
Appendix 1: Normal Modes, Phase
Space and Statistical Physics

The last line of the introduction to the first edition states that ‘it is the wide validity of

relatively few principles which this book seeks to demonstrate’. Here we apply that concept

to the relationship between normal modes which feature in most of the book, phase space

of the final chapter, and statistical physics.

Firstly, we wish to show that the expression for the number of normal modes per unit

volume in the frequency range � to � þ d� given on p. 253 as

dn ¼ 4�� 2d�

c3

is nothing more than the number of ‘cells’ of phase space per unit volume in the same range

� to � þ d� available to particles in a statistical distribution.

Moreover, we can easily convert this expression in the frequency � to one in the velocity

v, the momentum p ¼ mv or the energy E.

The particle may be a molecule in the classical Maxwell–Boltzmann distribution

(M–B), a fermion of half integral spin in the quantum Fermi–Dirac distribution (F–D) or

a boson or any other particle of integral spin in the quantum Bose–Einstein distribution

(B–E). Bosons are the messengers of the force fields in physics, e.g. the photon in the

electromagnetic field.

We shall see that each of these distributions is nothing more than the statement that

ni ¼ gi � probable occupation of the phase space cell.

Here ni is a number of particles in the distribution and gi is our expression 4�� 2 d�=c3 (or
its equivalent).

The expression for gi is common to all three types of distribution but the occupation

factor or relative probability of occupation depends on the way in which the particles are

allowed to distribute themselves.

Firstly, let us examine the various equivalent forms of gi. We write

gi ¼ gið�Þ d� ¼ 4�� 2 d�=c3
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as the number of phase space cells per unit volume in the frequency range � to � þ d�. For
a quantum particle (p. 415) the momentum p ¼ �hk ¼ h�=c where h is Planck’s constant, k

is the particle wave number ¼ 2�=� and c is the velocity of light, so

gi ¼ gið pÞ dp ¼ 4�p2dp=h3

is the number of phase space cells per unit volume in the momentum range p to pþ dp.

Note that 4�p2dp is the volume of the shell in momentum space between spheres of radius

p and pþ dp.

All particles in statistical distributions are required to be free particles, that is having

only kinetic energy with no potential energy interaction terms.

Thus, the energy of a particle E ¼ 1
2
mv 2 ¼ p2=2m where p ¼ mv, m is the particle mass

and v is its velocity. Now

p2 dp ¼ ð2m3Þ1=2E 1=2 dE ¼ m2v 2m dv ¼ m3v 2 dv

so

gi ¼ giðEÞ dE ¼ 4�ð2m3Þ1=2E 1=2 dE=h3

is the number of phase space cells per unit volume in the energy range E to E þ dE and

gi ¼ giðvÞ dv ¼ 4�m3v 2 dv=h3

is the number of phase space cells per unit volume in the velocity range v to v þ dv.
Although we used the phase space of _xx or v with x in our discussion of chaos, the phase

space of mv or p with x is much more commonly used in physics. The phase space of ð p; xÞ
reveals the significance of h3 in the denominators of gi. Consider the expression

4�p2 dpV=h3

where V is the total volume (not the unit volume) so that the numerator expresses the phase

space over the momentum range p to pþ dp and the volume V ¼ xyz of the system.

Heisenberg’s Uncertainty Principle, p. 416, tells us that �x�p � h, so we may write

ð�x�pxÞð�y�pyÞð�z�pzÞ as h3; that is, the ‘volume’ of a cell in ð p;VÞ phase space.

This volume is the smallest acceptable volume which a particle may occupy for it defines

the volume associated with a particle as

h

�p

� �3

� �3
DB

where �DB is the de Broglie wavelength of the particle (p. 412).

So gi measures the number of phase space cells each of ‘volume’ h3 per unit volume in

the range p to pþ dp. Each of these cells may or may not be occupied by a particle.

We now examine what we mean by a statistical distribution in order to find the probable

occupation of a cell. This occupation factor is different for each of the three distributions

M–B, F–D and B–E.
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We consider a system, say a gas, of N particles occupying a volume V and having a total

internal energy E. The macroscopic parameters E, V, N define a macrostate. The energy E

may be partitioned in many different ways among the N particles subject only to the

restrictions that E ¼ P
ni" i and N ¼ P

ni remain constant where " i represents the

energy levels available to the particles. The probability of a system being found in a

particular partition is proportional to W the number of ways of distributing the energy

among the particles to achieve that partition.

