1106 Hydrocarbon				
	G Ordina	ary Thinking		
		Objective Questions		
	Alk	ane		
1.	Which represents an a	lkane [CPMT 1976]		
	(a) $C_5 H_8$	(b) $C_8 H_6$		
	(c) $C_9 H_{10}$	(d) $C_7 H_{16}$		
2.	The decreasing order of	of boiling points is [BHU 1999]		
	(a) <i>n</i> -Pentane > iso-Pe	entane > neo-Pentane		
	(b) iso-Pentane > <i>n</i> -Pe			
	(c) neo-Pentane > iso-			
_	(d) n -Pentane > n eo-Pe			
3.		sample of n-hexane using reactant, the other reactant [BHU 1999]		
	(a) <i>n</i> -propyl bromide			
	(b) Ethyl bromide and	<i>n</i> -butyl bromide		
	(c) Ethyl chloride and	<i>n</i> -butyl chloride		
	(d) Methyl bromide ar	nd <i>n</i> -pentyl chloride		
4.		of Grignard reagent from		
	haloalkane, the metal	[RPET 1999]		
	(a) <i>Mg</i>	(b) <i>Zn</i>		
_	(c) <i>Li</i>	(d) K		
5۰	Soutuin acetate can be	converted to ethane by [Pune CET 1998]		
	(a) Heating with <i>LiAlH</i>			
	(b) Electrolysing its a			
	(c) Heating with sodal	-		
	(d) Heating with calcing			
6.	-	ing compounds is used in		
	antiknock compositior	ns to prevent the deposition		
		n spark plug, combustion		
	chamber and exhaust			
	(a) Glycerol	[KCET 1998] (b) Glycol		
	(c) 1, 2-dibromoethan			
7.		prresponds to kerosene oil		
		[DCE 1999]		
	(a) $C_{15} - C_{18}$	(b) $C_{10} - C_{12}$		
	(c) $C_5 - C_9$	(d) $C_1 - C_9$		
8.	5 ,	$-Br + 2Na + Br - CH_3 \rightarrow$, the		
	-	9; CPMT 1983. 86; KCET 1992;		
		; MP PMT 2002; MP PET 1986]		
	(a) Wurtz reaction (c) Perkin's reaction	(b) Aldol condensation		

9.		th sodium in the presence of tt is [AFMC 1997; KCET 1998]
	(a) Pentane	(b) Propane
	(c) Butene	(d) Butane
10.	Which of the followin	g is oxidised by $KMnO_4$
	(a) Methane	(b) Pentane
	(c) Isobutane	(d) Neopentane
11.	Which of the followin	g has maximum stability[AIIMS 200
		H
	(a) CH_{3}^{+}	(b) $CH_3 - \overset{ }{C} - H_{+}$
	-	
	H	
	(c) $CH_3 - C - CH_3$	(d) $CH_3 - CH_3 - CH_3$
12.	The most volatile com	pound is [DPMT 2000]
		pane (b) 2-methyl butane
	(c) Isobutane	(d) <i>n</i> -pentane
13.		e reagent used is[EAMCET 1998]
	(a) <i>Na</i>	(b) $Na/liquid NH_3$
	(c) <i>Na</i> /dry ether	(d) <i>Na</i> /dry alcohol
14.	Which of the followin	g has highest octane number
		[MP PMT 2000]
	(a) <i>n</i> -hexane	(b) <i>n</i> -heptane
	(c) <i>n</i> -pentane	(d) 2, 2, 4-trimethyl
	pentane	
15.	What is freon-12	[RPET 1999]
	(a) Pesticide	(b) Refrigerant (d) Lubricant
16.	(c) Solvent	ane number 80 has[MP PET 2000]
10.		ane + 80% iso-octane
		ane + 20% iso-octane
		ane + 80% normal octane
		ane + 20% normal octane
17.		ving reactions will not give
	propane	
		[DPMT 2005]
	(a) $CH_3CH_2CH_2Cl$	$\frac{\gamma/\text{ether}}{H_2O}$
	(b) $CH_3COCl - \frac{CH_3MgX}{H_2O}$	
	(c) $CH_3CH = CH_2 \frac{B_2 I}{CH_3C}$	$\xrightarrow{q_6}$
	(d) $CH_3CH - CH_3 - \frac{P/H}{P}$	$\xrightarrow{11}$

18. The shape of methane molecule is[MP PET 1997, 2001](a) Linear(b) Trigonal planar

OH

- 19. Which of the following shows only one brominated compound [CPMT 1996]
 (a) Butene-2 (b) 2, 2-dimethylpropane (c) Butyne-1 (d) Butanol-3
- 20. Kerosene is used as fuel because it is [CPMT 1996]
 (a) Less volatile
 (b) More volatile
 (c) Cheap
 (d) Abundantly available
- **21.** $CH_3 CH_2 CH_2 CH_3 \xrightarrow{AlCl_3} Product$. Product in above reaction is **[RPMT 2003]**

(a) $CH_3 - CH - CH_2 - CH_3$ (c) CH_3CHO (d) $C_{2}H_{6}$ Which of the following compounds is insoluble 30. Rreven in hot concentrated H_2SO_4 [IIT-JEE 1983] (b) $CH_3 - CH - CH_3$ (b) Benzene (a) Ethylene CH_3 (d) Aniline (c) Hexane (c) $CH_2 - CH_2 - CH_2$ A reaction between methyl magnesium bromide 31. and ethyl alcohol gives[CPMT 1979; MNR 1986; UPSEAT 1999 **R**r CH_3 (a) Methane (b) Ethane (d) All of these (c) Propane (d) Butane Which of the following statements is not true for 22. Methane and ethane both can be obtained in ethane 32. single step from [AIIMS 1996] (a) It can be chlorinated with chlorine [CPMT 1974; MP PET 1995; AFMC 1998, 2000; BHU 2005] (b) It can be catalytically hydrogenated (a) CH_2I (b) $C_2 H_5 I$ (c) When oxidised produces CO_2 and H_2O (c) CH_3OH (d) C_2H_5OH (d) It is a homologue of iso-butane **33.** Paraffin wax is [MP PMT 1986; CPMT 1993] Petroleum refining is [AIIMS 1996; KCET 2004] 23. (a) Ester (a) Distillation of petroleum to get different (b) Alcohol fractions (c) Unsaturated hydrocarbon (b) Obtaining aromatic compounds from aliphatic (d) Saturated hydrocarbon compounds present in petroleum The number of possible enantiomeric pairs that 34. (c) Cracking of petroleum to get gaseous can be produced during monochlorination of 2hydrocarbons methylbutane is (d) Purification of petroleum [IIT-JEE 1997] The chemical added to leaded petrol to prevent 24. (a) 2 (b) 3 the deposition of lead in the combustion chamber (d) 1 (c) 4 is Petroleum consists mainly of[CPMT 1985, 94; KCET 1991] 35. [Kerala (Med.) 2003] (a) Aliphatic hydrocarbons (b)Aromatic hydrocarbons (b) Ethylene dibromide (a) Iso-octane (c) Aliphatic alcohols (d) None of these (c) Tetraethyl lead (d) Mercaptan Petroleum ether can be used as 36. (e) n-Heptane (a) Solvent for fat, oil, varnish and rubber In the commercial gasolines, the type of 25. hydrocarbons which are more desirable is[CBSE PMT 1997; AFMC 1997] (c) Both (a) and (b) (a) Branched hydrocarbon (d) None of these (b) Straight-chain hydrocarbon Which of the following are produced from coaltar 37. (c) Linear unsaturated hydrocarbon [MNR 1987; UPSEAT 2002] (d) Toluene (a) Synthetic dyes (b) Drugs 26. Which of the following is not formed by the (c) Perfumes (d) All the three reaction of Cl_2 on CH_4 in sunlight [AIIMS 1987] 38. In alkanes, the bond angle is[MP PMT 1989; BHU 1996] (a) $CHCl_3$ (b) CH_3Cl (a) 109.5° (b) 109° (c) CH_3CH_3 (d) $CH_3CH_2CH_3$ (c) 120° (d) 180° Which of the following has the highest boiling 27. In the preparation of alkanes; a concentrated 39. point aqueous solution of sodium or potassium salts of [DPMT 1986] saturated carboxylic acid are subjected to[CPMT 1985; MP (a) Neopentane (b) *n*-butane (b) Oxidation (a) Hydrolysis (c) *n*-heptane (d) Isobutane (c) Hydrogenation (d) Electrolysis Which gives CH_4 when treated with water Halogenation of alkanes is an example of 28. 40. [MP PET 1993; KCET 1998] [CPMT 1974, 79; NCERT 1976; IIT-JEE 1990] (a) Electrophilic substitution (a) Silicon carbide (b) Calcium carbide (b) Nucleophilic substitution (c) Aluminium carbide (d) Iron carbide (c) Free-radical substitution Which of the following does not react with PCl₅ 29. (d) Oxidation [CPMT 1973] Propionic acid is subjected to reduction with 41. (a) CH_3OH (b) CH₃COOH

hydroiodic acid in the presence of a little P, the product formed is

	(a) Ethane	[JIPMER 1997] (b) Propane	53.	In catalytic reduction of hydrocarbons which catalyst is mostly used [DCE 2001]
	(c) Butane	(d) None of these		(a) <i>Pt</i> / <i>Ni</i> (b) <i>Pd</i>
ļ 2.		propyl iodide react with		(c) SiO_2 (d) Misch Metal
		her, they form [BHU 1997]	54.	Ethylene reacts with bromine to form[MP PET 2001]
	(a) One alkane	(b) Two alkanes	54.	(a) $Br - CH_2 - CH_3$ (b) $CH_3 - CBr_3$
	(c) Four alkanes	(d) Three alkanes		
13.	derivatives is	two isomeric monobromo	[1	(c) $Br - CH_2 - CH_2Br$ (d) $CHBr_3$
	(a) Neopentane	(b) Ethane	55· ¹¹	EAMCET 199 ^[3] obtained from crude petroleum oil by
	•	(d) Propane		its
4.		f [CPMT 1979; AFMC 1992]		[MP PMT 1999]
1.	(a) Alkanes	(b) Aromatic compounds		(a) Fractional distillation (b)Vacuum distillation
	(c) Alcohols	(d) Aliphatic acids		(c) Steam distillation (d) Pyrolysis
5.		ated the vapours contain	56.	6 6
	mainly	-		[MP PMT 1999]
		[CPMT 1981]		(a) Reaction of CH_3I with Na in ether
	(a) Kerosene	(b) Petroleum ether		(b) Reaction of sodium acetate with sodalime
	(c) Diesel	(d) Machine oil		(c) Electrolysis of concentrated sodium acetate
6.	Iso-octane is mixed to the	-	solu	
	(a) To precipitate inorg			(d) Reaction of ethyl chloride with alco. <i>KOH</i>
	(b) To prevent freezing	-	57.	<i>LPG</i> is a mixture of [MP PMT 1999; KCET 2005]
	(c) To increase boiling	point of petrol		(a) $C_6 H_{12} + C_6 H_6$ (b) $C_4 H_{10} + C_3 H_8$
	(d) As an antiknock			(c) $C_2H_4 + C_2H_2$ (d) $C_2H_4 + CH_4$
7.	Tetraethyl lead is used a	as[NCERT 1976, 79; DPMT 1984; CPMT 1989, 91; BHU 1995]	58.	Carbon black, which is used in making printer's ink, is obtained by decomposition of [MP PET 1993]
	(a) Fire extinguisher	(b) Pain reliever		(a) Acetylene (b) Benzene
	(c) Petroleum additive	(d) Mosquito repellent		(c) Carbon tetrachloride (d) Methane
8.	Cyclohexane, a hydro	carbon floats on water	59.	The addition of tetraethyl lead to petrol[MP PET 199
	because		39.	(a) Lowers its octane number
		[NCERT 1976]		(b) Raises its octane number
	(a) It is immiscible with	n water		(c) May raise or lower the octane number
	(b) Its density is low as	compared to water		(d) Has no effect on octane number
	(c) It is non-polar subst	ance	60.	
	(d) It is immiscible and	lighter than water	00.	boiling point [IIT-JEE 1982; MP PMT 1986;
9.	Natural gas contains ma	ainly		MADT Bihar 1995; Pb. PMT 1999]
	[MNR 1990; UPSEAT 1999), 2000, 01, 02; BCECE 2005]		(a) <i>n</i> -hexane (b) <i>n</i> -pentane
	(a) Methane	(b) <i>n</i> -butane		(c) 2, 2-dimethyl propane (d) 2-methyl butane
	(c) <i>n</i> -octane	(d) Mixture of octane	61.	Knocking sound occurs in engine when fuel[CPMT 19
o.	Which compound is not	inflammable[MP PET 2001]	011	(a) Ignites slowly
	(a) <i>CCl</i> ₄	(b) $C_2 H_5 OH$		(b) Ignites rapidly
	(c) <i>CH</i> ₄	(d) $C_6 H_6$		(c) Contains water
	·	om propene, by which of		(d) Is mixed with machine oil
l.	-	CBSE PMT 2001; AFMC 2001]	62	
	(a) Wurtz reaction	(b) Dehydrogenation	62.	Petroleum is mainly a mixture of [CPMT 1984; Pb. PMT 1999]
	(c) Frankland reaction			(a) Alkanes (b) Cyclohexane
	hydrogenation	(a) catalytic		-
2.		used as antiknock agent in	62	
		; CPMT 2000; Pb. CET 2000;	63.	Which of the following has maximum boiling point
		MP PET 2001]		[IIT-JEE 1986; MP PMT 1986; CPMT 1989]
	(a) $(C_2H_5)_4 Pb$	(b) <i>TNT</i>		(a) <i>iso</i> -octane
	(c) CH_3MgBr	(d) $(C_2H_5)_2Hg$		(b) n -octane
	$(c) CII_3 mg DI$	$(u) (C_2 II_5)_2 II_8$		(c) 2 2 3 3-tetramethyl hutane

(c) 2, 2, 3, 3-tetramethyl butane

			Hydrocarbon 1109
	(d) <i>n</i> -butane		(d) May increase or decrease
64.	Aqueous solution of the following compound on electrolysis gives ethane	73.	In the fractional distillation of crude petroleum [Roorkee 1989]
	[NCERT 1983; MP PET 1985; CPMT 1975, 79]		(a) Petrol condenses at the bottom of the column
	(a) Acetic acid (b) Acetamide		(b) The gases condense at the top of the column
6 5.	(c) Potassium acetate (d) Ethyl acetate Which of the following does not decolourise		(c) High boiling constituents condense at the bottom of the column
	bromine solution in carbon disulphide[MP PET 1986] (a) Acetylene (b) Propene		(d) High boiling constituents condense at the top of the column
56.	(c) Ethane(d) PropyneAnhydrous sodium acetate on heating with	74.	Which of the following is not an endothermic reaction
	sodalime gives		[J & K 2005]
	[CPMT 1972, 84; Pb. CET 2001, 2003]		(a) Dehydrogenation
	(a) Acetic acid (b) Methane		(b) Ethane to ethene
_	(c) Calcium acetate (d) Ethane		(c) Combustion of propane
57.	Water gas is [CPMT 1993, 2004; Pb. PMT 2004]		(d) Change of chlorine molecule into chlorine
	(a) $CO + CO_2$ (b) $CO + N_2$	aton	-
	(c) $CO + H_2$ (d) $CO + N_2 + H_2$	75.	Gasoline is the name of [Roorkee 1989]
58.	A sample of gasoline contains 81% iso-octane and		(a) Crude oil
	19% <i>n</i> -heptane. Its octane number will be[MP PMT 19	95]	(b) The gaseous constituents of petroleum
	(a) 19 (b) 81		(c) The mixture of uncondensed gases produced
	(c) 100 (d) 62		in the distillation of crude oil
9.	The natural petroleum contains[MP PMT 1995](a) Saturated hydrocarbons		(d) The mixture of the residue and gas oil obtained in the distillation of crude oil
	(b) Cyclic saturated hydrocarbons	76.	In the process of cracking [Roorkee 1989]
	(c) Compounds of sulphur(d) All of these		(a) Organic compounds decompose into their constituent elements
70.	The preparation of ethane by electrolysis of aqueous solution of potassium acetate is called as[MI	ь фулфт	(b) Hydrocarbons decompose into carbon and
	(a) Wurtz reaction		(c) High molecular weight organic compounds
	(b) Sabatier-Senderen's reaction		decompose to give low molecular weight
	(c) Kolbe's synthesis		organic compounds (d) Hydrocarbons yield alkyl radicals and
	(d) Grignard reaction	hydr	(d) Hydrocarbons yield alkyl radicals and rogen
1.	Action of hydrogen chloride on $CH_3 - C = CH_2$	77•	Octane number has 0 value for
	CH ₃		[Roorkee 1989; MP PET 1999, 2002; MP PMT 2001; KCET 2002]
	and on $CH = CH$ will predominantly give the		MP PMT 2001; KCET 2002]
	compounds, respectively		 (a) iso-octane (b) <i>n</i>-hexane (c) <i>n</i>-heptane (d) iso-heptane
	(a) $CH_3 - CH = CH_2Cl$ and $CH_2Cl - CH_2Cl$	78.	Dry distillation of sodium propanoate with sodalime gives
	(b) $CH_3 - CCl = CH_3$ and $CH_3 - CHCl_2$		[CPMT 1996]
	CH ₃		(a) Propane (b) Propene
	5		(c) Ethane (d) Ethene
	(c) $CH_3 - CH = CH_2Cl$ and $CH_3 - CHCl_2$ $\downarrow CH_3$	7 9 .	What is the chief product obtained when n -butane is treated with bromine in the presence of light at
	(d) $CH_3 - CH = CH_3$ and $CH_2Cl - CH_2Cl$		130 ° C
	CH ₃ CH ₃ CH ₂ CH ₂		[IIT-JEE 1995]
72.	As the number of carbon atoms in a chain increases the boiling point of alkanes [AFMC 1989]		(a) $CH_3 - CH_2 - CH - Br$
	(a) Increases		(b) $CH_3 - CH - CH_2 - Br$
	(h) Decreases		

 $\overset{|}{CH_3}$

- (b) Decreases
- (c) Remains same

$$CH_{3} - CH_{3}$$

(c)

(d)
$$CH_3 - CH_2 - CH_2 - CH_2 - Br$$

- **80.** A mixture of propene and methane is obtained by the cracking of
 - (b) 2-butene (a) 1-butene

(c) *n*-butane (d) Isobutane

- Which of the following fractions of petroleum 81. refining contains kerosene ? (Boiling ranges in ^o C are given below)
 - (a) 40 80 (b) 80 - 200
 - (c) 200 300 (d) Above 300
- Which of the following statements is incorrect ? 82. The members of the homologous series of alkanes [NCERT 1974]
 - (a) Are all straight chain compounds
 - (b) Have the general formula $C_n H_{2n+2}$
 - (c) Have similar chemical properties
- (d) Show a regular gradation of physical properties
- 83. On mixing tetraethyl lead to gasoline available at petrol pumps [CPMT 1981]
 - (a) Calorific value of the fuel increases
 - (b) Odour diminishes
 - (c) Less smoke is obtained on combustion
 - (d) Antiknock property of fuel increases
- 84. A liquid hydrocarbon can be converted to gaseous hydrocarbon by [CPMT 1980; MP PMT 2001]
 - (a) Cracking
 - (b) Hydrolysis
 - (c) Oxidation
 - (d) Distillation under reduced pressure
- 85. The tetrahedral nature of carbon was first given by

	(a)	Kekule	
~~			

Hoff

(d) Armstrong and Bayer

[MP PMT 1994]

(b) Le Bell and Van't

- (c) Pauling **86.** Formation of alkane by the action of *Zn* on alkyl halide is called [DPMT 1984; MHCET 2004] (a) Frankland's reaction (b) Wurtz reaction
 - (c) Cannizzaro reaction (d) Kolbe's reaction
- Which of the following compounds will form a 87. (a) CH_3CH_2OH (b) CH_3CHO
 - (c) CH_3COCH_3 (d) $CH_3CO_2CH_2$
- **88.** Name the hydrocarbon that is a liquid at STP
 - (a) Ethane (b) Propane (c) n-butane
 - (d) n-pentane
- **89.** Which statement is not true concerning alkanes

				[MP	PET 2	003]
(a) Large	e number a	lkanes are	e sol	uble in	wateı	
(b) All al	lkanes have	e a lower o	lens	ity thar	n wate	er
(c) At 1	room tem	perature	son	ne alk	anes	are
liqui	liquids, some solids and some gases					
(d) All alkanes burn						
Fischer	Tropsch	process	is	used	for	the
manufacture of						

indif di dottar o or	
	[DCE 1999; MP PET 2003]
(a) Synthetic petrol plastics	(b) Thermosetting
(c) Ethanol	(d) Benzene

91. Which one of the following compounds cannot be prepared by Wurtz reaction[Kurukshetra CEE 2002; MP PMT 2002; MP PET 2003]

(a)
$$CH_4$$
 (b) C_2H_6

(c)
$$C_3 H_8$$
 (d) $C_4 H_{10}$

- 92. A fuel contains 25 % *n*-heptane and 75 % isooctane. Its octane number is[MP PMT 1993; MP PET 1994] (a) 50 (b) 75
 - (c) 100 (d) 25
- Sodium ethoxide is a specific reagent for[CPMT 1985] 93. (a) Dehydration
 - (b) Dehydrogenation

90.

