Chemistry

Part I

Textbook for Class XI

PUNJAB SCHOOL EDUCATION BOARD

SOME BASIC CONCEPTS OF CHEMISTRY

Objectives

After studying this unit, you will be able to

- appreciate the contribution of India in the development of chemistry understand the role of chemistry in different spheres of life:
- explain the characteristics of three states of matter;
- classify different substances into elements, compounds and mixtures;
- use scientific notations and determine significant figures;
- differentiate between precision and accuracy;
- define SI base units and convert physical quantities from one system of units to another;
- explain various laws of chemical combination;
- appreciate significance of atomic mass, average atomic mass, molecular mass and formula mass;
- describe the terms mole and molar mass:
- calculate the mass per cent of component elements constituting a compound;
- determine empirical formula and molecular formula for a compound from the given experimental data;
- perform the stoichiometric calculations.

Chemistry is the science of molecules and their transformations. It is the science not so much of the one hundred elements but of the infinite variety of molecules that may be built from them ...

Roald Hoffmann

Science can be viewed as a continuing human effort to systematise knowledge for describing and understanding nature. You have learnt in your previous classes that we come across diverse substances present in nature and changes in them in daily life. Curd formation from milk, formation of vinegar from sugarcane juice on keeping for prolonged time and rusting of iron are some of the examples of changes which we come across many times. For the sake of convenience, science is sub-divided into various disciplines: chemistry, physics, biology, geology, etc. The branch of science that studies the preparation, properties, structure and reactions of material substances is called chemistry.

DEVELOPMENT OF CHEMISTRY

Chemistry, as we understand it today, is not a very old discipline. Chemistry was not studied for its own sake, rather it came up as a result of search for two interesting things:

- *i. Philosopher's stone (Paras)* which would convert all baser metals e.g. iron and copper into gold.
- $\it ii.$ 'Elexir of life' which would grant immortality.

People in ancient India, already had the knowledge of many scientific phenomenon much before the advent of modern science. They applied that knowledge in various walks of life. Chemistry developed mainly in the form of Alchemy and Iatrochemistry during 1300-1600 CE. Modern chemistry took shape in the 18th century Europe, after a few centuries of alchemical traditions which were introduced in Europe by the Arabs.

Other cultures – especially the Chinese and the Indian – had their own alchemical traditions. These included much knowledge of chemical processes and techniques.

In ancient India, chemistry was called Rasayan Shastra, Rastantra, Ras Kriya or Rasvidya. It included metallurgy, medicine, manufacture of cosmetics, glass, dyes, etc. Systematic excavations at Mohenjodaro in Sindh and Harappa in Punjab prove that the story of development of chemistry in India is very old. Archaeological findings show that baked bricks were used in construction work. It shows the mass production of pottery, which can be regarded as the earliest chemical process, in which materials were mixed, moulded and subjected to heat by using fire to achieve desirable qualities. Remains of glazed pottery have been found in Mohenjodaro. Gypsum cement has been used in the construction work. It contains lime, sand and traces of CaCO₃ Harappans made faience, a sort of glass which was used in ornaments. They melted and forged a variety of objects from metals, such as lead, silver, gold and copper. They improved the hardness of copper for making artefacts by using tin and arsenic. A number of glass objects were found in Maski in South India (1000-900 BCE), and Hastinapur and Taxila (1000-200 BCE). Glass and glazes were coloured by addition of colouring agents like metal oxides.

Copper metallurgy in India dates back to the beginning of chalcolithic cultures in the sub-continent. There are much archeological evidences to support the view that technologies for extraction of copper and iron were developed indigenously.

According to *Rigveda*, tanning of leather and dying of cotton were practised during 1000–400 BCE. The golden gloss of the black polished ware of northen India could not mystery be replicated and is still a chemical. These wares indicate the mastery with which kiln temperatures could be controlled. Kautilya's *Arthasnastra* describes the production of salt from sea.

A vast number of statements and material described in the ancient Vedic literature can be shown to agree with modern scientific findings. Copper utensils, iron, gold, silver ornaments and terracotta discs and painted grey pottery have been found in many archaeological sites in north India. Sushruta Samhita explains the importance of Alkalies. The Charaka Samhita mentions ancient indians who knew how to prepare sulphuric acid, nitric acid and oxides of copper, tin and zinc; the sulphates of copper, zinc and iron and the carbonates of lead and iron.

Rasopanishada describes the preparation of gunpowder mixture. Tamil texts also describe the preparation of fireworks using sulphur, charcoal, saltpetre (i.e., potassium nitrate), mercury, camphor, etc.

Nagarjuna was a great Indian scientist. He was a reputed chemist, an alchemist and a metallurgist. His work *Rasratnakar* deals with the formulation of mercury compounds. He has also discussed methods for the extraction of metals, like gold, silver, tin and copper. A book, Rsarnavam, appeared around 800 CE. It discusses the uses of various furnaces, ovens and crucibles for different purposes. It describes methods by which metals could be identified by flame colour.

Chakrapani discovered mercury sulphide. The credit for inventing soap goes to him. He used mustard oil and some alkalies as ingredients for making soap. Indians began making soaps in the 18th century CE. Oil of *Eranda* and seeds of *Mahua* plant and calcium carbonate were used for making soap.

The paintings found on the walls of Ajanta and Ellora, which look fresh even after ages, testify to a high level of science achieved in ancient India. Varähmihir's *Brihat Samhita* is a sort of encyclopaedia, which was composed in the sixth century CE. It informs about the preparation of glutinous material to be applied on walls and roofs of houses and temples. It was prepared entirely from extracts of various plants, fruits, seeds and barks, which were concentrated by boiling and

then treated with various resins. It will be interesting to test such materials scientifically and assess them for use.

A number of classical texts, like *Atharvaveda* (1000 BCE) mention some dye stuff, the material used were turmeric, *madder*, sunflower, orpiment, cochineal and lac. Some other substances having tinting property were *kamplcica*, *pattanga* and *jatuka*.

Varähmihir's *Brihat Samhita* gives references to perfumes and cosmetics. Recipes for hair dying were made from plants, like indigo and mineral like iron — power black iron or steel and acidic extracts of sour rice gruel. *Gandhayukli* describes recipes for making scents, mouth perfumes, bath powders, incense and talcum power.

Paper was known to India in the 17th century as account of Chinese traveller I-tsing describes. Excavations at Taxila indicate that ink was used in India from the fourth century. Colours of ink were made from chalk, red lead and minimum.

It seems that the process of fermentation was well-known to Indians. Vedas and Kautilya's *Arthashastra* mention about many types of liquors. *Charaka Samhita* also mentions ingredients such as barks of plants, stem, flowers, leaves, woods, cereals, fruits and sugarcane for making *Asavas*.

The concept that matter is ultimately made of indivisible building blocks, appeared in India a few centuries BCE as a part of philosophical speculations. Acharya Kanda, born in 600 BCE, originally known by the name Kashyap, was the first proponent of the 'atomic theory'. He formulated the theory of very small indivisible particles, which he named 'Paramanu' (comparable to atoms). He authored the text 'Vaiseshika Sutras, According to him, all substances are aggregated form of smaller units called atoms (Paramanu), which are eternal, indestructible, spherical, suprasensible and in motion in the original state. He explained that this individual entity cannot be sensed through any human organ. Kanda added that there are varieties of atoms that are as different as the different classes of substances. He said these (*Paramānu*) could form pairs or triplets, among other combinations and unseen forces cause interaction between them. He conceptualised this theory around 2500 years before John Dalton (1766-1844).

Charaka Samhita is the oldest Ayurvedic epic of India. It describes the treatment of diseases. The concept of reduction of particle size of metals is clearly discussed in Charaka Samhita. Extreme reduction of particle size is termed as nanotechnology. Charaka Samhita describes the use of bhasma of metals in the treatment ailments. Now a days, it has been proved that bhasma have nanoparticles of metals

After the decline of alchemy, iatrochemistry reached a steady state, but it too declined due to the introduction and practise of western medicinal system in the 20th century. During this period of stagnation pharmaceutical industry based on Ayurveda continued to exist, but it too decline dgradually. It took about 100-150 years for Indians to learn and adopt new techniques. During this time foreign products poured in. As a result, indigenous traditional techniques gradually declined. Modern science appeared Indian in scene in the later part of nineteenth century. By the mid-nineteenth century, European scientists started coming to India and modern chemistry stated growing.

From the above discussion, you have learnt that chemistry deals with the composition, structure, properties and interection of matter and is of much use to human beings in daily life. These aspects can be best described and understood in terms of basic constituents of matter that are **atoms** and **molecules**. That is why chemistry is also called the science of atoms and molecules. Can we see, weigh and perceive these entities (atoms and molecules)? Is it possible to count the number of atoms and molecules in a given mass of matter and have a quantitative relationship between the mass and the number of these particles? We will get the answer of some of these questions

in this Unit. We will further describe how physical properties of matter can be quantitatively described using numerical values with suitable units.

1.1 IMPORTANCE OF CHEMISTRY

Chemistry plays a central role in science and is often intertwined with other branches of science.

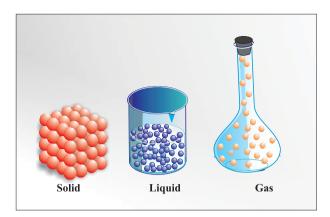
Principles of chemistry are applicable in diverse areas, such as weather patterns, functioning of brain and operation of a computer, production in chemical industries, manufacturing fertilisers, alkalis, acids, salts, dyes, polymers, drugs, soaps, detergents, metals, alloys, etc., including new materials.

Cheminstry contributes in a big way to the national economy. It also plays an important role in meeting human needs for food, healthcare products and other material aimed at improving the quality of life. This is exemplified by the large-scale production of a variety of fertilisers, improved variety of pesticides and insecticides. Chemistry provides methods for the isolation of life-saving drugs from natural sources and makes posssible synthesis of such drugs. Some of these drugs are **cisplatin** and **taxol**, which are effective in cancer therapy. The drug AZT (Azidothymidine) is used for helping AIDS patients.

Chemistry contributes to a large extent in the development and growth of a nation. With a better understanding of chemical principles it has now become possible to design and synthesise new material having specific magnetic, electric and optical properties. This has lead to the production of superconducting ceramics, conducting polymers, optical fibres, etc. Chemistry has helped in establishing industries which manufacture utility goods, like acids, alkalies, dyes, polymesr metals, etc. These industries contribute in a big way to the economy of a nation and generate employment.

In recent years, chemistry has helped in dealing with some of the pressing aspects of environmental degradation with a fair degree of success. Safer alternatives to environmentally hazardous refrigerants like CFCs (chlorofluorocarbons), responsible for ozone depletion in the stratosphere, have been successfully synthesised. However, many big environmental problems continue to be matters of grave concern to the chemists. One such problem is the management of the Green House gases like methane, carbon dioxide, etc. Understanding of biochemical processes, use of enzymes for large-scale production of chemicals and synthesis of new exotic material are some of the intellectual challenges for the future generation of chemists. A developing country, like India, needs talented and creative chemists for accepting such challenges. To be a good chemist and to accept such challanges, one needs to understand the basic concepts of chemistry, which begin with the concept of matter. Let us start with the nature of matter.

1.2 NATURE OF MATTER


You are already familiar with the term **matter** from your earlier classes. Anything which has mass and occupies space is called **matter**. Everything around us, for example, book, pen, pencil, water, air, all living beings, etc., are composed of matter. You know that they have mass and they occupy space. Let us recall the characteristics of the states of matter which you learnt in your previous classes.

1.2.1 States of Matter

You are aware that matter can exist in three physical states *viz.* **solid**, **liquid** and **gas**. The constituent particles of matter in these three states can be represented as shown in Fig. 1.1.

Particles are held very close to each other in **solids** in an orderly fashion and there is not much freedom of movement. In **liquids**, the particles are close to each other but they can move around. However, in **gases**, the particles are far apart as compared to those present in solid or liquid states and their movement is easy and fast. Because of such arrangement of particles, different states of matter exhibit the following characteristics:

(i) Solids have definite volume and definite shape.

Fig. 1.1 Arrangement of particles in solid, liquid and gaseous state

- (ii) Liquids have *definite volume* but *do not* have *definite shape*. They take the shape of the container in which they are placed.
- (iii) Gases have *neither definite volume nor definite shape*. They completely occupy the space in the container in which they are placed.

These three states of matter are interconvertible by changing the conditions of temperature and pressure.

Solid
$$\stackrel{\text{heat}}{\longleftarrow}$$
 liquid Gas

On heating a solid usually changes to a liquid and the liquid on further heating changes to gas (or vapour). In the reverse process, a gas on cooling liquifies to the liquid and the liquid on further cooling freezes to the solid.

1.2.2. Cassification of Matter

In class IX (Chapter 2), you have learnt that at the macroscopic or bulk level, matter can be classified as **mixture** or **pure substance**. These can be further sub-divided as shown in Fig. 1.2.

When all constituent particles of a substance are same in chemical nature, it is said to be a pure substance. A mixture contains many types of particles.

A mixture contains particles of two or more pure substances which may be present in it in any ratio. Hence, their composition is variable. Pure sustances forming mixture are called its components. Many of the substances present around you are **mixtures**. For example, sugar solution in water, air, tea, etc., are all mixtures.

A mixture may be **homogeneous** or **heterogeneous**. In a **homogeneous mixture**,

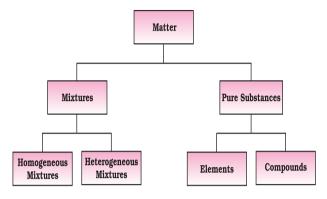


Fig. 1.2 Classification of matter

the components completely mix with each other. This means particles of components of the mixture are uniformly distributed throughout the bulk of the mixture and its composition is uniform throughout. Sugar solution and air are the examples of homogeneous mixtures. In contrast to this, in **heterogeneous mixture**, the composition is not uniform throughout and sometimes different components are visible. For example, mixtures of salt and sugar, grains and pulses along with some dirt (often stone pieces), are heterogeneous mixtures. You can think of many more examples of mixtures which you come across in the daily life. It is worthwhile to mention here that the components of a mixture can be separated by using physical methods, such as simple hand-picking, filtration, crystallisation, distillation, etc.

Pure substances have characteristics different from mixtures. Constituent particles of pure substances have fixed composition. Copper, silver, gold, water and glucose are some examples of pure substances. Glucose contains carbon, hydrogen and oxygen in a fixed ratio and its particles are of same composition. Hence, like all other pure substances, glucose has a fixed composition. Also, its constituents — carbon, hydrogen and oxygen — cannot be separated by simple physical methods.

heat

Pure substances can further be classified into **elements** and **compounds**. Particles of an **element** consist of only one type of atoms. These particles may exist as atoms or molecules. You may be familiar with atoms and molecules from the previous classes; however, you will be studying about them in detail in Unit 2. Sodium, copper, silver, hydrogen, oxygen etc., are some examples of elements. Their all atoms are of one type. However, the atoms of different elements, are different in nature. Some elements such as sodium or copper, contain atoms as their constituent particles, whereas, in some others, the constituent particles are molecules which are formed by two or more atoms. For example, hydrogen, nitrogen and oxygen gases consist of molecules, in which two atoms combine to give their respective molecules. This is illustrated in Fig. 1.3.

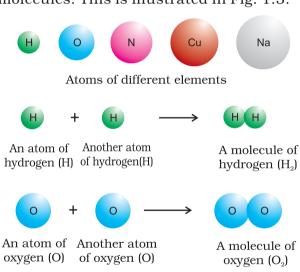
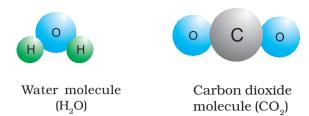



Fig. 1.3 A representation of atoms and molecules

When two or more atoms of different elements combine, togather in a definite ratio, the molecule of a **compound** is obtained. Moreover, the constituents of a compound cannot be separated into simpler substances by physical methods. They can be separated by chemical methods. Examples of some compounds are water, ammonia, carbon dioxide, sugar, etc. The molecules of water and carbon dioxide are represented in Fig 1.4.

Fig. 1.4 A depiction of molecules of water and carbon dioxide

Note that a water molecule comprises two hydrogen atoms and one oxygen atom. Similarly, a molecule of carbon dioxide contains two oxygen atoms combined with one carbon atom. Thus, the atoms of different elements are present in a compound in a fixed and definite ratio and this ratio is characteristic of a particular compound. Also, the properties of a compound are different from those of its constituent elements. For example, hydrogen and oxygen are gases, whereas, the compound formed by their combination i.e., water is a liquid. It is interesting to note that hydrogen burns with a pop sound and oxygen is a supporter of combustion, but water is used as a fire extinguisher.

1.3 PROPERTIES OF MATTER AND THEIR MEASUREMENT

1.3.1 Physical and chemical properties

Every substance has unique or characteristic properties. These properties can be classified into two categories — **physical properties**, such as colour, odour, melting point, boiling point, density, etc., and **chemical properties**, like compostition, combustibility, ractivity with acids and bases, etc.

Physical properties can be measured or observed without changing the identity or the composition of the substance. The measurement or observation of **chemical** properties requires a chemical change to occur. Measurement of physical properties does not require occurance of a chemical change. The examples of chemical properties are characteristic reactions of different substances; these include acidity or basicity, combustibility, etc. Chemists

describe, interpret and predict the behaviour of substances on the basis of knowledge of their physical and chemical properties, which are detemined by careful measurement and experimentation. In the follwing section, we will learn about the measurement of physical properties.

1.3.2 Measurement of physical properties

Quantitative measurement of properties is reaquired for scientific investigation. Many properties of matter, such as length, area, volume, etc., are quantitative in nature. Any quantitative observation or measurement is represented by a number followed by units in which it is measured. For example, length of a room can be represented as 6 m; here, 6 is the number and m denotes metre — the unit in which the length is measured.

Earlier two different systems of measurement, i.e., the **English System** and the **Metric System** were being used in different parts of the world. The metric system, which originated in France in late eighteenth century, was more convenient as it was based on the decimal system. Late, need of a common standard system was felt by the scientific community. Such a system was established in 1960 and is discussed in detail below.

1.3.3 The International System of Units (SI)

The International System of Units (in French Le Systeme International d'Unités —

Maintaining the National Standards of Measurement

The system of units, including unit definitions, keeps on changing with time. Whenever the accuracy of measurement of a particular unit was enhanced substantially by adopting new principles. member nations of metre treaty (signed in 1875), agreed to change the formal definition of that unit. Each modern industrialised country, including India, has a National Metrology Institute (NMI), which maintains standards of measurements. This responsibility has been given to the National Physical Laboratory (NPL), New Delhi. This laboratory establishes experiments to realise the base units and derived units of measurement and maintains National Standards of Measurement. These standards are periodically inter-compared standards maintained at other National Metrology Institutes in the world, as well as those, established at the International Bureau of Standards in Paris.

abbreviated as SI) was established by the 11th General Conference on Weights and Measures (CGPM from Conference Generale des Poids et Measures). The CGPM is an inter-governmental treaty organisation created by a diplomatic treaty known as Metre Convention which was signed in Paris in 1875.