Each different way is called a microstate and each microstate has a priori the same

probability. Each microstate contributes to the statistical weight of a partition so that the

particular partition reached by the greatest number of ways has the greatest statistical

weight and is therefore the most probable. The most probable partition with W (maximum)

defines the equilibrium of the macrostate and is written � (EVN ).

It is here that we relate � (EVN) to the concept of entropy S. Entropy is a measure of the

disorder of a system which increases as the system tends to equilibrium. At constant

temperature and volume the internal energy E of the system may be written

E ¼ F þ TS

where T is the temperature, S is the entropy and the product TS is a measure of the energy

of the system locked in the disorder amongst the particles and not available for work. F is

defined as the Helmholtz free energy and measures the work which can be done by the

system at constant temperature. At best, in an ideal reversible thermodynamic process

the disorder energy TS remains constant, but in a natural or thermodynamically irreversible

process TS increases at the expense of F as E remains constant.

An isolated system in equilibrium with the most probable partition of its energy among

its particles represents a maximum of its entropy S and Boltzmann related S and � through

his expression S ¼ k log� where k is Boltzmann’s constant. Fluctuations from the

equilibrium position are very small indeed and log� is a very sharply defined function.

Calculating the value of W the statistical weight of a partition in order to find W

(maximum) ¼ � (EVN) for each of the three distributions is a mathematical exercise which

is straightforward and a little tedious but which fails to reveal the underlying physics.

We shall make these calculations at the end of this appendix but we adopt the procedure

of quoting the results below together with the forms in which we usually meet them. This

will raise questions the answers to which are not evident in the mathematical derivation

(Table A1.1).

For all three distributions the particles are identical and indistinguishable, the total

energy E and number of particles N are constant. There are no restrictions on the number of

particles having a particular energy in the M–B and B–E distributions but in the F–D

distribution, Pauli’s exclusion principle allows only one fermion per energy level (or two if

we include spin).

Note firstly that the occupation factor or relative probability of occupation for each

distribution includes the term e�þ�" i , where � and � arise as multipliers in the

mathematical derivation. The index of the exponential requires � to be the inverse of an

energy and the relevant term in the normal form of the Fermi–Dirac distribution suggests

that � is the ratio of two energies.
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In comparing the two columns of the table several questions arise:

1. Is � ¼ 1=kT?

2. What has happened to the � term in the normal form of M–B?

3. What is the physical significance of the � term?

4. What has happened to the � term in Planck’s radiation law?

In question 1 let us integrate by parts the expression

ð
e��" dp ¼ ½ pe��"�p¼þ1

p¼�1 þ �

ð
p
@"

@p
e��" dp

where

" ¼ p2=2m

For " ! 1 as p ! �1 the first term on the right hand side equals zero, leaving

1

�
¼

ð
p
@"

@p
e��" dpð

e��" dp

¼ p
@"

@p

the average value of

p
@"

@p

Table A1.1 The mathematical derivation for each statistical distribution in the left hand column is
compared with its more familiar form on the right

n i ¼ g i � occupation
factor Normal form

M–B n i ¼ g i � 1

e�þ�" i

n

N
¼ 4�p 2dp

ð2�mkTÞ 3=2
e�p 2=2mkT

¼ g i e
����" i ð p ¼ mvÞ

F–D n i ¼ g i � 1

e�þ�" i þ 1
nðEÞ dE ¼ 2:4�Vð2m3Þ1=2E 1=2

h3
� 1

e ð" i�" FÞ=kT þ 1

B–E nð�Þ d� h� ¼ Eð�Þ d�
n i ¼ g i � 1

e�þ�" i � 1
¼ 2:4�� 2 d�h�

c3
� 1

eh�=kT � 1

Planck’s radiation law
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From the equipartition of energy

p
@"

@p
¼ p2

m
¼ kT ¼ 1

�

where kT is the average energy per particle.