- (c) Dehydrohalogenation
- (d) Dehalogenation
- Which of the following has highest percentage of 94. hydrogen

[CPMT 1975; 79]

- (a) CH_4 (b) $C_2 H_4$ (c) $C_6 H_6$ (d) $C_{2}H_{2}$
- What is the molecular formula of the alkane, the 95. 5.6 *litre* of which weight 11 *q* at STP[**MP PMT 2003**]
 - (a) $C_6 H_{14}$ (b) $C_4 H_{10}$
 - (d) $C_2 H_6$ (c) C_3H_8
- The reference compound `iso-octane' which is 96. used in determining the octane number of gasoline has the structure
 - (a) $CH_3 CH(CH_3) CH(CH_3) CH(CH_3) CH_3$
 - (b) $CH_3 C(CH_3)_2 CH_2 CH(CH_3) CH_3$
 - (c) $CH_3 C(CH_3)_2 CH(CH_3) CH_2 CH_3$
 - (d) $CH_3 C(CH_3)_2 C(CH_3)_2 CH_3$
- hydrocarbon on reaction with Grignard reagent[CPMT 9788, §3]mple of 2, 3-dibromo-3-methylpentane is heated with zinc dust. The resulting product is isolated and heated with HI in the presence of phosphorus. Indicate which is the structure that represent the final organic product formed in the reaction [CBSE PMT 1991]
 - (a) $CH_3 CH_2 CH CH_2 CH_3$ $\dot{C}H_{3}$

(b)
$$CH_2 = CH - CH_2 - CH_3$$

(c) $CH_3 - CHI - CH - CH_2 - CH_3$
(c) $CH_3 - CHI - CH - CH_2 - CH_3$
(d) $CH_2 = CH - C(I) - CH_2 - CH_3$

 $\dot{C}H_3$

98. The order of appearance of the following with rising temperature during the refining of crude oil is

[MNR 1993; UPSEAT 2002]

- (a) Kerosene oil, gasoline, diesel
- (b) Diesel, gasoline, kerosene oil
- (c) Gasoline, diesel, kerosene oil
- (d) Gasoline, kerosene oil, diesel
- When sodium propionate is heated with soda 99. lime, the main product is
 - (b) Methane (a) Ethane
 - (c) Propane (d) Butane
- **100.** Gasoline is a mixture of alkanes with the number of carbon atoms [CPMT 1983, 84; BVP 2003]
 - (a) $C_3 C_5$ (b) $C_5 - C_6$
 - (c) $C_6 C_8$ (d) $C_7 - C_9$
- 101. The final product of complete oxidation of hydrocarbons is

	[CPMT 1981]
(a) Acid	(b) Aldehyde
(c) $H_2 O + CO_2$	(d) Dihydric alcohol

- 102. Which of the following will have least hindered rotation about carbon-carbon bond[IIT-JEE 1987; CPMT 1989, ^{the} fact that
 - (a) Ethane (b) Ethylene
 - (c) Acetylene (d) Hexachloroethane
- 103. Which of the following represents the most oxidized form of hydrocarbon [MP PMT/PET 1988]
 - (a) *CO*₂ (b) RCHO
 - (c) RCOOH (d) RCOOOH
- **104.** Name the reaction

$$C_{10}H_{22} \xrightarrow{900K} C_4H_8 + C_6H_{14}$$

[MP PET 1995; MP PMT 1997] (b) Cracking

- (a) Alkylation (c) Pyrolysis (d) Fractionation
- **105.** How many types of carbon atoms are present in 2, 2, 3-trimethylpentane
 - (a) One (b) Two (c) Three (d) Four
- 106. Which one gives only one monosubstitution
- product on chlorination [AIEEE 2003] (a) *n*-pentane (b) Neopentane
 - (c) Isopentane (d) n-butane

- **107.** CH_{4} is formed when [AFMC 1987]
 - (a) Sodium acetate is heated with sodalime
 - (b) Iodomethane is reduced
 - (c) Aluminium carbide reacts with water
 - (d) All of these
- 108. A mixture of methane, ethylene and acetylene gases is passed through a Wolf's bottle containing ammoniacal cuprous chloride. The gas coming out [NCERT 1976] is
 - (a) Methane
 - (b) Acetylene
 - (c) A mixture of methane and ethylene
 - (d) The original mixture
- **109.** At room temperature solid paraffin is[**RPET**/**PMT** 1999]
 - (a) $C_3 H_8$ (b) $C_8 H_{18}$
 - (d) $C_{20}H_{42}$ (c) $C_4 H_{10}$
- 110. Which one of the following compounds does not give addition reactions [MADT Bihar 1981]
 - (a) Aldehydes (b) Alkanes
 - (c) Alkenes (d) Alkynes
 - (e) Ketones (f) All of these
- 111. The most important method of preparation of hydrocarbons of lower carbon number is[CBSE PMT 1989]

(a) Pyrolysis of higher carbon number hydrocarbons

- (b) Electrolysis of salts of fatty acids
- (c) Sabatier and Senderen's reaction
- (d) Direct synthesis
- **112.** The inorganic origin of petroleum is indicated by
 - (a) Its constituents can be separated by fractional distillation
 - (b) Carbon and hydrocarbon can combine by absorption of solar energy to give hydrocarbons
 - (c) Petroleum contains traces of chlorophyll

(d) Oil fields are located with the help of seismograph

113. Which of the following is a gemdihalide[CPMT 1976, 88] (a) $CH_3.CHBr.CHBr.CH_3$ (b) $CH_3Br.CH_3Br$

(c)
$$CHBr = CHBr$$
 (d) CH_3CHBr_2

114. Which one of the following contain isopropyl group

[BHU 2005]

- (a) 2,2,3,3-tetramethylpentane
- (b) 2-methylpentane
- (c) 2,2,3-trimethylpentane
- (d) 3,3-dimethylpentane
- 115. Natural gas is a mixture of [MP PMT 1986] (a) $CO + CO_2$ (b) $CO + N_2$

(c) $CO + H_2 + CH_4$	(d) $CH_4 + C_2H_6 + C_3H_8$		(a) 2	(b) 3
-	-			(d) 5
ethyliodide gives (a) Butane	[BHU 2003]	126.		ng cycloalkane gives open reacts with bromine[Orissa J E
(b) Ethane			(a) Cyclopropane	(b) Cyclopentane
(c) Propane			(c) Cyclohexane	(d) Cyclo-octane
-	bove three	127.	Grignard reagent is	not prepared in aqueous
Product obtained by ni	itration of propane is[RPMT 200	93]	medium but prepared; the reagent	in ether medium because
				[KCET 2002]
			(a) Reacts with water	
	•		(b) Is insoluble in wate	r
•			(c) Is highly reactive in	ether
	_		(d) Becomes inactive in	water
(c) Formation of bran	ches in the chain of C atoms	128.	A sample of petrol is a	mixture of 30% <i>n</i> -heptane
(d) Formation of doub	le bond			The sample has octane
			number	
by a process of	[DPMT 1985; NCERT 1978]			[MP PET 1985]
(a) Pyrolysis	(b) Substitution		(a) 30	(b) 70
(c) Homolysis	(d) Peroxidation			(d) 35
Which of the following	g is not linked with methane	129.		
(a) Marsh gas	(b) Natural gas			[DPMT 2002]
(c) Producer gas	(d) Coal gas			(b) $Zn - Hg / HCl$
Which of the following	g has highest octane number		(c) Red phosphorous	(d) H_2SO_4
	[MP PET 1996]	130.		
(a) <i>n</i> -hexane (b) <i>n</i> -heptane			oleum at high ten sulphonic acid, is called	nperature, which forms l
-				[MH CET 1999]
	-octane mixed in ratio 50 :			(b) Halogenation
(u) n neptune and 130	octaile inixed in ratio 50.		-	(d) Oxidation
		131.	method ?	
				[CPMT 1997; CBSE PMT 2001;
	[IIT-JEE (Screening) 1990]		(a) Cataluct hudrogona	AFMC 2001; MH CET 2001]
(a) <i>n</i> -butane	(b) <i>n</i> -propane			(d) Frankland reaction
(c) <i>n</i> -pentane	(d) <i>n</i> -hexane	122		
Most of the hydroca obtained by	rbons from petroleum are	132.	straight chain alkanes a	are[MP PMT 1987; AIIMS 1999]
	[CPMT 1974, 80]			
(a) Fractional distillat		tion	-	
	-		•	chain
-	•	100	-	
		133.		
antiknock compound			• •	
CPMT 1974, 81, 99, 2000	;RPMT 2002; CBSE PMT 1996;			
KCET (Med.) 20	00 MP PET 1985, 87, 97, 2001;		(c) Higher unsaturated	•
	IP PMT 1994, 96; AIIMS 2000]		(d) Lower unsaturated	•
		134.	The reaction $CH_4 + Cl_2$	$\xrightarrow{\text{uv light}} CH_3Cl + HCl \text{ is an}$
(a) Lead tetrachloride	(b) Lead acetate			
(a) Lead tetrachloride(c) Zinc ethyl			example of	[CBSE PMT 1000 2002]
(c) Zinc ethyl	(b) Lead acetate (d) Tetraethyl lead (TEL) reaction of propane, mixture		example of (a) Addition reactions	[CBSE PMT 1999, 2002] (b) Substitution reaction
	By Wurtz reaction, a r ethyliodide gives (a) Butane (b) Ethane (c) Propane (d) A mixture of the all Product obtained by ni (a) Nitropropane (c) Nitroethane Isomerism in saturated (a) Change in the vale (b) Change in the ratio (c) Formation of brand (d) Formation of brand (d) Formation of doub Photochemical chlorin by a process of (a) Pyrolysis (c) Homolysis Which of the following (a) Marsh gas (c) Producer gas Which of the following (a) <i>n</i> -heptane (b) <i>n</i> -heptane (c) <i>Iso</i> -octane (d) <i>n</i> -heptane and iso A mixture of ethyl io subjected to Wurtz that will not be formed (a) <i>n</i> -butane (c) <i>n</i> -pentane Most of the hydroca obtained by (a) Fractional distillat (c) Vaporization Which is the best ant one of the following antiknock compound	 (a) Butane (b) Ethane (c) Propane (d) A mixture of the above three Product obtained by nitration of propane is[RPMT 2007 (a) Nitropropane (b) Nitromethane (c) Nitroethane (d) All of these Isomerism in saturated hydrocarbons is due to (a) Change in the valence of carbon (b) Change in the valence of carbon (c) Formation of branches in the chain of C atoms (d) Formation of double bond Photochemical chlorination of alkane is initiated by a process of [DPMT 1985; NCERT 1978] (a) Pyrolysis (b) Substitution (c) Homolysis (d) Peroxidation Which of the following is not linked with methane (a) Marsh gas (b) Natural gas (c) Producer gas (d) Coal gas Which of the following has highest octane number [MP PET 1996] (a) <i>n</i>-hexane (b) <i>n</i>-heptane (c) Iso-octane (d) <i>n</i>-heptane and iso-octane mixed in ratio 50 : A mixture of ethyl iodide and <i>n</i>-propyl iodide is subjected to Wurtz reaction. The hydrocarbon that will not be formed is [IIT-JEE (Screening) 1990] (a) <i>n</i>-butane (b) <i>n</i>-propane (c) <i>n</i>-pentane (d) <i>n</i>-hexane Most of the hydrocarbons from petroleum are obtained by [CPMT 1974, 80] (a) Fractional distillation (b) Fractional crystallization (c) Vaporization (d) Polymerization 	By Wurtz reaction, a mixture of methyliodide and ethyliodide gives [BHU 2003] 126. (a) Butane (b) Ethane (c) Propane (d) A mixture of the above three 127. Product obtained by nitration of propane is[RPMT 2003] (a) Nitropropane (b) Nitromethane (c) Nitroethane (d) All of these Isomerism in saturated hydrocarbons is due to (a) Change in the valence of carbon (b) Change in the valence of carbon (c) Formation of branches in the chain of C atoms (d) Formation of double bond Photochemical chlorination of alkane is initiated by a process of [DPMT 1985; NCERT 1978] (a) Pyrolysis (b) Substitution (c) Homolysis (d) Peroxidation Which of the following is not linked with methane (a) Marsh gas (b) Natural gas (c) Producer gas (d) Coal gas Which of the following has highest octane number [MP PET 1996] 130. (a) <i>n</i> -hexane (b) <i>n</i> -heptane (c) <i>Iso</i> -octane (d) <i>n</i> -heptane and iso-octane mixed in ratio 50 : A mixture of ethyl iodide and <i>n</i> -propyl iodide is subjected to Wurtz reaction. The hydrocarbon that will not be formed is [IIT-JEE (Screening) 1990] (a) <i>n</i> -butane (b) <i>n</i> -propane (c) <i>n</i> -pentane (d) <i>n</i> -hexane most of the hydrocarbons from petroleum are obtained by [CPMT 1974, 80] (a) Fractional distillation (b)Fractional crystallization (c) Vaporization (d) Polymerization Which is the best antiknock compound or Which one of the following substances is used as an antiknock compound	By Wurtz reaction, a mixture of methyliolide and ethyliolide gives(c) 4Butane(c) 4(a) Butane(c) 4(b) Ethane(c) 7(c) Propane(c) Cyclohexane(d) A mixture of the above three(c) Cyclohexane(d) A mixture of the above three(c) Cyclohexane(c) Nitropropane(b) Nitromethane(c) Nitropropane(c) Nitrorethane(c) Nitropropane(c) Nitrorethane(c) Nitropropane(c) Nitrorethane(c) Nitropropane(c) Nitrorethane(c) Nitropropane(c) Nitrorethane(c) Condange in the valence of carbon(c) Is highly reactive in(d) Formation of double bond(c) Is noluble in wate(c) Formation of double bond(a) Arashigas(b) Aturation(c) Is(c) Homolysis(d) Peroxidation(c) Homolysis(d) Peroxidation(d) n-heytane(d) Coal gas(c) Iso-octane(m-heptane(c) Iso-octane(m-heptane(c) Iso-octane(m-heptane(c) n-pentane(d) n-propane(c) n-pentane(d) n-propane(c) Naporation(d) n-hexaneMost of the hylrocarbons from petroleum are obtained by(d) Polymerization(d) Fractional distillation(b) Fractional crystallization(c) Vaporization(d) Polymerization(d) Topenation(d) Independent of the(c) Vaporization(d) Polymerization(c) Vaporization(d) Polymerization(c) Vaporization(d) Polymerization

				Ну	drocarbon 1113
35.	Normal butane convert	into isobutane by[RPMT 2002]		(a) Wurtz reaction	(b) Kolbe's reaction
	(a) $LiAlH_4$	(b) $AlCl_3$		(c) Reduction of alkyl h	nalide (d)Hydrogenation of alke
	(c) $NaBH_4$	(d) Zn/HCl	147.	Which hydrocarbon wi	ll be most stable
26	Alcoholic solution of <i>K</i>				[MP PET 2000, 03]
30.		CPMT 1982, 86; IIT-JEE 1990]		(a) Methane	(b) Ethane
	(a) Dehydration	(b) Dehydrogenation		(c) Propane	(d) Butane
	(c) Dehydrohalogenati		148.	<i>C-H</i> bond length is grea	
27		reacting with water gives			1989; MNR 1990; AMU 2002]
3/•	multimulti car blac on s	[NCERT 1981; MP PET 1985]		(a) $C_2 H_2$	(b) $C_2 H_4$
	(a) Methane	(b) Ethane		(c) $C_2 H_6$	(d) $C_2 H_2 B r_2$
	(c) Ethene	(d) Ethyne	149.	Which one of the follo	wing compounds does not
28		on bond distance is found		form an ozonide	[EAMCET 1997]
30.	in	on bond distance is found		(a) Ethene	(b) Propyne
	[MP PMT 1987; I	IT-JEE 1981; Bihar MEE 1995]		(c) Propene	(d) Propane
	(a) Ethyne	(b) Ethene	150.	Which type of hybridisa	
	(c) Ethane	(d) Benzene			(b) ar ²
39.	Which of the following	ng reaction is expected to		(a) <i>sp</i>	(b) sp^2
	readily give a hydrocar	bon product in good yields[CBS	SE PM'	r (f997) ³	
	(a) RCOOK	roly is	151.	Silver acetylide when h	
	(b) RCOOAg $\xrightarrow{I_2}$			(a) $C_2 H_2$	(b) H_2
	(c) $CH_3 - CH_3 \xrightarrow{Cl_2} hv$			(c) $C_2 H_4$	(d) None of these
	hv		152.		vith ethyl iodide, which of
	(d) $(CH_3)_2 CCl - \frac{C_2H_5OH}{C_2H_5OH}$	\rightarrow		the following hydrocart	[NCERT 1984; BHU 1982]
40.	Out of the following f	fractions of petroleum, the		(a) Methane	(b) Ethane
-	one having the lowest	boiling point is or Which of		(c) Butane	(d) Ethene
		ned at lowest temperature			DPMT 1983; CBSE PMT 1989]
		on of petroleum[MP PMT 1993; M	IP PET		(b) Ionic solid
	(a) Kerosene	(b) Diesel oil	1 - 4	(c) Covalent solid The shape of ethane is	(d) Not possible
	(c) Gasoline	(d) Heavy oil	154.	(a) Triangular	[Bihar CEE 1995] (b) Tetrahedral
	the principle of	r used by miners works on [AMU 1984]		(c) Linear	(d) None of these
		ates of diffusion of gases	155.	CH_3MgI will give meth	
	(b) Avogadro's hypothe	_		(a) $C_2 H_5 OH$	(b) $CH_3 - CH_2 - NH_2$
	(c) Gay-Lussac's law of			(c) $CH_3 - CO - CH_3$	
	(d) Berzelius hypothes	0	156.		epared from propene by its
42.	Methane can be prepar			reaction with	[MP PMT 2003]
• •	(a) Wurtz's reaction	(b) Decarboxylation		(a) CH_3COOH	(b) H_3BO_3
	(c) Hydrogenation read	•		(c) $B_2H_6 / NaOH, H_2O_2$	(d) $H_2 SO_4 / H_2 O$
43.	The most strained cycle		157.	The process in which	higher hydrocarbons are
	(a) Cyclopropane	(b) Cyclobutane			lower hydrocarbons by
	(c) Cyclopentane	(d) Cyclohexane		controlled pyrolysis, is	
44.	Which does not react w	vith chlorine in dark[Pb. PMT 20	000]	(a) Hydrolysis	[MP PMT 2002] (b) Cracking
	(a) $C_2 H_4$	(b) $C_2 H_2$		(c) Oxidation	(d) Reduction
	(c) <i>CH</i> ₄	(d) CH_3CHO	158.	Successive alkanes diffe	
1 F	Main constituent of <i>ma</i>	-		(a) $> CH_2$	(b) $> CH$
45.		80; MP PMT 1994; AFMC 1997]		(c) $-CH_3$	(d) $C_2 H_4$
	(a) $C_2 H_2$	(b) CH_4	159.	General formula of alka	
					CET 1979; Manipal MEE 1995]
	(c) H_2S	(d) <i>CO</i> method can be used for the		(a) $C_n H_{2n+2}$	(b) $C_n H_{2n-1}$

160.		 bth can be prepared in one lowing compound [BHU 2004] (b) CH₃O (d) CH₃CH₂OH 		Pick out the alkane which differs from the other members of the group.[KCET 2004](a) 2,2-dimethyl propane (b) Pentane(a) 2,2-dimethyl propane
	Photochemical chlorina by a process of (a) Pyrolysis (c) Cracking (e) Homolysis	tion of alkane is initiated [Kerala PMT 2004] (b) Substitution (d) Peroxidation	173.	 (c) 2-methyl butane (d) 2,2-dimethyl butane 2-Methylbutane on reacting with bromine in the presence of sunlight gives mainly [AIEEE 2005] (a) 1-bromo-2-methylbutane (b) 2-bromo-2-methylbutane
162.	200°C and containing molecule is called (a) Natural gas	having boiling range 70- 6-10 carbon atoms per [UPSEAT 2004] (b) Gas oil	174.	 (c) 2-bromo-3-methylbutane (d) 1-bromo-3-methylbutane Of the five isomeric hexanes, the isomer which can give two monochlorinated compounds is[AIEEE 20 (a) <i>n</i>-hexane
163.	 (c) Gasoline Producer gas is a mixtur [I (a) CO and N₂ 	 (d) Kerosene re of Pb. CET 2002; UPSEAT 2004] (b) CO₂ and H₂ 	175.	(b) 2, 3-dimethylbutane (c) 2, 2-dimethylbutane (d) 2-methylpentane The product obtained on reaction of C_2H_5Cl with
164.	(c) N_2 and O_2 The highest boiling poin (a) n -butane	(d) CH_4 and N_2 at is expected for[DEC. 2003]		hydrogen over palladium carbon is (a) C_3H_8 [AFMC 2005](c) C_2H_6 (d) C_2H_4
	 (b) iso-octane (c) <i>n</i>-octane (d) 2,2,3,3-tetramethyl 	butane	_	Alkene
165.	Which of the following i of electricity (a) Diamond (c) Anthracite	is a good conductor of heat [Pb. CET 2003] (b) Graphite (d) Charcoal	1.	Addition of bromine to 1, 3-butadiene gives [CPMT 1987, 93]
166.		[a) Charcoal lowing has the minimum [AIEEE 2004]		(a) 1, 2 addition product only(b) 1, 4 addition product only(c) Both 1, 2 and 1, 4 addition products
	(a) 1-Butene (c) n-Butane	(b) 1-Butyne (d) Isobutane	2.	(d) No reaction When ethylene bromide is treated with <i>Zn</i> , we get
167.	Octane number can be c (a) Isomerisation (c) Cyclisation			[RPMT 1997] (a) Alkane (b) Alkene (c) Alkyne (d) All
168.	Gasoline has composition (a) $C_8 - C_{12}$ (c) $C_6 - C_{11}$	(b) $C_2 - C_5$ (d) None of these	3.	Ethene when treated with Br_2 in the presence of CCl_4 which compound is formed
169.		on of CH_4 gives [BHU 2004] (b) $CO + N_2$		[RPMT 1997; DCE 2001; KCET (Med.) 1999] (a) 1, 2-dibromoethane (b) 1-bromo-2-chloroethane
170.	(c) $CO_2 + H_2O$ Which of the following h	-		(c) Both (a) and (b) (d) 1, 1, 1-tribromoethane
	(a) Olefins (b) Branched chain olefi (c) Straight chain olefin	[UPSEAT 2004] Tins The	4.	In a reaction $CH_2 = CH_2 \xrightarrow{Hypochlorous} M \xrightarrow{R} $ $CH_2 = OH$
	(d) Aromatic hydrocarb	ons		
171.	Which one of the fol	<pre>llowing compounds gives with water[Kerala PMT 2004; M (b) CaC₂</pre>	IH CEI	Where M = molecule; R = reagent M and R are T 2004] [CBSE PMT 1997; CPMT 2001](a) CH_3CH_2Cl and $NaOH$

(d) CH₂ = CH₂ and heat
5. Alkenes usually show which type of reaction
[AIIMS 1999; MADT Bihar 1980]
(a) Addition (b) Substitution
(c) Elimination (d) Superposition

6. The propene reacts with HBr to form

	[AIIMS 1999; RPET 1999]
(a) Ethane	(b) Hexane
(c) 1-bromo-propane	(d) 2-bromo propane

7. Ethylene may be obtained by dehydration of which of the following with concentrated H_2SO_4 at $160 - 170 \,^o C$

		[RPET 1999]
(a)	C_2H_5OH	(b) <i>CH</i> ₃ <i>OH</i>
(c)	$CH_3CH_2CH_2OH$	(d) $(CH_3)_2 CHCH_2 OH$

8.

