Chapter 4

UNIPLANAR MOTION REFERRED
TO POLAR COORDINATES
CENTRAL FORCES

48. In the present chapter we shall consider cases of motion which
are most readily solved by the use of polar coordinates. We must
first obtain the velocities and accelerations of a moving point along

and perpendicular to the radius vector drawn from a fixed pole.

49. Velocities and accelerations of a particle along and perpendicu-
lar to the radius vector to it from a fixed origin O.

Let P be the position of the particle at time ¢, and Q its position at
time 1 + At.

O

Let XOP=0,X00Q =0+ A0, OP =r, OQ = r+ Ar, where OX
1s a fixed line.
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Draw QM perpendicular to OP.
Let u,v be the velocities of the moving point along and perpendic-
ular to OP. Then

[ Distance of particle measured along the line OP ]
at time (¢t + /A\t)- the similar distance at time ¢

=1
A At
_ . OM—OP )
A=0 At
. (r+Ar)cosAO—r
= lim
At=0 At
. (r+Ar)1—r
=1
oy At ’
[small quantities above the first order being neglected. ]
dr
=— (1
dt (1)
Also
Distance of particle measured perpendicular to the
, line OP at time (¢ + At)- the similar distance at time ¢
v= lim
Ar=0 At

OM —0 i (r+ Ar)sin AO

(r+Ar).A0

,on neglecting small quantities of the second order
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do
=r— in the limit ..(2)

The velocities along and perpendicular to OP being u and v, the
velocities along and perpendicular to OQ are u+ Au and v+ Av.
Let the perpendicular to OQ at Q be produced to meet OP at L.

kv+Av

O

Then the acceleration of the moving point along OP

[ Its velocity along OP at time (¢ + At) |

_ — its similar velocity at time ¢

= lim
At=0 At

, :(u+Au)c036—(v+Av)sinA9—u]
= lim
At=0 A\t

— tm (u+Au).1— v+ Av).AO —u

At=0 A\t

on neglecting squares and higher powers of A0,
_ i 20 YE0 _du 6 e timit
T A0 A dr dr ’

9

d*r (@

2
:ﬁ—r dt)’ by (1) and (2)
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Also the acceleration of the moving point perpendicular to OP in the

direction of 6 increasing )
Its velocity perpendicular to OP at time (1 + A\t)
’ — its similar velocity at time ¢
= lim

At=0 I\t

: :(M+AM)SiHA9—|—(v—|—Av)COSA9—v]
= lim
At=0 A\t

(u+ Au).NO+ (v+Av).l—v

= lim

At=0 | At ’
on neglecting squares and higher powers of AG,
d 0 dv drd0 d ( do
=u—+—, inth =——+4—
dt + I in the limit, = + 7 ( 7 > ,by (1) and (2)

_n 77 - ...(4
dtdt+rdt2 rdt dt )

CoR. If r = a, a constant quantity, so that the particle is describing

drd® d*0 1d [2d9]

a circle of centre O and radius a, the quantity (3) = —a6? and (4)
— a0, so that the accelerations of P along the tangent PQ and the
radius PO are a @ and a §°.

50. The results of the previous article may also be obtained by re-
solving the velocities and accelerations along the axes of x and y in
the directions of the radius vector and perpendicular to it.

For since x = rcos 0 and y = rsin 0,

dx d
Y oso —rsmeﬁ
dr dt dt
dy dr ..(1)
d = — -~
an O sin@ 4 rcos 0 7

Also
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d>x  dPr drdo de\> . _d*0)
e Wcos 0 — 255 sin@ —rcos 0 <E) — rsin GW
d’y d° drd de\’ d*6
d_tz = dT;sinG —|—2d—;ECOSG —rsinf (—) + rcos GW )
The component velocity along OP
dx dy . do
= — - _ 1
dtcos@+dt31n6 dt’bY( )
and perpendicular to OP in the direction of 8 increasing it
d d do
= d—);cose — d—fsin@ =r— by (1).
The component acceleration along OP
d%x d%y d2r de\*
= ﬁCOSG—FWSIHG = W —r (E) , by (2)
and perpendicular to OP it
d’y d’x drdo®  d*6
= WCOSQ — WSIHO = 2EE+7W by (2),
ld | ,do
=——|r—|.
rdt dt

51. By the use of Arts. 4 and 49 we can obtain the accelerations of a
moving point referred to rectangular axes Ox and Oy, which are not
fixed in space, but which revolve in any manner about the origin O
in their own plane.

Let OA be a line fixed in space, and, at time #, let 6 be the incli-
nation of Ox to OA. Let P be the moving point; draw PM and PN
perpendicular to Ox and Oy.
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A

dx do
By Art. 49 the velocities of the point M are 7 along OM and XE
dy 0
along MP, and the velocities of N are I along ON and yE along
PN produced.
d d do
for —(ZLAON LAOM
or i (AAON) = G )=
Hence the velocity of P parallel to Ox

= the velocity of N parallel to Ox + the velocity of P relative to N.
= vel. of N parallel to Ox + the vel. of M along OM

do dx

_ 4o dx (1
Y T &

So the velocity of P parallel to Oy

= vel. of M parallel to Oy + the vel. of P relative to M
= vel. of M parallel to Oy + the vel. of N along to ON

4o dy

= (2
dt+dt (2)

dx  [(dO\’
Again, the accelerations of M are, by Art. 49, pr) —X I along
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1d do
OM, and ar ( 2 o ) along MP, and the accelerations of N are
X

42y do\* 1d [ ,d6
pro y (E) along ON, and _E (y d_> along PN, produced.

Hence the acceleration of P parallel to Ox

= acceleration of N parallel to Ox + acceleration of P relative to N

= acceleration of N parallel to Ox + acceleration of M along OM

1d [ ,d0\ d do\*
= —x( = ..(3
ydt( dt)+dt2 x(dt) )

Also the acceleration of P parallel to Oy

= acceleration of M parallel to Oy + acceleration of P relative to M
= acceleration of M parallel to Ox + acceleration of N along ON

1d [ ,do\ d2 do\*
— (= (4
xdt(x dt)+dt2 y(dt) )

COR. In the particular case when the axes are revolving with a con-

, do o
stant angular velocity @, so that i @, these component velocities

become
fl—x — ym along Ox, and fl— +x® along Oy;
also the component accelerations are
d’x d d*

dx
) — X — 2a)d—}; along Ox, and dty ya) —i—2wd— along Oy.

52. EX. 1. Show that the path of a point P which possesses two con-

stant velocities u and v, the first of which is in a fixed direction and
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the second of which is perpendicular to the radius OP drawn from a
fixed point O, is a conic whose focus is O and whose eccentricity is
u
%

With the first figure of Art. 49, let u be the constant velocity along
OX and v the constant velocity perpendicular to OP.

Then we have

dr_ 03 0 andrde— <in 0 . ldr_ ucos 6
dr Y ar MY e T Y S using

logr = —log(v — usin ) 4 const.,

i.e. r(v—usin@) = const. = [v,

if the path cut the axis of x at a distance /. Therefore the path is

1 . . . .. u
r=———, i.e. aconic section whose eccentricity is —.
] ——sin0 v
v

EX. 2. A smooth straight thin tube revolves with uniform angular
velocity @ in a vertical plane about one extremity which is fixed; if
at zero time the tube be horizontal, and a particle inside it be at a
distance a from the fixed end, and be moving with velocity V along
the tube, show that its distance at time t is

acosh(wt) + (% — 2%02) sinh(wt) + 2iw2 sin @t .

At any time ¢ let the tube have revolved round its fixed end through
an angle wt from the horizontal line OX in an upward direction; let
P, where OP = r, be the position of the particle then.

By Art. 49,
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d*r . : o
i r@* = acceleration of P in the direction OP

= —gsin @¢, since the tube is smooth.