In question 2 we note that the term e�� in M–B has been replaced by N=ð2�mkTÞ3=2
and that h3 has been lost from the denominator of gið pÞ dp. To explain this and its

consequences let us write not n per unit volume but np in the range p to pþ dp over all

V ¼ xyz as

np ¼ V4�p2 dp e�p 2=2mkT

h3

Then

N ¼
X

np ¼ V

ð1

0

4�p2 dp e�p 2=2mkT

h3

where the standard definite integral is well known to have a value of ð2�mkTÞ3=2.
Thus

N ¼ Vð2�mkTÞ3=2=h3

Now the average particle momentum �pp ¼ m�vv where 1
2
m�vv 2 ¼ kT ð�vv is the most probable

velocity).

Hence

ð2�mkTÞ3=2 � �pp3

Thus, ðV=NÞ�pp3 replaces e�h3 and

e� ¼ V

N

�pp3

h3
¼ V

N

1

�3
DB

¼ Volume available to each particle

Volume associated with the thermal de Broglie wavelength of the particle

The value of e� ¼ 0:026m3=2T 5=2 at a pressure of one atmosphere, where m is measured in

a.m.u. (O16 ¼ 16).

For air at STP e� � 106 so for the Maxwell–Boltzmann distribution

gi

n i

¼ e�þ�" i � 106 e" i=kT � 1

This states that there are many more states or cells available for occupation than there are

particles to fill them, so the probable occupation of each cell is very small. This defines a

classical distribution.
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For the Bose–Einstein gas He4 at 4 K and one atmosphere pressure e� � 7:5 so the gas

is not safely classical.

Although it is not strictly applicable, for electrons in a metal at 300 K, e� � 10�4 so the

classical description for the Fermi–Dirac case is totally invalid.

A distribution which is not classical is said to be degenerate. Note that for high enough

energies (temperatures) all three distributions become classical.

Before we examine the origin of � and its physical meaning let us note that a factor 2

appears in both the F–D and B–E distributions where each particle has two spin states for

each energy level which must be accounted for. In Planck’s radiation law these spin states

are equivalent to the polarization states of electromagnetic waves. Note also in Planck’s law

that Eð�Þ d�, the energy per unit volume in the frequency range � to � þ d�, is nð�Þ d�h�
where h� is the photon energy.

Turning to question (iii) on the significance of � we again use the expression S ¼ k log�
or � ¼ eS=k. Consider a system in contact with a large reservoir at constant temperature,

Figure A1.1, able to exchange both energy and particles with the reservoir. The

combination of reservoir and system is isolated and its energy E, volume V and total

number of particles N are all fixed and constant.

We ask ‘What is the probability of finding the system in a particular microstate with nj

particles having total energy " j?’ This will be proportional to the number of microstates in

the reservoir after nj and " j are supplied to the system.

The entropy equation with subscript R for reservoir becomes

SRðE � " j;N � njÞ ¼ SRðE;NÞ � " j
@S

@E

� �
NV

�nj

@S

@N

� �
EV

where we neglect higher terms in the expansion.

Elementary thermodynamics shows that

@S

@E

� �
NV

¼ 1

T
and

@S

@N

� �
EV

¼ ��

T

system

reservoir

T

Figure A1.1 When a system, surrounded by a large reservoir with constant N, V and E receives n j

particles and total energy " j from the reservoir, the entropy change of the reservoir is �S ¼
ðn j�� " jÞ=T where � is the chemical potential
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where � is called the chemical potential. The chemical potential � is the free energy per

particle lost when the entropy S is increased in the relation E ¼ F þ TS where E is

constant. Thus, the entropy change may be written

�S ¼ SRðE � " j;N � njÞ � SRðE;NÞ ¼ � " j
T
þ nj�

T

Because the statistical weight � (EVN) represents the probability of a partition, the

probability of the combination of two partitions may be written as the product of their

statistical weights so we have

�ðE � " j;N � njÞ ¼ �ðE;NÞ�ð" j; njÞ
¼ �ðE;NÞ e�S=k

¼ �ðE;NÞ e ðn j��" jÞ=kT

In order to show the relation between � and ��=kT , we take as an example a system of

four fermions available to occupy any of four single particle energy states "1, "2, "3, "4
(Table A1.2). The particles and energies are supplied by the reservoir and each energy level

may be filled or empty. The numbers of possible microstates of the system using 0, 1, 2, 3

or 4 particles are shown below together with their relative probabilities.