H_3C_{n}	CH_3		CH ₃	CH_3
<i>C</i> =	= C	\xrightarrow{X}	C =	O + O = C
H_3C	CH ₃	KOH (heat)	CH ₃	CH ₃

X in the above reaction is

- (a) HNO_3 (b) O_2
- (c) O_3 (d) $KMnO_4$
- **9.** The disappearance of the characteristic purple colour of $KMnO_4$ in its reaction with an alkene is the test for unsaturation. It is known as

[CPMT 1989, 94; CBSE PMT 1990]

CH₃CHO

[CPMT 2003]

- (a) Markownikoff's test (b) Baeyer's test
- (c) Wurtz's test (d) Grignard test
- **10.** A gas formed by the action of alcoholic *KOH* on ethyl iodide, decolourises alkaline *KMnO*₄. The gas is

(a) C_2H_6 (b) CH_4 (c) C_2H_2 (d) C_2H_4

11. $CH_3 - CH_2 - Cl \xrightarrow{alc.KOH} A$, the product is

(a)
$$CH_3CH_2OK$$
 (b)

- (c) $CH_3CH_2OCH_2CH_3$ (d) $CH_2 = CH_2$
- 12. The final product formed when ethyl bromide is treated with excess of alcoholic *KOH* is[MP PET 1999](a) Ethylene(b) Ethane
 - (c) Ethyne (d) Vinyl bromide
- **13.** Which of the following hydrocarbons cannot be obtained by Sabatier and Senderen's reaction
 - (a) CH_4 (b) C_2H_6
 - (c) $C_3 H_8$ (d) All
- 14. When 3, 3-dimethyl-2-butanol is heated with H_2SO_4 the major product obtained is[CBSE PMT 1995]

- (a) *cis* and *trans* isomers of 2, 3-dimethyl-2butene
 - (b) 3, 3-dimethyl-1-butene
 - (c) 2, 3-dimethyl-2-butene
 - (d) 2, 3-dimethyl-1-butene
- **15.** The intermediate during the addition of *HCl* to propene in the presence of peroxide is[**IIT-JEE 1997**]

(a)
$$CH_3 CHCH_2 Cl$$
 (b) $CH_3 CHCH_2$

(c)
$$CH_3CH_2CH_2$$
 (d) $CH_3CH_2CH_2$

16. $CH_2 = CH_2 \xrightarrow{KMnO_4} X$. Product 'X' in above reaction is

	_	-
(a) Ethylene glycol	(b) Glucose	
(c) Ethanol	(d) All of these	

17. Which of the following compounds represents acrylonitrile

[JIPMER :	1997]
-----------	-------

[RPMT 2003]

- (a) Vinyl cyanide (b) Cyanoethene
- [CPM] #985-23 he nitrile (d) All of them
- **18.** When acetylene reacts with arsenic trichloride in the presence of anhydrous aluminium chloride, it produces

[AFMC 1999]

- (a) Lewisite
- (b) β -chlorovinyl dichloroarisine
- (c) Nitrobenzene
- (d) Both (a) and (b)
- **19.** Ozonolysis of which one of the following will give two molecules of acetaldehyde

[Bihar MEE 1997; MP PET 2000]

- (a) 1-butene (b) 2-butene
- (c) 1-pentene (d) 2-pentene
- (e) None of these
- **20.** In which of the following, addition of *HBr* does not take place against Markownikoff's rule **or** Anti-Markownikoff addition of *HBr* is not observed for

[IIT-JEE 1985; CBSE PMT 1994; MADT Bihar 1995; MP PMT 1999; AMU 2002]

- (a) Propene (b) But-1-ene
- (c) But-2-ene (d) Pent-2-ene
- **21.** Which one of the following characteristics apply to both ethene and ethyne
 - (a) Explode when mixed with chlorine

(b) Decolourise Baeyer's reagent giving brown precipitate

(c) Rapidly absorbed by cold conc. H_2SO_4

(d) Form white precipitate with silver nitrate solution

- **22.** Which of the following has highest knocking property
 - (a) Aromatic hydrocarbons
 - (b) Olefins

1116 Hydrocarbon (c) Branched chain paraffins

- (d) Straight chain paraffins Dilute aqueous $KMnO_4$, at room temperature 23. reacts with R - CH = CH - R to give [Roorkee 1992] (b) *R* – *COOH* (a) *R* – *CHO* (c) RCHOH - CHOHR (d) $CO_2 + H_2O$
- Aqueous sulphuric acid reacts with 2-methyl-1-24. butene to give predominantly
 - (a) Isobutyl hydrogen sulphate
 - (b) 2-methyl-2-butanol
 - (c) 2-methyl-1-butanol
- (d) Secondary butyl hydrogen sulphate 25.
 - How can ethene be produced from ethanol [BHU 1996] (a) By dehydrohalogenation
 - (b) By dehydrogenation
 - (c) By dehydration with conc. H_2SO_4 at $170^{\circ}C$
 - (d) By reduction with hydrogen iodide
- Baeyer's reagent is used in the laboratory for 26. [CBSE PMT 1991, 92; AIIMS 1998; AFMC 1999]
 - (a) Detection of double bonds
 - (b) Detection of glucose
 - (c) Reduction
 - (d) Oxidation
- Isopropyl alcohol is obtained by reacting which of 27. the following alkenes with conc. H_2SO_4 and H_2O
 - [MP PMT 1999]
 - (a) Ethylene (b) Propylene
 - (c) 2-methyl propene (d) Isoprene
- 28. Which of the following compound is produced when $CH_2 = CH - (CH_2)_2 COOH$ reacts with *HBr* in presence of peroxides [AIIMS 2000] (a) $CH_3CH(CH_2)_5COOH$
 - (b) $BrCH_2CH_2(CH_2)_5COOH$
 - (c) $CH_3CH_2CH_2(CH_2)_5COOH$
 - (d) CH₃CH₂BrCH₂CH₂COOH
- One mole of each of the following alkenes is 29. catalytically hydrogenated. The quantity of heat evolved will be the lowest in the case of
 - (a) 1-butene (b) Trans-2-butene
 - (c) Cis-2-butene (d) 1, 3-butadiene
- **30.** Which of the following is not used to distinguish ethene from ethane

[KCET (Med.) 2001; UPSEAT 2002; CBSE PMT 2002]

- (a) Iodine in CCl_4 (b) Bromine in CCl_4
- (c) Alkaline $KMnO_4$ (d) Ammonical Cu_2Cl_2
- A hydrocarbon X adds on one mole of hydrogen to 31. give another hydrocarbon and decolourised bromine water. X reacts with $KMnO_4$ in presence of acid to give two moles of the same carboxylic acid. The structure of X is

[JIPMER 2001]

(a)
$$CH_2 = CH - CH_2CH_2CH_3$$

(b) $CH_3CH_2CH_2 - CH = CHCH_3$

- (c) $CH_3CH_2CH = CHCH_2CH_3$
- (d) $CH_3CH = CHCH_2CH_2CH_3$

When 2-bromobutane reacts with alcoholic KOH, 32. the reaction is called [KCET (Med.) 2001] (a) Halogenation (b) Hydrogenation (d) Dehydro-

(c) Chlorination

(a) HCHO

33.

- halogenation [Roorkee 1992] 1, 3-butadiene reacts with ethylene to form[BHU 2001]
- (b) Cyclohexane (a) Benzene
- (c) Cyclohexene (d) 2, 3 dimethyl butane Ethylene reacts with ozone gas to form the 34. compound [UPSEAT 2001]
 - (b) C_2H_5OH

(c)
$$O < \begin{bmatrix} CH_2 - O \\ I & I \\ CH_2 - O \end{bmatrix}$$
 (d) CH_3CHO

- Oils are converted into fats by [Kerala (Med.) 2002] 35.
 - (a) Hydration (b) Decarboxylation (d) Dehydrogenation
 - (c) Hydrogentation (e) Hydrogenolysis
- Which process converts olefins into parafins 36.

- (a) Halogenation (b) Dehydration (c) Hydrogenation (d) Hydrolysis
- Of the following the formula which represents a 37. saturated cyclic compound is
 - (a) $C_3 H_6$ (b) C_3H_8
 - (c) $C_8 H_{10}$ (d) $C_8 H_{12}$
- 38. In a reaction, if half of the double bond is broken and two new bonds are formed, this is a case of

[AMU 1983; NCERT 1978; CPMT 1983]

- (a) Elimination (b) Addition
- (c) Displacement (d) Rearrangement
- Which of the following are formed on addition 39. reaction of DCI with 3-methyl-1-butene[Roorkee 2000]
 - (a) $CH_2DCHClCH(CH_3)_2$ (b) $CH_2DCH_2CCl(CH_3)_2$ [Roorkee 2000]

(c)
$$CH_3CDClCH(CH_3)_2$$
 (d) $ClCH_2CHDCH(CH_3)_2$

- Major product of the following reaction is 40. Br
 - $CH_3 C CH_2 CH_3 + alco. KOH \rightarrow$ [MP PMT 1986] H

41. Cyclopentene on treatment with alkaline $KMnO_A$ gives

[CPMT 1987]

- (a) Cyclopentanol
- (b) trans 1, 2-cyclopentanediol
- (c) cis 1, 2-cyclopentanediol

(d) 1 : 1 mixture of cis and trans 1, 2cyclopentanediol

42. Which of the following is the most stable alkene

					· · ·
		CT (Med.) 2000; CPMT 2003]		(a) Ethyl alcohol	(b) Acetaldehyde
	(a) $R_2C = CR_2$	(b) $RCH = CHR$		(c) Acetic acid	(d) Ethylene glycol
		(d) $CH_2 = CH_2$	53.	-	MnO_4 solution but gives no
3.	(a) Ethylene glycol (c) Formaldehyde	 <i>KMnO</i>₄ solution [MP PMT 1 (b) Ethylene oxide (d) Acetaldehyde 	997]	or Which of the follo precipitate with am	noniacal cuprous chloride is owing gases does not give a moniacal solution of silver rizes $KMnO_4$ (neutral or
4.		ne increasing molecular	-	slightly alkaline) CPMT 1974]	4
	weight, it is found that	2222	Lo Lo	CPMT 1974] [NCEF	RT 1974, 77; CPMT 1974, 77, 78;
	(a) Freezing point decre(b) Boiling point decreas			Μ	P PMT 1996; MP PET 1996, 99]
	(c) Boiling point increas			(a) Ethane	(b) Methane
	(d) Vapour pressure dec			(c) Ethene	(d) Acetylene
5.	When alcoholic solution	of ethylene dibromide is ed zinc, the compound [CPMT 1990]	54.		s with hypochlorous acid to oxyethane. The hydrocarbon
	(a) Ethylene	(b) Ethyne			[CBSE PMT 1989]
	(c) Cyclobutane	(d) Butane		(a) Ethylene	(b) Methane
6.		ction of alcoholic <i>KOH</i> on	_	(c) Ethane	(d) Acetylene
		s alkaline $KMnO_4$ solution.	55.	When ethene is hear pressure, the product	ated at $400^{\circ}C$ under high
	The gas is	MP PET 1985; IIT-JEE 1982]		(a) Carbon and H_2	
	(a) <i>CH</i> ₄	(b) C_2H_6		-	
	(c) C_2H_4	(d) $C_2 H_2$	_	(c) Acetylene and H_2	
7.	Markownikoff's rule		56.		queous bromine and gives 1 reaction with <i>PCl</i> 5 [Pb. PMT 1
· •	addition of <i>HBr</i> on	provides guidance of		(a) $CH_3COCH_2CH = CH_3COCH_2CH = CH_3COCH_3COCH_3CH_3COCH_3CH_3CH_3COCH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3$	-
		[MNR 1994]		(b) $CH_3CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	-
		(b) $CH_3 - CH_2 - CH_3$			
	(c) $CH_3CH = CHCH_3$	(d) $CH_2 = CHBr$		(c) $CH_3CH = CHCH_2CH$	-
8.	Ethyl bromide gives ethy	-		(d) $CH_3OCH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	-
		; RPET 2000; Pb. PMT 2001]	57.	8	on of meso-dibromobutane,
	(a) Ethyl alcohol	(b) Dilute H_2SO_4		the major compound f	
	(c) Aqueous KOH	(d) Alcoholic <i>KOH</i>		(a) <i>n</i> -butane (c) <i>cis</i> -2-butene	(b) 1-butane (d) <i>trans</i> -2-butene
).	Ethylene is prepared by	•	58		rmed when 1-chlorobutane
	(a) Ethyl alcohol	, 79; DPMT 1985; BHU 1989] (b) Methyl alcohol	50.	react with alcoholic K	
	(c) Acetic acid	(d) Oxalic acid		(a) 1-butene	(b) 2-butene
).	Which reactions are mos			(c) 1-butanol	(d) 2-butanol
		[Pb. CET 1989]	59.	The olefin which on o	zonolysis gives <i>CH</i> ₃ <i>CH</i> ₂ <i>CHO</i>
	(a) Electrophilic substitu	ution reactions		and <i>CH</i> ₃ <i>CHO</i> is	[Roorkee 1992]
	(b) Nucleophilic substitu			(a) 1-butene	(b) 2-butene
	(c) Electrophilic addition			(c) 1-pentene	(d) 2-pentene
	(d) Nucleophilic addition		60.		carbon-carbon in ethylene
•	chloropropane when tre	chloropropane and 2- eated with alcoholic <i>KOH</i>		molecule is	[MP PET 1997]
	gives	[NCERT 1990]		(a) 1.54 <i>Å</i>	(b) 1.35 Å
	(a) 1-propene	(b) 2-propene		(c) 1.19 \mathring{A}	(d) 2.4 Å
-	(c) Isopropylene	(d) All the three	61.		g both sp and sp^2 hybridised
2.	into cold alkaline solutio	by passing ethylene gas on of $KMnO_4$ is	01.	carbon atom is	[IIT-JEE 1981]
	[NCERT 1	1974, 81; CPMT 1979, 86, 88;		(a) Propene	(b) Propyne
		IP PET 1085 05 AFMC 1008]		(c) Propadiene	(d) None of these

ICERT 1974, 81; CPMT 1979, 86, 88; MP PET 1985, 95; AFMC 1998]

(c) Propadiene (d) None of these

- The halogen which is most reactive in the 73. 62. halogenation of alkenes under sunlight is [IIT-JEE 1981] (a) Chlorine (b) Bromine (c) Iodine (d) All equal When ethene reacts with bromine, it forms 63. [AFMC 2000; KCET 2001] (a) Chloroethane (b) Ethylene dibromide (c) 1 bromopropane (d) 1,2-dichloroethene 64. Paraffins are soluble in [NCERT 1978] (a) Distilled water (b) Benzene (c) Methanol (d) Sea water 65. Addition of HCl to propene in presence of 74. peroxides gives [BHU 1981, 98] (a) 1-Chloropropane (b) 2-Chloropropane (c) 3-Chloropropane (d) Propene dichloride 66. The name of the product obtained by the addition of HI to propene in presence of peroxide catalyst is [KCET 2000] (a) Isopropyl iodide (b) 2-Iodopropene (d) 1-Iodopropane (c) 2-Iodopropane **67.** In the reaction $C_2H_5CH = CH_2 + H - X \rightarrow$ Product. What is the product [BHU 2002] (a) $C_2H_5 - CH_3$ 76. (b) $C_2H_5CH_2 - CH_2X$ (c) $C_2H_5 - CHX - CH_3$ (d) $CH_3 - CH_2X - CH = CH_2$ 68. Alkene can be prepared from alkyl halide by the following reagent $R - X + Nu^- \rightarrow \text{Alkene} + NuH$ [**RPET 2000**] (a) Alc. *KOH* + heat (b) Aq. KOH + cold water(c) NaOH (d) LiOH **69.** 2-chlorobutane is heated with alcoholic *NaOH*, the product formed in larger amount is[RPET 1999; AMU 2000] (a) 1-Butene (b) 1-Butyne (c) 2-Butene (d) All of these 70. Ethylene has high b.p. and high vapour pressure at $100^{\circ}C$ and does not dissolve in water. Hence 78. ethylene is separated by this method (a) Simple distillation (b) Vacuum distillation (c) Vapour distillation (d) Alkali treatment Addition of bromine to 1, 3-butadiene gives[AMU 1999]⁷⁹ 71. (a) 1, 4-addition product only (b) 1, 2-addition product only (c) Both 1, 2-and 1, 4 addition product (d) None of these In the presence of peroxide, hydrogen chloride 72. and hydrogen iodide do not give anti-Markovnikoff's addition to alkenes because[IIT-JEE Screening 2001] (a) Both are highly ionic (b) One is oxidising and the other is reducing (c) One of the steps is endothermic in both the
 - (d) All the steps are exothermic in both the cases

cases

The compound most likely to decolourize a solution of potassium permanganate is[NCERT 1978] (a) CH_3CH_3

(b)
$$CH_3CH = CHCH_2CH_3$$

(c) $CH_3CH = CHCH_2CH_3$
(d) $CH_3 - C - CH_3$
 CH_3

- Ethylene is converted to X on passing through a mixture of an acidified aqueous solution of palladium chloride and cupric chloride. Which of the following reagents readily take part in addition reaction with X[UPSEAT 2003] (b) HBr (a) Br_2
 - (c) HCl (d) HCN
- Addition of HCl does not obey antimarkownikoff's 75. rule because

```
[UPSEAT 2003]
```

(a) It is a strong acid (b) It is a gas

(c) Its bond energy is high (d)Its bond energy is less

- Correct statement about1, 3-dibutene[UPSEAT 2003]
- (a) Conjugated double bonds are present
- (b) Reacts with HBr
- (c) Forms polymer
- (d) All of these

At low temperatures, the slow addition of molecular bromine to $CH_2 = CH - CH_2 - C \equiv CH$ gives

[Roorkee Qualifying 1998]

 $CH_3 CH_3$

- (a) $CH_2 = CH CH_2 CBr = CHBr$
- (b) $BrCH_2 CHBr CH_2 C \equiv CH$
- (c) $CH_2 = CH CH_2 CH_2 CBr_3$
- (d) $CH_3 CBr_2 CH_2 C \equiv CH$
- *PCl*₅ reacts with propanone, to give **[Pb. PMT 2001] [UPSEAT 1999]** (a) vic-dichloride (b) Propanal
 - (c) propane-chloride (d) gem-dichloride
 - The compounds that will give an isomer of 2; 2dimethyl propane on catalytic hydrogenation are [AMU 19 $(1) \quad CH_3CH = C - CH_3$ (2) $CH_3CH = CHCH_3$

(3)
$$CH_{3}C = CHCH_{2}CH_{3}(4)$$
 $CH_{3}C = C - CH_{3}$

(a) 1 and 4	(b) 2 and 4
(c) 1 and 3	(d) 1 and 2

80. Alkene $R - C - H = CH_2$ reacts readily with B_2H_6 and the product on oxidation with alkaline hydrogen peroxides produces

	(a) $R - CH_2 - CHO$	(b) $R - CH_2 - CH_2 - OH$
	(c) $R - C - CH_3$	(d) $R - CH - CH_3$
		OH OH
	Bayer's reagent is used	for detection of[RPMT 2002]
	(a) Amines	(b) Glucose
	(c) Unsaturated bond	(d) Alcohol
•	nucleophilic addition re	ng is(are) example(s) of action in case of acetylene
	(a) Addition of water	
	(c) Addition of $AsCl_3$	
3.		
	CHCl	CHCl ₂
	(a)	(b)
	CHAsCl ₃	CHAsCl ₃
	CHCl	
	(c) \parallel CHAsCl ₂	(d) None of these
1.	Propene when heated 500°C forms	with chlorine at about
	(a) $CH_2Cl.CH = CH_2$	[MP PET 1997]
	(c) $CH_2Cl.CHCl.CH_2Cl$	
5.	called	nyl chloride by a reaction
	(a) Addition	(b) Isomerization
5.	(c) Polymerization	ylene in presence of <i>NaCl</i>
•	gives	field in presence of Maci
	(a) $BrCH_2 - CH_2Br$	(b) $C CH_{2} - CH_{2}Br$
	(c) Both (a) and (b)	
7.		\rightarrow
•		PMT 1997; RPMT 1999, 2003]
	(a) $CH_3 - CH_2 - CH_2 - B$	
	(c) $BrCH_2 - CH = CH_2$	5 5
8.		
۶.	in the presence of a per-	between propene and <i>HBr</i> oxide is
	(a) $CH_3 - CH_2 - CH_2Br$	
	(c) $CH_3 - CH_2Br$	
).	5 2	5
9.	(a) Only aldehyde	Jutene-2 yields
	(b) Only ketone	
	(c) Both aldehyde and k	etone
	(d) None of these	
	The final product form	ned by the ozonolysis of [NCERT 1978]
b .	compound $RCH = CR_2$ is	
).	(a) RCHO	(b) $R_2 CO$
).	_	