The solution of this equation is

1
— wt —t :
r=Ae®” +Be™® +—2_w2(—gsm(x)t)

= Lcosh(wt) + M sinh(t) + 2%02 sin t,

where A and B, and so L and M, are arbitrary constants.

The initial conditions are that r =a and r =V when t = 0.

a=L andV =Moo+ >
20
. Vi g | . g .
. r:acosha)t—|— [5—2—(02] Slnh(wt)+2—a)281n0)t.

If R be the normal reaction of the tube, then

R
— — gcos ot = the acceleration perpendicular to OP
m
ld  ,
=—-—(r‘m), by Art. 49,
r dt( ) by Ar
=2r@

= 2a®”sinh(wt) + (2V @ — g) cosh(wt) + g cos wt.

EXAMPLES

1. A vessel steams at a constant speed v along a straight line whilst

another vessel, steaming at a constant speed V, keeps the first al-
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ways exactly abeam. Show that the path of either vessel relatively
to the other is a conic section of eccentricity r

. A boat, which is rowed with constant velocity u, starts from a point
A on the bank of a river which flows with a constant velocity nu; it
points always towards a point B on the other bank exactly opposite
to A; find the equation to the path of the boat.

If n be unity, show that the path is a parabola whose focus is B.

. An insect crawls at a constant rate u along the spoke of a cartwheel,
of radius a, the cart moving with velocity v. Find the acceleration
along and perpendicular to the spoke.

. The velocities of a particle along and perpendicular to the radius
from a fixed origin are Ar and u8; find the path and show that the
accelerations, along and perpendicular to the radius vector, are

202
/IZF_N 0

and uo [l—i—%} .

r
. A point starts from the origin in the direction of the initial line with

velocity g and moves with constant angular velocity @ about the
origin and with constant negative radial acceleration —f. Show
that the rate of growth of the radial velocity is never positive, but

tends to the limit zero, and prove that the equation of the path is
w’r=f(1—e9).

. A point P describes a curve with constant velocity and its angular
velocity about a given fixed point O varies inversely as the distance
from O; show that the curve is an equiangular spiral whose pole is
O, and that the acceleration of the point is along the normal at P
and varies inversely as OP.
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7.

10.

11.

A point P describes an equiangular spiral with constant angular
velocity about the pole; show that its acceleration varies as OP and
is in a direction making with the tangent at P the same constant

angle that OP makes.

. A point moves in a given straight line on a plane with constant

velocity V, and the plane moves with constant angular velocity @
about an axis perpendicular to itself through a given point O of
the plane. If the distance of O from the given straight line be a,
show that the path of the point in space is given by the equation

— /72 + — referred to O as pole.

[If 0 be measured from the 11ne to which the given line is perpen-
_,a

iy

r

dicular at zero time, then 2 = a® + V2.t2 and 6 = @t + cos

. A straight smooth tube revolves with angular velocity  in a hor-

izontal plane about one extremity which is fixed; if at zero time a
particle inside it be at a distance a from the fixed end and moving
with velocity V along the tube, show that its distance at time 7 is
acosh ot 4 % sinh f.

A thin straight smooth tube is made to revolve upwards with a
constant angular velocity @ in a vertical plane about one extremity
O; when it is in a horizontal position, a particle is at rest in it at a
distance a from the fixed endl(g; if @ be very small, show that it
will reach O in a time (6_a) : nearly.

ga
A particle is at rest on a smooth horizontal plane which com-

mences to turn about a straight line lying in itself with constant
angular velocity @ downwards; if a be the distance of the particle

from the axis of rotation at zero time, show that the body will leave
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12.

13.

14.

the plane at time ¢ given by the equation

asinh ot + iz coshwt = % COS Wt .
20 0]

A particle falls from rest within a straight smooth tube which is
revolving with uniform angular velocity @ about a point O in its
length, being acted on by a force equal to mpu(distance) towards
O. Show that the equation to its path in space is

2 _
r—acosh[ @ .U9]

2

p— : < 2
or r = COS 79 , accordingas U s @°.
If u = w?, show that the path is a circle.

A particle is placed at rest in a rough tube at a distance a from one
end, and the tube starts rotating with a uniform angular velocity @

about this end. Show that the distance of the particle at time 7 is
ae” " .tan€[cosh(wt.sec €) + sin € sinh(wr sec €)],

where tan € is the coefficient of friction.
One end A of a rod is made to revolve with uniform angular ve-
locity @ in the circumference of a circle of radius a, whilst the
rod itself revolves in the opposite direction about that end with the
same angular velocity. Initially the rod coincides with a diameter
and a smooth ring capable of sliding freely along the rod is placed
at the centre of the circle. Show that the distance of the ring from
A attime ¢ is
g[4cosh(a)t) +cos21].
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15.

16.

17.

[If O be the centre of the circle and P, where AP = r, is the position
of the ring at time r when both OA and AP have revolved through
an angle 8, (= t), in opposite directions, the acceleration of A is
aw? along OA and the acceleration of P relative to A is ¥ —r 67, by
Art. 49, i.e. ¥ —r”. Hence the total acceleration of P along AP 1s

F—ro® +aw?

cos2mt, and this is zero since the ring is smooth. ]
PQ 1s a tangent at Q to a circle of radius a; PQ is equal to p and
makes an angle 0 with a fixed tangent to the circle; show that the

accelerations of P along and perpendicular to QP are respectively
.. : . 1d . .
2 2 2
— d—— :
P—pO-+ad, an pdt(p 0)+a0

[The accelerations of Q along and perpendicular to QP are a @ and
a 67; the accelerations of P relative to Q in these same directions
are P —p 6~ and li(p2 9).]
pdt
Two particles, of masses m and m’, connected by an elastic string
of natural length a, are placed in a smooth tube of small bore which
is made to rotate about a fixed point in its length with angular
velocity @. The coefficient of elasticity of the string is 2mm’a®? +
(m+m’). Show that, if the particles are initially just at rest relative
to the tube and the string is just taut, their distance apart at time ¢
1s
2a —acos ot.

A weight can slide along the spoke of a horizontal wheel, whose
mass may be neglected to the centre of the wheel by means of a
light spring ; when the wheel is fixed, the period of oscillation of

the weight is 27 /n. If the wheel is started to rotate freely with
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angular velocity 6nv/11 /55, prove that the greatest extension of
the spring is one-fifth of its original length.

18. A uniform chain AB is placed in a straight tube OAB which re-
volves in a horizontal plane, about the fixed point O, with uniform
angular velocity @. Show that the motion of the middle point of
the chain is the same as would be the motion of a particle placed at

this middle point, and that the tension of the chain at any point P

is Emwz.AP.PB, where m 1s the mass of a unit length of the chain.

53. A particle moves in a plane with an acceleration which is always
directed to a fixed point O in the plane; to obtain the differential
equation of its path.

Referred to O as origin and a fixed straight line OX through as
initial line, let the polar coordinates of P be (r, 0). If P be the accel-
eration of the particle directed towards O, we have, by Art. 49,

d°r <d9>2=p (1)

a?"\ar

Also, since there is no acceleration perpendicular to OP, we have,
by the same article,

ld ( ,dO

() =0 (2

rdt (r dr ) 2)

, ,d0
(2) gives r = const. = & (say). ...(3)
do h

1
. _ — il s _
I —rz—hu,lfubeequalto m
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O AN
dr d (1 1 du 1 du dO du
Then & =S ()= 2_ -~ awdv_ o
N ar T ar (u> 2di | 2de dr 6’

d*r d du d (du\ do d*u
d —=—(—-h— |=—h = —hu—.
W ar T @ ( de) do (d@) dr aPTE
Hence equation (1) becomes
d*u 1 du P
2.2 2.4 . _

Again, if p be the perpendicular from the origin O the tangent at
P, we have

L_ 1, 1 (dr 2_2+ du\’
22 A\ae) " T\ )

Hence, differentiating with respect to 6, we have

2 dp du _dud’u
— = =2u

p3do d9+ d0 do?