For any microstate in which a particular energy level is filled we can find another which

differs only in having that energy level empty.

Table A1.2 Distribution of four fermions among four single particle energy states with numbers of
possible microstates and their relative probabilities

No One Two Three Four
particles particle particles particles particles

Number of
microstates 1 4 6 4 1

Energy
level " 4 0 0 0 0 1

Energy
level " 3 0 0 0 1 1

Energy
level " 2 0 0 1 1 1

Energy
level " 1 0 1 1 1 1

n j¼0 n j¼1 n j¼2 n j¼3 n j¼4
" j¼0 " j¼" 1 " j¼" 1þ" 2 " j¼" 1þ" 2þ" 3 " j¼" 1þ" 2þ" 3þ " 4

Relative
probability
of micro-
state e ð0�0Þ=kT e ð��" 1Þ=kT e ½2��ð" 1þ" 2Þ�=kT e ½3��ð" 1þ" 2þ" 3Þ�=kT e ½4��ð" 1þ" 2þ" 3þ" 4Þ�=kT
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Thus, for example

Relative probability of finding "3 filled

Relative probability of finding "3 empty
¼ p

1� p

¼ e ½3��ð" 1þ" 2þ" 3Þ�=kT

e ½2��ð" 1þ" 2Þ�=kT

¼ e ð��" 3Þ=kT

More generally

p

1� p
¼ e ð��" iÞ=kT

so

p ¼ 1

e ð" i��Þ=kT þ 1
¼ ni

where ni ¼ gi�nni and �nni or the relative probability is the average occupation of a cell.

This is the Fermi–Dirac occupation factor and we can identify � ¼ ��=kT (the ratio of

two energies) where � is the chemical potential. For the Fermi–Dirac distribution �nni � 1

and Figure A1.2 shows �nni versus " for electrons in a metal at T ¼ 0K.

Each energy level is occupied by one electron until the top energy level "F the Fermi

energy level is reached. At T ¼ 0K the electron with "F is the only one capable of moving

to change the entropy of the system and we identify its free energy with that of the

chemical potential �. Note that, at "F for T > 0, �nni ¼ 1
2
and this is indicated by the dotted

curve at "F in the �nni versus " graph.

We may apply a similar procedure to particles obeying Bose–Einstein statistics where

there is no restriction on the number of particles ni in the energy level " i. If ni can take any

value, three identical bosons available to three energy levels ð"1; "2; "3Þ can form the

1

ni

F

∋ ∋

½

Figure A1.2 Occupation number �nn i versus energy " for electrons in a metal at T ¼ 0 K (solid line).
A slight increase in T permits the electrons near " F to move to higher energy levels (dotted curve)
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microstates (3, 0, 0) (0, 3, 0) (0, 0, 3) (2, 1, 0) (0, 2, 1) (1, 0, 2) (0, 1, 2) (2, 0, 1) (1, 2, 0)

(1, 1, 1). The energy of each microstate is given by " j ¼
P

ni" i with nj ¼
P

ni. Suppose,

as before, a large reservoir at temperature T surrounds a system to which it can supply

particles and energy.

We consider a particular microstate of the system with n1; n2; n3 . . . ni particles in the

various energy levels to have a probability p when ni ¼ 0.

If the system now takes ni particles each of energy " i from the reservoir the probability

of the microstate (now with ni 6¼ 0) is given by

p en ið��" iÞ=kT ¼ p en ix

where x ¼ ð�� " iÞ=kT .
The total probability for the microstate with ni ¼ 0; 1; 2; 3; . . . is

1 ¼
Xn i¼1

n i¼0

p en ix ¼ p

ð1� e xÞ

because
P

en ix is a geometric progression.