Table 1.1 Base Physical Quantities and their Units

Base Physical Quantity	Symbol for Quantity	Name of SI Unit	Symbol for SI Unit
Length	l	metre	m
Mass	m	kilogram	kg
Time	t	second	s
Electric current	I	ampere	A
Thermodynamic temperature	T	kelvin	К
Amount of substance Luminous intensity	$n \ I_v$	mole candela	mol cd

The SI system has seven *base units* and they are listed in Table 1.1. These units pertain to the seven fundamental scientific quantities. The other physical quantities, such as speed,

volume, density, etc., can be derived from these quantities.

The definitions of the SI base units are given in Table 1.2.

Table 1.2 Definitions of SI Base Units

Unit of length	metre	The <i>metre</i> is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.
Unit of mass	kilogram	The <i>kilogram</i> is the unit of mass; it is equal to the mass of the international prototype of the kilogram.
Unit of time	second	The <i>second</i> is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom.
Unit of electric current	ampere	The <i>ampere</i> is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per metre of length.
Unit of thermodynamic temperature	kelvin	The <i>kelvin</i> , unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple* point of water.
Unit of amount of substance	mole	1. The <i>mole</i> is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon-12; its symbol is "mol." 2. When the mole is used, the elementary entities must be specified and these may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.
Unit of luminous intensity	candela	The <i>candela</i> is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.

 $^{^*}$ Triple pont of water is 0.01 $^{\circ}$ C or 279.16K (32.01 $^{\circ}$ F)

The SI system allows the use of prefixes to indicate the multiples or submultiples of a unit. These prefixes are listed in Table 1.3.

Table 1.3 Prefixes used in the SI System

Multiple	Prefix	Symbol
10-24	yocto	у
10 ⁻²¹	zepto	Z
10-18	atto	a
10-15	femto	f
10-12	pico	p
10-9	nano	n
10-6	micro	μ
10 ⁻³	milli	m
10-2	centi	c
10-1	deci	d
10	deca	da
10^{2}	hecto	h
10^{3}	kilo	k
10^{6}	mega	M
109	giga	G
10^{12}	tera	T
10^{15}	peta	P
10^{18}	exa	E
10^{21}	zeta	Z
10^{24}	yotta	Y

Let us now quickly go through some of the quantities which you will be often using in this book.

1.3.4 Mass and Weight

Mass of a substance is the amount of matter present in it, while **weight** is the force exerted by gravity on an object. The mass of a substance is constant, whereas, its weight may vary from one place to another due to change in gravity. You should be careful in using these terms.

The mass of a substance can be determined accurately in the laboratory by using an analytical balance (Fig. 1.5).

The SI unit of mass as given in Table 1.1 is kilogram. However, its fraction named as gram

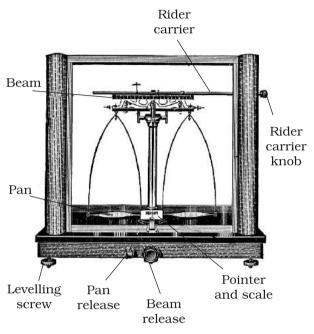
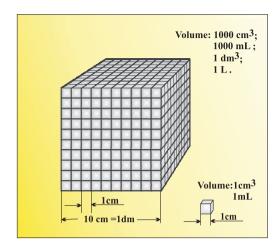


Fig. 1.5 Analytical balance

(1 kg = 1000 g), is used in laboratories due to the smaller amounts of chemicals used in chemical reactions.

1.3.5 Volume

Volume is the amont of space occupied by a substance. It has the units of (length)³. So in SI system, volume has units of m³. But again, in chemistry laboratories, smaller volumes are used. Hence, volume is often denoted in cm³ or dm³ units.


A common unit, litre (L) which is not an SI unit, is used for measurement of volume of liquids.

1 L = 1000 mL, $1000 \text{ cm}^3 = 1 \text{ dm}^3$

Fig. 1.6 helps to visualise these relations.

In the laboratory, the volume of liquids or solutions can be measured by graduated cylinder, burette, pipette, etc. A volumetric flask is used to prepare a known volume of a solution. These measuring devices are shown in Fig. 1.7.

1.3.6 Density

Fig. 1.6 Different units used to express volume

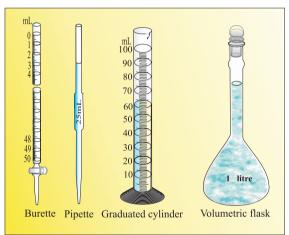
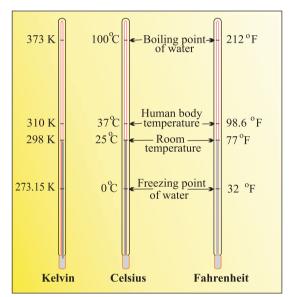


Fig 1.7 Some volume measuring devices

Two properties — mass and volume discussed above are related as follows:

Density of a substance is its amount of mass per unit volume. So SI units of density can be obtained as follows:

SI unit of density =
$$\frac{\text{SI unit of mass}}{\text{SI unit of volume}}$$


= or
$$kg m^{-3}$$

This unit is quite large and a chemist often expresses density in g cm⁻³, where mass is expressed in gram and volume is expressed in cm³. Density of a substance tells us about how

closely its particles are packed. If densiity is more, it means particles are more closely packed.

1.3.7 Temperature

There are three common scales to measure temperature — °C (degree celsius), °F (degree fahrenheit) and K (kelvin). Here, K is the SI unit. The thermometers based on these scales are shown in Fig. 1.8. Generally, the thermometer with celsius scale are calibrated from 0° to 100° , where these two temperatures are the freezing point and the boiling point of water, respectively. The fahrenheit scale is represented between 32° to 212° .

Fig. 1.8 Thermometers using different temperature scales

The temperatures on two scales are related to each other by the following relationship:

The kelvin scale is related to celsius scale as follows:

$$K = {}^{\circ}C + 273.15$$

It is interesting to note that temperature below 0 $^{\circ}$ C (i.e. negative values) are possible in Celsius scale but in Kelvin scale, negative temperature is not possible.

Reference Standard

After defining a unit of measurement such as the kilogram or the metre, scientists agreed on reference standards that make it possible to calibrate all measuring For devices. getting reliable measurements, all devices such as metre sticks and analytical balances have been calibrated by their manufacturers to give correct readings. However, each of these devices is standardised or calibrated against some reference. The mass standard is the kilogram since 1889. It has been defined as the mass of platinumiridium (Pt-Ir) cylinder that is stored in an airtight jar at International Bureau of Weights and Measures in Sevres, France. Pt-Ir was chosen for this standard because it is highly resistant to chemical attack and its mass will not change for an extremely long time.

Scientists are in search of a new standard for mass. This is being attempted through accurate determination of Avogadro constant. Work on this new standard focuses on ways to measure accurately the number of atoms in a well-defined mass of sample. One such method, which uses X-rays to determine the atomic density of a crystal of ultrapure silicon, has an accuracy of about 1 part in 106 but has not yet been adopted to serve as a standard. There are other methods but none of them are presently adequate to replace the Pt-Ir cylinder. No doubt, changes are expected within this decade.

The metre was originally defined as the length between two marks on a Pt-Ir bar kept at a temperature of 0°C (273.15 K). In 1960 the length of the metre was defined as 1.65076373 ×10⁶ times the wavelength of light emitted by a krypton laser. Although this was a cumbersome number, it preserved the length of the metre at its agreed value. The metre was redefined in 1983 by CGPM as the length of path travelled by light in vacuum during a time interval of 1/299 792 458 of a second. Similar to the length and the mass, there are reference standards for other physical quantities.

1.4 UNCERTAINTY IN MEASUREMENT

Many a time in the study of chemistry, one has to deal with experimental data as well as theoretical calculations. There are meaningful ways to handle the numbers conveniently and present the data realistically with certainty to the extent possible. These ideas are discussed below in detail.

1.4.1 Scientific Notation

As chemistry is the study of atoms and molecules which have extremely low masses and are present in extremely large numbers, a chemist has to deal with numbers as large as 602, 200,000,000,000,000,000,000 for the molecules of 2 g of hydrogen gas or as small as 0.000000000000000000000000166 g mass of a H atom. Similarly, other constants such as Planck's constant, speed of light, charges on particles, etc., involve numbers of the above magnitude.

It may look funny for a moment to write or count numbers involving so many zeros but it offers a real challenge to do simple mathematical operations of addition, subtraction, multiplication or division with such numbers. You can write any two numbers of the above type and try any one of the operations you like to accept as challenge, and then, you will really appreciate the difficulty in handling such numbers.

This problem is solved by using scientific notation for such numbers, i.e., exponential notation in which any number can be represented in the form $N \times 10^{n}$, where n is an exponent having positive or negative values and N is a number (called digit term) which varies between 1.000... and 9.999....

Thus, we can write 232.508 as 2.32508×10^2 in scientific notation. Note that while writing it, the decimal had to be moved to the left by two places and same is the exponent (2) of 10 in the scientific notation.

Similarly, 0.00016 can be written as 1.6×10^{-4} . Here the decimal has to be moved four places to the right and (-4) is the exponent in the scientific notation.

While performing mathematical operations on numbers expressed in scientific notations, the following points are to be kept in mind.

Multiplication and Division

These two operations follow the same rules which are there for exponential numbers, i.e.

Addition and Subtraction

For these two operations, first the numbers are written in such a way that they have the same

exponent. After that, the coefficients (digit terms) are added or subtracted as the case may be.

Thus, for adding 6.65×10^4 and 8.95×10^3 , exponent is made same for both the numbers. Thus, we get $(6.65 \times 10^4) + (0.895 \times 10^4)$

Then, these numbers can be added as follows $(6.65 + 0.895) \times 10^4 = 7.545 \times 10^4$

Similarly, the subtraction of two numbers can be done as shown below:

$$(2.5 \times 10^{-2}) - (4.8 \times 10^{-3})$$

= $(2.5 \times 10^{-2}) - (0.48 \times 10^{-2})$
= $(2.5 - 0.48) \times 10^{-2} = 2.02 \times 10^{-2}$

1.4.2 Significant Figures

Every experimental measurement has some amount of uncertainty associated with it because of limitation of measuring instrument and the skill of the person making the measurement. For example mass of an object is obtained using a platform balance and it comes out to be 9.4g. On measuring the mass of this object on an analytical balance, the mass obtained is 9.4213g. The mass obtained by an

analytical balance is slightly higher than the mass obtained by using a platform balance. Therefore, digit 4 palced after decimal in the measurement by platform balance is uncertain.

The uncertainty in the experimental or the calculated values is indicated by mentioning the number of significant figures. **Significant figures** are meaningful digits which are known with certainty plus one which is estimated or uncertain. The uncertainty is indicated by writing the certain digits and the last uncertain digit. Thus, if we write a result as $11.2 \, \text{mL}$, we say the 11 is certain and 2 is uncertain and the uncertainty would be ± 1 in the last digit. Unless otherwise stated, an uncertainty of ± 1 in the last digit is always understood.

There are certain rules for determining the number of significant figures. These are stated below:

- (1) All non-zero digits are significant. For example in 285 cm, there are three significant figures and in 0.25 mL, there are two significant figures.
- (2) Zeros preceding to first non-zero digit are not significant. Such zero indicates the position of decimal point. Thus, 0.03 has one significant figure and 0.0052 has two significant figures.
- (3) Zeros between two non-zero digits are significant. Thus, 2.005 has four significant figures.
- (4) Zeros at the end or right of a number are significant provided they are on the right side of the decimal point. For example, 0.200 g has three significant figures. But, if otherwise, the terminal zeros are not significant if there is no decimal point. For example, 100 has only one significant figure, but 100 has three significant figures and 100.0 has four significant figures. Such numbers are better represented in scientific notation. We can express the number 100 as 1×10² for one significant figure, 1.0×10² for two significant figures and 1.00×10² for three significant figures.
- (5) Counting the numbers of object, for example, 2 balls or 20 eggs, have infinite significant figures as these are exact

numbers and can be represented by writing infinite number of zeros after placing a decimal i.e.,

2 = 2.000000 or 20 = 20.000000

In numbers written in scientific notation, all digits are significant e.g., 4.01×10^2 has three significant figures, and 8.256×10^{-3} has four significant figures.

However, one would always like the results to be precise and accurate. Precision and accuracy are often referred to while we talk about the measurement.

Precision refers to the closeness of various measurements for the same quantity. However, accuracy is the agreement of a particular value to the true value of the result. For example, if the true value for a result is 2.00 g and student 'A' takes two measurements and reports the results as 1.95 g and 1.93 g. These values are precise as they are close to each other but are not accurate. Another student 'B' repeats the experiment and obtains 1.94 g and 2.05 g as the results for two measurements. These observations are neither precise nor accurate. When the third student 'C' repeats these measurements and reports 2.01 g and 1.99 g as the result, these values are both precise and accurate. This can be more clearly understood from the data given in Table 1.4

Table 1.4 Data to Illustrate Precision and Accuracy

Measurements/g					
1 2 Average (g)					
Student A	1.95	1.93	1.940		
Student B	1.94	2.05	1.995		
Student C	2.01	1.99	2.000		

Addition and Subtraction of Significant Figures

The result cannot have more digits to the right of the decimal point than either of the original numbers.

> 12.11 18.0 1.012 31.122

Here, 18.0 has only one digit after the decimal point and the result should be reported only up to one digit after the decimal point, which is 31.1.

Multiplication and Division of Significant Figures

In these operations, the result must be reported with no more significant figures as in the measurement with the few significant figures.

 $2.5 \times 1.25 = 3.125$

Since 2.5 has two significant figures, the result should not have more than two significant figures, thus, it is 3.1.

While limiting the result to the required number of significant figures as done in the above mathematical operation, one has to keep in mind the following points for rounding off the numbers

- 1. If the rightmost digit to be removed is more than 5, the preceding number is increased by one. For example, 1.386. If we have to remove 6, we have to round it to 1.39
- 2. If the rightmost digit to be removed is less than 5, the preceding number is not changed. For example, 4.334 if 4 is to be removed, then the result is rounded upto 4.33.
- 3. If the rightmost digit to be removed is 5, then the preceding number is not changed if it is an even number but it is increased by one if it is an odd number. For example, if 6.35 is to be rounded by removing 5, we have to increase 3 to 4 giving 6.4 as the result. However, if 6.25 is to be rounded off it is rounded off to 6.2.

1.4.3 Dimensional Analysis

Often while calculating, there is a need to convert units from one system to the other. The method used to accomplish this is called **factor label method** or **unit factor method** or **dimensional analysis**. This is illustrated below.

Example

A piece of metal is 3 inch (represented by in) long. What is its length in cm?

Solution

We know that 1 in = 2.54 cm

From this equivalence, we can write

$$\frac{1 \text{ in}}{2.54 \text{ cm}} = 1 = \frac{2.54 \text{ cm}}{1 \text{ in}}$$

Thus
$$\frac{1 \text{ in}}{2.54 \text{ cm}}$$
 equals 1 and

also equals 1. Both of these are called **unit factors**. If some number is multiplied by these unit factors (i.e. 1), it will not be affected otherwise.

Say, the 3 in given above is multiplied by the unit factor. So,

$$3 \text{ in} = 3 \text{ in} \times = 3 \times 2.54 \text{ cm} = 7.62 \text{ cm}$$

Now the unit factor by which multiplication

is to be done is that unit factor (in

the above case) which gives the desired units i.e., the numerator should have that part which is required in the desired result.

It should also be noted in the above example that units can be handled just like other numerical part. It can be cancelled, divided, multiplied, squared, etc. Let us study one more example.

Example

A jug contains 2L of milk. Calculate the volume of the milk in m^3 .

Solution

Since $1 L = 1000 \text{ cm}^3$ and 1 m = 100 cm, which gives

To get m³ from the above unit factors, the first unit factor is taken and it is cubed.

$$\left(\frac{1 \,\mathrm{m}}{100 \,\mathrm{cm}}\right)^3 \Rightarrow \frac{1 \,\mathrm{m}^3}{10^6 \,\mathrm{cm}^3} = \left(1\right)^3 = 1$$

Now 2 L = $2 \times 1000 \text{ cm}^3$

The above is multiplied by the unit factor

$$2 \times 1000 \text{ cm}^3 \times \frac{1 \text{ m}^3}{10^6 \text{ cm}^3} = \frac{2 \text{ m}^3}{10^3} = 2 \times 10^{-3} \text{ m}^3$$

Example

How many seconds are there in 2 days?

Solution

Here, we know 1 day = 24 hours (h)

or
$$\frac{1 \, day}{24 \, h} = 1 = \frac{24 \, h}{1 \, day}$$

then 1h = 60 min

or
$$\frac{1h}{60 \, \text{min}} = 1 = \frac{60 \, \text{min}}{1h}$$

so, for converting 2 days to seconds,

The unit factors can be multiplied in series in one step only as follows:

 $= 2 \times 24 \times 60 \times 60 \text{ s}$ = 172800 s

1.5 LAWS OF CHEMICAL COMBINATIONS

The combination of elements to form compounds is governed by the following five basic laws.

1.5.1 Law of Conservation of Mass

This law was put forth by Antoine Lavoisier in 1789. He performed careful experimental studies for combusion reactions and reached to the conclustion

Antoine Lavoisier (1743–1794)

that in all physical and chemical changes, there is no net change in mass duting the process. Hence, he reached to the conclusion that matter can neither be created nor destroyed. This is called 'Law of Conservation of Mass'. This law formed the basis for several later developments in chemistry. Infact, this was the result of exact measurement of masses of reactants and products, and carefully planned experiments performed by Lavoisier.

1.5.2 Law of Definite Proportions

This law was given by, a French chemist, Joseph Proust. He stated that a given

compound always contains exactly the same proportion of elements by

weight.

Proust worked with two samples of cupric carbonate — one of which was of natural origin and the other was synthetic. He found that the composition of elements present in it was same for

Joseph Proust (1754–1826)

both the samples as shown below:

	% of	% of	% of	
	copper	carbon	oxygen	
Natural Sample	51.35	9.74	38.91	
Synthetic Sample	51.35	9.74	38.91	

Thus, he concluded that irrespective of the source, a given compound always contains same elements combined together in the same proportion by mass. The validity of this law has been confirmed by various experiments. It is sometimes also referred to as **Law of Definite Composition**.

1.5.3 Law of Multiple Proportions

This law was proposed by Dalton in 1803. According to this law, if two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in the ratio of small whole numbers.

For example, hydrogen combines with oxygen to form two compounds, namely, water and hydrogen peroxide.

Hydrogen + Oxygen
$$\rightarrow$$
 Water
$$2g \qquad 16g \qquad 18g$$

Hydrogen + Oxygen \rightarrow Hydrogen Peroxide

$$2g$$
 $32g$ $34g$

Here, the masses of oxygen (i.e., 16 g and 32 g), which combine with a fixed mass of hydrogen (2g) bear a simple ratio, i.e., 16:32 or 1:2.