1 dp N d’u’| du N du? 1
- =|Ut+t—-5|—=\ut—-—7 — |-
p3dr do? | dr d0? r2

1 dp d’u
R R
uzp3 dr d6?
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Hence (4) gives P
h*dp
P=—— .-(5).
3 di’ ( )
Equation (4) gives the path in terms of r and 0, and (5) gives the

(p,r) equation of the path.

54. In every central orbit, the sectorial area traced out by the radius
vector to the centre of force increases uniformly per unit of time,
and the linear velocity varies inversely as the perpendicular from
the centre upon the tangent to the path.

Let Q be the position of the moving particle at time # 4 /\z, so that
ZPOQ = A6 and OQ = r—+ Ar.

1 1
The area POQ = EOP.OQ. sinPOQ = Er(r—i— Ar)sin AB.

Hence the rate of description of sectorial area

__gr(r+Ar)sinA6
= lim
At=0 I\t
, 1 sinA@ N6
= fim |27+ 2055 4
1 2d9

2 I , in the limit,

1
= the constant Eh by equation (3) of the last article.

The constant /4 is thus equal to twice the sectorial area described

per unit of time.
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1
Again, the sectorial area POQ = in the limit E'PQX perpendicular
from O on PQ, and

1 A
the rate of its description = hm — A: X Perpendicular from O on PQ.
JAN
Now, in the limit when Q is very close to P, K; = the velocity v,

and the perpendicular from O on PQ

= the perpendicular from O on the tangent at P = p.
o h=v.p, iev= ﬁ
P
Hence, when a particle moves under a force to a fixed centre, its
velocity at any point P of its path varies inversely as the perpendic-
ular from the centre upon the tangent to the path at P.

h
Since v = —, and in any curve
1 1+1 dr n du
—_— J— R —u
p?: 2 r*\de de )’
N du
u?
do

55. A particle moves in an ellipse under a force which is always
directed towards its focus; to find the law of force, and the velocity

" V2 = h?

at any point of its path.

The equation to an ellipse referred to its focus is

[ 1 e
= jJe.uUu=—-+- 0 (1
1 +ecosB’ e i l+lcos (1)

du e
W = —YCOS 0.

Hence equation (4) of Art. 53 gives
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d? h?
P = h*u? [d—eb;—ku] :7u2 .(2).

The acceleration therefore varies inversely as the square of the dis-
u

(distance)?’

tance of the moving particle from the focus and, if it be

then (2) gives

h=+/ul=+/u x semi-latus-rectum ..(3).

u? du : — h? 1+ecose 2+(esin6)2
do B [ 1 [

1 0 1—¢
:%[1+2ec039—i—ez]:ul2 Tecosh e]

Also

V2:h2

[ [
2 1

= [———] by (1) (),
r a

where 2a 1s the major axis of the ellipse.

It follows, since (4) depends only on the distance r, that the veloc-
ity at any point of the path depends only on the distance from the
focus and that it i1s independent of the direction of the motion.

It also follows that the velocity V of projection from any point

whose distance from the focus is r,, must be less than —“, and that
ro
the a of the corresponding ellipse is given by

) (2 1)
Vi=pu|——-1.
ro a

Periodic time. Since h is equal to twice the area described in a unit
time, it follows, that if T be the time the particle takes to describe

the whole arc of the ellipse, then
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1
Eh x T = Area of the ellipse = mab.

b2
Also h= \/ M X Semi-latus-rectum =4/ u—.
a

2rab 21 35

VR

56. EX. Find the law of force towards the pole under which the curve

Hence T =

' = a" cosnB can be described.

Here u'a"cosnf = 1. p
Hence, taking the logarithmic differential, we obtain £ =
utann®.
du d
g d—GZ = ﬁtanne + nu sec’*n@ = ultan’n@ + nsec’nb).
d’u 2 2n, 2n+1
g W—I—u:u(n—kl)sec nb = (n+1)a™u""".

Hence equation (4) of Art. 53 gives P = (n+ 1)h?a* u*"+3,
i.e. the curve can be described under a force to the pole varying

inversely as the (2n + 3)rd power of the distance.
|
Particular Cases 1. Letn = —5 so that the equation to the curve is

a 2a

.0 T+cos6
cos? 5

i.e. the curve is a parabola referred to its focus as pole.

1

Here P < =
r

r =

1
IL Let n = 5> 80 that the equation is r = g(l + cos 6), which is a

cardioid.
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1
H P o —.
ere o

III. Let n = 1, so that the equation to the curve is r = acos 0, i.e. a

circle with a point on its circumference as pole.

1
Here Poc —.
r
IV. Let n = 2, so that the curve is r> = a®cos20, i.e. a lemniscate
1
of Bernouilli, and P o< .
r
V. Let n = —2, so that the curve is the rectangular hyperbola a* =

r?cos 26, the centre being pole, and P o< —r, since in this case (n+1)

is negative. The force is therefore repulsive from the centre.

EXAMPLES

A particle describes the following curves under a force P to the

pole, show that the force is as stated:

1
1. Equiangular spiral; P o< —.
r
1
2. Lemniscate of Bernouilli; P —.
r
1

3. Circle, pole on its circumference; P o< —=-
r

a _ 1
4. = =" nO,coshnb, or sinnd; P o =
r r

5. r"cosnf =d’; P oc p2n=3

1
F2n+3"
2n*a> n—1

7. r=asinnB; P« s — 3
r r

) 6 1
8.au=tanh| — ) orcosh| — |; P < —
(\@) (\/5) rd

6. r'" =Acosn0 + BsinnB; P «<
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9.

10.
I1.

12.

13.

14.

cosh@ —2 or cosh +2 p 1
cosh@+1 coshO —1 r4
) o cosh20 —1 cosh260 +1 1
a“u- = : —

P o
cosh20+2 ' cosh20—2"" 77
Find the law of force to an internal point under which a body will

describe a circle. Show that the hodograph of such motion is an
ellipse.

[Use formula (5) of Art. 53. The hodograph of the path of a moving
point P is obtained thus: From a fixed point O draw a straight line
OQ parallel to, and proportional to, the velocity of P; the locus of
the point Q, for the different positions of P, is the hodograph of
the path of P.]

A particle of unit mass describes an equiangular spiral, of angle «,
under a force which is always in a direction perpendicular to the
straight line joining the particle to the pole of the spiral; show that

2secza—3

the force is ur , and that the rate of description of sectorial

area about the pole is

SeC2 (04

1
5\/,11 sinQ.cos.a.r

In an orbit described under a force to a centre the velocity at any
point is inversely proportional to the distance of the point from the

centre of force; show that the path is an equiangular spiral.

The velocity at any point of a central orbit is —th of what it would
n
be for a circular orbit at the same distance; show that the central

: 1 : .
force varies as ) and that the equation to the orbit is
r

P = @ eos{(n? — 1)6).
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57. Apses. An apse is a point in a central orbit at which the radius
vector drawn from the centre of force to the moving particle has a
maximum or minimum value.

By the principles of the Differential Calculus u is a maximum or

a minimum if — 18 zero, and if the first differential coefficient of u

that does not vanish is of an even order.
If p be the perpendicular from the centre of force upon the tangent

to the path at any point whose distance is r from the origin, then

1 2 du\*
— =1u — ] .
p? do

du . 1 ’

When — is zero, —S=u" ==,
p r

of the apse is equal to the radius vector. Hence at an apse the particle

so that the perpendicular in the case

1s moving at right angles to the radius vector.

58. When the central acceleration is a single-valued function of the
distance (i.e. when the acceleration is a function of the distance only
and is always the same at the same distance), every apse-line divides
the orbit into two equal and similar portions and thus there can only
be two apse-distances.