(a) $CH_3COOC_2H_5$ (b) C_2H_6 (c) C_2H_4 (d) C_2H_2 (3) Monohalides on reacting with alcoholic <i>KOH</i> give [MP PET 1982, 86; DPMT 1981; CPMT 1979, 83 (a) Alkanes (b) Alkenes (c) Alkynes (d) Aromatic (ydrocarbons 44. Ethylene is a member of series [BHU 1979 (a) Alkyne (b) Olefin (c) Paraffin (d) Amine (a) Two sigma bonds perpendicular to each other (b) One sigma and one pi bond (c) Two pi bonds perpendicular to each other (d) Two pi bonds perpendicular to each other (d) Two pi bonds at an angle of 60° 16. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 17. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 - \frac{H_2SO_4}{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 18. The compound B formed in the following sequences of reactions is $CH_3CH_2CH_2OH - \frac{PCI_3}{PC} \rightarrow A - \frac{Aken KOH}{P} B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 19. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 00. The dehydrohalogenation of neopentyl bromid- with alcoholic KOH mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) Which is the most reactive hydrocarbon in the		Hydrocarbon 1119
2. Ethyl alcohol on heating with conc. H_2SO_4 gives [EAMCET 1979; MP PMT 1996 (a) $CH_3COOC_2H_5$ (b) C_2H_6 (c) C_2H_4 (d) C_2H_2 3. Monohalides on reacting with alcoholic <i>KOH</i> give [MP PET 1982, 86; DPMT 1981; CPMT 1979, 83 (a) Alkanes (b) Alkenes (c) Alkynes (d) Aromatic ydrocarbons 4. Ethylene is a member of series [BHU 1979 (a) Alkyne (b) Olefin (c) Paraffin (d) Amine 5. In a double bond between two carbon atoms o ethene, there are [NCERT 1981 (a) Two sigma bonds perpendicular to each other (b) One sigma and one pi bond (c) Two pi bonds perpendicular to each other (d) Two pi bonds at an angle of 60° 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 - \frac{H_3SO_4}{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound B formed in the following sequences of reactions is $CH_3CH_2CH_2OH - \frac{PCI_3}{PCI_3} A - \frac{Akor.KOH}{P}B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 00. The dehydrohalogenation of neopentyl bromidowith alcoholic KOH mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) Which is the most reactive hydrocarbon in the		(a) $C_6 H_{14}$ (b) $C_4 H_8$
$[EAMCET 1979; MP PMT 1996(a) CH_3COOC_2H_5 (b) C_2H_6(c) C_2H_4 (d) C_2H_23. Monohalides on reacting with alcoholic KOH give[MP PET 1982, 86; DPMT 1981; CPMT 1979, 83(a) Alkanes (b) Alkenes(c) Alkynes (d) Aromaticydrocarbons4. Ethylene is a member of series [BHU 1979(a) Alkyne (b) Olefin(c) Paraffin (d) Amine5. In a double bond between two carbon atoms oethene, there are [NCERT 1981(a) Two sigma bonds perpendicular to each other(b) One sigma and one pi bond(c) Two pi bonds perpendicular to each other(d) Two pi bonds at an angle of 60^{\circ}6. The formation of alkene from alkyl halide is anexample of [CPMT 1983; AMU 1982; Pb. CET 1986(a) Addition (b) Elimination(c) Substitution (d) (a) and (c)7. In the following reactionCH_3 - CH_2 - CH_2 - CH_3 - \frac{H_2SO_4}{475K} [AIIMS 1983(a) CH_3CH = CHCH_3 predominates(b) CH_2 = CHCH_2CH_3 predominates(c) Both are formed in equal amounts(d) The amount of production depends on thenature of catalyst8. The compound B formed in the followingsequences of reactions isCH_3CH_2CH_2OH - \frac{PC_3}{2} A - \frac{Akco.KOH}{3} B[NCERT 1981(a) Propyne (b) Propene(c) Propanol (d) Propane9. n-propyl bromide on treatment with ethanolipotassium hydroxide produces[IIT-JEE 1987; MP PP(a) Propane (b) Propene(c) Propyne (d) Propanol00. The dehydrohalogenation of neopentyl bromid-with alcoholic KOH mainly gives[IIT-JEE (Screening) 1990; MP PET 1993(a) 2-methyl-1-butene (d) 2-butene(c) 2, 2-dimethyl-1-butene (d) 2-butene(c) 2, 2-dimethyl-1-butene (d) 2-butene(c) 2, 2-dimethyl-1-butene (d) 2-butene(c) Which is the most reactive hydrocarbon in the$		(c) C_3H_7OH (d) CH_3OH
(a) $CH_3COOC_2H_5$ (b) C_2H_6 (c) C_2H_4 (d) C_2H_2 3. Monohalides on reacting with alcoholic <i>KOH</i> give [MP PET 1982, 86; DPMT 1981; CPMT 1979, 83 (a) Alkanes (b) Alkenes (c) Alkynes (d) Aromatic ydrocarbons 4. Ethylene is a member of series [BHU 1979 (a) Alkyne (b) Olefin (c) Paraffin (d) Amine 5. In a double bond between two carbon atoms o ethene, there are [NCERT 1981 (a) Two sigma bonds perpendicular to each other (b) One sigma and one pi bond (c) Two pi bonds perpendicular to each other (d) Two pi bonds at an angle of 60° 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 - \frac{H_2SO_4}{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_3CH_2CH_2OH - \frac{PCI_3}{2} \rightarrow A - \frac{Akce.KOH}{3} \rightarrow B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 50. The dehydrohalogenation of neopentyl bromid- with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-buten- (c) 2, 2-dimethyl-1-butene (d) 2-buten-	2.	Ethyl alcohol on heating with conc. H_2SO_4 gives
(c) C_2H_4 (d) C_2H_2 3. Monohalides on reacting with alcoholic KOH give[MP PET 1982, 86; DPMT 1981; CPMT 1979, 83(a) Alkanes(b) Alkenes(c) Alkynes(d) Aromaticydrocarbons4. Ethylene is a member of series[BHU 1979(a) Alkyne(b) Olefin(c) Paraffin(d) Amine5. In a double bond between two carbon atoms oethene, there are[NCERT 1981(a) Two sigma bonds perpendicular to each other(b) One sigma and one pi bond(c) Two pi bonds at an angle of 60°6. The formation of alkene from alkyl halide is anexample of[CPMT 1983; AMU 1982; Pb. CET 1986(a) Addition(b) Elimination(c) Substitution(d) (a) and (c)7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 - \frac{H_2SO_4}{4T5K}$ (a) $CH_3 CH = CHCH_3$ predominates(b) $CH_2 = CHCH_2CH_3$ predominates(c) Both are formed in equal amounts(d) The amount of production depends on the nature of catalyst8. The compound B formed in the following sequences of reactions is $CH_3CH_2CH_2OH - \frac{PCI_3}{2} A - \frac{Ako.KOH}{2} B$ (a) Propyne(b) Propene(c) Propanol(d) Propane9. n-propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane(b) Propene(c) Propyne(c) Propyne(d) Propanol00. The dehydrohalogenation of neopentyl bromidd with alcoholic KOH mainly gives[IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene <tr< td=""><td></td><td>[EAMCET 1979; MP PMT 1996]</td></tr<>		[EAMCET 1979; MP PMT 1996]
3. Monohalides on reacting with alcoholic <i>KOH</i> give [MP PET 1982, 86; DPMT 1981; CPMT 1979, 83 (a) Alkanes (b) Alkenes (c) Alkynes (d) Aromatic ydrocarbons 4. Ethylene is a member of series [BHU 1979 (a) Alkyne (b) Olefin (c) Paraffin (d) Amine 5. In a double bond between two carbon atoms o ethene, there are [NCERT 1981 (a) Two sigma bonds perpendicular to each other (b) One sigma and one pi bond (c) Two pi bonds perpendicular to each other (d) Two pi bonds at an angle of 60° 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 - \frac{H_2SO_4}{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_3CH_2CH_2OH - \frac{PCI_3}{A} A \frac{Ake, KOH}{A}B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 50. The dehydrohalogenation of neopentyl bromidd with alcoholic <i>KOH</i> mainly gives [ITT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene		(a) $CH_3COOC_2H_5$ (b) C_2H_6
[MP PET 1982, 86; DPMT 1981; CPMT 1979, 83 (a) Alkanes (b) Alkenes (c) Alkynes (d) Aromatic ydrocarbons 4. Ethylene is a member of series [BHU 1979 (a) Alkyne (b) Olefin (c) Paraffin (d) Amine 5. In a double bond between two carbon atoms of ethene, there are [NCERT 1981 (a) Two sigma bonds perpendicular to each other (b) One sigma and one pi bond (c) Two pi bonds perpendicular to each other (d) Two pi bonds at an angle of 60° 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 - \frac{H_2SO_4}{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound B formed in the following sequences of reactions is $CH_3CH_2CH_2OH - \frac{PCI_3}{PCI_3} A - \frac{Alco.KOH}{POPANE}B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propanol (d) Propanol 50. The dehydrohalogenation of neopentyl bromide with alcoholic KOH mainly gives IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene		(c) C_2H_4 (d) C_2H_2
[MP PET 1982, 86; DPMT 1981; CPMT 1979, 83 (a) Alkanes (b) Alkenes (c) Alkynes (d) Aromatic ydrocarbons 4. Ethylene is a member of series [BHU 1979 (a) Alkyne (b) Olefin (c) Paraffin (d) Amine 5. In a double bond between two carbon atoms of ethene, there are [NCERT 1981 (a) Two sigma bonds perpendicular to each other (b) One sigma and one pi bond (c) Two pi bonds perpendicular to each other (d) Two pi bonds at an angle of 60° 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 - \frac{H_2SO_4}{475 K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound B formed in the following sequences of reactions is $CH_3CH_2CH_2OH - \frac{PG_3}{PG_3} A - \frac{Akce.KOH}{PG} B$ [ACERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propane 9. <i>n</i> -propyl bromide on freatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propane 9. <i>C</i> -Propyne (d) Propane 10. Which is the most reactive hydrocarbon in the 10. Which is the most reactive hydrocarbon in the	3.	Monohalides on reacting with alcoholic KOH give
(c) Alkynes (d) Aromatic ydrocarbons 4. Ethylene is a member of series [BHU 1979 (a) Alkyne (b) Olefin (c) Paraffin (d) Amine 5. In a double bond between two carbon atoms o ethene, there are [NCERT 1981 (a) Two sigma bonds perpendicular to each other (b) One sigma and one pi bond (c) Two pi bonds perpendicular to each other (d) Two pi bonds at an angle of 60° 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 - \frac{H_5O_4}{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_3CH_2CH_2OH - \frac{PCI_3}{2} A - \frac{Akco.KOH}{2}B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 00. The dehydrohalogenation of neopentyl bromide with alcoholic KOH mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene		[MP PET 1982, 86; DPMT 1981; CPMT 1979, 83]
ydrocarbons 4. Ethylene is a member of series [BHU 1979 (a) Alkyne (b) Olefin (c) Paraffin (d) Amine 5. In a double bond between two carbon atoms o ethene, there are [NCERT 1981 (a) Two sigma bonds perpendicular to each other (b) One sigma and one pi bond (c) Two pi bonds perpendicular to each other (d) Two pi bonds at an angle of 60° 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{H_2SO_4}_{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound B formed in the following sequences of reactions is $CH_3CH_2CH_2OH \xrightarrow{PCI_3} A \xrightarrow{Akon.KOH} B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. n-propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 00. The dehydrohalogenation of neopentyl bromide with alcoholic KOH mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene		(a) Alkanes (b) Alkenes
4.Ethylene is a member of series[BHU 1979(a) Alkyne(b) Olefin(c) Paraffin(d) Amine5.In a double bond between two carbon atoms o ethene, there are[NCERT 1981(a) Two sigma bonds perpendicular to each other(b) One sigma and one pi bond(c) Two pi bonds perpendicular to each other(d) Two pi bonds at an angle of 60°6.The formation of alkene from alkyl halide is an example of[CPMT 1983; AMU 1982; Pb. CET 1986(a) Addition(b) Elimination(c) Substitution(d) (a) and (c)7.In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 - \frac{H_2SO_4}{475 K}$ [AIIMS 1983(a) $CH_3CH = CHCH_3$ predominates(b) $CH_2 = CHCH_2CH_3$ predominates(b) $CH_2 = CHCH_2CH_3$ predominates(c) Both are formed in equal amounts(d) The amount of production depends on the nature of catalyst8.8.The compound B formed in the following sequences of reactions is $CH_3CH_2CH_2OH - \frac{PCI_3}{PCI_3} A - \frac{Alco.KOH}{POPANE} B$ 9.n-propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PR (a) Propane9.n-propyleromide on freedment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PR (a) Propane9.(c) Propyne(d) Propanol9.The dehydrohalogenation of neopentyl bromid- with alcoholic KOH mainly gives[IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene(d) 2-butene (c) 2, 2-dimethyl-1-butene01.Which is the most reactive hydrocarbon in the	-1	
(a) Alkyne (b) Olefin (c) Paraffin (d) Amine 5. In a double bond between two carbon atoms o ethene, there are [NCERT 1981 (a) Two sigma bonds perpendicular to each other (b) One sigma and one pi bond (c) Two pi bonds perpendicular to each other (d) Two pi bonds at an angle of 60° 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 - \frac{H_2SO_4}{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_3CH_2CH_2OH - \frac{PCI_3}{2} + \frac{Alco.KOH}{2}B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propanol (d) Propanol 50. The dehydrohalogenation of neopentyl bromide with alcoholic KOH mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene		
(c) Paraffin (d) Amine 5. In a double bond between two carbon atoms o ethene, there are [NCERT 1981 (a) Two sigma bonds perpendicular to each other (b) One sigma and one pi bond (c) Two pi bonds perpendicular to each other (d) Two pi bonds at an angle of 60° 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{H_2SO_4}_{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_3CH_2CH_2OH \xrightarrow{PCI_3} A \xrightarrow{Akco.KOH} B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 50. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene	4.	-
5. In a double bond between two carbon atoms o ethene, there are [NCERT 1981 (a) Two sigma bonds perpendicular to each other (b) One sigma and one pi bond (c) Two pi bonds perpendicular to each other (d) Two pi bonds at an angle of 60° 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{H_2SO_4}_{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_3CH_2CH_2OH \xrightarrow{-PCI_3} A \xrightarrow{Alco.KOH} B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propanol (d) Propanol 00. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene		-
ethene, there are [NCERT 1981 (a) Two sigma bonds perpendicular to each other (b) One sigma and one pi bond (c) Two pi bonds perpendicular to each other (d) Two pi bonds at an angle of 60° 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{H_2SO_4}_{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_3CH_2CH_2OH \xrightarrow{PCI_3} A \xrightarrow{Alco.KOH} B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propanol of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene	5.	
(a) Two sigma bonds perpendicular to each other (b) One sigma and one pi bond (c) Two pi bonds perpendicular to each other (d) Two pi bonds at an angle of 60° 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{H_2SO_4}_{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_3CH_2CH_2OH \xrightarrow{PCI_3} A \xrightarrow{Alco.KOH} B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propanol (d) Propanol 00. The dehydrohalogenation of neopentyl bromidowith alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene	5.	
(b) One sigma and one pi bond (c) Two pi bonds perpendicular to each other (d) Two pi bonds at an angle of 60° 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 - \frac{H_2SO_4}{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_3CH_2CH_2OH - \frac{PCI_3}{2} \rightarrow A - \frac{Alco.KOH}{2} \rightarrow B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 50. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [ITT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene		
(d) Two pi bonds at an angle of 60° 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{H_2SO_4}_{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_3CH_2CH_2OH \xrightarrow{PCI_3} A \xrightarrow{Alco.KOH} B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 50. The dehydrohalogenation of neopentyl bromidewith alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene		
 6. The formation of alkene from alkyl halide is an example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction CH₃ - CH₂ - CH₂ - CH₃ → H₂SO₄/475 K [AIIMS 1983 (a) CH₃CH = CHCH₃ predominates (b) CH₂ = CHCH₂CH₃ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound B formed in the following sequences of reactions is CH₃CH₂CH₂OH → PCI₃ → A → Alco.KOH → B [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. n-propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PN (a) Propyne (b) Propene (c) Propyne (d) Propanol 9. The dehydrohalogenation of neopentyl bromidowith alcoholic KOH mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene 		(c) Two pi bonds perpendicular to each other
example of [CPMT 1983; AMU 1982; Pb. CET 1986 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{H_2SO_4}_{475K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_3CH_2CH_2OH \xrightarrow{PCl_3} A \xrightarrow{Alco.KOH} B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propane (b) Propene (c) Propyne (d) Propanol 9. The dehydrohalogenation of neopentyl bromided with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene		(d) Two pi bonds at an angle of 60^{o}
[CPMT 1983; AMU 1982; Pb. CET 1986(a) Addition(b) Elimination(c) Substitution(d) (a) and (c)7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{H_2SO_4}_{475K}$ [AIIMS 1983(a) $CH_3CH = CHCH_3$ predominates(b) $CH_2 = CHCH_2CH_3$ predominates(c) Both are formed in equal amounts(d) The amount of production depends on the nature of catalyst8. The compound B formed in the following sequences of reactions is $CH_3CH_2CH_2OH \xrightarrow{PCI_3} A \xrightarrow{Alco.KOH} B$ [NCERT 1981(a) Propyne(b) Propene(c) Propanol(d) Propane9. n-propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM(a) Propane(b) Propene(c) Propyne(d) Propanol9. The dehydrohalogenation of neopentyl bromide with alcoholic KOH mainly gives[IIT-JEE (Screening) 1990; MP PET 1993(a) 2-methyl-1-butene(d) 2-butene(c) 2, 2-dimethyl-1-butene(d) 2-butene(c) 2, 2-dimethyl-1-butene(d) 2-butene	6.	The formation of alkene from alkyl halide is an
 (a) Addition (b) Elimination (c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{H_2SO_4}_{475K}$ (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_3CH_2CH_2OH \xrightarrow{PCl_3} A \xrightarrow{Alco.KOH} B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i>-propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol D0. The dehydrohalogenation of neopentyl bromide with alcoholic KOH mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) Which is the most reactive hydrocarbon in the 		-
(c) Substitution (d) (a) and (c) 7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{H_2SO_4}_{475 K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_3CH_2CH_2OH \xrightarrow{PCI_3} A \xrightarrow{Alco. KOH} B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 00. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene		
7. In the following reaction $CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{H_2SO_4}_{475 K}$ [AIIMS 1983 (a) $CH_3CH = CHCH_3$ predominates (b) $CH_2 = CHCH_2CH_3$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_3CH_2CH_2OH \xrightarrow{PCI_3} A \xrightarrow{Alco.KOH} B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propanol (d) Propanol 0. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene		
$CH_{3} - CH_{2} - CH_{2} - CH_{3} \xrightarrow{H_{2}SO_{4}}_{475 K}$ [AIIMS 1983 (a) $CH_{3}CH = CHCH_{3}$ predominates (b) $CH_{2} = CHCH_{2}CH_{3}$ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is $CH_{3}CH_{2}CH_{2}OH \xrightarrow{PCI_{3}} A \xrightarrow{Alco. KOH} B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 50. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2, by the most reactive hydrocarbon in the	-	
 (a) CH₃CH = CHCH₃ predominates (b) CH₂ = CHCH₂CH₃ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is CH₃CH₂CH₂OH → PCl₃ → A → Alco. KOH → B [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i>-propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 00. The dehydrohalogenation of neopentyl bromide with alcoholic KOH mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene 	/•	-
 (b) CH₂ = CHCH₂CH₃ predominates (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound B formed in the following sequences of reactions is CH₃CH₂CH₂OH → PCl₃ → A → Alco.KOH → B [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i>-propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propyne (b) Propene (c) Propyne (d) Propanol 9. n-propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 00. The dehydrohalogenation of neopentyl bromide with alcoholic KOH mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene 		$CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{475 K} $ [AIIMS 1903]
 (c) Both are formed in equal amounts (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is <i>CH</i>₃<i>CH</i>₂<i>CH</i>₂<i>OH</i> → <i>PCI</i>₃ → <i>A</i> → <i>Alco. KOH</i> → <i>B</i> (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i>-propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PN (a) Propane (b) Propene (c) Propyne (d) Propanol 00. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene 		(a) $CH_3CH = CHCH_3$ predominates
 (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is <i>CH</i>₃<i>CH</i>₂<i>CH</i>₂<i>OH</i> → <i>PCl</i>₃ → <i>A</i> → <i>Alco.KOH</i> → <i>B</i> (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i>-propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol OD. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene 		(b) $CH_2 = CHCH_2CH_3$ predominates
 (d) The amount of production depends on the nature of catalyst 8. The compound <i>B</i> formed in the following sequences of reactions is <i>CH</i>₃<i>CH</i>₂<i>CH</i>₂<i>OH</i> → <i>PCl</i>₃ → <i>A</i> → <i>Alco.KOH</i> → <i>B</i> (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i>-propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol OD. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (d) 2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene 		(c) Both are formed in equal amounts
 8. The compound B formed in the following sequences of reactions is CH₃CH₂CH₂OH → PCl₃ → A → Alco. KOH → B [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. n-propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 00. The dehydrohalogenation of neopentyl bromide with alcoholic KOH mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene 		(d) The amount of production depends on the
sequences of reactions is $CH_3CH_2CH_2OH \xrightarrow{PCI_3} A \xrightarrow{Alco. KOH} B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 00. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) 2. butene		-
$CH_{3}CH_{2}CH_{2}OH \xrightarrow{PCl_{3}} A \xrightarrow{Alco. KOH} B$ [NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanolic potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 00. The dehydrohalogenation of neopentyl bromide with alcoholic KOH mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (c) Which is the most reactive hydrocarbon in the	8.	1 0
[NCERT 1981 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. <i>n</i> -propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 00. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (d) Which is the most reactive hydrocarbon in the		-
 (a) Propyne (b) Propene (c) Propanol (d) Propane 9. n-propyl bromide on treatment with ethanolic potassium hydroxide produces[IIT-JEE 1987; MP PN (a) Propane (b) Propene (c) Propyne (d) Propanol 00. The dehydrohalogenation of neopentyl bromide with alcoholic KOH mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene 		
 (c) Propanol (d) Propane <i>n</i>-propyl bromide on treatment with ethanolic potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol D0. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene D1. Which is the most reactive hydrocarbon in the		
 9. <i>n</i>-propyl bromide on treatment with ethanoli potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol 00. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene 01. Which is the most reactive hydrocarbon in the 		
potassium hydroxide produces[IIT-JEE 1987; MP PM (a) Propane (b) Propene (c) Propyne (d) Propanol OO. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (d) 2-butene	۵.	
 (a) Propane (b) Propene (c) Propyne (d) Propanol D0. The dehydrohalogenation of neopentyl bromide with alcoholic <i>KOH</i> mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene D1. Which is the most reactive hydrocarbon in the	5.	potassium hydroxide produces[IIT-JEE 1987; MP PM
 Do. The dehydrohalogenation of neopentyl bromidwith alcoholic KOH mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene D1. Which is the most reactive hydrocarbon in the 		
 with alcoholic KOH mainly gives [IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene (d) 2-butene 		(c) Propyne (d) Propanol
[IIT-JEE (Screening) 1990; MP PET 1993 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene 01. Which is the most reactive hydrocarbon in the	00.	
 (a) 2-methyl-1-butene (b) 2-methyl-2-butene (c) 2, 2-dimethyl-1-butene (d) 2-butene 01. Which is the most reactive hydrocarbon in the 		
(c) 2, 2-dimethyl-1-butene (d) 2-buten01. Which is the most reactive hydrocarbon in the		
01. Which is the most reactive hydrocarbon in the		
	01.	
0	~ 1.	following
)1.	Which is the most reactive hydrocarbon in the