1.5.4 Gay Lussac's Law of Gaseous Volumes

This law was given by Gay Lussac in 1808. He observed that when gases combine or are produced in a chemical reaction they do so in

a simple ratio by volume, provided all gases are at the same temperature and pressure.

Thus, 100 mL of hydrogen combine with 50 mL of oxygen to give 100 mL of water vapour.

Joseph Louis Gay Lussac

Hydrogen + Oxygen \rightarrow Water

100 mL 50 mL 100 mL

Thus, the volumes of hydrogen and oxygen which combine (i.e., 100 mL and 50 mL) bear a simple ratio of 2:1.

Gay Lussac's discovery of integer ratio in volume relationship is actually the law of definite proportions by volume. The law of definite proportions, stated earlier, was with respect to mass. The Gay Lussac's law was explained properly by the work of Avogadro in 1811.

1.5.5 Avogadro Law

In 1811, Avogadro proposed that equal volumes of all gases at the same temperature and pressure should contain equal number of molecules. Avogadro made a distinction between **atoms** and **molecules** which is quite understandable in present times. If we consider again the reaction of hydrogen and oxygen to produce water, we see that two volumes of hydrogen combine with one volume of oxygen to give two volumes of water without leaving any unreacted oxygen.

Note that in the Fig. 1.9, each box contains equal number of molecules. In fact, Avogadro

could explain the above result by considering the molecules to be **polyatomic**. If hydrogen and oxygen were considered as **diatomic** as recognised now, then the above results are easily understandable. However, Dalton and others believed at that time that atoms of the same kind cannot combine and molecules of oxygen or

Lorenzo Romano Amedeo Carlo Avogadro di Quareqa edi Carreto (1776–1856)

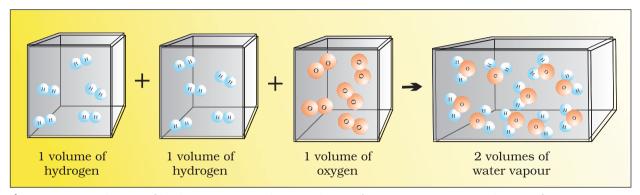


Fig. 1.9 Two volumes of hydrogen react with one volume of oxygen to give two volumes of water vapour

hydrogen containing two atoms did not exist. Avogadro's proposal was published in the French *Journal de Physidue*. In spite of being correct, it did not gain much support.

After about 50 years, in 1860, the first international conference on chemistry was held in Karlsruhe, Germany, to resolve various ideas. At the meeting, Stanislao Cannizaro presented a sketch of a course of chemical philosophy, which emphasised on the importance of Avogadro's work.

1.6 DALTON'S ATOMIC THEORY

Although the origin of the idea that matter is

composed of small indivisible particles called 'a-tomio' (meaning, indivisible), dates back to the time of Democritus, a Greek Philosopher (460–370 BC), it again started emerging as a result of several experimental studies which led to the laws mentioned above.

John Dalton (1776–1884)

In 1808, Dalton published 'A New System of Chemical Philosophy', in which he proposed the following:

- 1. Matter consists of indivisible atoms.
- 2. All atoms of a given element have identical properties, including identical mass. Atoms of different elements differ in mass.
- 3. Compounds are formed when atoms of different elements combine in a fixed ratio.
- 4. Chemical reactions involve reorganisation of atoms. These are neither created nor destroyed in a chemical reaction.

Dalton's theory could explain the laws of chemical combination. However, it could not explain the laws of gaseous volumes. It could not provide the reason for combining of atoms, which was answered later by other scientists.

1.7 ATOMIC AND MOLECULAR MASSES

After having some idea about the terms atoms and molecules, it is appropriate here to understand what do we mean by atomic and molecular masses.

1.7.1 Atomic Mass

The atomic mass or the mass of an atom is actually very-very small because atoms are extremely small. Today, we have sophisticated techniques e.g., mass spectrometry for determining the atomic masses fairly accurately. But in the nineteenth century, scientists could determine, mass of one atom relative to the another by experimental means, as has been mentioned earlier. Hydrogen, being the lightest atom was arbitrarily assigned a mass of 1 (without any units) and other elements were assigned masses relative to it. However, the present system of atomic masses is based on carbon - 12 as the standard and has been agreed upon in 1961. Here, Carbon - 12 is one of the isotopes of carbon and can be represented as ¹²C. In this system, ¹²C is assigned a mass of exactly 12 atomic mass unit (amu) and masses of all other atoms are given relative to this standard. One atomic mass unit is defined as a mass exactly equal to one-twelfth the mass of one carbon - 12 atom.

And 1 amu = 1.66056×10^{-24} g Mass of an atom of hydrogen

 $= 1.6736 \times 10^{-24} g$

Thus, in terms of amu, the mass

of hydrogen atom
$$= \frac{1.6736 \times 10^{-24} \text{g}}{1.66056 \times 10^{-24} \text{g}}$$
$$= 1.0078 \text{ amu}$$
$$= 1.0080 \text{ amu}$$

Similarly, the mass of oxygen - 16 (16 O) atom would be 15.995 amu.

At present, 'amu' has been replaced by 'u' which is known as unified mass.

When we use atomic masses of elements in calculations, we actually use *average atomic masses* of elements which are explained below.

1.7.2 Average Atomic Mass

Many naturally occurring elements exist as more than one isotope. When we take into account the existence of these isotopes and their relative abundance (per cent occurrence), the average atomic mass of that element can be computed. For example, carbon has the following three isotopes with relative abundances and masses as shown against each of them.

Isotope	Relative Abundance (%)	Atomic Mass (amu)	
¹² C	98.892	12	
¹³ C	1.108	13.00335	
¹⁴ C	2×10^{-10}	14.00317	

From the above data, the average atomic mass of carbon will come out to be:

$$(0.98892)$$
 (12 u) + (0.01108) (13.00335 u) + (2 × 10⁻¹²) (14.00317 u)

Similarly, average atomic masses for other elements can be calculated. In the periodic table of elements, the atomic masses mentioned for different elements actually represent their average atomic masses.

1.7.3 Molecular Mass

Molecular mass is the sum of atomic masses of the elements present in a molecule. It is obtained by multiplying the atomic mass of each element by the number of its atoms and adding them together. For example, molecular mass of methane, which contains one carbon atom and four hydrogen atoms, can be obtained as follows:

Molecular mass of methane,

$$(CH_4) = (12.011 \text{ u}) + 4 (1.008 \text{ u})$$

= 16.043 u

Similarly, molecular mass of water (H₂O)

= $2 \times$ atomic mass of hydrogen + $1 \times$ atomic mass of oxygen

= 18.02 u

Problem 1.1

Calculate the molecular mass of glucose $(C_6H_{12}O_6)$ molecule.

Solution

Molecular mass of glucose (C₆H₁₂O₆)

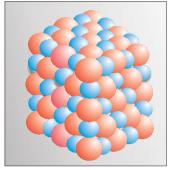
(96.00 u)

= 180.162 u

1.7.4 Formula Mass

Some substances such as sodium chloride do not contain discrete molecules as their constituent units. In such compounds, positive (sodium ion) and negative (chloride ion) entities are arranged in a three-dimensional structure, as shown in Fig. 1.10.

It may be noted that in sodium chloride, one Na^+ ion is surrounded by six Cl^- ion and *vice-versa*.


The formula, such as NaCl, is used to calculate the **formula mass** instead of molecular mass as in the solid state sodium chloride does not exist as a single entity.

Thus, the formula mass of sodium chloride is

atomic mass of sodium + atomic mass of chlorine

= 23.0 u + 35.5 u = 58.5 u

1.8 MOLE CONCEPT AND MOLAR MASSES

Fig. 1.10 Packing of Na⁺ and Cl⁻ ions in sodium chloride

Atoms and molecules are extremely small in size and their numbers in even a small amount of any substance is really very large. To handle such large numbers, a unit of convenient magnitude is required.

Just as we denote one dozen for 12 items, score for 20 items, gross for 144 items, we use the idea of mole to count entities at the microscopic level (i.e., atoms, molecules, particles, electrons, ions, etc).

In SI system, **mole** (symbol, mol) was introduced as seventh base quantity for the amount of a substance.

One mole is the amount of a substance that contains as many particles or entities as there are atoms in exactly 12 g (or 0.012 kg) of the 12 C isotope. It may be emphasised that the mole of a substance always contains the same number of entities, no matter what the substance may be. In order to determine this number precisely, the mass of a carbon–12 atom was determined by a mass spectrometer and found to be equal to 1.992648 \times 10⁻²³ g. Knowing that one mole of carbon weighs 12 g, the number of atoms in it is equal to :

$$\frac{12\,\mathrm{g/mol}^{12}\mathrm{C}}{1.992648\times10^{-23}\,\mathrm{g/^{12}\,C\,atom}}$$

 $=6.0221367\times10^{23}$ atoms/mol

This number of entities in 1 mol is so important that it is given a separate name and symbol. It is known as **'Avogadro constant'**, or Avogadro number denoted by N_A in honour of Amedeo Avogadro. To appreciate the largeness of this number, let us write it with all zeroes without using any powers of ton.

6022136700000000000000000

Hence, so many entities (atoms, molecules or any other particle) constitute one mole of a particular substance.

We can, therefore, say that 1 mol of hydrogen atoms = 6.022×10^{23} atoms

1 mol of water molecules = 6.022×10²³ water molecules

1 mol of sodium chloride = 6.022×10^{23} formula units of sodium chloride

Having defined the mole, it is easier to know the mass of one mole of a substance or the constituent entities. **The mass of one mole of a substance in grams is called its molar mass.** The molar mass in grams is numerically equal to atomic/molecular/ formula mass in u.

Molar mass of water = 18.02 g mol⁻¹ Molar mass of sodium chloride = 58.5 g mol⁻¹

1.9 PERCENTAGE COMPOSITION

Fig. 1.11 One mole of various substances

So far, we were dealing with the number of entities present in a given sample. But many a time, information regarding the percentage of a particular element present in a compound is required. Suppose, an unknown or new compound is given to you, the first question you would ask is: what is

its formula or what are its constituents and in what ratio are they present in the given compound? For known compounds also, such information provides a check whether the given sample contains the same percentage of elements as present in a pure sample. In other words, one can check the purity of a given sample by analysing this data.

Let us understand it by taking the example of water (H₂O). Since water contains hydrogen and oxygen, the percentage composition of both these elements can be calculated as follows:

Mass % of an element =

 $\frac{\text{mass of that element in the compound} \times 100}{\text{molar mass of the compound}}$

Molar mass of water =
$$18.02 \text{ g}$$

Mass % of hydrogen = $\frac{2 \times 1.008}{18.02} \times 100$
= 11.18

Mass % of oxygen =

$$= 88.79$$

Let us take one more example. What is the percentage of carbon, hydrogen and oxygen in ethanol?

Molecular formula of ethanol is: C_2H_5OH Molar mass of ethanol is: $(2\times12.01+6\times1.008+16.00)$ g

$$= 46.068 g$$

Mass per cent of carbon

Mass per cent of hydrogen

$$=\frac{6.048\,\mathrm{g}}{46.068\,\mathrm{g}} \times 100 = 13.13\%$$

Mass per cent of oxygen

$$= \frac{16.00\,\mathrm{g}}{46.068\,\mathrm{g}} \times 100 = 34.73\%$$

After understanding the calculation of per cent of mass, let us now see what information can be obtained from the per cent composition data.

1.9.1 Empirical Formula for Molecular Formula

An **empirical formula** represents the simplest whole number ratio of various atoms present in a compound, whereas, the **molecular formula** shows the exact number of different types of atoms present in a molecule of a compound.

If the mass per cent of various elements present in a compound is known, its empirical formula can be determined. Molecular formula can further be obtained if the molar mass is known. The following example illustrates this sequence.

Problem 1.2

A compound contains 4.07 % hydrogen, 24.27 % carbon and 71.65 % chlorine.

Its molar mass is 98.96 g. What are its empirical and molecular formulas?

Solution

Step 1. Conversion of mass per cent to grams

Since we are having mass per cent, it is convenient to use 100 g of the compound as the starting material. Thus, in the 100 g sample of the above compound, 4.07g hydrogen, 24.27g and 71.65 g chlorine are present.

Step 2. Convert into number moles of each element

Divide the masses obtained above by respective atomic masses of various elements. This gives the number of moles of constituent elements in the compound

Moles of hydrogen =
$$\frac{4.07 \,\mathrm{g}}{1.008 \,\mathrm{g}} = 4.04$$

Moles of carbon
$$=$$
 $= 2.021$

Moles of chlorine
$$=$$
 $= 2.021$

Step 3. Divide each of the mole values obtained above by the smallest number amongst them

Since 2.021 is smallest value, division by it gives a ratio of 2:1:1 for H:C:Cl.

In case the ratios are not whole numbers, then they may be converted into whole number by multiplying by the suitable coefficient.

Step 4. Write down the empirical formula by mentioning the numbers after writing the symbols of respective elements

CH₂Cl is, thus, the empirical formula of the above compound.

Step 5. Writing molecular formula

(a) Determine empirical formula mass by adding the atomic masses of various atoms present in the empirical formula.

For CH_2Cl , empirical formula mass is $12.01 + (2 \times 1.008) + 35.453$

= 49.48 g

(b) Divide Molar mass by empirical formula mass

$$= 2 = (n)$$

(c) Multiply empirical formula by n obtained above to get the molecular formula

Empirical formula = CH_2Cl , n = 2. Hence molecular formula is $C_2H_4Cl_2$.

1.10 STOICHIOMETRY AND STOICHIOMETRIC CALCULATIONS

The word 'stoichiometry' is derived from two Greek words — *stoicheion* (meaning, *element*) and *metron* (meaning, *measure*). Stoichiometry, thus, deals with the calculation of masses (sometimes volumes also) of the reactants and the products involved in a chemical reaction. Before understanding how to calculate the amounts of reactants required or the products produced in a chemical reaction, let us study what information is available from the *balanced* chemical equation of a given reaction. Let us consider the

combustion of methane. A balanced equation for this reaction is as given below:

$$CH_{4}(g) + 2O_{2}(g) \rightarrow CO_{2}(g) + 2 H_{2}O(g)$$

Here, methane and dioxygen are called *reactants* and carbon dioxide and water are called *products*. Note that all the reactants and the products are gases in the above reaction and this has been indicated by letter (g) in the brackets next to its formula. Similarly, in case of solids and liquids, (s) and (l) are written respectively.

The coefficients 2 for $\rm O_2$ and $\rm H_2O$ are called stoichiometric coefficients. Similarly the coefficient for $\rm CH_4$ and $\rm CO_2$ is one in each case. They represent the number of molecules (and moles as well) taking part in the reaction or formed in the reaction.

Thus, according to the above chemical reaction,

- One mole of CH₄(g) reacts with two moles of O₂(g) to give one mole of CO₂(g) and two moles of H₂O(g)
- One molecule of CH₄(g) reacts with 2 molecules of O₂(g) to give one molecule of CO₂(g) and 2 molecules of H₂O(g)
- 22.7 L of $CH_4(g)$ reacts with 45.4 L of $O_2(g)$ to give 22.7 L of $CO_2(g)$ and 45.4 L of $H_2O(g)$
- 16 g of CH₄ (g) reacts with 2×32 g of O₂ (g) to give 44 g of CO₂ (g) and 2×18 g of H₂O (g).

From these relationships, the given data can be interconverted as follows:

1.10.1 Limiting Reagent

Many a time, the reactions are carried out when the reactants are not present in the amounts as required by a balanced chemical reaction. In such situations, one reactant is in excess over the other. The reactant which is present in the least amount gets consumed after sometime and after that no further reaction takes place whatever be the amount of the other reactant present. Hence, the

reactant, which gets consumed first, limits the amount of product formed and is, therefore, called the **limiting reagent**.

In performing stoichiometric calculations, this aspect is also to be kept in mind.

1.10.2 Reactions in Solutions

A majority of reactions in the laboratories are carried out in solutions. Therefore, it is important to understand as how the amount of substance is expressed when it is present in the solution. The concentration of a solution

or the amount of substance present in its given volume can be expressed in any of the following ways.

- 1. Mass percent or weight per cent (w/w %)
- 2. Mole fraction
- 3. Molarity
- 4. Molality

Let us now study each one of them in detail.

Problem 1.3

Calculate the amount of water (g)

Balancing a chemical equation

According to the law of conservation of mass, a balanced chemical equation has the *same* number of atoms of each element on both sides of the equation. Many chemical equations can be balanced by *trial* and error. Let us take the reactions of a few metals and non-metals with oxygen to give oxides

 $4 \text{ Fe(s)} + 3O_9(g) \rightarrow 2\text{Fe}_9O_3(s)$

(a) balanced equation

 $2 \text{ Mg(s)} + O_2(g) \rightarrow 2 \text{MgO(s)}$

(b) balanced equation

 $P_4(s) + O_2(g) \rightarrow P_4O_{10}(s)$

(c) unbalanced equation

Equations (a) and (b) are balanced, since there are same number of metal and oxygen atoms on each side of the equations. However equation (c) is not balanced. In this equation, phosphorus atoms are balanced but not the oxygen atoms. To balance it, we must place the coefficient 5 on the left of oxygen on the left side of the equation to balance the oxygen atoms appearing on the right side of the equation.

 $P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$ balanced equation

Now, let us take combustion of propane, C₃H₈. This equation can be balanced in steps.

Step 1 Write down the correct formulas of reactants and products. Here, propane and oxygen are reactants, and carbon dioxide and water are products.

 $C_3H_8(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$ unbalanced equation

Step 2 Balance the number of C atoms: Since 3 carbon atoms are in the reactant, therefore, three CO_9 molecules are required on the right side.

 $C_{3}H_{8}(g) + O_{2}(g) \rightarrow 3CO_{2}(g) + H_{2}O(l)$

Step 3 Balance the number of H atoms: on the left there are 8 hydrogen atoms in the reactants however, each molecule of water has two hydrogen atoms, so four molecules of water will be required for eight hydrogen atoms on the right side.

 $C_{3}H_{g}$ (g) $+O_{3}$ (g) $\rightarrow 3CO_{g}$ (g) $+4H_{g}O$ (l)

Step 4 Balance the number of O atoms: There are 10 oxygen atoms on the right side $(3 \times 2 = 6 \text{ in } CO_2 \text{ and } 4 \times 1 = 4 \text{ in water})$. Therefore, five O_2 molecules are needed to supply the required 10 CO_2 and $4 \times 1 = 4$ in water). Therefore, five O_2 molecules are needed to supply the required 10 oxygen atoms.

 $C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{3}(g) + 4H_{3}O(l)$

Step 5 Verify that the number of atoms of each element is balanced in the final equation. The equation shows three carbon atoms, eight hydrogen atoms, and 10 oxygen atoms on each side.

All equations that have correct formulas for all reactants and products can be balanced. Always remember that subscripts in formulas of reactants and products cannot be changed to balance an equation.

produced by the combustion of 16 g of methane.