Let ABC be a portion of the path having three consecutive apses
A, B, and C and let O be the centre of force.

Let V be the velocity of the particle at B. Then, if the velocity
of the particle were reversed at B, it would describe the path BPA.
For, as the acceleration depends on the distance from O only, the
velocity, by equations (1) and (3) of Art. 53, would depend only on

the distance from O and not on the direction of the motion.
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C P’ Vv

O

Again the original particle starting from B and the reversed par-
ticle, starting from B with equal velocity V, must describe similar
paths. For the equations (1) and (3) of Art. 53, which do not depend
on the direction of motion, show that the value of r and 6 at any
time ¢ for the first particle (i.e. OP' and ZBOP') are equal to the
same quantities at the same time ¢ for the second particle (i.e. OP
and ZBOP).

Hence the curves BP'C and BPA are exactly the same; either, by
being rotated about the line OB, would give the other. Hence, since
A and C are the points where the radius vector is perpendicular to
the tangent, we have OA = OC.

Similarly, if D were the next apse after C, we should have OB and
OD equal, and so on.

Thus there are only two different apse-distances.

The angle between any two consecutive apsidal distances is called
the apsidal angle.

59. When the central acceleration varies as some integral power of
the distance, say pu”, it is easily seen analytically that there are at

most two apsidal distances.
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For the equation of motion is

dzu P u n—2
402 4T e T
W2\ (du\?
> [(ﬁ) 1t = n‘LLTlu”_l + Const.

d
The particle is at an apse when £ = 0 then this equation gives

— 1 H?
1_”2 EMZ‘FC:O

Whatever be the values of n or C this equation cannot have more

u

than two changes of sign, and hence, by Descartes’ Rule, it cannot

have more than two positive roots.

60. A particle moves with a central acceleration — K 35 to find
(distance)
the path and to distinguish the cases.
The equation (4) of Art. 53 becomes
d’u U , d’u U
@—I—u:ﬁu, l.e. W: (ﬁ—l>u (1)

Case I. Let h> < i, so that % — 1 is positive and equal to n?, say.

2
The equation (1) is 107 nu, the general solution of which is, as

02
in Art. 29,
u=Ae" +Be " = LcoshnO + Msinhn#,

where A, B or L, M are arbitrary constants.

This is a spiral curve with an infinite number of convolutions about
the pole. In the particular case when A or B vanishes, it is an equian-
gular spiral.
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Case II. Let h> = 1, so that the equation (1) becomes

dZ

d—GL;:O . u=A0+B=A(60—a), whereA and
o are arbitrary constants.

This represents a reciprocal spiral in general. In the particular case

when A 1s zero, it 1s a circle.

Case III. Let h> > u so that % — 1 is negative and equal to —n?, say.
2
The equation (1) is therefore d—GZ = —nzu, the solution of which

18

u=Acos(n+B)=Acosn(6—a),

where A and « are arbitrary constants.
The apse is given 0 = o¢,u = A.

61. The equations (4) or (5) of Art. 53 will give the path when P is
given and also the initial conditions of projection.

EX. 1. A particle moves with a central acceleration which varies
inversely as the cube of the distance; if it be projected from an apse
at a distance a from the origin with a velocity which is \/2 times the

velocity for a circle of radius a, show that the equation to its path is

rcos — = d.
V2

Let the acceleration be (i’

If V1 be the velocity in a circle of radius a with the same accelera-

tion, then
V2 _
L — normal acceleration = % V12 — %
a a a

Hence, if V be the velocity of projection in the required path,
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V2
V=2V, = a’”‘.

The differential equation of the path is, from equation (4) of Art.
53,
d’u B wu’ o

q02 T4 e T

d
Hence, multiplying by £ and integrating, we have

1, 1| du\*
V2= _p “r
2" T2 [<d9> u

1
The initial conditions give that when u = —, then £ =0, and
a

:%f+c ..(1).

V=

a
Hence (1) gives

120 1,11 u )

*. from equation (1) we have

du\* , w1 du 1 /1 5
JR— - — —_—. ° e pu— —_— —_— cee 2 .
<Q9)’+” > 22 T e ’¢2(¢2 ”> 2)

7] adu |
.'.ﬁzm:sm au-—+7.

If 6 be measured from the initial radius vector, then 6 = 0 when

1
u = —, and therefore

a
}/:—sin_l(l):——
sin [n+ 9] coS 0
au = —+—| = —_
2 V2 V2
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: 0
Hence the path is the curve rcos 7 =a.

If we take the negative sign on the right hand side of (2), we obtain
the same result.

EX. 2. A particle, subject to a force producing an acceleration
r+2a

H 5

velocity equal to the velocity from infinity at an angle cot ™' 2 with the

towards the origin, is projected from the point (a,0) with a

initial line. Show that the equation to the path is r = a(1 +2sin6),
and find the apsidal angle and distances.

The “velocity from infinity” means the velocity that would be ac-
quired by the particle in falling with the given acceleration from
infinity to the point under consideration. Hence if this velocity be V

we have, as in Art. 22,

1V2 /“ x+2a d 11 1 1al® 1 4 1
— = — X = = _ _
2 o0 H x> H 33 244 H 3a3  2a3|’

SH
that V2 = - (1),
so tha v (1)
The equation of motion of the particle is
d*u u u
ﬁ_i_ =12 2[ +2au’ | = 12 [u2—|—2au3],
1, h du w1 oy
T =U|=+= C - (2).
V=S u+(d9) ,LL[3—|—2au + (2)

If po be the perpendicular from the origin upon the initial direction

.. . . a
of projection, we have pg = sin o, where cotax = 2, i.e. pg = —.

V5

Hence, initially, we have
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du)2 1 5

2

(=) === ..(3).
(d@ p; a

Hence (2) gives, initially, from (1) and (3)

s5u h* 5 1 1 u
- = R I h — 2 __
6 2 X 7 u [3a3 +2a3] +C, sothatC=0and#h -

From (2) we then have

2, du\’ u3+1 4
— =U|—=—+=au
a6 Flg 2%

du\ 2
i.e. <£> = u?Rau+3a*u® — 1) = w?lau+ 1][3au — 1].

U

6a

: I . : :
On putting u = —, this equation gives
r

dr\ > dr
— ) =(a+r)(3a—r), and hence 6:/ :
(de) (a ) ) Via+r)(3a—r)
d
Putting r = a +y, wehaveez/\/ﬁ:sin_lzy—aer.
: y r—a
0—v)==—= :
sin( ) 2a 2a

If we measure 0 from the initial radius vector, then 6 = 0 when
r =a, and hence y =0

Therefore the path is r = a(1+2sin6).

T 37w Sm
Clearly é =0, i.e. we have an apse, when 6 = —, —, —. etc.

27272
Hence the apsidal angle is 7 and the apsidal distances are equal to
3a and a, and the apses are both on the positive directions of the axis
of y at distances 3a and a from the origin. The path is a traced from

its equation.
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EXAMPLES

1. A particle moves under a central repulsive force § = — " ,
( distance )3

and 1s projected from an apse at a distance a with velocity V. Show
that the equation to the path is rcos p6 = a, and that the angle 0

described in time ¢ is

1 14 2y?
“tan~! | P2y , where p* = %.
p a aV?

u
( distance )°’
projected from an apse at a distance a with a velocity equal to n

and is

2. A particle moves with a central acceleration,

times that which would be acquired in falling from infinity; show
that the other apsidal distance is
a
n2—1
If n = 1, and the particle be projected in any direction, show that
the path is a circle passing through the centre of force.
3. A particle, moving with a central acceleration

, 1S pro-
distance )3 P

jected from an apse at a distance a with a velocity V; show that the

path is
U — a?V?2 2y2 _
rcosh[ s Va 9] =a, or rcos[ a v HG] =a,
a a

according as V is < the velocity from infinity.
4. A particle moving under a constant force from a centre is projected
in a direction perpendicular to the radius vector with the velocity

acquired in falling to the point of projection from the centre. Show

3 3
that its path is (ﬁ) = cos? 59, and that the particle will ultimately
r
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move in a straight line through the origin in the same way as if its
path had always been this line.

