in the circuit is R.) There
is a uniform magnetic field B = 0.080 0 T vertically
downward. (a) Find the induced current / in the resis-
tor. (b) What horizontal force Fis required to keep the

Faraday’s Law

60.

61.

62.

Figure P31.59

axle rolling at constant speed? (c) Which end of the re-
sistor, a or b, is at the higher electric potential? (d) After
the axle rolls past the resistor, does the current in Rre-
verse direction? Explain your answer.

A conducting rod moves with a constant velocity v per-
pendicular to a long, straight wire carrying a current [
as shown in Figure P31.60. Show that the magnitude of
the emf generated between the ends of the rod is

74
g = £ ¢
2mr

In this case, note that the emf decreases with increasing
7, as you might expect.

s

|

Figure P31.60

A circular loop of wire of radius ris in a uniform mag-
netic field, with the plane of the loop perpendicular to
the direction of the field (Fig. P31.61). The magnetic
field varies with time according to B(f) = a + bt, where
aand b are constants. (a) Calculate the magnetic flux
through the loop at ¢ = 0. (b) Calculate the emf in-
duced in the loop. (c) If the resistance of the loop is R,
what is the induced current? (d) At what rate is electri-
cal energy being delivered to the resistance of the loop?
In Figure P31.62, a uniform magnetic field decreases at
a constant rate dB/dt = — K, where Kis a positive con-
stant. A circular loop of wire of radius @ containing a re-
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Figure P31.62

sistance Rand a capacitance C is placed with its plane
normal to the field. (a) Find the charge Q on the capac-
itor when it is fully charged. (b) Which plate is at the
higher potential? (c) Discuss the force that causes the
separation of charges.

A rectangular coil of 60 turns, dimensions 0.100 m by

64.

0.200 m and total resistance 10.0 (), rotates with angu-
lar speed 30.0 rad/s about the y axis in a region where a
1.00-T magnetic field is directed along the x axis. The
rotation is initiated so that the plane of the coil is per-
pendicular to the direction of B at ¢ = 0. Calculate

(a) the maximum induced emf in the coil, (b) the max-
imum rate of change of magnetic flux through the coil,
(c) the induced emfat ¢t = 0.050 0 s, and (d) the torque
exerted on the coil by the magnetic field at the instant
when the emf is a maximum.

A small circular washer of radius 0.500 cm is held di-
rectly below a long, straight wire carrying a current of
10.0 A. The washer is located 0.500 m above the top of
the table (Fig. P31.64). (a) If the washer is dropped
from rest, what is the magnitude of the average induced

Figure P31.64

65.

66.

67
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emfin the washer from the time it is released to the mo-
ment it hits the tabletop? Assume that the magnetic
field is nearly constant over the area of the washer and
equal to the magnetic field at the center of the washer.
(b) What is the direction of the induced current in the
washer?

To monitor the breathing of a hospital patient, a thin
belt is wrapped around the patient’s chest. The beltis a
200-turn coil. When the patient inhales, the area encir-
cled by the coil increases by 39.0 cm? The magnitude
of the Earth’s magnetic field is 50.0 uT and makes an
angle of 28.0° with the plane of the coil. If a patient
takes 1.80 s to inhale, find the average induced emf in
the coil during this time.

A conducting rod of length € moves with velocity v par-
allel to a long wire carrying a steady current /. The axis
of the rod is maintained perpendicular to the wire with
the near end a distance r away, as shown in Figure
P31.66. Show that the magnitude of the emf induced in
the rod is

I 14
\8| ='U“70vln<1 +7>
21 r

Figure P31.66

A rectangular loop of dimensions € and w moves with a
constant velocity v away from a long wire that carries a
current / in the plane of the loop (Fig. P31.67). The to-

N ——>
=

<I—r—>L—w—>‘

Figure P31.67
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tal resistance of the loop is R. Derive an expression that
gives the current in the loop at the instant the near side
is a distance r from the wire.

A horizontal wire is free to slide on the vertical rails of a
conducting frame, as shown in Figure P31.68. The wire
has mass m and length €, and the resistance of the cir-
cuit is R. If a uniform magnetic field is directed perpen-
dicular to the frame, what is the terminal speed of the
wire as it falls under the force of gravity?