Solution

The balanced equation for the combustion of methane is:

(i) $16~\rm g$ of ${\rm CH_4}$ corresponds to one mole. (ii) From the above equation, 1 mol of ${\rm CH_4}$ (g) gives 2 mol of ${\rm H_2O}$ (g).

2 mol of water (
$$H_2O$$
) = 2 × (2+16)
= 2 × 18 = 36 g

$$1 \text{ mol } H_2O = 18 \text{ g } H_2O \Rightarrow \frac{18 \text{ g } H_2O}{1 \text{ mol } H_2O} = 1$$

$$\mbox{Hence, 2 mol H}_{\mbox{\tiny 2}}\mbox{O} \times \ \frac{18\,\mbox{g H}_{\mbox{\tiny 2}}\mbox{O}}{1\,\mbox{mol H}_{\mbox{\tiny 2}}\mbox{O}}$$

$$= 2 \times 18 \text{ g H}_{2}\text{O} = 36 \text{ g H}_{2}\text{O}$$

Problem 1.4

How many moles of methane are required to produce 22g CO₂ (g) after combustion?

Solution

According to the chemical equation,

 $44g CO_2$ (g) is obtained from $16 g CH_4$ (g). [$\because 1 \text{ mol } CO_2$ (g) is obtained from $1 \text{ mol } of CH_4$ (g)]

Number of moles of CO₂ (g)

 $= 0.5 \text{ mol CO}_{2} (g)$

Hence, 0.5 mol CO_2 (g) would be obtained from 0.5 mol CH_4 (g) or 0.5 mol of CH_4 (g) would be required to produce 22 g CO_2 (g).

Problem 1.5

50.0 kg of $\rm N_2$ (g) and 10.0 kg of $\rm H_2$ (g) are mixed to produce $\rm NH_3$ (g). Calculate the amount of $\rm NH_3$ (g) formed. Identify the limiting reagent in the production of $\rm NH_3$

in this situation.

Solution

A balanced equation for the above reaction is written as follows:

Calculation of moles:

Number of moles of N₂

= 50.0 kg
$$N_2 \times$$

 $= 17.86 \times 10^2 \text{ mol}$

Number of moles of H₂

=
$$10.00 \text{ kg H}_{2} \times$$

= 4.96×10³ mol

According to the above equation, 1 mol N_2 (g) requires 3 mol H_2 (g), for the reaction. Hence, for 17.86×10^2 mol of N_2 , the moles of H_2 (g) required would be

17.86×10² mol N₂ ×

 $= 5.36 \times 10^3 \text{ mol H}_2$

But we have only 4.96×10^3 mol H₂. Hence, dihydrogen is the limiting reagent in this case. So, NH₃(g) would be formed only from that amount of available dihydrogen *i.e.*, 4.96×10^3 mol

Since 3 mol H₂(g) gives 2 mol NH₃(g)

 $4.96 \times 10^3 \text{ mol H}_{2} \text{ (g)} \times$

 $= 3.30 \times 10^3 \text{ mol NH}_3 \text{ (g)}$

3.30×10³ mol NH₃ (g) is obtained.

If they are to be converted to grams, it is done as follows:

 $1 \text{ mol NH}_3 (g) = 17.0 \text{ g NH}_3 (g)$

 $3.30 \times 10^3 \text{ mol NH}_3 \text{ (g)} \times$

 $= 3.30 \times 10^3 \times 17 \text{ g NH}_{\odot} \text{ (g)}$

 $= 56.1 \times 10^3 \text{ g NH}_3$

$$= 56.1 \text{ kg NH}_3$$

1. Mass per cent

It is obtained by using the following relation:

Mass per cent =
$$\frac{\text{Mass of solute}}{\text{Mass of solution}}$$
 100

Problem 1.6

A solution is prepared by adding 2 g of a substance A to 18 g of water. Calculate the mass per cent of the solute.

Solution

Mass per cent of A =
$$\frac{\text{Mass of A}}{\text{Mass of solution}}$$
 100

$$= \frac{2g}{20g} \times 100$$

$$= \frac{1000 \text{ mL}}{2 \text{ gmof A} + 18g \text{ of water}} \times 100$$

2. Mole Fraction

It is the ratio of number of moles of a particular component to the total number of moles of the solution. If a substance 'A' dissolves in substance 'B' and their number of moles are $n_{\rm A}$ and $n_{\rm B}$, respectively, then the mole fractions of A and B are given as:

Mole fraction of A

$$= \frac{\text{No. of moles of A}}{\text{No. of moles of solution}}$$
$$= \frac{n_{\text{A}}}{n_{\text{A}} + n_{\text{B}}}$$

Mole fraction of B

$$= \frac{\text{No.of moles of B}}{\text{No.of moles of solution}}$$
$$= \frac{n_{\text{B}}}{n_{\text{A}} + n_{\text{B}}}$$

3. Molarity

It is the most widely used unit and is denoted by M. It is defined as the number of moles of the solute in 1 litre of the solution. Thus,

Molarity (M) =
$$\frac{\text{No. of moles of solute}}{\text{Volume of solution in litres}}$$

Suppose, we have 1 M solution of a substance, say NaOH, and we want to prepare a 0.2 M solution from it.

1 M NaOH means 1 mol of NaOH present in 1 litre of the solution. For 0.2 M solution, we require 0.2 moles of NaOH dissolved in 1 litre solution.

Hence, for making 0.2M solution from 1M solution, we have to take that volume of 1M NaOH solution, which contains 0.2 mol of NaOH and dilute the solution with water to 1 litre.

Now, how much volume of concentrated (1M) NaOH solution be taken, which contains 0.2 moles of NaOH can be calculated as follows:

If 1 mol is present in 1L or 1000 mL solution

then, 0.2 mol is present in

solution

= 200 mL solution

Thus, 200 mL of 1M NaOH are taken and enough water is added to dilute it to make it 1 litre.

In fact for such calculations, a general formula, $M_1 \times V_1 = M_2 \times V_2$ where M and V are molarity and volume, respectively, can be used. In this case, M_1 is equal to 0.2M; $V_1 = 1000$ mL and, $M_2 = 1.0$ M; V_2 is to be calculated. Substituting the values in the formula:

0.2 M
$$\times$$
 1000 mL = 1.0 M \times $V_{_2}$

$$V_2 = \frac{0.2 \,\mathrm{M} \times 1000 \,\mathrm{mL}}{1.0 \,\mathrm{M}} = 200 \,\mathrm{mL}$$

Note that the **number of moles of solute** (NaOH) was 0.2 in 200 mL and *it has remained the same*, i.e., 0.2 even after dilution (in 1000 mL) as we have changed just the amount of solvent (i.e., water) and have not done anything with respect to NaOH. But keep in mind the concentration.

Problem 1.7

Calculate the molarity of NaOH in the solution prepared by dissolving its 4 g in enough water to form 250 mL of the solution.

Solution

Since molarity (M)

 $= \frac{\text{No. of moles of solute}}{\text{Volume of solution in litres}}$

 $= 0.4 \text{ mol } L^{-1}$

= 0.4 M

Note that molarity of a solution depends upon temperature because volume of a solution is temperature dependent.

4. Molality

It is defined as the number of moles of solute present in 1 kg of solvent. It is denoted by m.

Thus, Molality (m)

Problem 1.8

The density of 3 M solution of NaCl is $1.25\,\mathrm{g\,mL}^{-1}$. Calculate the molality of the solution.

Solution

$$\begin{split} M &= 3 \text{ mol } L^{-1} \\ \text{Mass of NaCl} \\ \text{in 1 L solution} &= 3 \times 58.5 = 175.5 \text{ g} \\ \text{Mass of} \\ \text{1L solution} &= 1000 \times 1.25 = 1250 \text{ g} \\ \text{(since density} &= 1.25 \text{ g mL}^{-1} \text{)} \\ \text{Mass of water in solution} &= 1250 - 75.5 \end{split}$$

Molality

 $= 2.79 \, \mathrm{m}$

= 1074.5 g

Often in a chemistry laboratory, a solution of a desired concentration is prepared by diluting a solution of known higher concentration. The solution of higher concentration is also known as stock solution. Note that the molality of a solution does not change with temperature since mass remains unaffected with temperature.

SUMMARY

Chemistry, as we understand it today is not a very old discipline. People in ancient India, already had the knowledge of many scientific phenomenon much before the advent of modern science. They applied the knowledge in various walks of life.

The study of chemistry is very important as its domain encompasses every sphere of life. Chemists study the properties and structure of substances and the changes undergone by them. All substances contain matter, which can exist in three states – solid, liquid or gas. The constituent particles are held in different ways in these states of matter and they exhibit their characteristic properties. Matter can also be classified into elements, compounds or mixtures. An **element** contains particles of only one type, which may be **atoms** or **molecules**. The compounds are formed where atoms of two or more elements combine in a fixed ratio to each other. Mixtures occur widely and many of the substances present around us are mixtures.

When the properties of a substance are studied, measurement is inherent. The quantification of properties requires a system of measurement and units in which the quantities are to be expressed. Many systems of measurement exist, of which

the English and the Metric Systems are widely used. The scientific community, however, has agreed to have a uniform and common system throughout the world, which is abbreviated as SI units (International System of Units).

Since measurements involve recording of data, which are always associated with a certain amount of uncertainty, the proper handling of data obtained by measuring the quantities is important. The measurements of quantities in chemistry are spread over a wide range of 10^{-31} to 10^{+23} . Hence, a convenient system of expressing the numbers in **scientific notation** is used. The uncertainty is taken care of by specifying the number of **significant figures** in which the observations are reported. The **dimensional analysis**, helps to express the measured quantities in different systems of units. Hence, it is possible to interconvert the results from one system of units to another.

The combination of different atoms is governed by basic laws of chemical combination — these being the Law of Conservation of Mass, Law of Definite Proportions, Law of Multiple Proportions, Gay Lussac's Law of Gaseous Volumes and Avogadro Law. All these laws led to the Dalton's atomic theory, which states that atoms are building blocks of matter. The atomic mass of an element is expressed relative to ¹²C isotope of carbon which, has an exact value of 12u. Usually, the atomic mass used for an element is the average atomic mass obtained by taking into account the natural abundance of different isotopes of that element. The molecular mass of a molecule is obtained by taking sum of the atomic masses of different atoms present in a molecule. The molecular formula can be calculated by determining the mass per cent of different elements present in a compound and its molecular mass.

The number of atoms, molecules or any other particles present in a given system are expressed in the terms of **Avogadro constant** (6.022 \times 10²³). This is known as **1 mol** of the respective particles or entities.

Chemical reactions represent the chemical changes undergone by different elements and compounds. A **balanced** chemical equation provides a lot of information. The coefficients indicate the molar ratios and the respective number of particles taking part in a particular reaction. The quantitative study of the reactants required or the products formed is called **stoichiometry**. Using stoichiometric calculations, the amount of one or more reactant(s) required to produce a particular amount of product can be determined and vice-versa. The amount of substance present in a given volume of a solution is expressed in number of ways, e.g., mass per cent, mole fraction, molarity and molality.

EXERCISES

- 1.1 Calculate the molar mass of the following: (i) H_2O (ii) CO_2 (iii) CH_4
- 1.2 Calculate the mass per cent of different elements present in sodium sulphate $(Na_{\alpha}SO_{\alpha})$.
- 1.3 Determine the empirical formula of an oxide of iron, which has 69.9% iron and 30.1% dioxygen by mass.
- 1.4 Calculate the amount of carbon dioxide that could be produced when
 - (i) 1 mole of carbon is burnt in air.
 - (ii) 1 mole of carbon is burnt in 16 g of dioxygen.
 - (iii) 2 moles of carbon are burnt in 16 g of dioxygen.
- 1.5 Calculate the mass of sodium acetate (CH_3COONa) required to make 500 mL of 0.375 molar aqueous solution. Molar mass of sodium acetate is 82.0245 g mol⁻¹.

1.6 Calculate the concentration of nitric acid in moles per litre in a sample which has a density, 1.41 g mL⁻¹ and the mass per cent of nitric acid in it being 69%.

- 1.7 How much copper can be obtained from 100 g of copper sulphate (CuSO₄)?
- Determine the molecular formula of an oxide of iron, in which the mass per cent of iron and oxygen are 69.9 and 30.1, respectively.
- 1.9 Calculate the atomic mass (average) of chlorine using the following data:

% Natural Abundance Molar Mass 35Cl 75.77 34.9689 37Cl 24.23 36.9659

- 1.10 In three moles of ethane (C_oH_o), calculate the following:
 - (i) Number of moles of carbon atoms.
 - (ii) Number of moles of hydrogen atoms.
 - (iii) Number of molecules of ethane.
- 1.11 What is the concentration of sugar $(C_{12}H_{22}O_{11})$ in mol L^{-1} if its 20 g are dissolved in enough water to make a final volume up to 2L?
- 1.12 If the density of methanol is 0.793 kg L^{-1} , what is its volume needed for making 2.5 L of its 0.25 M solution?
- 1.13 Pressure is determined as force per unit area of the surface. The SI unit of pressure, pascal is as shown below:

 $1Pa = 1N m^{-2}$

If mass of air at sea level is 1034 g cm⁻², calculate the pressure in pascal.

- 1.14 What is the SI unit of mass? How is it defined?
- 1.15 Match the following prefixes with their multiples:

		0 1
	Prefixes	Multiples
(i)	micro	10^{6}
(ii)	deca	10^9
(iii)	mega	10^{-6}
(iv)	giga	10^{-15}
(v)	femto	10

- 1.16 What do you mean by significant figures?
- 1.17 A sample of drinking water was found to be severely contaminated with chloroform, $CHCl_3$, supposed to be carcinogenic in nature. The level of contamination was 15 ppm (by mass).
 - (i) Express this in per cent by mass.
 - (ii) Determine the molality of chloroform in the water sample.
- 1.18 Express the following in the scientific notation:
 - (i) 0.0048
 - (ii) 234,000
 - (iii) 8008
 - (iv) 500.0
 - (v) 6.0012
- 1.19 How many significant figures are present in the following?
 - (i) 0.0025
 - (ii) 208
 - (iii) 5005

- (iv) 126,000
- (v)500.0
- 2.0034 (vi)
- 1.20 Round up the following upto three significant figures:
 - (i) 34.216
 - (ii) 10.4107
 - 0.04597 (iii)
 - (iv) 2808
- 1.21 The following data are obtained when dinitrogen and dioxygen react together to form different compounds:

Mass of dinitrogen Mass of dioxygen

(i)	14 g	16 g
(ii)	14 g	32 g
(iii)	28 g	32 g
(iv)	28 g	80 g

- Which law of chemical combination is obeyed by the above experimental data? (a) Give its statement.
- (b) Fill in the blanks in the following conversions:
 - 1 km = pm (i)
 - (ii) 1 mg = kg = ng
 - $1 \text{ mL} = \dots \text{L} = \dots \text{dm}^3$ (iii)
- If the speed of light is 3.0×10^8 m s⁻¹, calculate the distance covered by light in 1.22 2.00 ns.
- 1.23 In a reaction

$$A + B_2$$
 AB_3

Identify the limiting reagent, if any, in the following reaction mixtures.

- 300 atoms of A + 200 molecules of B (i)
- (ii) 2 mol A + 3 mol B
- 100 atoms of A + 100 molecules of B (iii)
- (iv) 5 mol A + 2.5 mol B
- 2.5 mol A + 5 mol B
- 1.24 Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation:

$$N_{2}(g) + H_{2}(g) = 2NH_{3}(g)$$

- Calculate the mass of ammonia produced if 2.00×10^3 g dinitrogen reacts with 1.00×10^3 g of dihydrogen.
- Will any of the two reactants remain unreacted? (ii)
- (iii) If yes, which one and what would be its mass?
- 1.25 How are 0.50 mol Na₂CO₃ and 0.50 M Na₂CO₃ different?
- 1.26 If 10 volumes of dihydrogen gas reacts with five volumes of dioxygen gas, how many volumes of water vapour would be produced?
- 1.27 Convert the following into basic units:
 - (i) 28.7 pm
 - (ii) 15.15 pm
 - (iii) 25365 mg

- 1.28 Which one of the following will have the largest number of atoms?
 - (i) 1 g Au (s)
 - (ii) 1 g Na (s)
 - (iii) 1 g Li (s)
 - (iv) $1 g \text{ of } Cl_2(g)$
- 1.29 Calculate the molarity of a solution of ethanol in water, in which the mole fraction of ethanol is 0.040 (assume the density of water to be one).
- 1.30 What will be the mass of one ¹²C atom in g?
- 1.31 How many significant figures should be present in the answer of the following calculations?
 - (i) 5×5.364
 - (iii) 0.0125 + 0.7864 + 0.0215
- 1.32 Use the data given in the following table to calculate the molar mass of naturally occurring *argon* isotopes:

Isotope	Isotopic molar mass	Abundance
36 Ar	$35.96755~{ m g~mol}^{-1}$	0.337%
38 Ar	$37.96272 \text{ g mol}^{-1}$	0.063%
⁴⁰ Ar	39.9624 g mol⁻¹	99.600%

- 1.33 Calculate the number of atoms in each of the following (i) 52 moles of Ar (ii) 52 u of He (iii) 52 g of He.
- 1.34 A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide , 0.690 g of water and no other products. A volume of 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g. Calculate (i) empirical formula, (ii) molar mass of the gas, and (iii) molecular formula.
- 1.35 Calcium carbonate reacts with aqueous HCl to give $CaCl_2$ and CO_2 according to the reaction, $CaCO_3$ (s) + 2 HCl (aq) \rightarrow $CaCl_2$ (aq) + CO_2 (g) + H_2 O(l) What mass of $CaCO_3$ is required to react completely with 25 mL of 0.75 M HCl?
- 1.36 Chlorine is prepared in the laboratory by treating manganese dioxide (MnO₂) with aqueous hydrochloric acid according to the reaction 4 HCl (aq) + MnO₂(s) \rightarrow 2H₂O (l) + MnCl₂(aq) + Cl₂ (g) How many grams of HCl react with 5.0 g of manganese dioxide?

STRUCTURE OF ATOM

Objectives

After studying this unit you will be able to

- know about the discovery of electron, proton and neutron and their characteristics;
- describe Thomson, Rutherford and Bohr atomic models;
- understand the important features of the quantum mechanical model of atom;
- understand nature of electromagnetic radiation and Planck's quantum theory;
- explain the photoelectric effect and describe features of atomic spectra;
- state the de Broglie relation and Heisenberg uncertainty principle;
- define an atomic orbital in terms of quantum numbers;
- state aufbau principle, Pauli exclusion principle and Hund's rule of maximum multiplicity; and
- write the electronic configurations of atoms.

The rich diversity of chemical behaviour of different elements can be traced to the differences in the internal structure of atoms of these elements.

The existence of atoms has been proposed since the time of early Indian and Greek philosophers (400 B.C.) who were of the view that atoms are the fundamental building blocks of matter. According to them, the continued subdivisions of matter would ultimately yield atoms which would not be further divisible. The word 'atom' has been derived from the Greek word 'a-tomio' which means 'uncut-able' or 'non-divisible'. These earlier ideas were mere speculations and there was no way to test them experimentally. These ideas remained dormant for a very long time and were revived again by scientists in the nineteenth century.