If the velocity of projection be double that in the previous case,
show that the path is

’ — tan~ ! rea_ | tan~ | i
2 a V3 3a
2a°

. A particle moves with a central acceleration u | r+—- | , being
r

projected from an apse at a distance a with twice the velocity for
a circle at that distance; find the other apsidal distance, and show

that the equation to the path is

0 | 5 —
5= tan~ 1 (rv/3) — ﬁtan_1 (\/;t> , where 1> = 3ra —ar°

4
. . . a .
. A particle moves with a central acceleration | | r+— | being
r

projected from an apse at distance a with a velocity 2,/ua; show
that it describes the curve r2[2 + cos+/36] = 3a.
. A particle moves with a central acceleration ,u(r5 — c4r), being

: : : : 2
projected from an apse at distance ¢ with a velocity 7“03, show
that x* +y* = ¢*.
. A particle moves under a central force mA [3a’u* 4 8au?]; it is pro-

jected from an apse at a distance a from the centre of force with
velocity v/ 10A; show that the second apsidal distance is half the

0
first, and that the equation to the path is 2r = a [1 + sec h%] :

. A particle describes an orbit with a central acceleration pu® — A u>,

being projected from an apse at distance a with a velocity equal to
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10.

I1.

12.

13.

that from infinity; show that its path is

2ua®
T

Prove also that it will be at distance r at the end of time

2 N )
V_;?L [azlogH_ — +r rzazl.
a

In a central orbit the force is puu’(3 + 2a’u?); if the particle be

r = acosh—, where n+1=
n

: : : . Su . N
projected at a distance a with a velocity —'L; in a direction mak-
a

ing tan~! % with the radius, show that the equation to the path is
r=atan®.

A particle moves under a force mu [3au* — 2(a®> — b*)u’],a > b,
and is projected from an apse at a distance a + b with velocity

I+ (a+D); show that its orbit is
r=a+bcos0.

A particle moves with a central acceleration A% (8au® 4 a*u’); it is
. . . . a
projected with velocity 94 from an apse at a distance 3 from the

origin; show that the equation to its path is

1 Jau+5 0
Vau—-3" /6
A particle, subject to a central force per unit of mass equal to
u{2(a® +b*)uw’ — 3a’b*u’}, is projected at the distance a with a

velocity vH in a direction at right angles to the initial distance;
a

show that the path is the curve r? = a?cos? 0 + b sin 6.
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2
: : : a ..
14. A particle moves with a central acceleration u (u5 — §u7) ; it 1s

: : : : 25 | :
projected at a distance a with a velocity e times the velocity for

: i Co 4 :
a circle at that distance and at an inclination tan—! = to the radius

vector. Show that its path is the curve 47> —a? = %.

15. A particle is acted on by a central repulsive force which varies as
the nth power of the distance; if the velocity at any point of the
path be equal to that which would be acquired in falling from the
centre to the point, show that the equation to the path is of the form

nt3  n+3
2

r 2 cos 0 = const.
16. An elastic string, of natural length /, is tied to a particle at one end

and is fixed at its other end to a point in a smooth horizontal table.
The particle can move on the table and initially is at rest with the
string straight and unstretched. A blow (which, if directed along
the string would make the particle oscillate to a maximum distance
2[ from the fixed end) is given to the particle in a direction inclined
at an angle « to the string. Prove that the maximum length of the
string during the ensuing motion is given by the greatest root of
the equation
Xt =20 + 1*sin* a = 0.

17. A particle of mass m is attached to a fixed point by an elastic string
of natural length a, the coefficient of elasticity being nmg; it is
projected from an apse at a distance a with velocity \/2pgh; show

that the other apsidal distance is given by the equation

nr?(r —a) — 2pha(r +a) = 0.
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18.

19.

20.

21.

22.

A particle acted on by a repulsive central force pr -+ (r> —9c?)? is

projected from an apse at a distance ¢ with velocity % show
c

that it will describe a three-cusped hypocycloid and that the time

+ 2
to the cusp is —JICZ\/i :
3 u

[Use equation (5) of Art. 53, and we have 8p? = 9¢? — r%. Also

hdt = p.ds = pdr.rz;_pz, giving ht — /c3c r;lr 9:22__;22. -
integrate, put 7> = c? + 8¢ cos? ¢ ]

Find the path described about a fixed centre of force by a parti,cle,
when the acceleration toward the centre is of the form % + %, in
terms of the velocity V at an apse whose distance is a from the
centre of force.

Show that the only law for a central attraction, for which the ve-
locity in a circle at any distance is equal to the velocity acquired in
falling from infinity to that distance, is that of the inverse cube.

A particle moves in a curve under a central attraction so that its
velocity at any point is equal to that in a circle at the same distance
and under the same attraction; show that the law of force is that of
the inverse cube, and that the path is an equiangular spiral.

A particle moves under a central force mu-+ (distance)” (where
n > 1 but not = 3). If it be projected at a distance R in a direction
making an angle B with the initial radius vector with a velocity
equal to that due to a fall from infinity, show that the equation to

the path is

n— n— -3
rT3sinB — R"Z sin (n2 9—|—ﬁ).
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23.

24.

25.

26.

27.

If n > 3 show that the maximum distance from the centre is
Reosecis B, and if n<3 then the particle goes to infinity.

A particle moves with central acceleration uu? + vu’® and the ve-
locity of projection at distance R is V; show that the particle will
ultimately go off to infinity if V2 > %“ n 1%'
A particle is projected from an apse at a distance a with a ve-

VHFA

locity and moves with a central attraction equal to %(n —

1)a”‘3r_” +Ar—3, where n > 3, per unit of mass; show that it will

2 1 2
arrive at the centre of force in time /" ( 2" i /T :
2\ u 2n—6 n—3

In a central orbit if P = pu?(cu+cos )3, show that the path is
one of the conics (cu+cos0)? = a+bcos(20 +a).

A particle, of mass m, moves under an attractive force to the

/2

pole equal to m_gt sin® 0. It is projected with velocity 3—“ from
r a

an apse at a distance a. Show that the equation to the orbit is

r(1+4 cos?8) = 2a, and that the time of a complete revolution is
3/2
(3a)3/? x ﬁ
If a particle move with a central acceleration % (1+ k? sin? 9)_3/ 2,
find the orbit and interpret the result geometr’{cally.
[Multiplying the equation of motion,
R2(it4u) = p(1+k*sin® ) ~/2, by cos 6 and sin 6
in succession and integrating, we have
h?(itcos O + usin 0)
— usin@(1+k%sin0) /2 + A,
and
h2(isin @ — ucos 0) = —prcos O(1+k*sin>0)~1/2 =+ (1+ k%) + B.
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28.

29.

Eliminating u, we have
Wu=pu(l+k*sin?0)'/2 = (1+k*)+Asin® — Bcos 6]
A particle moves in a field of force whose potential is (1r—>cos 0

and it is projected at distance a perpendicular to the initial line

2
with velocity —/i; show that the orbit described is
a

0
r = asec [\/ilogtannl_ ] :

A particle 1s describing a circle of radius a under the action of a
constant force A to the centre when suddenly the force is altered to
A + usinnt, where u is small compared with A and ¢ is reckoned
from the instant of change. Show that at any subsequent time 7 the

distance of the particle from the centre of force is

+L isin t % —sinnt
“TIN a2 n\/ 31 a "

What is the character of the motion if 3A = an?
[Use equations (1) and (2) of Art. 53; the second gives e =

V' Aa3, and the first then becomes

. Ad’

r——z = —A — usinnt. Put r = a+ & where & is small, and ne-
r

glect squares of &.]