		[JIPMER 2002]	
	(a) Ethane	(b) Ethyne	
	(c) Ethene	(d) Methane	
102.	Shape of ethylene molec	ule is [MP PET 1993]	
	(a) Tetrahedral	(b) Pyramidal	
	(c) Planar	(d) Linear	
103.	bond involves the inte more stable carbocation	n a carbon-carbon double rmediate formation of a . This statement is called	
	(a) Saytzeff's rule	(b) Baeyer's effect	
	(c) Markownikoff's rule	(d) None of these	
104.	$CH_2 = CHCl$ reacts with	HCl to form[CPMT 1985, 93]	
	(a) $CH_2Cl - CH_2Cl$	(b) $CH_3 - CHCl_2$	
	(c) $CH_2 = CHCl.HCl$	(d) None of these	
105.	-	wnikoff's rule occurs in	11
	(a) Zinc	(b) Peroxides	
	(c) $Hg - Zn / HCl$	(d) All of these	
106.	Presence of peroxides af	fects the addition of[BHU 1987	3
	(a) HBr	(b) <i>HCl</i>	11
	(c) <i>HI</i>	(d) All of these	
107.	Catalyst used in dime prepare chloroprene is	risation of acetylene to [BHU 1984]	
	(a) $HgSO_4 + H_2SO_4$	(b) Cu_2Cl_2	11
	(c) $Cu_2Cl_2 + NH_4Cl$	(d) $Cu_2Cl_2 + NH_4OH$	
108.	Chloroprene is		
	(a) 2-chloro-1, 3-butadie	ene	11
	(b) 3-chloro-2, 3-butadie	ene	
	(c) 2, 3-dichlorobutadie	ne	
	(d) None of these		
109.	-	naking [MP PET 1985]	al
	(a) Synthetic rubber	(b) Plastic	
	(c) Petrol		
110.		Im bromide in dry ether is thyl alcohol, the products	11
		[IIT-JEE 1995]	
	(a) $CH_3 - CH - CH_2OH$ a	and CH_3CH_2MgBr	
	$\overset{ }{CH}_{3}$		11
	(b) $CH_3 - CH - CH_2 - CH_1$	$_2 - CH_3$ and $Mg(OH)Br$	
	CH_3		
	(c) $CH_3 - CH - CH_3$ and $\downarrow^{}$ CH_3	$CH_3 - CH_2 OMgBr$	
	(d) $CH_3 - CH - CH_3, CH_2 = CH_3$	$= CH_2$ and $Mg(OH)Br$	11
111.	5	ct formed, when 3-methyl- OCl, is [IIT-JEE 1995]	

(a)
$$CH_{3} - CH_{2} - C - CH - CH_{3}$$

 $CH_{3} - CH_{2} - C - CH - CH_{3}$
 CH_{3}
(b) $CH_{3} - CH_{2} - C - CH - CH_{3}$
 CH_{3}
(c) $CH_{3} - CH_{2} - C - CH - CH_{3}$
 $CH_{3} - CH_{2} - C - CH - CH_{3}$
 $CH_{3} - CH - CH_{3}$
 $CH_{3} - CH - CH_{3}$
 $CH_{3} - CH_{3} - CH - CH_{3}$
 $CH_{3} - CH - CH_{3}$
 $CH_{3} - CH - CH_{3}$

112. Which of the following occurs easily in ethylene[MNR 1987; NCERT 1979]

- (a) Addition(b) Substitution(c) Elimination(d) Rearrangement
- **13.** How many gm of bromine will react with 21 gm C_3H_6

[MP PET 1985]

- (a) 80(b) 160(c) 240(d) 320
- 114. Conjugate double bond is present in [MP PMT 1987](a) Propylene(b) Butadiene
 - (c) Isobutylene (d) Butylene
- **115.** On passing vapours of an organic liquid over finely divided Cu at 573 K the product was an alkene. This reaction is
 - (a) Catalytic oxidation of primary alcohol

(b) Catalytic dehydrogenation of secondary alcohol

- (c) Catalytic dehydrogenation of tertiary alcohol
- (d) Catalytic dehydration of tertiary alcohol
- **116.** The total number of sigma σ and $pi(\pi)$ bonds in an ethylene molecule are
 - (a) $4\sigma, 2\pi$ (b) $4\sigma, 1\pi$
 - (c) $5\sigma, 2\pi$ (d) $5\sigma, 1\pi$
- **117.** Cyclic hydrocarbon molecule A has all the carbon and hydrogens in a single plane. All the carbon-carbon bonds are of same length and less that 1.54 \mathring{A} but more than 1.34 \mathring{A} . C-C-C bond angle will be [CBSE PMT 1989]
 - (a) 120° (b) 180°
 - (c) 100° (d) $109^{\circ}28'$
- 118. General formula of alkenes is
 - [CPMT 1975, MNR 1987; NCERT 1987; MP PMT 1994]
 - (a) $C_n H_{2n}$ (b) $C_n H_{2n-2}$
 - (c) $C_n H_{2n+2}$ (d) $C_n H_{2n-1}$
- 119. The product of following reaction is

$$\begin{array}{c} CF_{3} \\ CH_{1} - C - CH = CH_{2} - \frac{(2F_{3}CH)(2F_{3})(F_{3})}{(2F_{3})(2F_{3})(2F_{3})(2F_{3})} \\ (H = FMT 1986; MP PET 1997] \\ (H = CH_{2} - CH_{$$

- (a) Ethylene (b) Propene
- (c) 1-butene (d) 2-butene
- 133. Indicate the organic structure for the product expected when 2-methyl propene is heated with acetyl chloride in presence of anhydrous zinc chloride [CBSE PMT 1989] CH

(a)
$$CH_3 - \overset{C}{C} - CH_2 - CO - CH_3$$

 $\downarrow Cl$
(b) $CH_3 - \overset{I}{C} - CH_2 - CO - CH_3$
 $\downarrow CH_3$
(c) $CH_3 - \overset{O}{C} - O - C \swarrow \overset{Me}{Me}$
 $O - CH_3$
(d) $CH_3 - \overset{H}{C} - C - C = CH_2$

134. The reaction

$$CH_{3} \xrightarrow[]{} CH_{3} \xrightarrow[]{} CH_$$

is the example of

[AMU 1983]

- (a) Sulphonation (b) Dehydration (c) Alkylation (d) Decomposition
- **135.** Olefins can be hydrogenated by [AIIMS 1991] (a) Zinc and HCl (b) Nascent hydrogen (c) Raney Ni and H_2 (d) Lithium hydride in

ether

- **136.** Electrolysis of cold concentrated aqueous solution of potassium succinate yields
 - (a) Ethane (b) Ethyne (c) Ethene
 - (d) Ethane-1, 2-diol
- 137. A hydrocarbon containing 2 carbon atoms gives Sabatier and Senderen's reaction but does not give precipitate with ammoniacal silver nitrate solution. The hydrocarbon in the question is[MADT Bihar 1983] (a) Ethane (b) Acetylene
 - (c) Ethylene (d) None of these

138. The reaction

 $CH_2 = CH - CH_3 + HBr \rightarrow CH_3 CHBr - CH_3$ is

[CBSE PMT 1996]

- (a) Nucleophilic addition (b)Electrophilic addition
- (c) Electrophilic substitution (d)
- 139. What is the product of the reaction of 1, 3butadiene with Br_2
 - (a) 1,4 -dibromobutene (b) 1,2 -dibromobutene (c) 3,4-dibromobutene (d) 2,3-dibromo-2butene
- 140. An alkene given two moles of HCHO, one mole of CO_2 and one mole of CH_3COCHO on ozonolysis. What is its structure [Orissa JEE 2003]

(a)
$$CH_2 = C = CH - CH_2 - CH_3$$

 CH_3
(b) $CH_2 = CH - CH - CH = CH_2$
(c) $CH_2 = C = C - CH_3$
 CH_3
 CH_3
(d) $CH_2 = C = C - CH = CH_2$

141. In the reaction

$$CH_{3}CH = CH_{2} + H_{2}O + [O] \xrightarrow{KMnO_{4}}_{Acid} \rightarrow$$
$$CH_{3} - CH - CH_{2} \xrightarrow{[O]} X + HCOOH$$
$$\stackrel{|}{OH} \stackrel{O}{OH}$$

X is

(a) CH_3CH_2COOH (b) CH_3COOH

(c)
$$CH_3CH_2CHO$$
 (d) CH_3CH_2OH

142. Which of the following alkenes gives only acetic and on oxidation with potassium acid permanganate solution

[MP PET 2003]

(a) Ethylene	(b) 1-Butene
(c) Propene	(d) 2-Butene

143. Butene-1 may be converted to butane by reaction with

[AIEEE 2003]

(a) Zn-HCl	(b) Sn-HCl
(c) Zn-Hg	(d) Pd/H_2

144. The major product formed when propene reacts [CPNith1649; inppropriation of peroxides is[NCERT 1980; CBSE PM

- (a) *n*-propyl bromide (b) Isopropyl bromide
- (c) *n*-propyl alcohol (d) 1, 3-dibromopropane
- 145. Ethyl hydrogen sulphate is obtained by the reaction of H_2SO_4 on [CPMT 1985]
 - (b) Ethane
 - (c) Ethyl chloride (d) Ethanol
- 146. Ethylene reacts with ozone to give [DPMT 1981] (a) Formaldehyde (b) Ethyl alcohol
 - (c) Ozonide (d) Acetaldehyde
- 147. Which of the following aliphatic compounds will discharge red colour of bromine
 - (a) C_2H_4 Free radical addition (b) $C_3 H_6$ (d) All of these (c) $C_4 H_8$

1480 Gide JHE ations (an be done on

- (a) $CH_3 CH = CH_2$ (b) $CH_2 = CH_2$
- (c) $CH \equiv CH$ (d) None of these
- 149. Addition of HI on the double bond of propene yields isopropyl iodide and not *n*-propyl iodide as the major product. This is because the addition proceeds through

			Ну	drocarbon 1123
	[CPMT 1988]		(c) 1-pentene	(d) 2-pentene
(a) A more stable carbor	ium ion	159.	-	-
(b) A more stable carban	lion		[JEE Orissa 2004;	MP PMT 2004; BCECE 2005]
(c) A more stable free ra	dical		(a) $CH_3 - CH = CH_2$	
	•		(b) $CH_3CH = CHCH_3$	
		_	(c) $CH_3 - CH - CH = CH$	2
		0]	CH.	2
		_	5 2	-
molecules of HCHO. Com	pound 'X' is [AIIMS 1987; CPM	160. IT 1993	The product of acid of phenyl propene is	catalyzed hydration of 2- [IIT JEE (Screening) 2004]
				l (b) 1-phenyl-2-propanol
(c) $C_2 H_6$	(d) $C_6 H_6$			l (d) 2-phenyl-1-propanol
For the reaction		161.		for unsaturation of allkene
$CH_3 - CH = CH_2 + HOCl$	$\rightarrow A$ the product A is		15	[BHU 2004]
	[Orissa JEE 2002]		(a) conc. H_{-SO}	
(a) $CH_3 - CHCl - CH_2OH$				
(b) $CH_3 - CH - CH_2 - Cl$		CCI	-	(a) Solution of Br_2 in
OH				with culphunic acid forms
	DCl	102.		[MH CET-2003]
(d) $CH_3 - C - CH_3$			-	(d) Butyl alcohol
ОН		163.		
$(CH_3)_2 C = CH \xrightarrow[H_2]{Catalyst} O$)ptical isomers [BHU 2003]		(a) Ethene	(b) Propene
CH ₃			(c) Butene-1	(d) Butene-2
(a) 2	(b) 4	164.	In the reaction, $H_2C = C$	$H_2 \xrightarrow{\text{cold alkaline}} (A)$:
(c) Zero	(d) 3	-		[Pb. CET 2000]
Isobutene + <i>HBr</i> — Peroxide	→ product is [BHU 2003]			
(a) Tertiary butyl bromi	de (b) Isobutyl bromide			(d) Butyric acid
(c) Tertiary butyl alcoho	ol (d) Isobutyl alcohol	165.		
			the following reaction (<i>PhEt</i>)	n produces ethylbenzene
	[IIT-JEE (Screening) 2003]			[CBSE PMT 2004]
(a) $H_2C = CH - C \equiv CH$	(b) $HC \equiv C - C \equiv CH$		(a) $H_2C = CH_2 + C_6H_6$	
(a) $U = C - C - C U$	(d) $CH = \frac{1}{CH_2}$		(b) $H_3C - CH_3 + C_6H_6$	
(c) $H_2 C = C = C = C H_2$	(d) $CH_2^2 \sim$		(c) $H_3C - CH_2OH + C_6H_6$	ő
"The negative part of	addenda adds on to the		(d) $CH_3 - CH = CH_2 + C_6$	H_6
				oes not follow Anti-
(a) Thiele's principle	(b) Bayer's strain theory			[Orissa JEE 2005]
(c) Markownikoff's rule	(d) Peroxide effect			(b) 1-butene (d) 2-hexene
-	eating ethanol with conc.	167.		
$H_2SO_4 {\rm at} 165^{o}-170^{o}$, is	[MP PMT 2003]	/ •	peroxide gives	[CBSE PMT 2004]
(a) $(C_2H_5)_2SO_4$	(b) $CH_2 = CH_2$		(a) Allyl bromide	(b) <i>n</i> -propyl bromide
	(b) A more stable carban (c) A more stable free ra- (d) None of the above be When butene-1 is mixed the expected reaction pr- (a) 1, 2-dibromobutane (c) 2, 2-dibromobutane A compound 'X' on molecules of <i>HCHO</i> . Com- (a) C_2H_4 (c) C_2H_6 For the reaction $CH_3 - CH = CH_2 + HOCl$ (a) $CH_3 - CHCl - CH_2OH$ (b) $CH_3 - CH - CH_2 - Cl$ (c) $CH_3 - CH_2 - CH_2 - Cd$ (c) $CH_3 - CH_2 - CH_2 - Cd$ (c) $CH_3 - CH_2 - CH_3 - CH_3$ (d) $CH_3 - CH_2 - CH_3 - CH_3$ (e) $CH_3 - CH_2 - CH_3 - CH_3$ (f) $CH_3 - CH_2 - CH_3 - CH_3$ (g) $CH_3 - CH_2 - CH_3 - CH_3$ (h) $CH_3 - CH_2 - CH_3 - CH_3$ (c) $CH_3 - CH_3 - CH_3 - CH_3$ (d) $CH_3 - CH_3 - CH_3 - CH_3$ (e) $CH_3 - CH_3 - CH_3 - CH_3$ (f) $CH_3 - CH_3 - CH_3 - CH_3$ (h) $CH_3 - CH_3 - CH_3 - CH_3$ (c) $H_2 C = CH_3 - CH_3$ (c) $H_3 C $	(a) A more stable carbonium ion (b) A more stable carbanion (c) A more stable free radical (d) None of the above being a concerted reaction When butene-1 is mixed with excess of bromine, the expected reaction product is [CPMT 1974; BHU 1984; (a) 1, 2-dibromobutane (b) 1, 1-dibromobutane (c) 2, 2-dibromobutane (d) Perbromobutane A compound 'X' on ozonolysis forms two molecules of <i>HCHO</i> . Compound 'X' is[AIIMS 1987; CPM (a) C_2H_4 (b) C_2H_2 (c) C_2H_6 (d) C_6H_6 For the reaction $CH_3 - CH = CH_2 + HOCl \rightarrow A$ the product A is [Orissa JEE 2002] (a) $CH_3 - CH - CH_2 - Cl$ OH (c) $CH_3 - CH - CH_2 - COCl$ Cl (d) $CH_3 - CH - CH_2 - COCl$ CH_3 $(CH_3)_2C = CH - CH_3$ $(DH_3)_2C = CH - C = CH_3$ $(DH_3)_2C = CH - C = CH_3$ $(DH_3)_2C = CH - C = CH_3$ $(DH_2C = C = CH_2)$ $(DH_2C = C = CH_2)$ $(DH_2C = C = CH_2)$ $(DH_2C = C = CH_2)$ $(DH_2C = C = CH_3)$ $(DH_3)_2C = CH_3$ $(DH_3)_2C $	(a) A more stable carbonium ion (b) A more stable carbonium ion (c) A more stable free radical (d) None of the above being a concerted reaction When butene-1 is mixed with excess of bromine, the expected reaction product is[CPMT 1974; BHU 1980] (a) 1, 2-dibromobutane (b) 1, 1-dibromobutane (c) 2, 2-dibromobutane (d) Perbromobutane (c) C_2H_6 (d) C_6H_6 For the reaction (c) C_1H_6 (d) C_6H_6 For the reaction (d) $CH_3 - CH = CH_2 + HOCl \rightarrow A$ the product A is [Orissa JEE 2002] (a) $CH_3 - CH - CH_2 - Cl$ (b) $CH_3 - CH - CH_2 - Cl$ (c) $CH_3 - CH_2 - CH_2 - COCl$ (d) $CH_3 - CH_2 - CH_2 - COCl$ (e) $CH_3 - CH_2 - CH_3$ (f) $CH_3 - C - CH_3$ (g) 2 (b) 4 (c) $Zero$ (d) 3 Isobutene $+HBr$ Peroxide (b) Isobutyl bromide (c) Tertiary butyl bromide (b) Isobutyl bromide (c) Tertiary butyl alcohol (d) Isobutyl bromide (c) Tertiary butyl alcohol (d) Isobutyl bromide (c) $H_2C = CH - C = CH$ (b) $HC = C - C = CH$ (c) $H_2C = C = C = CH_2$ (d) $CH_2 - CH_2$ "The negative part of addenda adds on to the carbon atom linked with least number of 166. hydrogen atoms". This statement is called[DPMT 1982; AIIM (a) Thiele's principle (b) Bayer's strain theory (c) Markownikoff's rule (d) Peroxide effect The product obtained, heating ethanol with conc. H_2SO_4 at 165" -170", is [MP PMT 2003]	[CPMT 1988](c) 1-penteme(a) A more stable carbanion159. Which doesn't follow M(b) A more stable carbanion(c) A more stable free radical(c) 1-penteme(c) A more stable free radical(d) None of the above being a concerted reaction(f) $G_1 - GH = CH_2$ (d) None of the above being a concerted reaction(b) $CH_3 - CH = CH_2$ (c) $CH_3 - CH = CH_2$ (d) 1, 2-dibromobutane(b) 1, 1-dibromobutane(c) $CH_3 - CH = CH = CH$ (c) $2, 2$ -dibromobutane(d) Ce_3H_6 (c) $CH_3 - CH - CH = CH$ (c) C_2H_6 (d) C_6H_6 (c) $2-phenyl-2-propano(c) C_2H_6(d) C_6H_6(c) 2-phenyl-2-propano(c) C_1H_6(d) Ce_3H_6(c) Areagent used to test for is(f) CH_3 - CH - CH_2 - CH(f) CH_3 - CH - CH_2 - CH(c) Ammonical A_{SNO_3}(f) CH_3 - CH - CH_2 - CCI(a) n-propyl alcohol(c) Ethyl alcohol(g) CH_3 - CH - CH_2 - CCI(a) n-propyl alcohol(c) Ethyl alcohol(d) CH_3 - CH - CH_2 - CCI(a) n-propyl alcohol(c) Ethyl alcohol(d) CH_3 - CH - CH_2 - CCI(a) n-propyl alcohol(c) Ethyl alcohol(d) CH_3 - CH - CH_2 - CCI(a) n-propyl alcohol(c) Ethyl alcohol(d) CH_3 - CH - CH_2 - CCI(a) n-propyl alcohol(c) Ethyl alcohol(d) CH_3 - CH - CH_2 - CCI(b) 4(c) Ethyl alcohol(d) CH_3 - CH - CH_2 - CCI(c) n-propyl alcohol(c) Ethyl alcohol(d) CH_3 - CH - CH_2 - CCI(d) n-propyl alcohol(c) Ethane(f) 2 = Cro - CH_3(f) 3 = Dropyl + 2$

(c) Isopropyl bromide (d) 3-bromo propane

[BCECE 2005]

168. Which of the following react with $KMnO_4$ but does

not react with $AgNO_3$?