The atomic theory of matter was first proposed on a firm scientific basis by John Dalton, a British school teacher in 1808. His theory, called **Dalton's atomic theory**, regarded the atom as the ultimate particle of matter (Unit 1). Dalton's atomic theory was able to explain the law of conservation of mass, law of constant composition and law of multiple proportion very successfully. However, it failed to explain the results of many experiments, for example, it was known that substances like glass or ebonite when rubbed with silk or fur get electrically charged.

In this unit we start with the experimental observations made by scientists towards the end of nineteenth and beginning of twentieth century. These established that atoms are made of sub-atomic particles, i.e., electrons, protons and neutrons — a concept very different from that of Dalton.

2.1 DISCOVERY OF SUB-ATOMIC PARTICLES

An insight into the structure of atom was obtained from the experiments on electrical discharge through gases. Before we discuss these results we need to keep in mind a basic rule regarding the behaviour of charged particles: "Like charges repel each other and unlike charges attract each other".

2.1.1 Discovery of Electron

In 1830, Michael Faraday showed that if electricity is passed through a solution of an electrolyte, chemical reactions occurred at the electrodes, which resulted in the liberation and deposition of matter at the electrodes. He formulated certain laws which you will study in class XII. These results suggested the particulate nature of electricity.

In mid 1850s many scientists mainly Faraday began to study electrical discharge in partially evacuated tubes, known as cathode ray discharge tubes. It is depicted in Fig. 2.1. A cathode ray tube is made of glass containing two thin pieces of metal, called electrodes, sealed in it. The electrical discharge through the gases could be observed only at very low pressures and at very high voltages. The pressure of different gases could be adjusted by evacuation of the glass tubes. When sufficiently high voltage is applied across the electrodes, current starts flowing through a stream of particles moving in the tube from the negative electrode (cathode) to the positive electrode (anode). These were called cathode rays or cathode ray particles. The flow of current from cathode to anode was further checked by making a hole in the anode and coating the tube behind anode with phosphorescent material zinc sulphide. When these rays, after passing through anode, strike the zinc sulphide coating, a bright spot is developed on the coating [Fig. 2.1(b)].

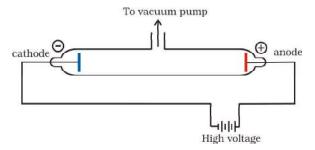
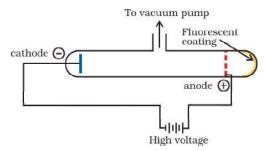



Fig. 2.1(a) A cathode ray discharge tube

Fig. 2.1(b) A cathode ray discharge tube with perforated anode

The results of these experiments are summarised below.

- (i) The cathode rays start from cathode and move towards the anode.
- (ii) These rays themselves are not visible but their behaviour can be observed with the help of certain kind of materials (fluorescent or phosphorescent) which glow when hit by them. Television picture tubes are cathode ray tubes and television pictures result due to fluorescence on the television screen coated with certain fluorescent or phosphorescent materials.
- (iii) In the absence of electrical or magnetic field, these rays travel in straight lines (Fig. 2.2).
- (iv) In the presence of electrical or magnetic field, the behaviour of cathode rays are similar to that expected from negatively charged particles, suggesting that the cathode rays consist of negatively charged particles, called **electrons**.
- (v) The characteristics of cathode rays (electrons) do not depend upon the

STRUCTURE OF ATOM 31

material of electrodes and the nature of the gas present in the cathode ray tube. Thus, we can conclude that electrons are basic constituent of all the atoms.

2.1.2 Charge to Mass Ratio of Electron

In 1897, British physicist J.J. Thomson measured the ratio of electrical charge (e) to the mass of electron (m_a) by using cathode ray tube and applying electrical and magnetic field perpendicular to each other as well as to the path of electrons (Fig. 2.2). When only electric field is applied, the electrons deviate from their path and hit the cathode ray tube at point A (Fig. 2.2). Similarly when only magnetic field is applied, electron strikes the cathode ray tube at point C. By carefully balancing the electrical and magnetic field strength, it is possible to bring back the electron to the path which is followed in the absence of electric or magnetic field and they hit the screen at point B. Thomson argued that the amount of deviation of the particles from their path in the presence of electrical or magnetic field depends upon:

- the magnitude of the negative charge on the particle, greater the magnitude of the charge on the particle, greater is the interaction with the electric or magnetic field and thus greater is the deflection.
- (ii) the mass of the particle lighter the particle, greater the deflection.

(iii) the strength of the electrical or magnetic field — the deflection of electrons from its original path increases with the increase in the voltage across the electrodes, or the strength of the magnetic field.

By carrying out accurate measurements on the amount of deflections observed by the electrons on the electric field strength or magnetic field strength, Thomson was able to determine the value of e/m_o as:

$$\frac{e}{m_e} = 1.758820 \times 10^{11} \,\mathrm{C \ kg^{-1}}$$
 (2.1)

Where m_e is the mass of the electron in kg and e is the magnitude of the charge on the electron in coulomb (C). Since electrons are negatively charged, the charge on electron is -e.

2.1.3 Charge on the Electron

R.A. Millikan (1868-1953) devised a method known as oil drop experiment (1906-14), to determine the charge on the electrons. He found the charge on the electron to be -1.6×10^{-19} C. The present accepted value of electrical charge is $-1.602176 \times 10^{-19}$ C. The mass of the electron (m_e) was determined by combining these results with Thomson's value of e/m_e ratio.

$$m_{e} = \frac{e}{e/m_{e}} = \frac{1.602176 \times 10^{-19} \text{C}}{1.758820 \times 10^{11} \text{C kg}^{-1}}$$
$$= 9.1094 \times 10^{-31} \text{kg}$$
(2.2)

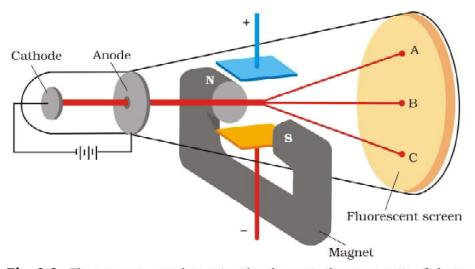


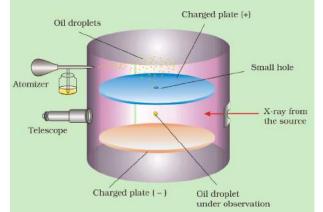
Fig. 2.2 The apparatus to determine the charge to the mass ratio of electron

2.1.4 Discovery of Protons and Neutrons

Electrical discharge carried out in the modified cathode ray tube led to the discovery of **canal rays** carrying positively charged particles. The characteristics of these positively charged particles are listed below.

- (i) Unlike cathode rays, mass of positively charged particles depends upon the nature of gas present in the cathode ray tube. These are simply the positively charged gaseous ions.
- (ii) The charge to mass ratio of the particles depends on the gas from which these originate.
- (iii) Some of the positively charged particles carry a multiple of the fundamental unit of electrical charge.
- (iv) The behaviour of these particles in the magnetic or electrical field is opposite to that observed for electron or cathode rays.

The smallest and lightest positive ion was obtained from hydrogen and was called **proton**. This positively charged particle was characterised in 1919. Later, a need was felt for the presence of electrically neutral particle as one of the constituent of atom. These particles were discovered by Chadwick (1932) by bombarding a thin sheet of beryllium by α -particles. When electrically neutral particles having a mass slightly greater than that of protons were emitted. He named these particles as **neutrons**. The important properties of all these fundamental particles are given in Table 2.1.


2.2 ATOMIC MODELS

Observations obtained from the experiments mentioned in the previous sections have suggested that Dalton's indivisible atom is composed of sub-atomic particles carrying positive and negative charges. The major problems before the scientists after the discovery of sub-atomic particles were:

- to account for the stability of atom,
- to compare the behaviour of elements in terms of both physical and chemical properties,

Millikan's Oil Drop Method

In this method, oil droplets in the form of mist, produced by the atomiser, were allowed to enter through a tiny hole in the upper plate of electrical condenser. The downward motion of these droplets was viewed through the telescope, equipped with a micrometer eye piece. By measuring the rate of fall of these droplets, Millikan was able to measure the mass of oil droplets. The air inside the chamber was ionized by passing a beam of X-rays through it. The electrical charge on these oil droplets was acquired by collisions with gaseous ions. The fall of these charged oil droplets can be retarded, accelerated or made stationary depending upon the charge on the droplets and the polarity and strength of the voltage applied to the plate. By carefully measuring the effects of electrical field strength on the motion of oil droplets. Millikan concluded that the magnitude of electrical charge, q, on the droplets is always an integral multiple of the electrical charge, e, that is, q = n e, where n = 1, 2, 3...

Fig. 2.3 The Millikan oil drop apparatus for measuring charge 'e'. In chamber, the forces acting on oil drop are: gravitational, electrostatic due to electrical field and a viscous drag force when the oil drop is moving.

- to explain the formation of different kinds of molecules by the combination of different atoms and,
- to understand the origin and nature of the characteristics of electromagnetic radiation absorbed or emitted by atoms.

STRUCTURE OF ATOM 33

Name	Symbol	Absolute charge/C	Relative charge	Mass/kg	Mass/u	Approx. mass/u
Electron	e	-1.602176×10 ⁻¹⁹	-1	9.109382×10 ⁻³¹	0.00054	0
Proton	p	+1.602176×10 ⁻¹⁹	+1	1.6726216×10 ⁻²⁷	1.00727	1
Neutron	n	0	0	1.674927×10 ⁻²⁷	1.00867	1

Table 2.1 Properties of Fundamental Particles

Different atomic models were proposed to explain the distributions of these charged particles in an atom. Although some of these models were not able to explain the stability of atoms, two of these models, one proposed by J.J. Thomson and the other proposed by Ernest Rutherford are discussed below.

2.2.1 Thomson Model of Atom

J. J. Thomson, in 1898, proposed that an atom possesses a spherical shape (radius approximately 10^{-10} m) in which the positive charge is uniformly distributed. The electrons are embedded into it in such a manner as to give the most stable electrostatic arrangement (Fig. 2.4). Many different names are given to this model, for example, **plum pudding, raisin pudding or watermelon.** This model can be

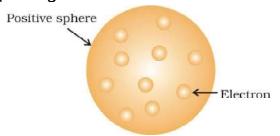
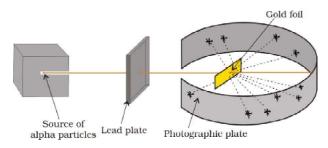
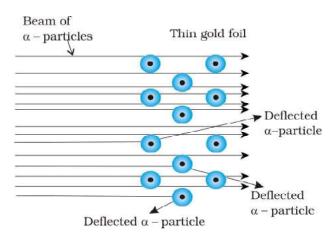


Fig.2.4 Thomson model of atom

visualised as a pudding or watermelon of positive charge with plums or seeds (electrons) embedded into it. An important feature of this model is that the mass of the atom is assumed to be uniformly distributed over the atom. Although this model was able to explain the overall neutrality of the atom, but was not consistent with the results of later experiments. Thomson was awarded Nobel Prize for physics in 1906, for his theoretical and experimental investigations on the conduction of electricity by gases.


In the later half of the nineteenth century different kinds of rays were discovered, besides those mentioned earlier. Wilhalm Röentgen (1845-1923) in 1895 showed that when electrons strike a material in the cathode ray tubes, produce rays which can cause fluorescence in the fluorescent materials placed outside the cathode ray tubes. Since Röentgen did not know the nature of the radiation, he named them X-rays and the name is still carried on. It was noticed that X-rays are produced effectively when electrons strike the dense metal anode, called targets. These are not deflected by the electric and magnetic fields and have a very high penetrating power through the matter and that is the reason that these rays are used to study the interior of the objects. These rays are of very short wavelengths (~0.1 nm) and possess electro-magnetic character (Section 2.3.1).

Henri Becqueral (1852-1908) observed that there are certain elements which emit radiation on their own and named this phenomenon radioactivity and the elements known as radioactive elements. This field was developed by Marie Curie, Piere Curie, Rutherford and Fredrick Soddy. It was observed that three kinds of rays i.e., α , β- and γ-rays are emitted. Rutherford found that α-rays consists of high energy particles carrying two units of positive charge and four unit of atomic mass. He concluded that \alpha- particles are helium


nuclei as when α - particles combined with two electrons yielded helium gas. β -rays are negatively charged particles similar to electrons. The γ -rays are high energy radiations like X-rays, are neutral in nature and do not consist of particles. As regards penetrating power, α -particles are the least, followed by β -rays (100 times that of α -particles) and γ -rays (1000 times of that α -particles).

2.2.2 Rutherford's Nuclear Model of Atom

Rutherford and his students (Hans Geiger and Ernest Marsden) bombarded very thin gold foil with α -particles. Rutherford's famous α -particle scattering experiment is

A. Rutherford's scattering experiment

B. Schematic molecular view of the gold foil

Fig. 2.5 Schematic view of Rutherford's scattering experiment. When a beam of alpha (α) particles is "shot" at a thin gold foil, most of them pass through without much effect. Some, however, are deflected.

represented in Fig. 2.5. A stream of high energy α -particles from a radioactive source was directed at a thin foil (thickness \sim 100 nm) of gold metal. The thin gold foil had a circular fluorescent zinc sulphide screen around it. Whenever α -particles struck the screen, a tiny flash of light was produced at that point.

The results of scattering experiment were quite unexpected. According to Thomson model of atom, the mass of each gold atom in the foil should have been spread evenly over the entire atom, and α – particles had enough energy to pass directly through such a uniform distribution of mass. It was expected that the particles would slow down and change directions only by a small angles as they passed through the foil. It was observed that:

- most of the α-particles passed through the gold foil undeflected.
- (ii) a small fraction of the α -particles was deflected by small angles.
- (iii) a very few α -particles (~1 in 20,000) bounced back, that is, were deflected by nearly 180°.

On the basis of the observations, Rutherford drew the following conclusions regarding the structure of atom:

- Most of the space in the atom is empty as most of the α-particles passed through the foil undeflected.
- (ii) A few positively charged α-particles were deflected. The deflection must be due to enormous repulsive force showing that the positive charge of the atom is not spread throughout the atom as Thomson had presumed. The positive charge has to be concentrated in a very small volume that repelled and deflected the positively charged α-particles.
- (iii) Calculations by Rutherford showed that the volume occupied by the nucleus is negligibly small as compared to the total volume of the atom. The radius of the atom is about 10⁻¹⁰ m, while that of nucleus is 10⁻¹⁵ m. One can appreciate this difference in size by realising that if

STRUCTURE OF ATOM 35

a cricket ball represents a nucleus, then the radius of atom would be about 5 km.

On the basis of above observations and conclusions, Rutherford proposed the nuclear model of atom. According to this model:

- (i) The positive charge and most of the mass of the atom was densely concentrated in extremely small region. This very small portion of the atom was called **nucleus** by Rutherford.
- (ii) The nucleus is surrounded by electrons that move around the nucleus with a very high speed in circular paths called **orbits**. Thus, Rutherford's model of atom resembles the solar system in which the nucleus plays the role of sun and the electrons that of revolving planets.
- (iii) Electrons and the nucleus are held together by electrostatic forces of attraction.

2.2.3 Atomic Number and Mass Number

The presence of positive charge on the nucleus is due to the protons in the nucleus. As established earlier, the charge on the proton is equal but opposite to that of electron. The number of protons present in the nucleus is equal to atomic number (Z). For example, the number of protons in the hydrogen nucleus is 1, in sodium atom it is 11, therefore their atomic numbers are 1 and 11 respectively. In order to keep the electrical neutrality, the number of electrons in an atom is equal to the number of protons (atomic number, Z). For example, number of electrons in hydrogen atom and sodium atom are 1 and 11 respectively.

Atomic number (Z) = number of protons in the nucleus of an atom

= number of electrons in a nuetral atom (2.3)

While the positive charge of the nucleus is due to protons, the mass of the nucleus, due to protons and neutrons. As discussed earlier protons and neutrons present in the nucleus are collectively known as **nucleons**.

The total number of nucleons is termed as **mass number (A)** of the atom.

mass number (A) = number of protons (Z) + number of neutrons (n) (2.4)

2.2.4 Isobars and Isotopes

The composition of any atom can be represented by using the normal element symbol (X) with super-script on the left hand side as the atomic mass number (A) and subscript (Z) on the left hand side as the atomic number (i.e., $\frac{A}{Z}X$).

Isobars are the atoms with same mass number but different atomic number for example, ¹⁴₆C and ¹⁴₇N. On the other hand, atoms with identical atomic number but different atomic mass number are known as **Isotopes**. In other words (according to equation 2.4), it is evident that difference between the isotopes is due to the presence of different number of neutrons present in the nucleus. For example, considering of hydrogen atom again, 99.985% of hydrogen atoms contain only one proton. This isotope is called **protium** (¹**H**). Rest of the percentage of hydrogen atom contains two other isotopes, the one containing 1 proton and 1 neutron is called **deuterium** (**2D**, 0.015%) and the other one possessing 1 proton and 2 neutrons is called **tritium** $\binom{3}{1}$ **T**). The latter isotope is found in trace amounts on the earth. Other examples of commonly occurring isotopes are: carbon atoms containing 6, 7 and 8 neutrons besides 6 protons (${}_{5}^{12} \, \mathbb{C}, {}_{5}^{13} \, \mathbb{C}, {}_{5}^{14} \, \mathbb{C}$); chlorine atoms containing 18 and 20 neutrons besides 17 protons $\binom{25}{17}$ Cl. $\frac{27}{17}$ Cl).

Lastly an important point to mention regarding isotopes is that chemical properties of atoms are controlled by the number of electrons, which are determined by the number of protons in the nucleus. Number of neutrons present in the nucleus have very little effect on the chemical properties of an element. Therefore, all the isotopes of a given element show same chemical behaviour.

Problem 2.1

Calculate the number of protons, neutrons and electrons in $^{80}_{35}Br$.

Solution

In this case, $^{80}_{35}$ Br , Z = 35, A = 80, species is neutral

Number of protons = number of electrons = Z = 35

Number of neutrons = 80 - 35 = 45, (equation 2.4)

Problem 2.2

The number of electrons, protons and neutrons in a species are equal to 18, 16 and 16 respectively. Assign the proper symbol to the species.

Solution

The atomic number is equal to number of protons = 16. The element is sulphur (S).

Atomic mass number = number of protons + number of neutrons

$$= 16 + 16 = 32$$

Species is not neutral as the number of protons is not equal to electrons. It is anion (negatively charged) with charge equal to excess electrons = 18 - 16 = 2. Symbol is $^{32}_{16}S^{2-}_{-}$.