62. A particle describes a path which is nearly a circle about a centre

of force (= pu") at its centre; find the condition that this may be a

stable motion.

The equation of motion is

dzu U n—2
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1
If the path is a circle of radius —, then h* = uc" > ..(2).
c

Suppose the particle to be slightly displaced from the circular path
in such a way that 4 remains unaltered (for example, suppose it is
given a small additional velocity in a direction away from the cen-
tre of force by means of a blow, the perpendicular velocity being
unaltered).

In (1) put u = ¢+ x, where x is small; then it gives

2 n—2
%—}—C—I—X:%:C—I—(H—Z)x—}—-“ ..(3).
Neglecting squares and higher powers of x, i.e. assuming that x is
always small, we have
d’x
T
If n be < 3, so that 3 —n is positive, this gives

x=Acos[v3—n6+B].

—(3—n)x.

If n be > 3, so that n — 3 is positive, the solution is

X :Ale\/n—39 _’_Ble—\/n—39’

so that x continually increases as 0 increases ; hence x is not always
small and the orbit does not continue to be nearly circular.

If n < 3, the approximation to the path is
u=c+Acos[v/3—n6 + B] ..(4).

d
The apsidal distances are given by the equation £ =0, i.e. by

0 = sin[v/3 —nb + B].
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The solutions of this equation are a series of angles, the difference

. This 1s therefore the
V3—n

between their successive values being

apsidal angle of the path.

If n = 3, this apsidal angle is infinite. In this case it would be found
that the motion is unstable, the particle departing from the circular
path altogether and describing a spiral curve.

The maximum and minimum values of u, in the case n < 3, are

c+A and ¢ — A, so that the motion 1s included between these values.

63. The general case may be considered in the same manner. Let the
central acceleration be ¢ (u).
The equations (1) and (2) then become

d*u uoou)

S U= ..(5),
and h>c® = uo(c) ..(6).
Also (3) is now
d’x A @lc+x)
a6z T CTrT o(c) (c+x)?
c 2x

= 0@+ 4 1= 2
c0'(0)

c—2x+x )

o(c
{33

cp'(c) _
0(c) ~

In this case the apsidal angle is 7 =+ {3 —

, neglecting squares of x.

9

c¢'(c)] 2
b )

and the motion is stable only if
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64. If, in addition to the central acceleration P, we have an accelera-

tion T perpendicular to P, the equations of motion are

d2r do\?
(=) =-P
dt? dt
1
and —i (rzﬁ) =T

do ) .
Let rza = h. In this case h is not a constant.

dh dh do sdh

Then (2) gives T:uE:u%.E:hu 70
dr drd6 1 du du
o= — i = —h—
dt _dodr w2de’" do
d*r d ( du) d d*uv  dhdu
d—=——|h = —hu?* |h
e d9< de) a [ d92+d9d9]
d’u Td
- —hz'u2 debé _;dg’ by equation (3).
Therefore (1) gives
du Tdu
h2.2 _ Lt 403 p
a0 wae " !
p T du
_ d*u udé
Y ger T T T
This may also be written in the form
P T du
d |2 1340 d  , dh 2T
= h*) =2h— = —
do du d9( ) do  u3’
VTR

from equation (3).

(1),
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EXAMPLES

I. One end of an elastic string, of unstretched length a, is tied to a
point on the top of a smooth table, and a particle attached to the
other end can move freely on the table. If the path be nearly a circle

of radius b, show that its apsidal angle is approximately

T b—a
V 4b —3a’

2. If the nearly circular orbit of a particle be p?(a™ 2 — r"~2) = b™,

T
show that the apsidal angle is — nearly.
vm

[Using equation (5) of Art. 53 we see that P varies as " >; the
result then follows from Art. 62.]

3. A particle moves with a central acceleration d show that

2 3

/ A h
the apsidal angle is T4/ 1+ ek where 2 is the constant areal
velocity.

4. Find the apsidal angle in a nearly circular orbit under the central
force ar™ + br'.

5. Assuming that the moon is acted on by a force L to the
(distance)?
earth and that the effect of the sun’s disturbing force is to cause a
force m? x distance from the earth to the moon, show thazt, the orbit
3
being nearly circular, the apsidal angle is « (1 + im_2> nearly,

n
2T .
where — is a mean lunar month, and cubes of m are neglected.

n
6. A particle is moving in an approximately circular orbit under the

action of a central force — and a small constant tangential retarda-
r
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3f .,

tion f; show that, if the mean distance be a, then 6 = nt + i_t
3

where 1 = a’n? and the squares of f are neglected.

7. Two particles of masses M and m are attached to the ends of an
inextensible string which passes through a smooth fixed ring, the
whole resting on a horizontal table. The particle m being projected
at right angles to the string, show that its path is

m
a = rcos —0
[ m—+M ]

The tension of the string being 7', the equations of motion are

d’r do T
— - = (1),
dt dt M
1d ([ ,d
0 (2
rdt( dt) 2);
f T
(2) gives 2o =h . (4),
. M..h2
and then (1) and (3) give 14+ — =
m T

M)\ . h? 1 1
l+— | PP =—S4+A=1|=—=
(1) 7= A= (G 2).

since r is zero initially, when r = a.

This equation and (4) gives

M dr 2 M ) r2—a2 2
L G

0 x M—/ adr = CosS 1a—l—C
m rr?—a? 7
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and C vanishes if 6 be measured from the initial radius vector.

. a=rcos [,/LGI is the path
m—+M

8. Two masses M, m are connected by a string which passes through
a hole in a smooth horizontal plane, the mass m hanging vertically.

Show that M describes on the plane a curve whose differential
equation is 1+M du + mg 1
— | —=tu=—--.
1 462 M 22

m
. o m 2.3
Prove also that the tension of the string is n (g+hu’).
m
9. In the previous question if m = M, and the latter be projected on

the plane with velocity &% from an apse at a distance a, show
that the former will rise through a distance a.

10. Two particles, of masses M and m, are connected by a light string;
the string passes through a small hole in the table, m hangs verti-
cally, and M describes a curve on the table which is very nearly a
circle whose centre is the hole; show that the apsidal angle of the
orbit of M is 4 / @

11. A particle of mass m can move on a smooth horizontal table. It
1s attached to a string which passes through a smooth hole in the
table, goes under a small smooth pulley of mass M and is attached
to a point in the under side of the table so that the parts of the string
hang vertically. If the motion be slightly disturbed, when the mass

m 1is describing a circle uniformly, so that the angular momentum
M +4m

12m
12. Two particles on a smooth horizontal table are attached by an elas-

is unchanged, show that the apsidal angle is ©

tic string, of natural length a, and are initially at rest at a distance a
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13.

14.

apart. One particle is projected at right angles to the string. Show

that if the greatest length of the string during the subsequent mo-
8al

tion be 2a, then the velocity of projection is e where m is
m

the harmonic mean between the masses of the particles and A is
the modulus of elasticity of the string.

[Let the two particles be A and B of masses M and M’, of which B
is the one that is projected. When the connecting string is of length

r—a

r and therefore of tension 7, such that 7 = A , the acceleration

a
T T

of A is [ along AB, and that of B is Vi along BA. To get the
relative motion we give to both B and A an acceleration equal and
opposite to that of A. The latter is then “reduced to rest” and the
acceleration of B relative to A is along BA and

T T 2,r—a 2Al—au

M M m a ma u

d*u 20 1 —au
Th tion to the relati thof B1i — =
e equation to the relative path of B is now 152 +u R

Integrate and introduce the conditions that the particle is projected

from an apse at a distance a with velocity V. The fact that there is
another apse at a distance 2a determines V.