Hence

p ¼ ð1� e xÞ
The average value

�nni ¼
Xn i¼1

n i¼0

ni p e
n ix

But

X
ni e

n ix ¼ d

dx

X
en ix ¼ d

dx

1

ð1� e xÞ ¼
e x

ð1� e xÞ2

Therefore

�nni ¼ p e x

ð1� e xÞ2 ¼
ð1� e xÞe x
ð1� e xÞ2 ¼ e x

ð1� e xÞ
¼ 1

e�x � 1
¼ 1

e ð" i��Þ=kT � 1

The general expression for the Bose–Einstein distribution is therefore

ni ¼ gi�nni ¼ gi � 1

e ð" i��Þ=kT � 1

Finally we discuss the absence of � or ��=kT in Planck’s radiation law, noting that this is a

special case and that ��=kT is retained in other applications of Bose–Einstein statistics.
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Black body radiation is an equilibrium process, so that the system or cavity of a box of

photons is in equilibrium with the reservoir at temperature T, the entropy S is a maximum

and this process results from the continual emission and absorption of photons by the walls

of the cavity. The number of photons in the cavity is not conserved, the energy requirement

could be satisfied by a few high energy photons in the �-ray region or by many photons in

the low energy infrared frequencies. This means that the occupation numbers are not

subject to the constraint which specifies the total number of particles in the gas.

Since N is not fixed, the entropy S of the reservoir is not affected by the nj photons in the

exponent nj� of the occupation factor for a given microstate; nj has no role and nj� ¼ 0

giving � ¼ 0.

The graph of the entropy S versus N, the total number of particles, gives low S values,

that is few microstates or particle arrangements at low N (�-rays) and also at high N

(infrared) photons.

A typical microstate for �-rays occupying the energy levels " i would read

n1 ¼ 0; n2 ¼ 0; n3 ¼ 0 with n!1 6¼ 0

and for infrared photons a typical microstate would read

n1 6¼ 0 n2 ¼ 0 n3 ¼ 0

Both of these are extremely unlikely and would contribute to partitions of low statistical

weight.

At equilibrium the maximum of the S versus N curve occurs at that value of N providing

the greatest number of microstates and here

@S

@N

� �
EV

¼ ��

T
¼ 0

again giving � ¼ 0.

Mathematical Derivation of the Statistical Distributions

The particles are identical but distinguishable by labels. All energy " states are equally

accessible and have the same a priori probability of being occupied. The statistical weight

or probability of a particular partition is proportional to the number of different ways of

distributing particles to obtain that partition.

Maxwell--Boltzmann Statistics

We start by filling the "1 states with n1 particles from the constant total of N particles. We

can do this in

N!

n1!ðN � n1Þ!
different and distinguishable ways.
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We now fill the "2 state with n2 particles from the N � n1 remaining particles. This

gives

ðN � n1Þ!=n2!ðN � n1 � n2Þ!

different and distinguishable ways.

Proceeding in this way for all remaining energy states we have

W ¼ N!

n1!n2!n3! . . .

as the number of different and distinguishable ways of choosing n1; n2; n3; . . . from the N

particles. Particles with the same " i may have gi differing amounts of angular momentum,

etc. This will give gi cells associated with " i in each of which a particle with " i may be

located. If gi is the probability of having one particle in the " i range of cells then

gi � gi ¼ g2
i is the probability of two particles in that range and gn i

i is the probability of ni

particles with " i being in that range.

Hence the total number of different distinguishable ways is

W ¼ N!gn 1

1 gn 2

2 gn 3

3 . . .

n1!n2!n3! . . .

The particles are distinguished by labels and if we now remove the labels and the condition

of distinguishable particles, we cannot recognize the difference in the partition when

particles are exchanged. Therefore all N! permutations among the particles occupying the

different states give the same partition with the total number of ways

W ¼ gn 1

1 gn 2

2 gn 3

3 . . .

n1!n2!n3! . . .

We now maximize log W with the constraints that

1. The number of particles N ¼ P
ni ¼ constant so that dN ¼ P

dni ¼ 0.