Note: Before using the notation ${}_{Z}^{A}X$, find out whether the species is a neutral atom, a cation or an anion. If it is a neutral atom, equation (2.3) is valid, i.e., number of protons = number of electrons = atomic number. If the species is an ion, determine whether the number of protons are larger (cation, positive ion) or smaller (anion, negative ion) than the number of electrons. Number of neutrons is always given by A–Z, whether the species is neutral or ion.

2.2.5 Drawbacks of Rutherford Model

As you have learnt above, Rutherford nuclear model of an atom is like a small scale solar system with the nucleus playing the role of the massive sun and the electrons being similar to the lighter planets. When classical mechanics* is applied to the solar system, it shows that the planets describe well-defined orbits around the sun. The gravitational force between the planets is given by the expression

$$\left(\mathbb{G}.\frac{m_1m_2}{r^2}\right)$$
 where m_1 and m_2 are the masses, r

is the distance of separation of the masses and G is the gravitational constant. The theory can also calculate precisely the planetary orbits and these are in agreement with the experimental measurements.

The similarity between the solar system and nuclear model suggests that electrons should move around the nucleus in well defined orbits. Further, the coulomb force (kq_1q_2/r^2) where q_1 and q_2 are the charges, r is the distance of separation of the charges and k is the proportionality constant) between electron and the nucleus is mathematically similar to the gravitational force. However, when a body is moving in an orbit, it undergoes acceleration even if it is moving with a constant speed in an orbit because of changing direction. So an electron in the nuclear model describing planet like orbits is under acceleration. According to the electromagnetic theory of Maxwell, charged particles when accelerated should emit electromagnetic radiation (This feature does not exist for planets since they are uncharged). Therefore, an electron in an orbit will emit radiation, the energy carried by radiation comes from electronic motion. The orbit will thus continue to shrink. Calculations show that it should take an electron only 10-8 s to spiral into the nucleus. But this does not happen. Thus, the Rutherford model cannot explain the stability of an atom. If the motion of an electron is described on the basis of the classical mechanics and electromagnetic theory, you may ask that since the motion of electrons in orbits is leading to the instability of the atom, then why not consider electrons as stationary

^{*} Classical mechanics is a theoretical science based on Newton's laws of motion. It specifies the laws of motion of macroscopic objects.

around the nucleus. If the electrons were stationary, electrostatic attraction between the dense nucleus and the electrons would pull the electrons toward the nucleus to form a miniature version of Thomson's model of atom.

Another serious drawback of the Rutherford model is that it says nothing about distribution of the electrons around the nucleus and the energies of these electrons.

2.3 DEVELOPMENTS LEADING TO THE BOHR'S MODEL OF ATOM

Historically, results observed from the studies of interactions of radiations with matter have provided immense information regarding the structure of atoms and molecules. Neils Bohr utilised these results to improve upon the model proposed by Rutherford. Two developments played a major role in the formulation of Bohr's model of atom. These were:

- (i) Dual character of the electromagnetic radiation which means that radiations possess both wave like and particle like properties, and
- (ii) Experimental results regarding atomic spectra.

First, we will discuss about the duel nature of electromagnetic radiations. Experimental results regarding atomic spectra will be discussed in Section 2.4.

2.3.1 Wave Nature of Electromagnetic Radiation

In the mid-nineteenth century, physicists actively studied absorption and emission of radiation by heated objects. These are called thermal radiations. They tried to find out of what the thermal radiation is made. It is now a well-known fact that thermal radiations consist of electromagnetic waves of various frequencies or wavelengths. It is based on a number of modern concepts, which were unknown in the mid-nineteenth century. First active study of thermal radiation laws occured in the 1850's and the theory of electromagnetic waves and the emission of such waves by accelerating charged particles was developed

in the early 1870's by James Clerk Maxwell, which was experimentally confirmed later by Heinrich Hertz. Here, we will learn some facts about electromagnetic radiations.

James Maxwell (1870) was the first to give a comprehensive explanation about the interaction between the charged bodies and the behaviour of electrical and magnetic fields on macroscopic level. He suggested that when electrically charged particle moves under accelaration, alternating electrical and magnetic fields are produced and transmitted. These fields are transmitted in the forms of waves called **electromagnetic waves** or **electromagnetic radiation**.

Light is the form of radiation known from early days and speculation about its nature dates back to remote ancient times. In earlier days (Newton) light was supposed to be made of particles (corpuscules). It was only in the 19th century when wave nature of light was established.

Maxwell was again the first to reveal that light waves are associated with oscillating electric and magnetic character (Fig. 2.6).

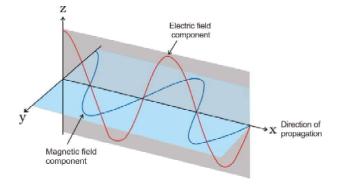


Fig.2.6 The electric and magnetic field components of an electromagnetic wave. These components have the same wavelength, frequency, speed and amplitude, but they vibrate in two mutually perpendicular planes.

Although electromagnetic wave motion is complex in nature, we will consider here only a few simple properties.

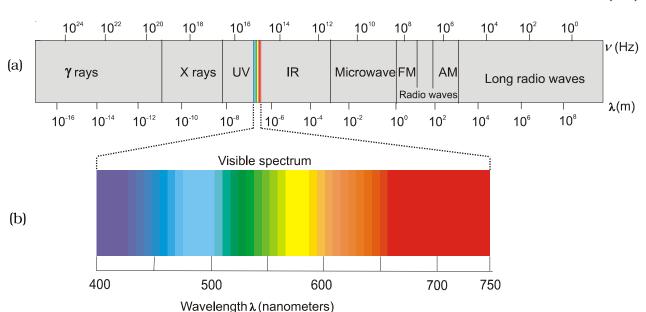
 The oscillating electric and magnetic fields produced by oscillating charged particles

are perpendicular to each other and both are perpendicular to the direction of propagation of the wave. Simplified picture of electromagnetic wave is shown in Fig. 2.6.

- (ii) Unlike sound waves or waves produced in water, electromagnetic waves do not require medium and can move in vacuum.
- (iii) It is now well established that there are many types of electromagnetic radiations, which differ from one another in wavelength (or frequency). These constitute what is called **electromagnetic spectrum** (Fig. 2.7). Different regions of the spectrum are identified by different names. Some examples are: radio frequency region around 10⁶Hz, used for broadcasting; microwave region around 10¹⁰ Hz used for radar; infrared region around 1013 Hz used for heating; ultraviolet region around 1016Hz a component of sun's radiation. The small portion around 10^{15} Hz, is what is ordinarily called visible light. It is only this part which our eyes can see (or detect). Special instruments are required to detect non-visible radiation.

(iv) Different kinds of units are used to represent electromagnetic radiation.

These radiations are characterised by the properties, namely, frequency (ν) and wavelength (λ).


The SI unit for frequency (ν) is hertz (Hz, s⁻¹), after Heinrich Hertz. It is defined as the number of waves that pass a given point in one second.

Wavelength should have the units of length and as you know that the SI units of length is meter (m). Since electromagnetic radiation consists of different kinds of waves of much smaller wavelengths, smaller units are used. Fig. 2.7 shows various types of electromagnetic radiations which differ from one another in wavelengths and frequencies.

In vaccum all types of electromagnetic radiations, regardless of wavelength, travel at the same speed, i.e., 3.0×10^8 m s⁻¹ (2.997925 $\times 10^8$ m s⁻¹, to be precise). This is called **speed of light** and is given the symbol 'c'. The frequency (ν), wavelength (λ) and velocity of light (c) are related by the equation (2.5).

(2.5)

 $c = v \lambda$

Fig. 2.7 (a) The spectrum of electromagnetic radiation. (b) Visible spectrum. The visible region is only a small part of the entire spectrum.

The other commonly used quantity specially in spectroscopy, is the **wavenumber** ($\overline{\nu}$). It is defined as the number of wavelengths per unit length. Its units are reciprocal of wavelength unit, i.e., m⁻¹. However commonly used unit is cm⁻¹ (not SI unit).

Problem 2.3

The Vividh Bharati station of All India Radio, Delhi, broadcasts on a frequency of 1,368 kHz (kilo hertz). Calculate the wavelength of the electromagnetic radiation emitted by transmitter. Which part of the electromagnetic spectrum does it belong to?

Solution

The wavelength, λ , is equal to c/ν , where c is the speed of electromagnetic radiation in vacuum and ν is the frequency. Substituting the given values, we have

$$\lambda = \frac{c}{v}$$
= $\frac{3.00 \times 10^8 \,\mathrm{m \, s^{-1}}}{1368 \,\mathrm{kHz}}$

$$= \frac{3.00 \times 10^8 \,\mathrm{m \, s^{-1}}}{1368 \times 10^3 \,\mathrm{s^{-1}}}$$

 $= 219.3 \,\mathrm{m}$

This is a characteristic radiowave wavelength.

Problem 2.4

The wavelength range of the visible spectrum extends from violet (400 nm) to red (750 nm). Express these wavelengths in frequencies (Hz). $(1nm = 10^{-9} m)$

Solution

Using equation 2.5, frequency of violet light

$$v = \frac{c}{\lambda} = \frac{3.00 \times 10^8 \,\mathrm{m \, s^{-1}}}{400 \times 10^{-9} \,\mathrm{m}}$$
$$= 7.50 \times 10^{14} \,\mathrm{Hz}$$

Frequency of red light

$$v = \frac{c}{\lambda} = \frac{3.00 \times 10^8 \, \text{m s}^{-1}}{750 \times 10^{-9} \, \text{m}} = 4.00 \times 10^{14} \, \text{Hz}$$

The range of visible spectrum is from 4.0×10^{14} to 7.5×10^{14} Hz in terms of frequency units.

Problem 2.5

Calculate (a) wavenumber and (b) frequency of yellow radiation having wavelength 5800 Å.

Solution

(a) Calculation of wavenumber $(\overline{\nu})$

$$\lambda$$
=5800Å = 5800 × 10⁻⁸ cm
= 5800 × 10⁻¹⁰ m

$$\bar{v} = \frac{1}{\lambda} = \frac{1}{5800 \times 10^{-10} \text{ m}}$$
$$= 1.724 \times 10^{6} \text{m}^{-1}$$
$$= 1.724 \times 10^{4} \text{ cm}^{-1}$$

(b) Calculation of the frequency (v)

$$\bar{v} = \frac{c}{\lambda} = \frac{3 \times 10^8 \text{ m s}^{-1}}{5800 \times 10^{-10} \text{ m}} = 5.172 \times 10^{14} \text{ s}^{-1}$$

2.3.2 Particle Nature of Electromagnetic Radiation: Planck's Quantum Theory

Some of the experimental phenomenon such as diffraction* and interference** can be explained by the wave nature of the electromagnetic radiation. However, following are some of the observations which could not be explained with the help of even the electromagentic theory of 19th century physics (known as classical physics):

- (i) the nature of emission of radiation from hot bodies (black -body radiation)
- (ii) ejection of electrons from metal surface when radiation strikes it (photoelectric effect)
- (iii) variation of heat capacity of solids as a function of temperature

^{*} Diffraction is the bending of wave around an obstacle.

^{**} Interference is the combination of two waves of the same or different frequencies to give a wave whose distribution at each point in space is the algebraic or vector sum of disturbances at that point resulting from each interfering wave.

(iv) Line spectra of atoms with special reference to hydrogen.

These phenomena indicate that the system can take energy only in discrete amounts. All possible energies cannot be taken up or radiated.

It is noteworthy that the first concrete explanation for the phenomenon of the black body radiation mentioned above was given by Max Planck in 1900. Let us first try to understand this phenomenon, which is given below:

Hot objects emit electromagnetic radiations over a wide range of wavelengths. At high temperatures, an appreciable proportion of radiation is in the visible region of the spectrum. As the temperature is raised, a higher proportion of short wavelength (blue light) is generated. For example, when an iron rod is heated in a furnace, it first turns to dull red and then progressively becomes more and more red as the temperature increases. As this is heated further, the radiation emitted becomes white and then becomes blue as the temperature becomes very high. This means that red radiation is most intense at a particular temperature and the blue radiation is more intense at another temperature. This means intensities of radiations of different wavelengths emitted by hot body depend upon its temperature. By late 1850's it was known that objects made of different material and kept at different temperatures emit different amount of radiation. Also, when the surface of an object is irradiated with light (electromagnetic radiation), a part of radiant energy is generally reflected as such, a part is absorbed and a part of it is transmitted. The reason for incomplete absorption is that ordinary objects are as a rule imperfect absorbers of radiation. An ideal body, which emits and absorbs radiations of all frequencies uniformly, is called a black body and the radiation emitted by such a body is called black body radiation. In practice, no such body exists. Carbon black approximates fairly closely to black body. A good physical approximation to a black body is a cavity with a tiny hole, which has no other opening. Any ray entering the hole will be reflected by the cavity walls and will be eventually absorbed by the walls. A black body is also a perfect radiator of radiant energy. Furthermore, a black body is in thermal equilibrium with its surroundings. It radiates same amount of energy per unit area as it absorbs from its surrounding in any given time. The amount of light emitted (intensity of radiation) from a black body and its spectral distribution depends only on its temperature. At a given temperature, intensity of radiation emitted increases with the increase of wavelength, reaches a maximum value at a given wavelength and then starts decreasing with further increase of wavelength, as shown in Fig. 2.8. Also, as the temperature increases, maxima of the curve shifts to short wavelength. Several attempts were made to predict the intensity of radiation as a function of wavelength.

But the results of the above experiment could not be explained satisfactorily on the basis of the wave theory of light. Max Planck

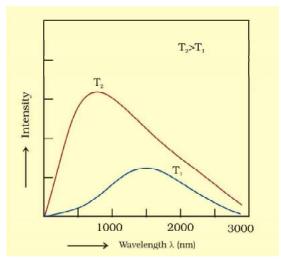


Fig. 2.8 Wavelength-intensity relationship

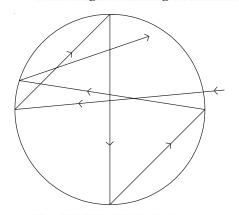


Fig. 2.8(a) Black body

arrived at a satisfactory relationship by making an assumption that absorption and emmission of radiation arises from oscillator i.e., atoms in the wall of black body. Their frequency of oscillation is changed by interaction with oscilators of electromagnetic radiation. Planck assumed that radiation could be sub-divided into discrete chunks of energy. He suggested that atoms and molecules could emit or absorb energy only in discrete quantities and not in a continuous manner. He gave the name quantum to the smallest quantity of energy that can be emitted or absorbed in the form of electromagnetic radiation. The energy (E) of a quantum of radiation is proportional to its frequency (v) and is expressed by equation (2.6).

$$E = h\nu \tag{2.6}$$

The proportionality constant, *h'* is known as Planck's constant and has the value 6.626×10⁻³⁴ J s.

With this theory, Planck was able to explain the distribution of intensity in the radiation from black body as a function of frequency or wavelength at different temperatures.

Quantisation has been compared to standing on a staircase. A person can stand on any step of a staircase, but it is not possible for him/her to stand in between the two steps. The energy can take any one of the values from the following set, but cannot take on any values between them.

E = 0, hv, 2hv, 3hv....nhv.....

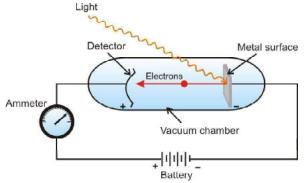


Fig.2.9 Equipment for studying the photoelectric effect. Light of a particular frequency strikes a clean metal surface inside a vacuum chamber. Electrons are ejected from the metal and are counted by a detector that measures their kinetic energy.

Max Planck (1858 – 1947)

Max Planck, a German physicist, received his Ph.D in theoretical physics from the University of Munich in 1879. In 1888, he was appointed Director of the Institute of Theoretical Physics at the

University of Berlin. Planck was awarded the Nobel Prize in Physics in 1918 for his quantum theory. Planck also made significant contributions in thermodynamics and other areas of physics.

Photoelectric Effect

In 1887, H. Hertz performed a very interesting experiment in which electrons (or electric current) were ejected when certain metals (for example potassium, rubidium, caesium etc.) were exposed to a beam of light as shown in Fig.2.9. The phenomenon is called **Photoelectric effect**. The results observed in this experiment were:

- (i) The electrons are ejected from the metal surface as soon as the beam of light strikes the surface, i.e., there is no time lag between the striking of light beam and the ejection of electrons from the metal surface.
- (ii) The number of electrons ejected is proportional to the intensity or brightness of light.
- (iii) For each metal, there is a characteristic minimum frequency, v_0 (also known as **threshold frequency**) below which photoelectric effect is not observed. At a frequency $v > v_0$, the ejected electrons come out with certain kinetic energy. The kinetic energies of these electrons increase with the increase of frequency of the light used.

All the above results could not be explained on the basis of laws of classical physics. According to latter, the energy content of the beam of light depends upon the brightness of the light. In other words, number of electrons ejected and kinetic energy associated with them should depend on the brightness of light. It has been observed that though the number of electrons ejected does depend upon the brightness of light, the kinetic energy of the

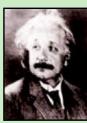

Metal	Li	Na	K	Mg	Cu	Ag
W _o /eV	2.42	2.3	2.25	3.7	4.8	4.3

Table 2.2 Values of Work Function (We) for a Few Metals

ejected electrons does not. For example, red light [ν = (4.3 to 4.6) × 10^{14} Hz] of any brightness (intensity) may shine on a piece of potassium metal for hours but no photoelectrons are ejected. But, as soon as even a very weak yellow light (ν = 5.1–5.2 × 10^{14} Hz) shines on the potassium metal, the photoelectric effect is observed. The threshold frequency (ν_0) for potassium metal is 5.0×10^{14} Hz.

Einstein (1905) was able to explain the photoelectric effect using Planck's quantum theory of electromagnetic radiation as a starting point.

Albert Einstein, a German born American physicist, is regarded by many as one of the two great physicists the world has known (the other is Isaac Newton). His three research papers (on special relativity, Brownian motion and the photoelectric effect) which he published in 1905.

Albert Einstein (1879-1955)

while he was employed as a technical assistant in a Swiss patent office in Berne have profoundly influenced the development of physics. He received the Nobel Prize in Physics in 1921 for his explanation of the photoelectric effect.

Shining a beam of light on to a metal surface can, therefore, be viewed as shooting a beam of particles, the photons. When a photon of sufficient energy strikes an electron in the atom of the metal, it transfers its energy instantaneously to the electron during the collision and the electron is ejected without any time lag or delay. Greater the energy possessed by the photon, greater will be transfer of energy to the electron and greater the kinetic energy of the ejected electron. In other words, kinetic energy of the ejected electron is proportional to the frequency of the electromagnetic radiation. Since the striking photon has energy equal to $h\nu$ and the

minimum energy required to eject the electron is $h\nu_0$ (also called work function, W_0 ; Table 2.2), then the difference in energy $(h\nu-h\nu_0)$ is transferred as the kinetic energy of the photoelectron. Following the conservation of energy principle, the kinetic energy of the ejected electron is given by the equation 2.7.

$$hv = hv_0 + \frac{1}{2}m_{\rm e}v^2 \tag{2.7}$$

where m_e is the mass of the electron and v is the velocity associated with the ejected electron. Lastly, a more intense beam of light consists of larger number of photons, consequently the number of electrons ejected is also larger as compared to that in an experiment in which a beam of weaker intensity of light is employed.