A particle is moving in a circular orbit, of radius a, under a force
of intensity pu’(2a*u® — 1) towards the centre. Show that the orbit
is unstable and that if a slight disturbance takes place, inward or
outward, the path may be represented by either r = atanh 0 or r =
acoth 8.

Einstein’s discussion of planetary motion suggests the following
problem:

A particle moves in one place subject to an acceleration to a fixed
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. 3h?
centre of magnitude U ( -5+ —5—
re o cer

velocity of the particle about the centre of acceleration, and ¢ the

, h being the moment of the

velocity of light. Show that the angle between successive apse-
3h?

22 ) ¢l
of ellipse which the partlcle would describe with the same moment

linesism| 1+ —— begin small, and / being the latus rectum

of momentum, if the law were %
Supposing the planet Mercury ’Eo be subject to an acceleration of
this type directed towards the Sun, show that its apse-line pro-
gresses at the rate of 42.9” per century, given that [ = 5.55 x 10’
kilometres, and % = 1.47 kilometres, and that the periodic time of
Mercury is 87.9% days.

ANSWERS WITH HINTS

Art. 52 EXAMPLES.

2.

curve is r =

3.

4.

The path is rcos 0 {tan (Z + 5) } = const. When n =1
a

1+sin0
v 2uv
_r_7 _’
<
Path: — + —1log 6 = const.
ro

Art. 56 EXAMPLES.
11. A conic section of focus at the internal point.
Art. 61 EXAMPLES

S.

v2 =h*(u 2%/( +m)



Chapter 4

UNIPLANAR MOTION REFERRED TO
POLAR COORDINATES CENTRAL
FORCES

End of Art 47
EXAMPLES

1. Hince the second ship, &, keops the fivet ship, A, alweys abeagn the
velocily T musd be porpoudieular to AH, Henoe, if A8 be ¢ and make

an angle & wich the direction of ¢, wo havo
e F, a0l & 008 49 =L,

wiin
; l{-:; =—|__.i?1;§3, oo log e dng { F—eain @) =const.
£ #n that the path required t= e confe section of focua A

LT
"= e &'

Foa o
and epcantrioity il

2 Las BPwe anid LA P =4, Thon we have
Fom =p-fa din & and ef=ne ons @,

dr i =1 3 1 o fF
gl ':-.xfrus_d‘_ b dogiee —lugr:nsi-l—ﬁlq.: (R 143 (;+E}+ummt,

1
it the peth 13 roeos @ [tu-]: {: + gﬂ % — pongt,

1 4and @
oy . LTS L | = pomiak. fe F= -k,
TEai=1, the virve is roosé '\/llﬂs;n comisk., T 7 T o s e

3. Lat P bothe insect waud o the centro of the wheel, Tet O Le r and

il an u,:r_-l_:]_e A with the '.-'|":I'I.|-L'P_.|r sk that v=pnfl.

U

Thia acceleration of € ix rern; and Irﬁr -
i

Thy scceleratiom of P along CF = —rfi= =1, L
The acealeration of P pevpendicnlar to {'.f"=j—|| é-fr

4 F=Xr :tfl'l"! r\""—ﬁ-;.l:l‘?j N = -—# J‘] v
‘i"'—."d"’-}'u.'r- ]- p:{i':'-—l-"l‘--#:f;ﬂ!
¥ T

) o 1. A '
w_ na ;-}-Hug-ﬂ:cnnuf:. i bhe path,

ALz

[ ey 1d R o
r1"t|'?'l_—;— I'Jll"'.:‘l‘_:l'—ll. L;ﬂﬁ-fj]—#l‘?i}' | ;_}1

and i+ oli ot
. I
Ly I::" rlilh)-
-Ii —_ .ﬂ'jU - .HWJ

5 f=w, ad Fepdia —F;
HAmet + Be—wt whers :'{-—.:l + 8 angd =
o Ll

.-,_:"ll P

! i
kL r-lf; [L=g—utl Alsp f—wd, Henoor—y(1—s-9).
Alsn Fe= o fo—at, which i always nagetive but tends bo the Himit aera,
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P
3 ﬂ-;, A=r§lf=1?;-,-iu . Henoo g 18 constant, and the orve iy
therefors an equisogalar spival whoss pole ia 0,

’ : e = I"‘muu . 1
Th norrnl mw&]r:mt:un=?=r—ﬂf — s B
@

Voor=oeteote and & —consto=a. 5 F— et enta s 8 Gk g — e gob o
. -?-né“—mfmr.u < it oot g — 1,

s g‘ {5l B — Bt ool g,

Henes, if P57 by the dimrtiun of the resultant secelarmbion, and OF be
prodisced to ) then
| 2 pot o

ban PP — collp gt 2a, de. e PPC=22TPC, da LF‘PT—LTPG‘
8 Forel=0 . r=0 oosh et £ 0 ainh e,
whers om £ and F=[#lay=Da -, sta,
10, faa, and Hepal= —g8inf= — g Ein wl
oo Te= il cosh md -k Baink m!+§1ﬁ&]ﬂm&,
where a=d, sod 0=[#foy=»Fu +2'.5.~"
The purticls therafore vaaskes € when
e e el ot — —Lniuh m;'-i-g@'-nf S

L Fil
(IT-'Z—‘I‘...} ﬂ%[ﬂﬂﬂ' LT -|+2_-§ ( m; +...)

F, 5 0 teglecting squires of @, Ld when fe @)*. '

1L d=w, and ¥ =relzg sl =g sin ot
Ly oo wt 4 B aink wt - 2 ein wi
i -
w2080 uﬂﬂ-g%{&'inh'mﬂ'—adn'dﬂ, Eitice = & ¢ =0 whed te),
LAET }-g{v’-"ﬂj-g IJEE:'E--E, 1. }—?-mefé%'

=2 boa wi — Bt smh. md—y'cuah @t
Hence & varjehes, and the particle therefore Jesves the pline, when
B ons ot = Bt sink ol + 7 cosh ar,

12, f=ait, anil Fora'=—pr.

Tf wlisp, then p=d eosh 4 of = ui+ B sinh Vo' — &, where =4, and
]y = B, Bl

If wfe g, then r:fﬁ’_‘ﬁ-’p‘lp u1r+1.dmm,-fp-u*r wh@m = and
D= [F g, ste

That=p, then F= =0, P=conat. —0 o vt m{;]mt tho path a4 oirole,
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13, Bemgi, F—rlt= —P—E, il - -M{.-"djl=£_ S Ferad =g, 2ad
Pt redart ao that @2+ Spep =, and bhence
pe= —pu+ana,"'l+|u = [ —bAn ¢ Buo r-F
s e p—v e [4 pogh (wanse. )+ Bainh o e ],
W hern g=d, sod 1I-—[~'}.5——Jlm L e 4 o g e
Honpe peas—b l-'mi-t[mmh [ar Aot o, £ 4nin esinh {m a0 a.2]].

14, F-rot— -opicos Bul, ¢, e d cosh wi+ Fanli et +§ oo Zealy
where u.=.i+g. and O0=[#li=y=Hu. Henue, ete.

16, Al bizee & 3 £ snd g ars the distanoss of moand m' from the fixed

poing, wa have A
i (B gl o T, 5nd i’ (i —pe’)=— T,
Henes, if g—£=u0, wi Tusve

[ Ty A e i
. ) LR | e = = Baf -,
r i mar il /

il wh (3 — 2y wo thad o — Bo= A oos w48 Ao el
whare o —Ze=dA, and G=[F]—j=Fuw, tha.