2. The energy E ¼ P
ni" i ¼ constant so that dE ¼ P

" i dni ¼ 0.

logW ¼
X
i

ðni log gi � log ni!Þ

where for large ni Stirling’s formula gives

log ni! ¼ ni log ni � ni

Hence

logW ¼
X

ni log
gi

n i

þ
X

ni
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and

d ðlogWÞ ¼
X

dni log
gi

ni

� �
þ
X

ni d log
gi

n i

� �
þ
X

d ni

¼
X

dni log
gi

ni

� �
�
X

ni

dni

n i

ðbecause gi is constant and
X

dni ¼ 0Þ

¼
X

dni log
gi

ni

� �

If
P

dni ¼ 0 then ��
P

dni ¼ 0 and

if
P

" i dni ¼ 0 then ��
P

" i dni ¼ 0

where � and � are called Lagrange multipliers.

Adding these constraint conditions to d(log W) gives

d ðlogWÞ ¼
X

dni log
gi

ni

� �
� �� �" i

� �

Maximizing W gives d(log W)¼ 0 which, since all the coefficients dni are arbitrary and

independent, leaves

log
gi

ni

� �
� �� �" i ¼ 0

for each ni.

At Wmax we have therefore

ni ¼ gi � 1

e�þ�" i

Fermi--Dirac Statistics

We begin again with labelled identical particles. Here the Pauli exclusion principle

operates and no two particles may occupy the same state. The gi are quantum states, e.g.

spin gives a factor 2 to each gi. Also gi gives the maximum number of particles with " i so
ni � gi.

To fill the " i states with ni particles we put one particle in a gi cell and the next particle

in any of the ðgi � 1Þ remaining cells. We can do this in giðgi � 1Þ ways so the total

number of ways of filling the states of energy " i with ni particles is

giðgi � 1Þ . . . ðgi � ni þ 1Þ
¼ gi!

ðgi � niÞ!
If now the labels are removed and the particles become indistinguishable we reduce the

total of different distinguishable arrangements to gi!=n1!ðgi � niÞ!.
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Applying this to all gi gives the total number of different distinguishable ways as

W ¼ g1!

n1!ðg1 � n1Þ!
g2!

n2!ðg2 � n2Þ!
g3!

n3!ðg3 � n3Þ!

Maximizing log W with
P

dni ¼
P

" i dni ¼ 0 we proceed as with the Maxwell–

Boltzmann example to obtain for W (max) the condition that

log
gi

ni

� 1

� �
� �� �" i ¼ 0

to give

ni ¼ gi � 1

e�þ�" i þ 1

Bose--Einstein Statistics

Here there is no exclusion principle and we begin again with labelled identical particles.

The number of distinguishable arrangements of ni particles in the gi cells of energy " i
equals the number of ways of putting ni objects in gi boxes with any number allowed in a

box. This means putting ni particles in a row separated by gi � 1 walls so that the number

of ways is the number of permutations of ðni þ gi � 1Þ objects, i.e. particles and walls.

This gives ðni þ gi � 1Þ! ways. If we now remove the particle labels to make them

indistinguishable we reduce the number of ways by a factor of n! to give ðni þ gi � 1Þ!=ni!
ways.

However, all permutations of the gi � 1 dividing walls among the ni particles give the

same physical state, so the number of different distinguishable ways is given by

ðni þ gi � 1Þ!=ni!ðgi � 1Þ! and for all particles we have the number of ways

W ¼ ðn1 � g1 � 1Þ
n1!ðg1 � 1Þ

ðn2 þ g2 � 1Þ
n2!ðg2 � 1Þ 	 	 	 etc:

Maximizing log W as for the other two distributions gives d(log W)¼ 0 when

log
gi

ni

þ 1

� �
� �� �" i ¼ 0

that is, when

ni ¼ gi

1

e�þ�" i � 1
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Appendix 2: Kirchhoff’s Integral
Theorem

Kirchhoff’s Integral Theorem is valid for any solution E of the scalar time independent

Helmholtz equation (3), p. 187, that is

@ 2E

@x2
þ k 2E ¼ 0

For the radial direction r in a spherical coordinate system this becomes

@ 2E

@r 2
þ 2

r

@E

@r
¼ 0

which is satisfied by

E ¼ E0

r
eikr

where E0=r is the amplitude at a distance r from the origin O of a spherical

electromagnetic wave. We note that the amplitude of such a wave decays as 1=r where

r is the distance from O.