Dual Behaviour of Electromagnetic Radiation

The particle nature of light posed a dilemma for scientists. On the one hand, it could explain the black body radiation and photoelectric effect satisfactorily but on the other hand, it was not consistent with the known wave behaviour of light which could account for the phenomena of interference and diffraction. The only way to resolve the dilemma was to accept the idea that light possesses both particle and wave-like properties, i.e., light has dual behaviour. Depending on the experiment, we find that light behaves either as a wave or as a stream of particles. Whenever radiation interacts with matter, it displays particle like properties in contrast to the wavelike properties (interference and diffraction), which it exhibits when it propagates. This concept was totally alien to the way the scientists thought about matter and radiation and it took them a long time to become convinced of its validity. It turns out, as you shall see later, that some microscopic particles like electrons also exhibit this wave-particle duality.

Problem 2.6

Calculate energy of one mole of photons of radiation whose frequency is 5×10^{14} Hz.

Solution

Energy (E) of one photon is given by the expression

 $E = h\nu$

 $h = 6.626 \times 10^{-34} \text{ J s}$

 $v = 5 \times 10^{14} \text{ s}^{-1} \text{ (given)}$

 $E = (6.626 \times 10^{-34} \text{ J/s}) \times (5 \times 10^{14} \text{ s}^{-1})$

 $= 3.313 \times 10^{-19} \text{ J}$

Energy of one mole of photons

= $(3.313 \times 10^{-19} \text{ J}) \times (6.022 \times 10^{23} \text{ mol}^{-1})$

= 199.51 kJ mol⁻¹

Problem 2.7

A 100 watt bulb emits monochromatic light of wavelength 400 nm. Calculate the number of photons emitted per second by the bulb.

Solution

Power of the bulb = 100 watt

$$= 100 \text{ J s}^{-1}$$

Energy of one photon $E = hv = hc/\lambda$

$$= \frac{6.626 \times 10^{-34} \text{ J s} \times 3 \times 10^{8} \text{ m s}^{-1}}{400 \times 10^{-9} \text{ m}}$$

 $=4.969\times10^{-19}$ J

Number of photons emitted

$$\frac{100 \text{ J s}^{-1}}{4.969 \times 10^{-19} \text{ J}} = 2.012 \times 10^{20} \text{ s}^{-1}$$

Problem 2.8

When electromagnetic radiation of wavelength 300 nm falls on the surface of sodium, electrons are emitted with a kinetic energy of $1.68 \times 10^5 \text{J mol}^{-1}$. What is the minimum energy needed to remove an electron from sodium? What is the maximum wavelength that will cause a photoelectron to be emitted?

Solution

The energy (E) of a 300 nm photon is given by

 $hn = hc / \lambda$

=
$$\frac{6.626 \times 10^{-34} \text{ J s} \times 3.0 \times 10^{8} \text{m s}^{-1}}{300 \times 10^{-9} \text{m}}$$

= $6.626 \times 10^{-19} \text{J}$

The energy of one mole of photons

=
$$6.626 \times 10^{-19} \text{ J} \times 6.022 \times 10^{23} \text{ mol}^{-1}$$

$$= 3.99 \times 10^5 \,\mathrm{J \ mol^{-1}}$$

The minimum energy needed to remove one mole of electrons from sodium

$$= (3.99 - 1.68) 10^5 \text{ J mol}^{-1}$$

$$= 2.31 \times 10^5 \text{ J mol}^{-1}$$

The minimum energy for one electron

$$= \frac{2.31 \times 10^5 \text{ J mol}^{-1}}{6.022 \times 10^{23} \text{ electrons mol}^{-1}}$$
$$= 3.84 \times 10^{-19} \text{ J}$$

This corresponds to the wavelength

= 517 nm

(This corresponds to green light)

Problem 2.9

The threshold frequency v_0 for a metal is $7.0 \times 10^{14} \, \mathrm{s}^{-1}$. Calculate the kinetic energy of an electron emitted when radiation of frequency $v = 1.0 \times 10^{15} \, \mathrm{s}^{-1}$ hits the metal.

Solution

According to Einstein's equation

Kinetic energy =
$$\frac{1}{2} m_e v^2 = h(v - v_0)$$

=
$$(6.626 \times 10^{-34} \text{ J s}) (1.0 \times 10^{15} \text{ s}^{-1} - 7.0 \times 10^{14} \text{ s}^{-1})$$

=
$$(6.626 \times 10^{-34} \text{ J s}) (10.0 \times 10^{14} \text{ s}^{-1} - 7.0 \times 10^{14} \text{ s}^{-1})$$

=
$$(6.626 \times 10^{-34} \text{ J s}) \times (3.0 \times 10^{14} \text{ s}^{-1})$$

$$= 1.988 \times 10^{-19} J$$

2.3.3 Evidence for the quantized* Electronic Energy Levels: Atomic spectra

The speed of light depends upon the nature of the medium through which it passes. As a result, the beam of light is deviated or refracted from its original path as it passes from one medium to another. It is observed that when a ray of white light is passed through a prism, the wave with shorter wavelength bends more than the one with a longer wavelength. Since ordinary white light consists of waves with all the wavelengths in the visible range, a ray of white light is spread out into a series of coloured bands called **spectrum**. The light of red colour which has longest wavelength is deviated the least while the violet light, which has shortest wavelength is deviated the most. The spectrum of white light, that we can see. ranges from violet at 7.50×10^{14} Hz to red at 4×10^{14} Hz. Such a spectrum is called continuous spectrum. Continuous because violet merges into blue, blue into green and so on. A similar spectrum is produced when a rainbow forms in the sky. Remember that visible light is just a small portion of the electromagnetic radiation (Fig.2.7). When electromagnetic radiation interacts with matter, atoms and molecules may absorb energy and reach to a higher energy state. With higher energy, these are in an unstable state. For returning to their normal (more stable, lower energy states) energy state, the atoms and molecules emit radiations in various regions of the electromagnetic spectrum.

Emission and Absorption Spectra

The spectrum of radiation emitted by a substance that has absorbed energy is called an **emission spectrum**. Atoms, molecules or ions that have absorbed radiation are said to be **"excited"**. To produce an emission spectrum, energy is supplied to a sample by heating it or irradiating it and the wavelength (or frequency) of the radiation emitted, as the sample gives up the absorbed energy, is recorded.

An absorption spectrum is like the photographic negative of an emission

spectrum. A continuum of radiation is passed through a sample which absorbs radiation of certain wavelengths. The missing wavelength which corresponds to the radiation absorbed by the matter, leave dark spaces in the bright continuous spectrum.

The study of emission or absorption spectra is referred to as **spectroscopy**. The spectrum of the visible light, as discussed above, was continuous as all wavelengths (red to violet) of the visible light are represented in the spectra. The emission spectra of atoms in the gas phase, on the other hand, do not show a continuous spread of wavelength from red to violet, rather they emit light only at specific wavelengths with dark spaces between them. Such spectra are called **line spectra** or **atomic spectra** because the emitted radiation is identified by the appearance of bright lines in the spectra (Fig. 2.10 page 45).

Line emission spectra are of great interest in the study of electronic structure. Each element has a unique line emission spectrum. The characteristic lines in atomic spectra can be used in chemical analysis to identify unknown atoms in the same way as fingerprints are used to identify people. The exact matching of lines of the emission spectrum of the atoms of a known element with the lines from an unknown sample quickly establishes the identity of the latter, German chemist, Robert Bunsen (1811-1899) was one of the first investigators to use line spectra to identify elements.

Elements like rubidium (Rb), caesium (Cs) thallium (Tl), indium (In), gallium (Ga) and scandium (Sc) were discovered when their minerals were analysed by spectroscopic methods. The element helium (He) was discovered in the sun by spectroscopic method.

Line Spectrum of Hydrogen

When an electric discharge is passed through gaseous hydrogen, the $\rm H_2$ molecules dissociate and the energetically excited hydrogen atoms produced emit electromagnetic radiation of discrete frequencies. The hydrogen spectrum consists of several series of lines named after their discoverers. Balmer showed in 1885 on the basis of experimental observations that if

^{*} The restriction of any property to discrete values is called quantization.

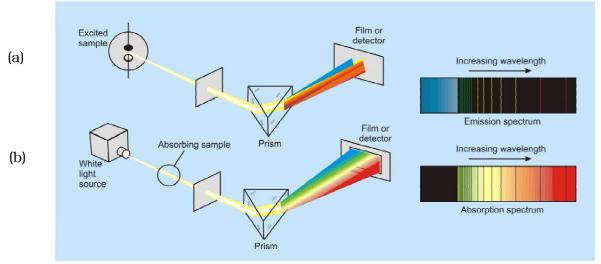


Fig. 2.10 (a) Atomic emission. The light emitted by a sample of excited hydrogen atoms (or any other element) can be passed through a prism and separated into certain discrete wavelengths. Thus an emission spectrum, which is a photographic recording of the separated wavelengths is called as line spectrum. Any sample of reasonable size contains an enormous number of atoms. Although a single atom can be in only one excited state at a time, the collection of atoms contains all possible excited states. The light emitted as these atoms fall to lower energy states is responsible for the spectrum. (b) Atomic absorption. When white light is passed through unexcited atomic hydrogen and then through a slit and prism, the transmitted light is lacking in intensity at the same wavelengths as are emitted in (a) The recorded absorption spectrum is also a line spectrum and the photographic negative of the emission spectrum.

spectral lines are expressed in terms of wavenumber $(\overline{\nu})$, then the visible lines of the hydrogen spectrum obey the following formula:

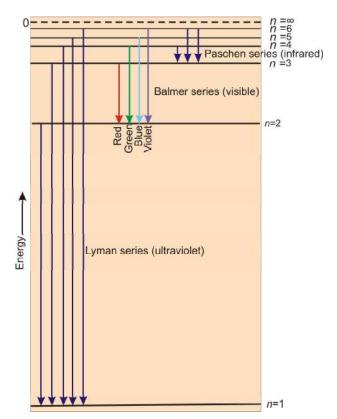
$$\overline{v} = 109,677 \left(\frac{1}{2^2} - \frac{1}{n^2} \right) \text{ cm}^{-1}$$
 (2.8)

where n is an integer equal to or greater than 3 (i.e., n = 3,4,5,...)

The series of lines described by this formula are called the **Balmer series**. The Balmer series of lines are the only lines in the hydrogen spectrum which appear in the visible region of the electromagnetic spectrum. The Swedish spectroscopist, Johannes Rydberg, noted that all series of lines in the hydrogen spectrum could be described by the following expression:

$$\overline{v} = 109,677 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \text{ cm}^{-1}$$
 (2.9)

where $n_1 = 1, 2, \dots$


$$n_2 = n_1 + 1, n_1 + 2....$$

The value 109,677 cm⁻¹ is called the **Rydberg constant** for hydrogen. The first five series of lines that correspond to n_1 = 1, 2, 3, 4, 5 are known as Lyman, Balmer, Paschen, Bracket and Pfund series, respectively, Table 2.3 shows these series of transitions in the hydrogen spectrum. Fig 2.11 (page, 46) shows the Lyman, Balmer and Paschen series of transitions for hydrogen atom.

Of all the elements, hydrogen atom has the simplest line spectrum. Line spectrum becomes

Table 2.3 The Spectral Lines for Atomic Hydrogen

Series	n,	n ₂	Spectral Region
Lyman	1	2,3	Ultraviolet
Balmer	2	3,4	Visible
Paschen	3	4,5	Infrared
Brackett	4	5.6	Infrarcd
Pfund	5	6,7	Infrared

Fig. 2.11 Transitions of the electron in the hydrogen atom (The diagram shows the Lyman, Balmer and Paschen series of transitions)

more and more complex for heavier atom. There are, however, certain features which are common to all line spectra, i.e., (i) line spectrum of element is unique and (ii) there is regularity in the line spectrum of each element. The questions which arise are: What are the reasons for these similarities? Is it something to do with the electronic structure of atoms? These are the questions need to be answered. We shall find later that the answers to these questions provide the key in understanding electronic structure of these elements.

2.4 BOHR'S MODEL FOR HYDROGEN ATOM

Neils Bohr (1913) was the first to explain quantitatively the general features of the structure of hydrogen atom and its spectrum. He used Planck's concept of quantisation of energy. Though the theory is not the modern quantum mechanics, it can still be used to

rationalize many points in the atomic structure and spectra. Bohr's model for hydrogen atom is based on the following postulates:

- i) The electron in the hydrogen atom can move around the nucleus in a circular path of fixed radius and energy. These paths are called **orbits**, stationary states or allowed energy states. These orbits are arranged concentrically around the nucleus.
- ii) The energy of an electron in the orbit does not change with time. However, the electron will move from a lower stationary state to a higher stationary state when required amount of energy is absorbed by the electron or energy is emitted when electron moves from higher stationary state to lower stationary state (equation 2.16). The energy change does not take place in a continuous manner.

Angular Momentum

Just as linear momentum is the product of mass (m) and linear velocity (v), angular momentum is the product of moment of inertia (I) and angular velocity (ω) . For an electron of mass $m_{\rm e}$, moving in a circular path of radius r around the nucleus,

angular momentum = $I \times \omega$

Since $I = m_e r^2$, and $\omega = v/r$ where v is the linear velocity,

: angular momentum = $m_0 r^2 \times v/r = m_0 vr$

iii) The frequency of radiation absorbed or emitted when transition occurs between two stationary states that differ in energy by ΔE , is given by:

$$v = \frac{\Delta E}{h} = \frac{E_2 - E_1}{h}$$
 (2.10)

Where E_1 and E_2 are the energies of the lower and higher allowed energy states respectively. This expression is commonly known as Bohr's frequency rule.

iv) The angular momentum of an electron is quantised. In a given stationary state it can be expressed as in equation (2.11)

$$m_{\bullet} \text{ vr} = n.\frac{h}{2\pi} \quad n = 1, 2, 3....$$
 (2.11)

Where m_e is the mass of electron, v is the velocity and r is the radius of the orbit in which electron is moving.

Thus an electron can move only in those orbits for which its angular momentum is integral multiple of $h/2\pi$. That means angular momentum is quantised. Radiation is emitted or obsorbed only when transition of electron takes place from one quantised value of angular momentum to another. Therefore, Maxwell's electromagnetic theory does not apply here that is why only certain fixed orbits are allowed.

The details regarding the derivation of energies of the stationary states used by Bohr, are quite complicated and will be discussed in higher classes. However, according to Bohr's theory for hydrogen atom:

- a) The stationary states for electron are numbered $n = 1, 2, 3, \dots$ These integral numbers (Section 2.6.2) are known as **Principal quantum numbers**.
- b) The radii of the stationary states are expressed as: $r = r^2 a$ (2.12)

 $r_{\rm n}=n^2\,a_{\rm o}$ (2.12) where $a_{\rm o}=52.9$ pm. Thus the radius of the first stationary state, called the **Bohr orbit**, is 52.9 pm. Normally the electron in the hydrogen atom is found in this orbit (that is n=1). As n increases the value of r will increase. In other words the electron will be present away from the nucleus.

c) The most important property associated with the electron, is the energy of its stationary state. It is given by the expression.

$$E_n = -R_H \left(\frac{1}{n^2}\right)$$
 $n = 1, 2, 3....$ (2.13)

where $R_{\rm H}$ is called **Rydberg constant** and its value is $2.18\times10^{-18}\,\rm J$. The energy of the lowest state, also called as the ground state, is

$$E_{_{1}} = -2.18 \times 10^{-18} \ (\frac{1}{1^{2}}) = -2.18 \times 10^{-18} \ \mathrm{J}.$$
 The

energy of the stationary state for n = 2, will

be:
$$E_2 = -2.18 \times 10^{-18} \text{J} \left(\frac{1}{2^2}\right) = -0.545 \times 10^{-18} \text{J}.$$

Niels Bohr (1885–1962)

Niels Bohr, a Danish physicist received his Ph.D. from the University of Copenhagen in 1911. He then spent a year with J.J.

Thomson and Ernest Rutherford in England. In 1913, he returned to Copenhagen where he remained for the rest of his life. In 1920 he was named Director of the Institute of theoretical Physics. After first World War, Bohr worked energetically for peaceful uses of atomic energy. He received the first Atoms for Peace award in 1957. Bohr was awarded the Nobel Prize in Physics in 1922.

Fig. 2.11 depicts the energies of different stationary states or energy levels of hydrogen atom. This representation is called an energy level diagram.

When the electron is free from the influence of nucleus, the energy is taken as zero. The electron in this situation is associated with the stationary state of Principal Quantum number $= n = \infty$ and is called as ionized hydrogen atom. When the electron is attracted by the nucleus and is present in orbit n, the energy is emitted

What does the negative electronic energy (E_n) for hydrogen atom mean?

The energy of the electron in a hydrogen atom has a negative sign for all possible orbits (eq. 2.13). What does this negative sign convey? This negative sign means that the energy of the electron in the atom is lower than the energy of a free electron at rest. A free electron at rest is an electron that is infinitely far away from the nucleus and is assigned the energy value of zero. Mathematically, this corresponds to setting n equal to infinity in the equation (2.13) so that $E_{\infty}=0$. As the electron gets closer to the nucleus (as n decreases), E becomes larger in absolute value and more and more negative. The most negative energy value is given by n=1 which corresponds to the most stable orbit. We call this the ground state.

and its energy is lowered. That is the reason for the presence of negative sign in equation (2.13) and depicts its stability relative to the reference state of zero energy and $n = \infty$.

d) Bohr's theory can also be applied to the ions containing only one electron, similar to that present in hydrogen atom. For example, He⁺ Li²⁺, Be³⁺ and so on. The energies of the stationary states associated with these kinds of ions (also known as hydrogen like species) are given by the expression.

$$E_{\rm n} = -2.18 \times 10^{-18} \left(\frac{Z^2}{n^2} \right)$$
 (2.14)

and radii by the expression

$$r_n = \frac{52.9(n^2)}{Z} pm$$
 (2.15)

where Z is the atomic number and has values 2,3 for the helium and lithium atoms respectively. From the above equations, it is evident that the value of energy becomes more negative and that of radius becomes smaller with increase of Z. This means that electron will be tightly bound to the nucleus.

e) It is also possible to calculate the velocities of electrons moving in these orbits. Although the precise equation is not given here, qualitatively the magnitude of velocity of electron increases with increase of positive charge on the nucleus and decreases with increase of principal quantum number.