< e >
] Bout ]
[ ] [ ] [ ]
| ——m
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
MWy
R
Figure P31.68

The magnetic flux threading a metal ring varies with

70.

time ¢ according to ®p = 3(at® — bt%2) T-m?2, with
a=2.00s"3and b = 6.00 s~2. The resistance of the
ring is 3.00 (). Determine the maximum current in-
duced in the ring during the interval from ¢ = 0 to
t=2.00s.

Review Problem. The bar of mass m shown in Figure
P31.70 is pulled horizontally across parallel rails by a
massless string that passes over an ideal pulley and is at-
tached to a suspended mass M. The uniform magnetic
field has a magnitude B, and the distance between the
rails is €. The rails are connected at one end by a load
resistor R. Derive an expression that gives the horizon-

"

Figure P31.70

Faraday’s Law

71.

72.

74.

75.

tal speed of the bar as a function of time, assuming that
the suspended mass is released with the bar at rest at

¢t = 0. Assume no friction between rails and bar.

A solenoid wound with 2 000 turns/m is supplied

with current that varies in time according to I =
4sin(1207¢), where [ is in A and ¢ is in s. A small coax-
ial circular coil of 40 turns and radius r = 5.00 cm is lo-
cated inside the solenoid near its center. (a) Derive an
expression that describes the manner in which the emf
in the small coil varies in time. (b) At what average rate
is energy transformed into internal energy in the small
coil if the windings have a total resistance of 8.00 (?

A wire 30.0 cm long is held parallel to and 80.0 cm
above a long wire carrying 200 A and resting on the
floor (Fig. P31.72). The 30.0-cm wire is released and
falls, remaining parallel with the current-carrying wire
as it falls. Assume that the falling wire accelerates at
9.80 m/s? and derive an equation for the emf induced
in it. Express your result as a function of the time ¢ after
the wire is dropped. What is the induced emf 0.300 s af-
ter the wire is released?

>/80.0 cm |«

|

80.0 cm

Y
I=200A —>

Figure P31.72

weB Along, straight wire carries a current / = I, sin(wt +

¢) and lies in the plane of a rectangular coil of N turns
of wire, as shown in Figure P31.9. The quantities Iy,
w, and ¢ are all constants. Determine the emf induced
in the coil by the magnetic field created by the current
in the straight wire. Assume I, = 50.0 A, 0 =
2007rs~ !, N= 100, » = w = 5.00 cm, and L = 20.0 cm.
A dime is suspended from a thread and hung between
the poles of a strong horseshoe magnet as shown in Fig-
ure P31.74. The dime rotates at constant angular speed
w about a vertical axis. Letting 6 represent the angle be-
tween the direction of B and the normal to the face of
the dime, sketch a graph of the torque due to induced
currents as a function of 6 for 0 < 6 < 2.

The wire shown in Figure P31.75 is bent in the shape of
a tent, with 6 = 60.0° and L = 1.50 m, and is placed in
a uniform magnetic field of magnitude 0.300 T perpen-
dicular to the tabletop. The wire is rigid but hinged at
points @ and b. If the “tent” is flattened out on the table
in 0.100 s, what is the average induced emf in the wire
during this time?
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31.1

31.2

Because the magnetic field now points in the opposite
direction, you must replace 0 with 6 + 7. Because
cos(f + m) = — cos 6, the sign of the induced emf is
reversed.

The one on the west side of the plane. As we saw in Sec-
tion 30.9, the Earth’s magnetic field has a downward
component in the northern hemisphere. As the plane
flies north, the right-hand rule illustrated in Figure 29.4
indicates that positive charge experiences a force di-
rected toward the west. Thus, the left wingtip becomes
positively charged and the right wingtip negatively
charged.

Answers to Quick Quizzes 1013

Figure P31.75

31.3 Inserting. Because the south pole of the magnet is near-

est the solenoid, the field lines created by the magnet
point upward in Figure 31.14. Because the current in-
duced in the solenoid is clockwise when viewed from
above, the magnetic field lines produced by this current
point downward in Figure 31.14. If the magnet were be-
ing withdrawn, it would create a decreasing upward flux.
The induced current would counteract this decrease by
producing its own upward flux. This would require a
counterclockwise current in the solenoid, contrary to
what is observed.