Kirchhoff’s Theorem states that the complex amplitude EP at a point P is related to the

complex amplitude E on a surface S enclosing P by

EP ¼ 1

4�

ðð
S

E
@

@n

e ikR

R
� eikR

R

@E

@n

� �
dS

where R is the distance from P to the surface element dS and n is the direction normal to dS
(Figure A2.1).

If r is the distance from O to dS, then

E ¼ E0

r
eikr
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and

@E

@n
¼ E0

r
eikr ik � 1

r

� �
cos ðn; rÞ

The term ðik � 1=rÞ shows that inside S there is a phase shift of �=2 rad and an amplitude

factor 1=r. However, for r ¼ m�, where m is large, then

k ¼ 2�

�
� 1

r
¼ 1

m�

so that 1=r may be neglected for distances much greater than �.
Similar arguments hold for

@

@n

eikR

R

Thus, if P and O are many wavelengths from S, Kirchhoff’s integral becomes

EP ¼ �i

�

ðð
E0

e ikðrþRÞ

rR

ðcosn;R� cos n; rÞ
2

dS

where the cosine terms generate an inclination factor Kð�Þ and cosðn;RÞ ¼ cos�.
The problem of showing that Huygens wavelets on an unobstructed wavefront do not

propagate backwards reduces to that of demonstrating that Kð�Þ can be zero. This occurs

where

cos ðn;RÞ ¼ cos� ¼ �1

R

P

S

ds
rn

R

r

0

Figure A2.1 O is the origin of an electromagnetic wave. Kirchoff’s Theorem relates its complex
amplitude EP at a point P to the complex amplitude E on a surface S enclosing P
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and

cos ðn; rÞ ¼ cos� ¼ �1

This is achieved in the following way.

The surface S designated S2 now encloses a spherical wavefront surface S1 centre O. S1

and S2 are said to be doubly connected and the surface integral now includes S1 and S2

(Figure A2.2). At S1 the normal n to dS on S2 now points towards O and if the outer

surface of S2 is allowed to expand to infinity its contribution to the integral becomes zero.

This leaves only the integral over the surface where S1 and S2 coincide. The singularity

E0=r at O is excluded from the integral.

If P is now located on r, at P 0, that is in the direction of backward propagation of

Huygens wavelets, then

cos ðn;RÞ ¼ cos� ¼ �1

and

cos ðn; rÞ ¼ cos� ¼ �1

Kð�Þ is then equal to zero. Any other position for P gives

Kð�Þ ¼ cos�� cos ðn; rÞ
2

¼ 1þ cos�

2

S1
S2

S2

R

r

n

0

P

P ′

Figure A2.2 When P 0 is located on r within the surface of the spherical wavefront S 1, situated
within S, EP 0 is reduced to zero proving that Huygens wavelets do not propagate backwards
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Appendix 3:
Non-Linear Schrödinger Equation

This equation describes phenomena in non-linear media with strong dispersion. It appears

in several forms. For optical soliton purposes, Mollenauer et al. (1982) derive it from the

equation

i
@u

@z
þ k1

@u

@t

� �
¼ �k2

2

@ 2u

@t 2
þ �juj2u ðA3:1Þ

where

k1 ¼ @k

@!
; k2 ¼ @ 2k

@!2
; and � ¼ 1

2
k0

n2

n0

n2 and n0 appear in the Kerr Optical Equation n� n0 ¼ n2I.

Equation (A3.1) is satisfied by a pulse of the form

Eðz; tÞ ¼ uðz; tÞ e ið! 0t�k 0zÞ

Using the transformation of Mollenauer et al. (1980), (A3.1) assumes the dimensionless form

�i
@v

@�
¼ 1

2

@ 2v

@s2
þ jvj2v ðA3:2Þ

which has a soliton solution uð�; sÞ ¼ sech ðsÞei�=2 where

s ¼ T �1ðt � k1zÞ � ¼ jk2jT �2 z

and

v ¼ T
�

j k2 j
� �1=2

u

where T is a measure of the width of the input optical pulse.

The first term on the right hand of equation (A3.2) describes the effects of dispersion

which may be seen as the kinetic energy term in the linear Schrödinger equation, while the

second term corresponds to the energy of a self-trapping potential proportional to juj2
arising from the non-linear refractive index which may be interpreted in probability terms.
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