- (b) $CH_2 = CH_2$ (a) $(C_2H_5)_2SO_4$
- (c) *CH*₃*COOH* (d) $C_2H_5HSO_4$
- **158.** Which of the following is the most stable (a) 1-butene (b) 2-butene

- (a) $C_2 H_6$ (b) *CH*₄ (c) C_2H_4 (d) C_2H_2
- **169.** 3-Phenylpropene on reaction with *HBr* gives (as a major product) [AIIMS 2005]
 - (a) $C_6H_5CH_2CH(Br)CH_3$
 - (b) $C_6H_5CH(Br)CH_2CH_3$
 - (c) $C_6H_5CH_2CH_2CH_2Br$
 - (d) $C_6H_5CH(Br)CH = CH_2$
- 170. Reaction of one molecule of HBr with one gives molecule of 1,3-butadiene at $40^{\circ}C$ [AIEEE 2005] predominantly
 - (a) 3-bromobutene under kinetically controlled conditions
 - (b) 1-bromo-2-butene under thermodyanamically controlled conditions
 - (c) 3-bromobutene under thermodynamically controlled conditions
 - (d) 1-bromo-2-butene under kinetically controlled conditions
- 171. The only alcohol that can be prepared by the indirect hydration of alkene is [AFMC 2005] (a) Ethyl alcohol (b) Propyl alcohol (c) Isobutyl alcohol (d) Methyl alcohol
- CH_{2} **172.** The reaction of *HBr* with $CH_3 - C = CH_2$ in the presence of peroxide will give [BHU 2005]
 - (a) CH_3CBrCH_3 (b) CH₃CH₂CH₂CH₂Br $\dot{C}H_3$ CH_3 CH_3

(c)
$$CH_{2}CHCH_{2}Br$$
 (d) $CH_{2}CH_{2}CHCH_{2}$

173. A gas decolourised by $KMnO_4$ solution but gives no precipitate with ammoniacal cuprous chloride is [VCET 2005]

				LKCET 20	05J
	(a) Ethane	(b) Me	ethane	1	
	(c) Ethene	(d) Ac	etylen	e	
•	Cyclohexene on reacti	ion with	OsO_4	followed	by
	reaction with NaHSO $_3$	gives	[Ori	ssa JEE 20	05]
	(a) cis-diol	(b) tra	ans-dio	ol	
	(c) epoxy	(d) alo	cohol		

Which of the following gases is used for welding 1.

Alkyne

[CPMT 1996]

(a) Methane (b) Ethane (c) Acetylene (d) Ethene

174

A metallic carbide on treatment with water gives 2. a colourless gas which burns readily in air and which gives a precipitate with ammoniacal silver nitrate solution. Gas evolved is

[NCERT 1975; CPMT 1977; MP PET 2002]

- (b) Ethane (a) Methane
- (c) Acetylene (d) Ethylene
- 1-butyne reacts with cold alkaline $KMnO_4$ to 3. produce

[AIIMS 1997]

- (a) CH_3CH_2COOH
- (b) $CH_{2}CH_{2}CH_{2}COOH$
- (c) $CH_3CH_2COOH + CO_2$
- (d) $CH_3CH_2COOH + HCOOH$
- Identify the product D in the following series of 4. reaction

 $CH_{3}COOH \xrightarrow{\text{LiAlH}_{4}} A \xrightarrow{H^{+}} B \xrightarrow{Br_{2}} C \xrightarrow{alc.} D$

- [CBSE PMT 1998] (a) Methane (b) Alcohol (c) Acetylene (d) Benzaldehyde
- 5٠ The correct order towards bond length is

[RPMT 1997]

(a)
$$C - C < C = C < C \equiv C$$
 (b) $C \equiv C < C = C < C - C$

(c) $C = C < C \equiv C < C - C$ (d) $C = C < C - C < C \equiv C$

6. In the molecule $CH \equiv C - CH = CH_2$, the hybridisation of C-C bond is

(a)
$$sp^2 - sp$$
 (b) $sp^3 - sp^3$

(c) $sp^2 - sp^2$ (d) $sp^{3} - sp$

- The product formed when acetylene is passed 7. through red hot tube is [BHU 1989; RPMT 2003]
 - (a) Benzene (b) Cyclohexane
 - (c) Neoprene (d) Ethane
- 8. Acetylenic hydrogens are acidic because

[CBSE PMT 1989; Pb. PMT 1999]

(a) Sigma electron density of C-H bond in acetylene is nearer to carbon, which has 50% s-character

(b) Acetylene has only one hydrogen on each carbon

- (c) Acetylene contains least number of hydrogens among the possible hydrocarbons having two carbons
- (d) Acetylene belongs to the class of alkynes with molecular formula $C_n H_{2n-2}$
- Which is the most suitable reagent among the 9. following to distinguish compound (iii) from rest of the compounds
 - (i) $CH_3 C \equiv C CH_3$
 - (ii) $CH_3 CH_2 CH_2 CH_3$

(iii)

 $CH_3 - CH_2 - C \equiv CH$

(iv) $CH_3 - CH = CH_2$

- (a) Bromine in carbon tetrachloride
- (b) Bromine in acetic acid
- (c) Alkaline KMnO₄
- (d) Ammoniacal silver nitrate reagent
- **10.** A hydrocarbon of formula C_6H_{10} absorbs only one molecule of H_2 upon catalytic hydrogenation. Upon ozonolysis, the hydrocarbon yields

$$H H H O = C - CH_2 -$$

The hydrocarbon is

- (a) Cyclohexane (b) Benzene
- (c) Cyclohexene (d) Cyclobutane
- **11.** Poisonous gas 'Lewissite' is obtained by the reaction of

[MP PMT 2003]

[MP PMT 1986]

[CBSE PMT 1989]

- (a) $CH \equiv CH$ and $AsCl_3$
- (b) $CH_2 = CH_2$ and $AsCl_3$

(c) $CH \equiv CH$ and S_2Cl_2

- (d) $CH_2 = CH_2$ and NOCl
- **12.** Products of the following reaction $CH_3C \equiv C CH_2CH_3 \xrightarrow{(1) O_3} \dots$ are

[CBSE PMT 2005]

- (a) $CH_3CHO + CH_3CH_2CHO$
- (b) $CH_3COOH + CH_3CH_2CHO$
- (c) $CH_3COOH + HOOCCH_2CH_3$
- (d) $CH_3COOH + CO_2$
- **13.** By coaltar distillation, which is not obtained

[SCRA 1990; MP PMT 1986](a) Light oil(b) Middle oil

- (c) Heavy oil (d) Mobil oil
- 14. Hydrocarbon containing following bond is most reactive[AIIMS 1987]

(a) $C \equiv C$	(b) $C = C$
(c) <i>C</i> – <i>C</i>	(d) All of these

- **15.** The shapes of methane, ethene and ethyne molecules are, respectively
 - (a) Tetrahedral, planar and linear
 - (b) Tetrahedral, linear and planar
 - (c) Pyramidal, planar and linear
 - (d) Tetrahedral, pyramidal and planar
- **16.** To synthesize the unsymmetrical alkyne $CH_3 C \equiv C CH_2 CH_3$ the reagents needed
 - would be

(a) Ethene, iodoethane, iodomethane and potassium hydroxide

(b) Acetaldehyde, 1-bromopropane and conc. H_2SO_4

- (c) 1, 2-dichloroethane, 1-propanol and alcoholic potassium hydroxide
- (d) Ethyne, iodomethane, iodoethane and sodamide
- 17. When propyne is treated with dilute H_2SO_4 and H_gSO_4 , the major product is[Kurukshetra CEE 2002]
 - (a) Propanal
 - (b) Propanol
 - (c) Propyl hydrogen sulphate
 - (d) Propanone
- **18.** Which of the following will be the final product when C_2H_2 reacts with *HCl*
 - [DPMT 1984; AFMC 1982; Bihar MEE 1982]
 - (a) || CH CH_3 CHCl (b) | $CHCl_2$ CHCl(c) || (d) None of

19. What is the end product of the following sequences of operations $CaC_2 \xrightarrow{H_2O} A \xrightarrow{\text{dil}.H_2SO_4}_{H_0^{++}} B \xrightarrow{Ni}_{H_2} C$

[CPMT 1978; MP PMT 1996]

(a) Methyl alcohol	(b) Acetaldehyde
(c) $C_2 H_5 O H$	(d) $C_2 H_4$

- **20.** $R CH_2 CCl_2 R \xrightarrow{\text{Reagent}} R C \equiv C R$ The reagent is **[CBSE PMT 1989; MP PET 1995]** (a) Na (b) HCl and H_2O

 - (c) KOH in C_2H_5OH (d) Zn
- 21. Acetylene can be prepared from [CPMT 1988]
 (a) Potassium fumarate (b) Calcium carbide
 (c) Ethylene bromide (d) All of these
 - (c) Ethylene bronnue (u) An or these
- 22. Acetylene is obtained by the electrolysis of [BHU 1986]
 (a) Sodium succinate
 (b) Potassium fumarate
 (c) Both (a) and (b)
 (d) None of these
- **23.** The compound C_3H_4 has a triple bond, which is indicated by its reaction with
 - (a) Bromine water (b) Bayer's reagent
 - (c) Fehling solution (d) Ammonical silver nitrate
- **24.** $CH \equiv CH \xrightarrow{H_2O/H_8^{2+}} X \xrightarrow{LIAIH_4} Y \xrightarrow{P_4/B_{P_2}} Z$ Here Z is

[JIPMER 2002]

- (a) Ethylene bromide (b) Ethanol
- (c) Ethyl bromide (d) Ethylidene bromide
- **25.** $CH \equiv CH \xrightarrow{Ni(CN)_2} X$. Here X in the reaction Pressure

	[JIPMER 2002]
	(a) Benzene (b) Ethane
	(c) Cycloctatetraene (d) Cyclohexane
26.	A salt producing hydrocarbon among these compounds is
	[KCET (Engg.) 2002]
	(a) Ethane (b) Methane
	(c) Ethene (d) Ethyne
27.	An unknown compound <i>A</i> has a molecular formula C_4H_6 . When <i>A</i> is treated with an excess of Br_2 a
	new substance <i>B</i> with formula $C_4H_6Br_4$ is formed.
	A forms a white precipitate with ammoniacal silver nitrate solution. A may be
	[MP PET/PMT 1998]
	(a) Butyne-1 (b) Butyne-2
~ 0	(c) Butene-1 (d) Butene-2
28.	Which of the following reacts with sodium with the elimination of hydrogen
	(a) CH_4 (b) C_2H_6
	(c) C_2H_4 (d) C_2H_2
29.	
29.	(a) White precipitate with A_{gNO_3} and red
	precipitate with Cu_2Cl_2
	(b) White precipitate with Cu_2Cl_2 and red
	precipitate with A_{gNO_3}
	(c) White precipitate with both the reagents(d) Red precipitate with both the reagents
20	The bond length between sp^3 hybridised carbon
30.	atom and other carbon atom is minimum in
	[CBSE PMT 1996; Pb. PMT 1999]
	(a) Propane (b) Butane
	(c) Propene (d) Propyne
31.	The $C - H$ bond length is minimum in the bond formed by
	(a) <i>sp - s</i> overlapping (as in alkynes)
	(b) $sp^2 - s$ overlapping (as in alkenes)
	(c) $sp^3 - s$ overlapping (as in alkanes)
	(d) None of these
32.	Which of the C - C bond is strongest
	(a) Formed by $sp^3 - sp^3$ hybridised carbon atoms (as in alkanes)
	(b) Formed by $sp^2 - sp^2$ hybridised carbon atoms (as in alkenes)
	(c) Formed by $sp - sp$ hybridised carbon atoms (as

- (c) Formed by sp sp hybridised carbon atoms (as in alkynes)
- (d) All are equal
- **33.** Which of the following pairs has the same bond angle
- (a) Ethane and ethylene (b) Ethylene and acetylene
 - (c) Ethylene and benzene (d)Acetylene and benzene

- **34.** The product(s) obtained via oxymercuration $(HgSO_4 + H_2SO_4)$ of 1-butyne would be[IIT-JEE 1999]
 - (a) $CH_3 CH_2 CH_3 = CH_3$ (b) $CH_3 - CH_2 - CH_2 - CH_3$
 - (c) $CH_3 CH_2 CHO + HCHO$
 - (d) $CH_3CH_2COOH + HCOOH$
- 35. A compound is treated with NaNH₂ to give sodium salt. Identify the compound [AFMC 1998]
 (a) C₂H₂
 (b) C₆H₆
 (c) C₂H₆
 (d) C₂H₄
- **36.** A gas decolourises bromine in CCl_4 and forms a precipitate with ammoniacal silver nitrate. The gas is [EAMCET 1998] (a) C_2H_2 (b) C_2H_4
 - $[\begin{array}{c} \textbf{BHU 1983} \\ \textbf{(C)} \ \ C_2 H_6 \end{array} \qquad (d) \ CH_4$
- 37. Among the following compounds which have more than one type of hybridisation for carbon atom(i) CH_CH_CH_CH_

	(i) $CH_3CH_2CH_2CH_3$		
	(ii) $CH_3 - CH = CH - CH_3$	3	
	(iii)	$CH_2 = CH$	$U - C \equiv CH$
	(iv) $H - C \equiv C - H$		[EAMCET 1998]
	(a) (ii) and (iii)	(b) (ii)	
	(c) (iii) and (iv)	(d) (iv)	
38.	1. The homologue of ethyne is [EAMCET 1998]		
(a) $C_2 H_4$ (b) $C_2 H_6$			
	(c) $C_3 H_8$	(d) $C_3 H_4$	
39.	When acetylene reacts v	vith <i>HCl</i> in	the presence of

39. When acetylene reacts with *HCl* in the presence of *HgCl*₂, the product is[MNR 1985; MP PET 1996; UPSEAT 200

(a) Methyl chloride	(b) Dichloroethane
(c) Vinyl chloride	(d) Ethylidine chloride

40. When propyne reacts with aqueous H_2SO_4 in the presence of H_8SO_4 , the major product is

[IIT-JEE 1983; AFMC 1991; KCET 1993]

(a) Propanal	(b) Propyl	hydrogen
sulphate		

(c) Acetone (d) Propanol

- 41. Propyne on polymerisation gives [CPMT 1999, 2002](a) Mesitylene(b) Benzene
 - (c) Ethyl benzene (d) Propyl benzene
- **42.** When treated with ammoniacal cuprous chloride, which one among the following forms copper derivative

[CBSE PMT 1989; MP PMT 1993]

(a)	C_2H_6	(b)	C_2H_4
(c)	C_2H_2	(d)	C_6H_6

				Ну	drocarbon 1127
3.	polymerisation of CH	ng catalyst is used in the = CH to C_6H_6 [CPMT 1999]			(d) Silver mirror can be prepared by the
	(a) $AlCl_3$	(b) $HgSO_4$		reaction of <i>HCl</i> and	$(\mathbf{b}) \subset \mathbf{U}$
	(c) $NbCl_3$	(d) <i>HCl</i>		(a) $C_2 H_4$	(b) $C_2 H_2$
ŀ	$KMnO_4$ will oxidise ac	etylene to [CPMT 1999]		(c) $C_2 H_5$	(d) All of these
	(a) Ethylene glycol (c) Oxalic acid	(b) Ethyl alcohol (d) Acetic acid	54.		g order of reagent is chosen ne from C_2H_2 [RPET 2000]
5.	Ethyne on reaction with dil. H_2SO_4 and $H_g(II)$			(a) $CuCl/NH_4Cl$ and H_4	$I_2 / Pd(BaSO_4)$
	gives			(b) $NH_4Cl/CuCl$ and $H_4Cl/CuCl$	$I_2 / Pd(BaSO_4)$
	(a) Ethanol			(c) $H_2/Pd(BaSO_4)$ and	CuCl / NH A Cl
	(b) Ethanal (c) Methoxymethane			(d) $H_2/Pd(BaSO_4)$ and	
	(d) Ethyl hydrogen sul	nhate			of[RPET 1999; Bihar MEE 19
5.		ing is used to distinguish	55.	(a) Methane	(b) Ethane
•	ethylene and acetylene	E[MP PET 2000; KCET 2000; JI	PMER 20	(a) Methane	
		CPMT 1977; NCERT 1973]			(d) Ethyne
	(a) Alkaline $KMnO_4$		56.	Ch	acid in presence of Hg^{2+} to
	(b) Bromine water			give	[BHU 2005]
	(c) Ammoniacal cupro	us chloride		CH_3	$CH(CH_3COO)_2$
	(d) Conc. H_2SO_4			(a) \downarrow CH(CH ₃ COO) ₂	(b) $(CH_3COO)_2$ $CH(CH_3COO)_2$
•	The distinguishing tes acidic hydrogen is	t for triple bond containing [JIPMER 2000]		(c) CH_3	(d) None of these
	(a) $Ag(NH_3)_2^+$	(b) Br_2 in CCl_4		$CH_2(CH_3COO)$	
	(c) Alkaline <i>KMnO</i> ₄	(d) AlCl ₃	57.	electric discharge thro	d industrially by passing ough graphite electrodes in
3.	If acetylene is passed through an electric arc in the atmosphere of nitrogen, the compound formed			the atmosphere of	[CPMT 1985]
	is	ogen, the compound formed		(a) Air	(b) N ₂
		[RPMT 1999]		(c) H ₂	(d) <i>CO</i> ₂
	(a) <i>HCN</i>	(b) Pyrrole	-8	-	ussed into dilute sulphuric
	(c) Pyrazole	(d) Pyridine	50.		ons, the product formed is
•	Ozonolysis of acetylen	e gives [RPMT 1999]		-	e 1995; BHU 1998; KCET 1999;
	(a) Glycol	(b) Glyoxal,formic acid			DCE 1999; DPMT 1999, 2002;
	(c) Formaldehyde	(d) None		CPMT 1975,	82, 83, 90; MP PMT 1994, 97;
••		veen the hybridised carbon atom is minimum in [Pb. PM		KCE	AIIMS 2002; CBSE PMT 1999; ET (Med.) 1999, JIPMER 1999]
	(a) Butane	(b) Propyne		(a) Acetone	(b) Acetic acid
	(c) Propene	(d) Propane	-0	(c) Acetaldehyde	(d) Formaldehyde
	-	ne with HOCl proceeds via	59.	Which of the following	CPMT 1986; Bihar MEE 1997;
	the addition of	[IIT-JEE (Screening) 2001]			RPET 1999; AFMC 1999]
	(a) H^+ in the first step			(a) Ethyne	(b) Ethene
	(b) Cl^+ in the first step)	60.	(c) Ethane Xylenes on oxidation w	(d) Benzene
	(c) OH^- in the first step		00.	Ayrenes on Oxidation W	
	(d) Cl^+ and OH^- in a si	ingle step		(a) Terphthalic acid	[JIPMER 2000] (b) Phthalic acid
	Acetylene reacts with a	ammonical <i>AgNO</i> ₃ forming		(c) Isophthalic acid	(d) All of these
	[MH CET 1999; CPMT 1984, 86; MP PMT 1997]				• • • • • • • • • • • • • • • • • • • •
	(a) Silver acetylene	(b) Silver acetate			

The structure of the product(Z) in the reactions 61. given below - +

 $\mathbf{0}$

$$HC = CH \xrightarrow{NaNH_2, CH_3COCH_3} X \xrightarrow{Hg^{2+}, H_3O^+} Z \text{ is}$$

[Roorkee 2000]

Carbon-carbon bond length is minimum in 62. [CBSE PMT 1988, 91; MNR 1984; CPMT 1989; RPMT 1997; Pb. PMT 2001]

(a) Ethane	(b) Ethene

- (c) Ethyne (d) Benzene
- (e) Ethanol
- Triple bond of ethyne is made of or Cylindrical 63. shape of an alkyne is due to

[EAMCET 1978; NCERT 1979; CBSE PMT 1997; Manipal MEE 1995; Bihar MEE 1996]

- (a) Three σ bonds
- (b) Three π bonds
- (c) Two σ and one π bond
- (d) Two π and one σ bond
- An organic compound has a triple bond and not 64. double bond. It can be tested by [MP PMT 2000, 03] (a) Bromine water

 - (b) Bayer's reagent
 - (c) Fehling solution
 - (d) Ammonical silver nitrate

Which of these will not react with acetylene 65.