2.4.1 Explanation of Line Spectrum of Hydrogen

Line spectrum observed in case of hydrogen atom, as mentioned in section 2.3.3, can be explained quantitatively using Bohr's model. According to assumption 2, radiation (energy) is absorbed if the electron moves from the orbit of smaller Principal quantum number to the orbit of higher Principal quantum number, whereas the radiation (energy) is emitted if the electron moves from higher orbit to lower orbit. The energy gap between the two orbits is given by equation (2.16)

$$\Delta E = E_{\rm f} - E_{\rm i} \tag{2.16}$$

Combining equations (2.13) and (2.16)

$$\Delta E = \left(-\frac{R_H}{n_f^2}\right) - \left(-\frac{R_H}{n_i^2}\right)$$
 (where n_i and n_f

stand for initial orbit and final orbits)

$$\Delta E = R_{\rm H} \left(\frac{1}{n_{\rm i}^2} - \frac{1}{n_{\rm f}^2} \right) = 2.18 \times 10^{-18} \, {\rm J} \left(\frac{1}{n_{\rm i}^2} - \frac{1}{n_{\rm f}^2} \right) \tag{2.17}$$

The frequency (ν) associated with the absorption and emission of the photon can be evaluated by using equation (2.18)

$$v = \frac{\Delta E}{h} = \frac{R_H}{h} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$

$$= \frac{2.18 \times 10^{-18} \text{J}}{6.626 \times 10^{-24} \text{J/s}} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$
 (2.18)

$$=3.29 \times 10^{15} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right) \text{Hz}$$
 (2.19)

and in terms of wavenumbers $(\overline{\nu})$

$$\bar{\nu} = \frac{\nu}{c} = \frac{R_H}{hc} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$
 (2.20)

$$=\frac{3.29\times10^{15}\,\mathrm{s}^{-1}}{3\times10^8\,\mathrm{m}\,\mathrm{s}^{-s}}\left(\frac{1}{n_i^2}-\frac{1}{n_f^2}\right)$$

$$= 1.09677 \times 10^{7} \left(\frac{1}{n_{i}^{2}} - \frac{1}{n_{f}^{2}} \right) m^{-1} \qquad (2.21)$$

In case of absorption spectrum, $n_{\rm f} > n_{\rm i}$ and the term in the parenthesis is positive and energy is absorbed. On the other hand in case of emission spectrum $n_{\rm i} > n_{\rm f}$, Δ E is negative and energy is released.

The expression (2.17) is similar to that used by Rydberg (2.9) derived empirically using the experimental data available at that time. Further, each spectral line, whether in absorption or emission spectrum, can be associated to the particular transition in hydrogen atom. In case of large number of hydrogen atoms, different possible transitions can be observed and thus leading to large number of spectral lines. The brightness or intensity of spectral lines depends upon the number of photons of same wavelength or frequency absorbed or emitted.

Problem 2.10

What are the frequency and wavelength of a photon emitted during a transition from n = 5 state to the n = 2 state in the hydrogen atom?

Solution

Since n = 5 and n = 2, this transition gives rise to a spectral line in the visible region of the Balmer series. From equation (2.17)

$$\Delta E = 2.18 \times 10^{-18} J \left[\frac{1}{5^2} - \frac{1}{2^2} \right]$$

= $-4.58 \times 10^{-19} J$

It is an emission energy

The frequency of the photon (taking energy in terms of magnitude) is given by

$$v = \frac{\Delta E}{h}$$

$$= \frac{4.58 \times 10^{-19} \text{ J}}{6.626 \times 10^{-34} \text{ J s}}$$

$$= 6.91 \times 10^{14} \text{ Hz}$$

$$\lambda = \frac{c}{v} = \frac{3.0 \times 10^8 \text{ m s}^{-1}}{6.91 \times 10^{14} \text{ Hz}} = 434 \text{ nm}$$

Problem 2.11

Calculate the energy associated with the first orbit of He⁺. What is the radius of this orbit?

Solution

$$E_{\rm n} = -\frac{(2.18 \times 10^{-18} J)Z^2}{n^2} \ {\rm atom^{-1}}$$

For He⁺, n = 1, Z = 2

$$E_1 = -\frac{(2.18 \times 10^{-18} \, \text{J})(2^2)}{1^2} = -8.72 \times 10^{-10} \, \text{J}$$

The radius of the orbit is given by equation (2.15)

$$r_{n} = \frac{(0.0529 \text{ nm})n^{2}}{Z}$$

Since n = 1, and Z = 2

$$r_{\rm e} = \frac{(0.0529 \text{ nm})l^2}{2} = 0.02645 \text{ nm}$$

2.4.2 Limitations of Bohr's Model

Bohr's model of the hydrogen atom was no doubt an improvement over Rutherford's nuclear model, as it could account for the stability and line spectra of hydrogen atom and hydrogen like ions (for example, He⁺, Li²⁺, Be³⁺, and so on). However, Bohr's model was too simple to account for the following points.

- i) It fails to account for the finer details (doublet, that is two closely spaced lines) of the hydrogen atom spectrum observed by using sophisticated spectroscopic techniques. This model is also unable to explain the spectrum of atoms other than hydrogen, for example, helium atom which possesses only two electrons. Further, Bohr's theory was also unable to explain the splitting of spectral lines in the presence of magnetic field (Zeeman effect) or an electric field (Stark effect).
- ii) It could not explain the ability of atoms to form molecules by chemical bonds.

In other words, taking into account the points mentioned above, one needs a better theory which can explain the salient features of the structure of complex atoms.

2.5 TOWARDS QUANTUM MECHANICAL MODEL OF THE ATOM

In view of the shortcoming of the Bohr's model, attempts were made to develop a more suitable and general model for atoms. Two important developments which contributed significantly in the formulation of such a model were:

- 1. Dual behaviour of matter,
- 2. Heisenberg uncertainty principle.

2.5.1 Dual Behaviour of Matter

The French physicist, de Broglie, in 1924 proposed that matter, like radiation, should also exhibit dual behaviour i.e., both particle and wavelike properties. This means that just as the photon has momentum as well as wavelength, electrons should also have momentum as well as wavelength, de Broglie, from this analogy, gave the following relation between wavelength (λ) and momentum (p) of a material particle.

Louis de Broglie (1892 - 1987)

Louis de Broglie, a French physicist, studied history as an undergraduate in the early 1910's. His interest turned to science as a result of his assignment to radio communications in World War I.

He received his Dr. Sc. from the University of Paris in 1924. He was professor of theoretical physics at the University of Paris from 1932 untill his retirement in 1962. He was awarded the Nobel Prize in Physics in 1929.

$$\lambda = \frac{h}{mv} = \frac{h}{p} \tag{2.22}$$

where *m* is the mass of the particle, v its velocity and *p* its momentum. de Broglie's prediction was confirmed experimentally when it was found that an electron beam undergoes diffraction, a phenomenon characteristic of waves. This fact has been put to use in making an electron microscope, which is based on the wavelike behaviour of electrons just as an ordinary microscope utilises the wave nature of light. An electron microscope is a powerful tool in modern scientific research because it achieves a magnification of about 15 million times.

It needs to be noted that according to de Broglie, every object in motion has a wave character. The wavelengths associated with ordinary objects are so short (because of their large masses) that their wave properties cannot be detected. The wavelengths associated with electrons and other subatomic particles (with very small mass) can however be detected experimentally. Results obtained from the following problems prove these points qualitatively.

Problem 2.12

What will be the wavelength of a ball of mass 0.1 kg moving with a velocity of 10 m s⁻¹?

Solution

According to de Brogile equation (2.22)

$$\lambda = \frac{h}{mv} = \frac{(6.626 \times 10^{-34} \, \text{Js})}{(0.1 \, \text{kg})(10 \, \, \text{m s}^{-1})}$$

 $= 6.626 \times 10^{-34} \text{ m (J = kg m}^2 \text{ s}^{-2})$

Problem 2.13

The mass of an electron is 9.1×10^{-31} kg. If its K.E. is 3.0×10^{-25} J, calculate its wavelength.

Solution

Since K. E. = $\frac{1}{2}$ mv²

$$v = \left(\frac{2K.E.}{m}\right)^{1/2} = \left(\frac{2 \times 3.0 \times 10^{-25} \text{ kg m}^2 \text{s}^{-2}}{9.1 \times 10^{-31} \text{ kg}}\right)^{1/2}$$

 $= 812 \text{ m s}^{-1}$

$$\lambda = \frac{h}{m \, v} = \frac{6.626 \times 10^{-34} \, \text{Js}}{(9.1 \times 10^{-31} \, \text{kg})(812 \, \text{m s}^{-1})}$$

 $= 8967 \times 10^{-10} \text{ m} = 896.7 \text{ nm}$

Problem 2.14

Calculate the mass of a photon with wavelength 3.6 Å.

Solution

 $\lambda = 3.6 \ \mathring{A} = 3.6 \ \times 10^{-10} \ m$ Velocity of photon = velocity of light

$$m = \frac{h}{\lambda v} = \frac{6.626 \times 10^{-34} \,\text{Js}}{(3.6 \times 10^{-10} \,\text{m})(3 \times 10^8 \,\text{m s}^{-1})}$$
$$= 6.135 \times 10^{-29} \,\text{kg}$$

2.5.2 Heisenberg's Uncertainty Principle

Werner Heisenberg a German physicist in 1927, stated uncertainty principle which is the consequence of dual behaviour of matter and radiation. It states that it is impossible to determine simultaneously, the exact position and exact momentum (or velocity) of an electron.

Mathematically, it can be given as in equation (2.23).

$$\Delta x \times \Delta p_{x} \ge \frac{h}{4\pi}$$
or $\Delta x \times \Delta (mv_{x}) \ge \frac{h}{4\pi}$
or $\Delta x \times \Delta v_{x} \ge \frac{h}{4\pi m}$

where Δx is the uncertainty in position and Δp_x (or $\Delta v_{...}$) is the uncertainty in momentum (or velocity) of the particle. If the position of the electron is known with high degree of accuracy (Δx is small), then the velocity of the electron will be uncertain $[\Delta(v)]$ is large. On the other hand, if the velocity of the electron is known precisely ($\Delta(v_{\perp})$ is small), then the position of the electron will be uncertain $(\Delta x \text{ will be large})$. Thus, if we carry out some physical measurements on the electron's position or velocity, the outcome will always depict a fuzzy or blur picture.

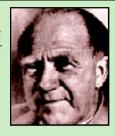
The uncertainty principle can be best understood with the help of an example. Suppose you are asked to measure the thickness of a sheet of paper with an unmarked metrestick. Obviously, the results obtained would be extremely inaccurate and meaningless. In order to obtain any accuracy. you should use an instrument graduated in units smaller than the thickness of a sheet of the paper. Analogously, in order to determine the position of an electron, we must use a meterstick calibrated in units of smaller than the dimensions of electron (keep in mind that an electron is considered as a point charge and is therefore, dimensionless). To observe an electron, we can illuminate it with "light" or electromagnetic radiation. The "light" used must have a wavelength smaller than the dimensions of an electron. The high

momentum photons of such light $\left(p = \frac{h}{\lambda}\right)$

would change the energy of electrons by collisions. In this process we, no doubt, would be able to calculate the position of the electron, but we would know very little about the velocity of the electron after the collision.

Significance of Uncertainty Principle

One of the important implications of the Heisenberg Uncertainty Principle is that it rules out existence of definite paths or trajectories of electrons and other similar particles. The trajectory of an object is determined by its location and velocity at various moments. If we know where a body is at a particular instant and if we also know its velocity and the forces acting on it at that instant, we can tell where the body would be sometime later. We, therefore, conclude that the position of an object and its velocity fix its trajectory. Since for a sub-atomic object such as an electron, it is not possible simultaneously to determine the position and velocity at any given instant to an arbitrary degree of precision, it is not possible to talk of the trajectory of an electron.


The effect of Heisenberg Uncertainty Principle is significant only for motion of microscopic objects and is negligible for that of macroscopic objects. This can be seen from the following examples.

If uncertainty principle is applied to an object of mass, say about a milligram (10^{-6} kg), then

$$\Delta v.\Delta x = \frac{h}{4\pi.m}$$

$$= \frac{6.626 \times 10^{-34} \text{ J s}}{4 \times 3.1416 \times 10^{-6} \text{ kg}} \approx 10^{-28} \text{m}^{-2} \text{s}^{-1}$$

Werner Heisenberg (1901 – 1976) Werner Heisenberg (1901 – 1976) received his Ph.D. in physics from the University of Munich in 1923. He then spent a year working with Max Born at Gottingen and three years with Niels Bohr in Copenhagen. He was professor of physics at the University of Leipzig from 1927 to 1941. During World War II, Heisenberg was in charge of German research on the atomic bomb. After the war he was named director of Max Planck Institute for physics in Gottingen. He was also accomplished mountain climber. Heisenberg was awarded the Nobel Prize in Physics in 1932.

The value of $\Delta v \Delta x$ obtained is extremely small and is insignificant. Therefore, one may say that in dealing with milligram-sized or heavier objects, the associated uncertainties are hardly of any real consequence.

In the case of a microscopic object like an electron on the other hand. $\Delta v.\Delta x$ obtained is much larger and such uncertainties are of real consequence. For example, for an electron whose mass is 9.11×10^{-31} kg., according to Heisenberg uncertainty principle

$$\Delta v.\Delta x = \frac{h}{4\pi m}$$

$$= \frac{6.626 \times 10^{-34} \text{ Js}}{4 \times 3.1416 \times 9.11 \times 10^{-31} \text{ kg}}$$

$$= 10^{-4} \text{m}^{-2} \text{s}^{-1}$$

It, therefore, means that if one tries to find the exact location of the electron, say to an uncertainty of only 10^{-8} m, then the uncertainty Δv in velocity would be

$$\frac{10^{-4}m^2s^{-1}}{10^{-8}m} \approx 10^4 m \, s^{-1}$$

which is so large that the classical picture of electrons moving in Bohr's orbits (fixed) cannot hold good. It, therefore, means that the precise statements of the position and momentum of electrons have to be replaced by the statements of probability, that the electron has at a given position and momentum. This is what happens in the quantum mechanical model of atom.

Problem 2.15

A microscope using suitable photons is employed to locate an electron in an atom within a distance of 0.1 Å. What is the uncertainty involved in the measurement of its velocity?

Solution

$$\Delta x \Delta p = \frac{h}{4\pi}$$
 or $\Delta x m \Delta v = \frac{h}{4\pi}$

$$\Delta v = \frac{h}{4\pi \Delta x m}$$

$$\Delta v = \frac{6.626 \times 10^{-34} \text{ Js}}{4 \times 3.14 \times 0.1 \times 10^{-10} \text{m} \times 9.11 \times 10^{-31} \text{ kg}}$$

$$= 0.579 \times 10^{7} \text{ m s}^{-1} \text{ (1J = 1 kg m}^{2} \text{ s}^{-2}\text{)}$$

$$= 5.79 \times 10^{6} \text{ m s}^{-1}$$

Problem 2.16

A golf ball has a mass of 40g, and a speed of 45 m/s. If the speed can be measured within accuracy of 2%, calculate the uncertainty in the position.

Solution

The uncertainty in the speed is 2%, i.e.,

45
$$\frac{2}{100}$$
 = 0.9 m s⁻¹
Using the equation (2.22)

$$\Delta x = \frac{h}{4\pi m \Delta v}$$

$$= \frac{6.626 \times 10^{-34} \text{ Js}}{4 \times 3.14 \times 40 \text{ g} \times 10^{-3} \text{ kg g}^{-1} (0.9 \text{ m s}^{-1})}$$

$$= 1.46 \times 10^{-33} \text{ m}$$

This is nearly $\sim 10^{18}$ times smaller than the diameter of a typical atomic nucleus. As mentioned earlier for large particles, the uncertainty principle sets no meaningful limit to the precision of measurements.

Reasons for the Failure of the Bohr Model

One can now understand the reasons for the failure of the Bohr model. In Bohr model, an electron is regarded as a charged particle moving in well defined circular orbits about the nucleus. The wave character of the electron is not considered in Bohr model. Further, an orbit is a clearly defined path and this path can completely be defined only if both the position and the velocity of the electron are known exactly at the same time. This is not possible according to the Heisenberg uncertainty principle. Bohr model of the hydrogen atom, therefore, not only ignores dual behaviour of matter but also contradicts Heisenberg uncertainty principle. In view of

Erwin Schrödinger, an Austrian physicist received his Ph.D. in theoretical physics from the University of Vienna in 1910. In 1927 Schrödinger succeeded Max Planck at the University of Berlin at Planck's request. In 1933, Schrödinger left Berlin

Erwin Schrödinger (1887-1961)

because of his opposition to Hitler and Nazi policies and returned to Austria in 1936. After the invasion of Austria by Germany, Schrödinger was forcibly removed from his professorship. He then moved to Dublin, Ireland where he remained for seventeen years. Schrödinger shared the Nobel Prize for Physics with P.A.M. Dirac in 1933.

these inherent weaknesses in the Bohr model, there was no point in extending Bohr model to other atoms. In fact an insight into the structure of the atom was needed which could account for wave-particle duality of matter and be consistent with Heisenberg uncertainty principle. This came with the advent of quantum mechanics.

2.6 QUANTUM MECHANICAL MODEL OF ATOM

Classical mechanics, based on Newton's laws of motion, successfully describes the motion of all macroscopic objects such as a falling stone, orbiting planets etc., which have essentially a particle-like behaviour as shown in the previous section. However it fails when applied to microscopic objects like electrons, atoms, molecules etc. This is mainly because of the fact that classical mechanics ignores the concept of dual behaviour of matter especially for sub-atomic particles and the uncertainty principle. The branch of science that takes into account this dual behaviour of matter is called **quantum mechanics**.

Quantum mechanics is a theoretical science that deals with the study of the motions of the microscopic objects that have both observable wave like and particle like properties. It specifies the laws of motion that these objects obey. When quantum mechanics is applied to macroscopic objects (for which wave like properties are insignificant) the results are the same as those from the classical mechanics.

Quantum mechanics was developed independently in 1926 by Werner Heisenberg and Erwin Schrödinger. Here, however, we shall be discussing the quantum mechanics which is based on the ideas of wave motion. The fundamental equation of quantum mechanics was developed by Schrödinger and it won him the Nobel Prize in Physics in 1933. This equation which incorporates waveparticle duality of matter as proposed by de Broglie is quite complex and knowledge of higher mathematics is needed to solve it. You will learn its solutions for different systems in higher classes.

For a system (such as an atom or a molecule whose energy does not change with time) the **Schrödinger equation** is written as $\hat{H}\psi = F\psi$ where \hat{H} is a mathematical operator called Hamiltonian. Schrödinger gave a recipe of constructing this operator from the expression for the total energy of the system. The total energy of the system takes into account the kinetic energies of all the subatomic particles (electrons, nuclei), attractive potential between the electrons and nuclei and repulsive potential among the electrons and nuclei individually. Solution of this equation gives E and ψ .

Hydrogen Atom and the Schrödinger Equation

When Schrödinger equation is solved for hydrogen atom, the solution gives the possible energy levels the electron can occupy and the corresponding wave function(s) (ψ) of the electron associated with each energy level. These quantized energy states and corresponding wave functions which are characterized by a set of three quantum numbers (**principal quantum number** n, **azimuthal quantum number** l **and magnetic quantum number** m_l) arise as a natural consequence in the solution of the Schrödinger equation. When an electron is in