17, The foree to tho centre=n*(r 7}, since the tme for fres moiion
EBI.
S P PR S R kil

The reaction between tln, spr.r]ne- and tha walght. ig oo for otherwise
the angular me.a"atmu af the wheel woenld be infinits, since s mass s

zery, Henes Idzb‘*d:l—
. = comst.—DPamD . fn e

Mot
(1) then gieos it = (=L
Ve de= ﬂ;—n’ [p =04 Pt and s zaro, L4 ¢ 04 & Tazimum, when
-2

W — [P ,_rf_ :

M 11

i.e. when Wty —D="rors el =y M +ik

nod thus ;--—'-':’-—E the other roots being Jl'n&gﬂl.-"l.l‘f

18, At time f, lst Od =z s Tet § be the distance of any element from
A. Hinge f=wi, we have

oy [g (= +E]—{m+E) ..#}- T4 dF— Tad T ... (1)

Tntegrating thia from f=0 to f=2{, we hava
Ero B Al R 2
aLap Rt LA e
&3 — Blre? -t 3 Lﬂ Pk L ainee §=0,

fite F={r 11wt which iz the equation of motion of & wass placed at the
micdile point of the 'at.ring.
Alaa (1) glvea -~ d—?—i‘ rot — fad=wt (I EL

e e’
., P (35_1,:_— AP, PR,
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L

and

End of Art 56
EXAMPLES

peraine o P =@

| raatoss 20 ou=00m 21T mi = os EE}'E sin 26,

crti & eos 2 ¥ foos 28y = BaB0s - o

o, 4 1
o Ped Tt u] -2kt e’ de P g

r—mocad, L oan={oos 7Y ad=(cos )T e 0,

., gl aw=2 {oom )2 sind 4L [cor #) V2 {o0s ) T 2 (oo )~ 1= Satut

()

7.

I
v P b ()~ Rty fe P o,

i

. =Y, nf, coshwd, or o nl

i n2a®™ 0 52 eoah s, or —n® sih nf
efoa, 0, nPaw, 0T —Atai
i i_={] a4 (140w, cor (1 =n% ) Henee, ete,
Mgt %

i 1y it 3

e [0 i 5 g e=(oom e (1 o) pin® ol ~ molooa wel
' Ly 1
={1—) (oos g = (oo ndi.

o (= ) a2,

st
RN B0 A -
% o S
r‘“—ﬂm{._mg—t;. = mta.n{ﬂﬂ. &
AU T qﬁwg-.q: Z eob (il =a), 50 that d‘.r='%+m§-n.
,rm+I .
L4 pe=rEID |p—rm{ﬁﬂ—n’]-u--ﬂ--,

it y 1
it P-—E L E - oy |

reddn g s pm_Llde_  wcosnd
- Vo g waind nd '
; R 2 2 BTGt
- t_ﬂﬁi o i [Freetu? = u],
,‘-."?.-.:u’ ;uk -— ]

Yeorrem Bl Sl el A P T ..
Wact +{ 1y s =
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i i X 36.' T
8. an= f-'mh\,g or eoth _,2 e b ueLI:L -.-"2 dﬂcn,@wh 7

. ddi=angh ? { 1:-.]:—1— tanh 9) 4.‘#:.2‘5-".1:]1 = { u:au:h t‘ okl ?ﬂ)

= —gech? —f— tanh ?4, o Lw'sr:n:il* = c-f.n-th

.JE-
() =tanhd i..-:!-r gothd ﬂﬂuniuﬂ i enclh case,
: _F’ql:,uP
. fsinhd
g, = =
= m.ﬂ’ T cemh et
g oA Banld  Bwshé . coshd-1
(leosh 87 (Loosh 83 (L4oosh 620 {14ocah @i’
# Eiﬁ+“'|—ﬁ_zix_w_h..ﬂ 4 C_l:ﬂ-?hl'.?_—?.- (th 2‘) _N:B
o T el 87 cowh A1 ooEll @41

LoPe ot Bimilarly for bhe seeond case.

i, H'N‘I -1 s
0. e e ™ e i 1
b
. Bt [cnal:tiﬂ+9‘,l"mlmw
i -.-'rcm;'.'ié-ﬂ'ﬁu—_'l cosh 2842, afeosh 2941
(mosh 284277 cosh 8 -1 ':}:}:‘_ﬁﬁi_} o’

B loah 2804+1)  cosh2d-1
jeoal 2P 2T eosh w44
_lcosh2d 1P 43 feosh 26432 L o,
Fpoosh 28437 “8t3
o Sof futii=2afub 0 P=Rat (w4 ol
SimilerTy for the seeond case.

o {4 7)

11. ¢F the infernal poimt. O the centrs, 0C=r, 0Py, p the perpen-

dicaldar on the tangent at Pand £ POT=#8. Then
pmamtooosd, and =t o o cos = — ad Bap
. pttde Ay  Bial.y
TR TG et
The losus of ) is given by
#=p =3 LB -

ok & adtonm 106"

Lo, i eonie seotion of focus 0,

24
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) . "
12, r=pe®008m . 220 and gl sy=F,

s ¢ i
Thess ghve deota=—, snd -, F= = tand o

-, kg #=tanla.log rtoonsh, as F=ArB0s

o vdd=pt tan gm d tan oo i N {
1d dtane o o
== [ty
£ el HHI » l'&l"

s A bamy g Hac? 111;:3""‘3""‘.I'°L_E Pp=Atan & sed?a, phamala -t
=pr el phere df=p coste oot a
aml hence Abun g=afpsinm o a
&
13. <'=:_L o amdl alwigs w-:vj,.

-, pee o g0 that the path is an eguiangular spiral

14 Qiven 2=" ﬁ, o that

miku{wn+,51}m{;. .........................
SO h3|ﬂ+f-l]'-"-|$j.— :;
£ _1dF P

p ’
. [ (it R W ETHR
s ol g e — tl:w.t ﬂf l,] i)

, Tog P={1+ 2% log w - const., £ F w2+,

. e =
(1% then givoes {n"ﬁ =~y '
] o =2y 1 .rﬂf—! :
= - Y P PO AN
E '[vtj o _ayh Vi i W1 '

a1 =L~ g {in® =1} 0}, if the initial line ig pm‘@ar],j chogen,

End of Art 61
EXAMPLES

1. =R [l 4l ]= —P.J‘i.;du.— SRTE TR

=i ;
where e P St 8 €, Le O=i®FY
di
i

Almo :3%-&; P o 8

fmﬁ"‘}’ﬂ Prtmpi? el

s i -'uf —afaib, .t gc:gﬂ-:{'m“‘;mj a1 0o gl =it
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3 ,:1:.12-‘!|_r|‘+.¢‘l]-j,u¢¢.-1’~-5u‘+‘:l, .................................... i
8. AR
; T s W
whers Tl "l 2ﬁ\‘+_«[.
& T

aimoe the f i velociby o falling fron: intnity = Hdpa

[u' 12 muars of he veloviby in g fron infliity .L-? o o
: e R oy Tt o e T
Henes (17 gives I.i*s“'“‘ll 5 i SR, .

The otier apstdal distoines is thevefode mven hy

o w1 e 1t I8 ———,
’ Wi =1
Whien r=1, snd 4 =0, then (1) pives
B NE
(Ef.i!i) = [1Axd — 1], whers ?u fis,

iy o
| — ki v e y
||r:. "'f'“-!b‘—i fﬂ.-"li'?: G E‘-l-nm'ss_-.t
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g B,

swhere Tl=c =
o

g

B o B i) o B el i O
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(1 e Ve \/nE* the velocity from infin ity
wim—ud R "
S o I":: : = LTR;J::T] - i aoraly 1 {rracy since ?:=£ whan =10
'.."p: ke
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i j*”. —— ity e 08
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£113 Fiod
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[n the seeond cago, TP=Fpe, oo bhit 52w fee? wod =G Henee

Hat f!r“-l-t,i:sj—; | et
11 s . ey 3
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a Ir-l-:*:-r.;-q I \I+a $H*) %
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