	[AIEEE 2002; DCE 2002]
(a) NaOH	(b) Ammonical $AgNO_3$

	(c) Na	(d) <i>HCl</i>
66.	What is the product	when acetylene reacts with
	hypochlorous acid	[RPMT 2002; AIEEE 2002]
	(a) <i>CH₂COCl</i>	(b) ClCH ₂ CHO

(4)	01130001	(0) ($2 \text{ cm}_2 \text{ cm}_2$
(c)	Cl ₂ CHCHO	(d) (CICHCOOH

The alkene C_6H_{10} producing $OHC - (CH_2)_4 - CHO$ 67. on ozonolysis is [Roorkee 1999]

(a) Hexene-1	(b) Hexene-3
(c) Cyclohexene	(d) 1-
methylcyclohexene-1	

The number of moles of proton which can be 68. easily given by butyne-1(1 mole) is [MP PMT 2000] (b) 2 (a) 1

69. Which will undergo reaction with ammoniacal AgNO 3

(a)
$$\frac{CH_3}{CH_3}$$
 $CH - CH_2 - CH = CH - CH_3$

(b)
$$CH_3 - CH = CH - C \equiv CH$$

(c)
$$CH_3 - CH_2 - CH = CH - CH_2 - CH_3$$

(d)
$$CH_2 = CH - CH_2 - CH_3$$

(e) None

- 70. Acetylene gas when passed through the 20% H_2SO_4 at 80° C gives acetaldehyde. The catalyst required for this conversion is
 - (a) Anhydrous AlCl₃ (b) $HgSO_4$

Which of the following reactions will yield 2, 2-71. dibromopropane [MNR 1993; UPSEAT 2001] (a) HC = CH + 2HB

(a)
$$HC \equiv CH + 2HBr \rightarrow$$

- (b) $CH_3C \equiv CH + 2HBr \rightarrow$
- (c) $CH_3CH = CH_2 + HBr \rightarrow$
- (d) $CH_3CH = CHBr + HBr \rightarrow$
- Which of the following does not give white 72. precipitate with ammoniacal AgNO₃

(a)
$$CH \equiv CH$$
 (b) $CH_3 - C \equiv CH$

(c)
$$CH_3 - C \equiv C - CH_3$$
 (d) $CH_2 - C \equiv CH_3$

 $\begin{array}{c} CH \\ ||| & \xrightarrow{O_3 / NaOH} X \xrightarrow{Zn / CH_3COOH} Y 'Y' \text{ is[AIIMS 1988]} \end{array}$ 73. CH

(a)
$$| \\ CH_2OH \\ CH_2OH$$
 (b) CH_3CH_2OH

(c) CH_3COOH (d) CH_3OH

Which is represented by the formula $C_n H_{2n-2}$ 74.

 C^{\dagger}

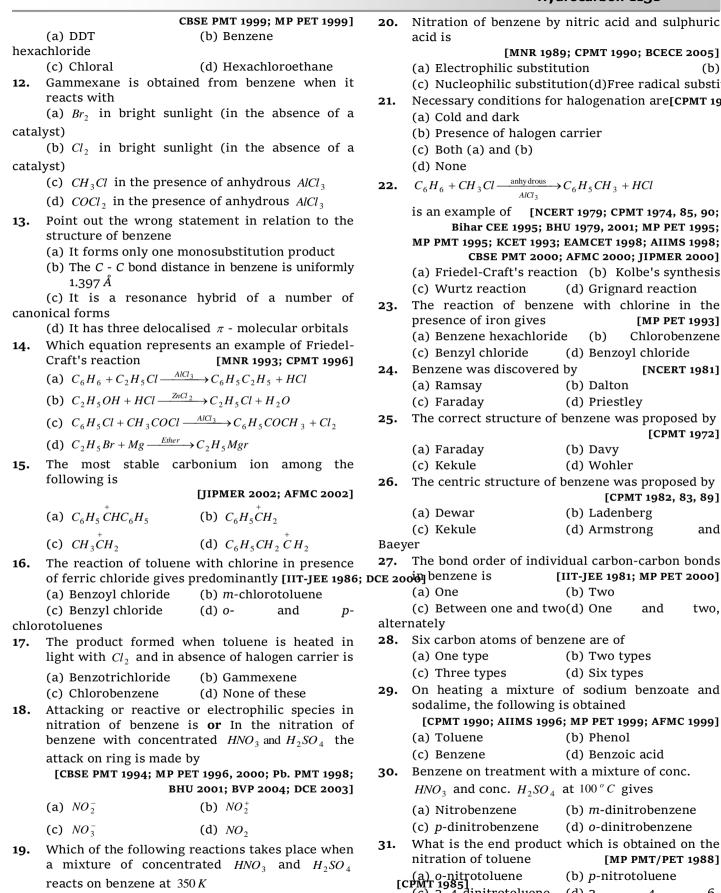
What is the major product of the following 75. reaction $CH_3C \equiv C - CH_2 - CH_3 \xrightarrow{1 \text{ mole of } Cl_2}$

(a)
$$CI \\ CH_3 > C = C < CI \\ CH_2 CH_3$$

(b) $CH_3 - CH_2 - CH_2 - CH_2 CH_3$
 $CI \\ CI \\ CI \\ CI$

				•	-
	(c) $Cl > C = C < CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	3	86.	respectively is	ethane, ethene and Ethyne [CPMT 2003]
	Cl Cl			(a) sp^3 , sp^2 and sp	
		П		(c) sp^2 , sp^3 and sp	
	(d) $CH_3 - \overset{ }{\underset{l}{C}} - \overset{ }{\underset{l}{C}} - CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	13	87.	Number of acidic hydrog	gen atoms in butyne-1 are [MP PET 1986]
6	A compound CH wi	hich give white ppt. with		(a) 2	(b) 3
		give $(CH_3)_2 CHCOOH$ with		(C) 1	(d) 4
		compound is [RPMT 2002]	88.	Which of the following s	shows linear structure[CPMT 2
	(a) $CH_3CH_2 - CH_2 - CH$	-		(a) Ethane	(b) Ethene
				(c) Acetylene	(d) <i>CCl</i> ₄
	(b) $CH_3 - CH_2 - C \equiv CH$		89.	Calcium carbide on reac	ting with water gives
	(c) $(CH_3)_2 CH - C \equiv CH$				P PMT 1993, 94; RPMT 2002;
	$(d) CH_2 = CH - CH_2 - CH_2$	$H = CH_2$			J & K 2005]
7.	1, 2-dibromoethane w	hen heated with alcoholic		(a) Methane	(b) Ethane
	potash gives	[Kerala PMT 2004]		(c) Ethene	(d) Acetylene
	(a) Ethane	(b) Acetylene	90.	Addition of HCN to ethy	The in presence of $Ba(CN)_2$
	(c) Ethylene	(d) Methane		as catalyst gives	[AFMC 1991]
	(e) None of these			(a) 1, 1-dicyano ethane	(b) Ethyl cyanide
3.		ng is not a member of		(c) Vinyl cyanide	(d) Divinyl cyanide
	homologous series	[RPMT 2002]	91.	Which compound will	react with an aqueous
	(a) Ethene (c) 2-butene	(b) 1-butene (d) 2-butyne		solution of $Ag(NH_3)_2^+OH^+$	_
		as a result of potassium		(a) $CH_2 = CH_2$	(b) $CH_3 - CH_3$
-	permanganate oxidation			(c) $CH_3CH_2C \equiv CH$	5 5
		[MP PET/PMT 1998]	02		
	(a) Benzoic acid	(b) Benzyl alcohol	92.		give H_2 gas with $Na[\mathbf{RPMT} 200]$
	(c) Benzophenone	(d) Acetophenone		(a) CH_4	(b) $C_2 H_6$
).	What is the product	when 2-butyne is treated		(c) $C_2 H_4$	(d) $C_2 H_2$
	with liquid NH_3 in pres	(b) <i>cis</i> -2-butene	^{3]} 93.	$CH_3 - C \equiv CH \xrightarrow{O_3} Prode$	uct .Product in above
	(a) <i>n</i> -butane	(b) cis-2-butene			
	(c) <i>trans</i> -2-butene	(d) 1-butene		reaction is	Faa
•	Distinction in pentene-	1 and pentyne-1 is done by			[RPMT 2003]
		[CPMT 1996]		(a) CH_3COOH	(b) <i>HCOOH</i>
	(a) $[Ag(NH_3)_2]^+$	(b) Conc. H_2SO_4		(c) Both (a) and (b)	(d) $CH_3CHO + HCHO$
	(c) HCl	(d) Br_2	94.		in the product formed by
2.		thene and ethyne is passed A_{gNO_3} solution. The gases		containing mercuric sul	-
	which remain unreacted		Г	(a) Zero CPMT 1990]	(b) One
	(a) Ethane and ethene	(b) Ethane and ethyne		(c) Two	(d) Three
	(c) Ethene and ethyne	(d) Ethane only	95.	Which of the following i	s weakly acidic
	-	er nitrate acetylene shows		(a) $CH_2 = CH_2$	(b) $C_6 H_6$
•		[MP PET 1999]		(c) $CH_3 - C \equiv CH$	(d) $CH_3 - C \equiv C - CH_3$
	(a) Oxidising property	(b) Reducing property	06	-	
	(c) Basic property	(d) Acidic property	96.	alkynes	g reactions is shown by
	Simplest alkyne is repre				[AMU 1984; RPMT 2000]
-	(a) <i>CH</i>	(b) <i>CH</i> ₂		(a) Addition	(b) Substitution
		-		(c) Polymerization	(d) All of these
	(c) $C_2 H_2$	(d) $C_2 H_4$	e		
j .	Which of the following		97.		h is present in [BVP 2004]
	(a) = $C - H$	(b) $-C - H$		(a) $CH_3 - CH_2 - CH_3$	(b) $CH_3CH_2CH_2CH_3$
	(a) = C - II	(0) 0 11			5 2 2 5

1130 Hydrocarbon(c)
$$CH_{+} = CH = CH_{+}$$
 (d) $CH = C - C = CH98. Acctylene can be obtained by the reaction[MH GET 200](a) $HOOK_{-\frac{Oliver A(B)}{A}}$ (b) $CH_{+} + 6A_{+} + CH_{-} \xrightarrow{A}$ (c) $CH_{+} (CH_{-} \xrightarrow{A})$ (d) $R_{+} (C+H_{-} \xrightarrow{A})$ (e) $CH_{+} (CH_{-} \xrightarrow{A})$ (f) $R_{+} (C+H_{-} \xrightarrow{A})$ (g) $R_{+} (CH_{+} \xrightarrow{A})$ (h) $R_{+} (CH_{+} (C$$


(c) Mg_2C_3 (d) Al_4C_3

(e) Be_2C

Aromatic hydrocarbon

	Clair S reaction is to	
	[MNR 1986, 199	5; Roorkee 1999; BHU 2001;
	(a) Absorb water	CPMT 2002; MPPET 2001] (b) Absorb <i>HCl</i>
		(d)To produce nucleophile
2.		T_3COCl in the presence of
		JOPMT 1983; CBSE PMT 1991]
]	(a) C_6H_5Cl	(b) C_6H_5COCl
	(c) $C_6H_5CH_3$	(d) $C_6H_5COCH_3$
3.	alkylation because (reaction)	preferred than direct by the Friedel-Craft's
	(a) In alkylation, a poise	
		mount of heat is evolved
		cylated product is formed
	(d) Alkylation is very co	
4.	Benzene cannot undergo	
	(a) Substitution	(b) Addition
_	(c) Elimination	(d) Oxidation
5۰	Coaltar is main source of	E 5-13
	(a) Aromatic compounds	
	(b) Aliphatic compounds(c) Cycloalkanes	
	(d) Heterocyclic compou	nde
6.		g is not formed by the
0.	ozonolysis of <i>o</i> -xylene	g is not formed by the
	(a) Glyoxal	(b) Ethyl glyoxal
	(c) Dimethyl glyoxal	(d) Methyl glyoxal
7.	The number of σ and z	π bonds in a molecule of
	benzene is	
		988; BHU 1995; CPMT 1997]
	(a) 6σ and 9π	(b) 9σ and 3π
_	(c) 12σ and 3π	(d) 6σ and 6π
8.	The ratio of σ and π bo	
	(a) 2	[CPMT 1991; BHU 1995] (b) 4
	(c) 6	(d) 8
9.		ne molecule is inclined at
	an angle of	
	(a) 120°	[BHU 1985] (b) 180°
	(c) 109°28′	(d) 60°
10.		I with excess of Cl_2 in the
	presence of I_2 , the end p	
	(a) Monochlorobenzene	
hexa	(c) Hexachlorobenzene achloride	
11.	Chemical name of the in	secticide gammexene is
	[CPMT 1981;]	MP PET 1995; MP PMT 1996;

Hydrocarbon	1131
-------------	------

- (a) Sulphonation (b) Nitration
- (c) Hydrogenation (d) Dehydration

	acid is		
	[MNR 193	89; CPMT 1990; BCECE 2005]	
	(a) Electrophilic substi		
	(c) Nucleophilic substit	tution(d)Free radical substituti	on
21.	Necessary conditions for	or halogenation are[CPMT 1976]	
	(a) Cold and dark		
	(b) Presence of halogen	ı carrier	
	(c) Both (a) and (b)		
	(d) None		
22.	$C_6H_6 + CH_3Cl - \frac{\text{anhydrous}}{AlCl_3}$	$\rightarrow C_6H_5CH_3 + HCl$	
		ERT 1979; CPMT 1974, 85, 90;	
		HU 1979, 2001; MP PET 1995;	
		; EAMCET 1998; AIIMS 1998;	
		o; AFMC 2000; JIPMER 2000]	
		tion (b) Kolbe's synthesis	
		(d) Grignard reaction	
23.	presence of iron gives	ene with chlorine in the	
		[MP PET 1993] de (b) Chlorobenzene	
	(c) Benzyl chloride		
24.	-	d by [NCERT 1981]	
24.		-	
	(a) Ramsay (c) Faraday	(d) Priestley	
25.		f benzene was proposed by	
25.	The correct structure of	[CPMT 1972]	
	(a) Faraday	(b) Davy	
	(c) Kekule	(d) Wohler	
26.		f benzene was proposed by	
_01		[CPMT 1982, 83, 89]	
	(a) Dewar	(b) Ladenberg	
	(c) Kekule	(d) Armstrong and	
Baey	ver	-	
27.	The bond order of indiv	vidual carbon-carbon bonds	
DCE 20	oin benzene is	[IIT-JEE 1981; MP PET 2000]	
	(a) One	(b) Two	
	(c) Between one and tw	vo(d) One and two,	
	nately		
28.	Six carbon atoms of ber		
	(a) One type	(b) Two types	
	(c) Three types	(d) Six types	
29.		of sodium benzoate and	
	sodalime, the following		
		6; MP PET 1999; AFMC 1999]	
	(a) Toluene	(b) Phenol	
	(c) Benzene	(d) Benzoic acid	
30.	Benzene on treatment w		
	HNO_3 and conc. H_2SO_4	at 100°C gives	
	(a) Nitrobenzene	(b) <i>m</i> -dinitrobenzene	
	(c) <i>p</i> -dinitrobenzene	(d) o-dinitrobenzene	
31.	-	ct which is obtained on the	
-	nitration of toluene	[MP PMT/PET 1988]	
F -	(a) o-nitrotoluene	(b) <i>p</i> -nitrotoluene	
10	_FWL1 19851		

(c) 2, 4-dinitrotoluene (d) 2, 6-4, trinitrotoluene

32.	Which of the following	-		(c) Toluene (d) Phenol
	(a) Halogenation	(b) Sulphonation	45.	Select the true statement about benzene from
	(c) Nitration	(d) None		amongst the following [CBSE PMT 1992]
3.		ectrophilic) species in		(a) Because of unsaturation benzene easily
		e is[RPMT 1997; CPMT 1999 ,	2002]	undergoes addition reactions (b) There are two types of C . C has do in homeone
	(a) SO_2	(b) SO_3		(b) There are two types of <i>C</i> - <i>C</i> bonds in benzene molecule
	(c) SO_4^{2-}	(d) HSO_{3}^{-}		(c) There is a cyclic delocalisation of π electrons in
4.	Which xylene is most ea	asily sulphonated		benzene
	(a) Ortho (c) Meta	(b) Para (d) All at the same rate		(d) Monosubstitution of benzene group gives three isomeric substances
5۰	Toluene on oxidation	with dilute <i>HNO</i> ₃ and	4 6 .	Anhydrous AlCl ₃ is used in the Friedel-Craft's
	alkaline <i>KMnO</i> ₄ gives	[DPMT 1981]	I	reaction because it is [CBSE PMT 1991]
	(a) Benzaldehyde	(b) Phenol		(a) Electron rich
	(c) Nitrotoluene	(d) Benzoic acid		(b) Soluble in ether
6.		with air when passed over		(c) Insoluble to chloride and aluminium ions
	V_2O_5 catalyst at 775 K	-		(d) Electron deficient
	2 0 0	1; CPMT 2001; MP PMT 2003]	47.	(i) Chlorobenzene and (ii) benzene hexachloride
	(a) Glyoxal	(b) Oxalic acid		are obtained from benzene by the reaction of
	(c) Maleic anhydride	(d) Fumaric acid		chlorine, in the presence of
7.		ons of benzene (aromatic		(a) (i) Direct sunlight and (ii) anhydrous $AlCl_3$
,.	hydrocarbon) and its de			(b) (i) Sodium hydroxide and (ii) sulphuric acid
	[DPMT 1984; MP PMT 1989	9; AFMC 1997; BHU 1996, 98]	l	(c) (i) Ultraviolet light and (ii) anhydrous $FeCl_3$
	(a) Electrophilic addition	on reactions		(d) (i) Anhydrous $AlCl_3$ and (ii) direct sunlight
	(b) Electrophilic substit	tution reactions	48.	-
	(c) Nucleophilic addition	on reactions	40.	
	(d) Nucleophilic substit	ution reactions		other reactants are $[AFMC 1997; CBSE PMT 1999]$
8.	Which is most readily n	itrated [Roorkee 1992]	l	(a) $C_6H_6 + CH_3Cl$ (b) $C_6H_6 + CH_4$
	(a) Benzene	(b) Phenol		(c) $C_6H_6 + NH_3$ (d) $C_6H_6 + CH_3COCl$
	(c) Aniline	(d) Nitrobenzene	49.	Nitration of benzene is a [RPMT 1999]
9.	o, p-directing groups ar	e mostly		(a) Electrophilic displacement
	(a) Activating groups	(b) Deactivating groups		(b) Electrophilic addition
	(c) Neutral groups	(d) None of these		(c) Nucleophilic addition
о.	Which among the follow	wing is the strongest o, p-	-	(d) Nucleophilic displacement
	directing group	[CBSE PMT 1989]	50.	Benzene shows [RPMT 1999]
	(a) <i>OH</i>	(b) <i>Cl</i>		(a) Substitution (b) Addition
	(c) $C_6 H_5$	(d) <i>Br</i>		(c) Oxidation (d) All of these
1.	The compound that i	s most reactive towards	51.	Benzene can be obtained in the reaction
	electrophilic nitration i	s		[RPET 2000; Bihar MEE 1997]
	[IIT-JEE 1985; AII]	MS 1998; MP PET/PMT 1998]	I	(a) Ethene + 1, 3-butadiene
	(a) Toluene	(b) Benzene		(b) Trimerisation of ethyne
	(c) Benzoic acid	(d) Nitrobenzene		(c) Reduction of <i>PhCHO</i>
2.	•	the compound that can be	:	(d) All of these
	most readily sulphonate		52.	Thiophene and benzene are separated by[RPET 200
		IADT Bihar 1995; KCET 2005]	J	(a) Sulphonation of thiophene
	(a) Benzene	(b) Nitrobenzene		(b) Sulphonation of benzene
	(c) Toluene	(d) Chlorobenzene		(c) Nitration of thiophene
3.		g would be least reactive		(d) Nitration of benzene
	towards bromine	[NCERT 1981]		Which of the following is a hydrocarbon[AFMC 199
		(b) Phenol	53.	(a) Urea (b) Benzene
	(a) Nitrobenzene	(N = 1 1)		
	(c) Anisole	(d) Chlorobenzene		
4.	(c) Anisole Amongst the following	g, the compound that is		(c) Ammonium cyanate (d) Phenol
4.	(c) Anisole	g, the compound that is	5 54.	

				Нус	lrocarbon 1133	
		[BIT 1991]		(e) None of these		
	(a) They have a ring st	ructure of carbon atoms	63.	What happens when n	aphthalene balls are	e put
		tively high percentage of		inside kerosene	[Kerala (Med.)	2002]
ydr	ogen (c) They have a rela	tively high percentage of		(a) Precipitates heating	(b) Dissolves	upon
ırb	-	, , , , , , , , , , , , , , , , , , ,		(c) Dissolves easily	(d) Does not dissolv	e
	(d) They resist reaction	n with oxygen of air		(e) None of these		
5.	-	compound which one is	64.	Three fused benzene rin	gs are found in	
	planar in shape	[MP PMT 2000]			[Kerala (Engg.)	2002]
	(a) Methane	(b) Acetylene		(a) Naphthalene	(b) Anthracene	
	(c) Benzene	(d) Isobutane		(c) Phenanthroline	(d) Triphenyl metha	
5.	Among the following s	tatements on the nitration	65.	Product obtained after	nitration of nitrober	nzene
		s, the false one is[IIT-JEE 1997]		is		100-1
	(a) The rate of nitration	on of benzene is almost the		(a) TNT	(b) 1, 3-dinitrobenze	
	same as that of hex			(c) Picric acid	(d) 1, 4-dinitrobenze	
		n of toluene is greater than	66.	After ozonolysis of benz		
	that of benzene			product is		,
		ion of benzene is greater		-	[RPMT 1997; CPMT	1997]
	than that of hexade			(a) Benzene triozonide	•	
201	(d) Nitration is an tion	electrophilic substitution	-	(c) Ethanediol	(d) All of them	
ac) '.		to benzene can be oxidised	67.	Which acid will not form	-	1997]
•	to carboxyl group by re			(a) Cinnamic acid	(b) Isothallic acid	
	(a) Fe_2O_3	(b) AgNO 3	68.	(c) Salicylic acid Catalytic dehydrogena	(d) Picric acid	n in
		-	00.	presence of Cr_2O_3 / Al_2O_3		
	(c) $KMnO_4$	(d) Cr_2O_3		(a) iso-heptane	(b) 1-heptene	ace 1999.
	CH ₃			(c) toluene	(d) 2,	3-
	How is $O_2N - O_2$		_	dimethylpentene-1	(u) 2,	3
5.	HOW IS	is widely used[MP PET 2002] 69.	$C_6H_6 \xrightarrow{HNO_3}{H_2SO_4} X \xrightarrow{Cl_2}{FeCl_3} Y$. In the above seque	nce Y
	\uparrow NO 2		-		1	
	-	(b) Drug		is	[AIIMS	1000]
	(a) Insecticide	(b) Drug		(a) 1-nitrochloro benzen		
、	(c) Explosive	(d) Dye nen treated with <i>HNO</i> ₃ (in		(c) 4-nitrochlorobenzen		
).		-	70.	Which of the following		
		ves compound 'B' which is		property	0	U
	compound 'A' is	and <i>HCl</i> to aniline. The [MP PET 2002]		(a) Olefins	(b) Straight	chain
	(a) Toulene	(b) Benzene	para	ffins		
	(c) Ethane	(d) Acetamide		(c) Aromatic hydrocarbo		-
) .		en benzene is heated with	71.	In which of the follo between carbon and carb		-
	chlorine in the presence			(a) 2-butene	(b) Benzene	
	_	Г (Med.) 2000; MP PMT 1993;		(c) 1-butene	(d) 1-propyne	
		MP PET 2002 AIIMS 1999]	72.	Benzene is prepared in l		h one
	(a) $C_6H_5CCl_3$	(b) $C_6H_5CHCl_2$		of the following compou		
	(c) $C_6H_5CH_2Cl_2$	(d) $C_6 H_6 C l_6$		(a) $C_6 N_5 N_2 Cl$	(b) C_6H_5OH	
•	The compound used as	an explosive is		(c) C_6H_5COONa	(d) $C_6 H_5 SO_3 H$	
		MP PET 2002; MP PMT 1993]	73.	Which of the following	g is not used in Fri	iedel-
	(a) 2,4, 6-tribromoanil			crafts reaction		
		ene (d)1,3, 5-trichlorobenzer	ne		[KCET :	2000]
	(e) 2,4, 6-trinitrotolue			(a) Phenyl acetanilide	(b) Bromobenzene	
2.	-	ane in the presence of $AlCl_3$	- 1	(c) Benzene	(d) Chlorobenzene	~~:-
	is an example of	[Bihar MEE 1996]	74.	In chlorination of benzen	ne, the reactive speci [MP PET :	
	(a) Addition	(b) Halogenation		(a) <i>Cl</i> ⁺	(b) Cl ⁻	2000]
	(c) Substitution	(d) Elimination		(a) Ui		

	51 /			
	(c) <i>Cl</i> ₂	(d) <i>Cl</i> ₂ ⁻		(c)
75.	Which of following havin	g delocalised electron [BCECE 2005]	88.	Whie benz
	(a) Benzene	(b) Cyclohexane		(a) I
	. ,	(d) C_2H_6		(c) I
76.	• •	P PET 2001; Pb. PMT 2004]	89.	Hydi
		(b) Planar		give
	(c) Pyramidal	(d) Trigonal		can
77.	Pyridine is less basic that	n triethylamine because		
		[AIIMS 2005]		(a) 1
	(a) Pyridine has aromatic	c character		(c) 2
	(b) Nitrogen in pyridine	is sp^2 hybridized	90.	Decr
	(c) Pyridine is a cyclic sy	stem		(a)
	(d) In pyridine, lone	pair of nitrogen is		(c)
lelo	calized			• •
78.	-	of chlorination of benzene		(a) I
	in the presence of <i>FeCl</i> ₃	is	-	: BSÈ I
	(a) <i>Cl</i> ⁺	(b) <i>Cl</i> ⁻	91.	Benz
	(c) <i>Cl</i>	(d) $FeCl_3$		acid
79.	Which one of the follow	wing will undergo meta		resp
5.	substitution on monochlo	8		(a) 2
		(b) Chlorobenzene		(b) S
	-	(d) Phenol		(c) Z
30.	-	s place at [NCERT 1990]		(d) 5
		(b) <i>m</i> -position	92.	Orde
	-	(d) Both o- and p-	92.	oruc
posi	tions			(2)
81.	Which of the following is	not <i>o, p</i> -directing group		(a)
	(a) $-NH_2$	(b) <i>-OH</i>		(c)
	(c) $-X$ (halogens)	(d) <i>–CHO</i>	react	
82.	Benzene can react with	[UPSEAT 2003]	93.	Whie
		(b) HNO ₃		alke
	-	(d) <i>CH</i> ₃ <i>OH</i>		(-) 1
_	-			(a) I
33.	-	having formula $C_8 H_{10}$		synt (c) V
	•	1 mononitro substitute	04	
	and 3 nitrosubstitute cor		94.	Aror (Al_2)
	•	(b) <i>p</i> -Xylene		
_	•	(d) Ethyl benzene		(a) 1
34.		of benzene gives[AIIMS 1996]		(c) 1
	-	(b) Cyclohexane	95.	Amo
		(d) Toluene		is
85.	Benzene is obtained from			(a) I
		(b) Plant		(c) <i>I</i>
		(d) Charcoal	96.	Whe
36.		n of coaltar distillation	90.	
	contains			prod
		[MP PET 2001]		(2) 1
		(b) Anthracene		(a) I
•_	-	(d) Xylene	05	(c) I
87.		l by reaction of benzene	9 7•	In p reac
	with	[DCE 2000]		reau
	(a) CH_3Cl /anhy. $AlCl_3$	[DCE 2000] (b) CL (suplight		(a) (
	(a) CH_3Cl / all H_2 . Al Cl_3	$(0) C_2 / summer line$		(4)

(c) $C_2 I$	$H_5I/$	'anhy	$AlCl_3$ (d) <i>C</i>	H_3C	COCl / AlCl 3	
Which	of	the	following	oil	is	obtained	from

- benzene after fractional distillation of coal tar[BHU 2004]
 (a) Light oil
 (b) Heavy oil
 (c) Middle oil
 (d) Anthracene oil
- **89.** Hydrocarbon C_6H_6 decolourise Br_2 water and gives ppt. with ammonical $AgNO_3$ Hydrocarbon can be

[MP PET 2004]

- (a) 1, 3, 5 Cyclohexatriene (b) 1, 5 Hexadiyne
- (c) 2, 4 Hexadiyne (d) None
- Decreasing order of C-C bond length is[JEE Orissa 2004] (a) C_2H_4 (b) C_2H_2
 - (c) C_6H_6 (d) C_2H_6

(a) IV > III > I > II (b) I > II > IV > III

[CESE PMPT 13955] > III (d) IV > I > III > II

- **91.** Benzene can be obtained by heating either benzoic acid with *X* or phenol with *Y*. *X* and *Y* are respectively
 - [KCET 2004]
 - (a) Zinc dust and soda lime
 - (b) Soda lime and zinc dust
 - c) Zinc dust and sodium hydroxide
 - Soda lime and copper
- **92.** Order of reactivity of C_2H_6, C_2H_4 and C_2H_2 is

[MH CET 2004]

(a) $C_2H_6 > C_2H_4 > C_2H_2$ (b) $C_2H_2 > C_2H_6 > C_2H_4$

(c) $C_2H_2 > C_2H_4 > C_2H_6$ (d) All are equally

- **93.** Which of the following yield both alkane and alkene
 - [AFMC 2004] Kolbe's reaction (b) Williamson's thesis Wurtz reaction (d) Sandmeyer reaction matisation of *n*-heptane by passing over $O_3 + Cr_2O_3$) catalyst at 773 K gives [DCE 2004] Benzene (b) Toluene (d) Heptylene Mixture of both ongst the following the most basic compound [AIEEE 2005] Benzylamine (b) Aniline Acetanilide (d) *p*-nitroaniline en toluene is treated with $KMnO_4$, what is duced

[AFMC 2005]

	-	
(a) Benzene	(b) Chlorobenzene	
(c) Benzaldehyde	(d) Benzoic acid	
T (1' 1) 0		1 0

97. In presence of light & heat toluene chlorinated & react with aqueous *NaOH* to give

a) o-Cresol

[[]Kerala CET 2005]

- (b) *p*-Cresol
- (c) Mixture of *o* Cresol & *p*-Cresol
- (d) Benzoic acid
- (e) 1, 3, 5 trihydroxy toluene

- 1. In the case homologous series of alkanes, which one of the following statements is incorrect [JIPMER 2000
 - (a) The members of the series are isomers of each other
 - (b) The members of the series have similar chemical properties
 - (c) The members of the series have the general formula $C_n H_{2n+2}$, where *n* is an integer
 - (d) The difference between any two successive members of the series corresponds to 14 unit of relative atomic mass
- 2. How many primary, secondary, tertiary and quaternary carbons are present in the following hydrocarbon

$$CH_3 - CH(CH_3) - C(CH_3)_2 - CH_2 - CH(CH_3) - CH_2 - CH_3$$

	Primary	Secondar y	Tertiary	Quaterna ry
(a)	6	2	2	1
(b)	2	6	3	0
(c)	2	4	3	2
(d)	2	2	4	3

3. The octane number of a sample of petrol is 40. It means that its knocking property is equal to the mixture of

[MP PMT 2003]

- (a) 40% *n*-heptane + 60% *iso*-octane
- (b) 40% petrol + 60% *iso*-octane
- (c) 60% *n*-heptane + 40% *iso*-octane
- (d) 60% petrol + 40% *iso*-octane
- 4. Formation of 2-butene as major product by dehydration of 2-butanol is according to[MP PMT 1995]
 (a) Markownikoff rule
 (b) Saytzeff rule
 - (c) Peroxide effect (d) Anti-Markownikoff

rule

5.
$$CH_3C \equiv CCH_3 \xrightarrow{(i)X} CH_3 - C - C - CH_3$$

	X ir		-	PMT 1985; MP PET 1997;
		Roorkee Q	ualif	ifying 1998; DPMT 2001]
	(a)	HNO_3	(b)) O ₂
	(c)	<i>O</i> ₃	(d)) $KMnO_4$
6.	Wh	ich of the following i	s Fri	riedel-Craft's reaction
				[MP PET 1994]
	(a)	$C_6H_6 + FeCl_3 + Cl_2 \rightarrow$	C_6H	H_5Cl
	(b)	$C_6H_5CHO + CH_3CHO +$	KOH	$H \rightarrow C_6 H_5 CH = CH - CHO$
				0
	(c)	$C_6H_6 + CH_3COCl + AlCl_3 -$	$\rightarrow C_6 H$	$H_5 - C - CH_3$
	(d)	$C_6H_5OH + CHCl_3 + KC$)H —	\longrightarrow Salicy lald ehy de
	Con	dition for maximum	yiel	ld of C_2H_5Cl is
				[IIT-JEE 1986]
		C_2H_6 (excess) + Cl_2	UV	^{WLight} →
	(b)	$C_2H_6 + Cl_2 \xrightarrow{\text{Dark}}_{\text{Room temp.}}$		
	(c)	$C_2H_6 + Cl_2$ (excess) —	UV Ligh	^{ght} →
	(d)	$C_2H_6 + Cl_2 \xrightarrow{UV \text{ Light}} \rightarrow$		
8.	Wh	en ethyl alcohol is he	eated	ed with red phosphorus
	and	l HI, then which of th	e fol	ollowing is formed
			[[Kurukshetra CEE 1998]
	(a)	C_2H_6	(b)) <i>CH</i> ₄
	(c)	C_3H_8	(d)) $C_2 H_4$

- In the Fischer-Tropsch synthesis of petrol..... and are used as the raw materials [KCET 1998]
- are used as the raw materials[KCET 1998](a) H_2 ; CO(b) CH_4 ; H_2 (c) CH_4 ; CH_3OH (d) CH_3OH ; CO
- 10. Which one of the following reactions is most suitable for the preparation of *n*-propyl benzene[MP PET/2 (a) Friedel-Craft's reaction (b) Wurtz reaction (c) Wurtz-Fittig reaction(d) Grignard reaction
- 11. Propane cannot be prepared from which reaction
 [DCE 2003]

(a)
$$CH_3 - CH = CH_2 \xrightarrow{B_2H_6} OH^-$$

(b)
$$CH_3CH_2CH_2I \xrightarrow{HI}_P$$

(c)
$$CH_3CH_2CH_2Cl \xrightarrow{Na}$$

(d) None of these

12. The reaction

9.

$$CH_{3}CH = CH_{2} \xrightarrow{(CO+H_{2})} CH_{3} - CH - CH_{3}$$
 is
 $H^{+} \xrightarrow{I} COOH$

known as

(a) Wurtz reaction (b) Koch reaction

- (c) Clemmensen reduction (d) Kolbe's reaction CH_3
- **13.** The compound $CH_3 C = CH CH_3$ on reaction with $NaIO_4$ in the presence of $KMnO_4$ gives[CBSE PMT 2003 (a) $CH_3CHO + CO_2$

(b) CH_3COCH_3

	(c) $CH_3COCH_3 + CH_3COCH_3$	ООН
	(d) $CH_3COCH_3 + CH_3CH_3$	Ю
14.	In the reaction :	
-	$HC = CH + 2AgNO_3 - \frac{NH}{NH}$	$\xrightarrow{X_4OH} X + 2NH_4NO_3 + 2H_2O$
	<i>'X'</i> is	<u>-</u>
	(a) Ag_2C	(b) Ag_2C_2
	(c) <i>AgC</i>	(d) <i>AgOH</i>
15.	Naphthalene is a/an	[AFMC 2004]
	(a) Ionic solid	(d) Covalent solid
	(c) Metallic solid	(d) Molecular solid
16.	-	is not aromatic [Pb. CET 2000]
	(a) Benzene (c) Pyridine	(b) Naphthalene (d) 1,3,5 heptatriene
17.	-	<i>HCN</i> in the presence of
	$Ba(CN)_2$ to yield	[UP SEAT 2004]
	(a) 1, 1-dicyanoethane	(b) 1, 2-dicyanoethane
	(c) Vinyl cyanide	(d) None of these
18.		of the addition reaction
	$\rangle C = C \langle +XY \rangle \rightarrow$	[Kerala (Med.) 2002]
	(a) $>_{-} C - C < X Y$	(b) $X - C = C - Y$
	(c) $C = C - C - C - C - C - C - C - C - C - $	(d) $X - C - C - X$
	V I I	
	X	
	(e) $\begin{array}{c} X \\ C \end{array}$	
19.	Formation of polyethy	lene from calcium carbide
-90	takes place as follows	
	$CaC_2 + 2H_2O \rightarrow Ca(OH)_2$	$_{2} + C_{2}H_{2}$
	$C_2H_2 + H_2 \rightarrow C_2H_4$	
	$n(C_2H_4) \rightarrow (-CH_2 - CH_2)$	—) _n
	The amount of polyeth	ylene obtained from 64.1 kg
CaC	₂ is	
	$\langle \rangle = 1$	[AIIMS 1997]
	(a) $7 kg$	(b) 14 <i>kg</i> (d) 28 <i>kg</i>
20.	(c) 21 kg Nitrobenzene can be	prepared from benzene by
20.		c. HNO_3 and conc. H_2SO_4 .
	-	e, <i>HNO</i> ₃ acts as a[IIT-JEE 1997]
	(a) Base	(b) Acid

(a) Base	(b) Acia
(c) Reducing agent	(d) Catalyst

21. A group which deactivates the benzene ring towards electrophilic substitution but which directs the incoming group principally to the oand *p*-positions is

[Pb. PMT 1998]

(a) $-NH_2$

(c) $-NO_2$ (d) $-C_2H_5$

22. Which order is correct for the decreasing reactivity to ring monobromination of the following compounds

(b) –*Cl*

	$\begin{array}{ccc} C_6H_5CH_3, & C_6H_5COOH \\ I & II \end{array}$	$\begin{array}{ccc} H_{1}, & C_{6}H_{6} & C_{6}H_{5}NO_{2} \\ & \Pi & \Pi & \Pi \end{array}$
23.	 (a) I > II > III > IV (c) II > III > IV > I Benzene is obtained by (a) Substitution of three (b) Addition of three C2 	(d) <i>III</i> > <i>I</i> > <i>II</i> > <i>IV</i> [DPMT 2002] e acetylene molecules
	(c) Polymerisation of th	ree C_2H_2 molecules
24.	 (d) Condensation of three Toluene can be oxidised (a) <i>KMNO</i>₄ 	to benzoic acid by[AIIMS 1999] (b) $K_2Cr_2O_7$
25.	(c) H_2SO_4 $CaC_2 + H_2O \rightarrow A \xrightarrow{H_2SO_4/H}$	(d) Both (a) and (b) $(gSO_4 \rightarrow B)$. Identify A and B
20.		[CPMT 2000; BVP 2004]
26		(d) C_2H_2 and CH_3COOH
26.		ction with $H_gSO_4 + H_2SO_4$ ion gives acetic acid. X is[MP PI (b) C_2H_4
27.		(d) $C_4 H_6$ alcium carbide react with
	heavy water (a) C_2D_2	[CPMT 1999] (b) <i>CaD</i> ₂
~ 0	(c) CaD_2O	(d) CD_2
28.		asiest with [MP PMT 2000]
		(b) $ClCH = CHCl$
29.	(c) $CH_3 - CH = CH_2$ Identify the species X in	
2y.	Propene $+ O$ (conc. acidic <i>KN</i>	
	(a) Acetone	(b) Acetaldehyde
	(c) Isopropanol	(d) Acetic acid
30.	· - 1	
	(a) Meta	(b) Para
31.	(c) Ortho Which of the following	(d) Odd position is formed as a result of
، د ن		penzene in the body of the
	(a) Acrutic acid	[Manipal MEE 1995]
	(a) Acrylic acid (c) Maleic acid	(b) Cinnamic acid (d) Gluconic acid
32.		
	-	[CPMT 1979; JIPMER 2002]
	(a) Methyl bromide	(b) Ethyl bromide
22	-	(d) Ethylidene bromide cting group which is
33.	deactivating in nature is (a) $-NH_2$	
	(c) $-X$ (halogens)	
34.	Which kind of isomerism (a) Geometrical	

35.	(c) Position In presence of lig	(d) None of these ht toluene on reaction with		Reason :	It has electro
	chlorine gives		_		
	(a) Benzoyl chloride	[RPET 1999] e (b) Ortho chlorotoluene	5۰	Assertion :	CH_4 d
	•	ene (d) Benzyl chloride		Reason :	dark. Chlorin
6.		monoxide and water is heated		Reason .	sunligh
	at high temperatur	re, which of the following is	6.	Assertion :	Alkyl t
	formed				Friedel
	(a) $C_4 H_8 O_2$	[AIIMS 2000] (b) C_2H_5COOH			benzen
	(a) $C_4 H_8 O_2$ (c) $CH_3 COOH$			Reason :	Alkyl h
_	-	-	7.	Assertion :	acyl ha 2-Brom
87.	Compound $C_6 H_{12}$ is		<i>/</i> •	1350111011 .	sodium
	(a) Aliphatic satura	_			butene
	(b) Alicyclic comport(c) Aromatic comport			Reason :	1-Buter
	(d) Heterocyclic con		0	A	butene.
8.	Identify Z in the fol	-	8.	Assertion :	Styrene 2-brom
		$\xrightarrow{\text{Hydrolysis}} Y \xrightarrow{Na_2CO_3} Z$		Reason :	Benzyl
					alkyl ra
		[AIIMS 1983; RPMT 1999]	9.	Assertion :	Melting
	(a) $C_2 H_5 I$	(b) C_2H_5OH		Deces	than pr
	(c) <i>CHI</i> ₃	(d) CH_3CHO	10.	Reason : Assertion :	It is cal Iodinat
9.	<i>n</i> -pentane and iso p	entane can be distinguished by	10.	Reason :	Iodinat
	(a) <i>Br</i> ₂	[BVP 2004] (b) <i>O</i> ₃		Reuson .	present
	-	-	11.	Assertion :	Isobuta
_	(c) conc. H_2SO_4	(d) $KMnO_4$			gives te
0.	$CH \equiv CH + HBr \to X,$	-		Reason :	Oxidisi
	(a) Ethylene bromic	-	40	A	alkanes
	(a) Ethylene bromio(c) Bromo ethane	(d) Ethyledine bromide	12.	Assertion :	Haloge
	•	-	12.		Haloge: catalys
	(c) Bromo ethane	(d) Ethyledine bromide	12.	Assertion : Reason :	Haloge
	(c) Bromo ethane	-	12. 13.		Haloger catalys Haloger radical Neoper
	(c) Bromo ethane	(d) Ethyledine bromide		Reason : Assertion :	Haloge catalys Haloge radical Neoper monost
	(c) Bromo ethane	(d) Ethyledine bromide	13.	Reason : Assertion : Reason :	Haloger catalys Haloger radical Neoper monosu
	(c) Bromo ethane	(d) Ethyledine bromide ion & Reason For ANMS Aspirants		Reason : Assertion :	Haloger catalys Haloger radical Neopen Meopen Freezin
	(c) Bromo ethane (c) Bromo ethane Assertion : 1-But	(d) Ethyledine bromide	13.	Reason : Assertion : Reason :	Haloge catalys Haloge radical Neoper monosu Neoper Freezin more th
•	(c) Bromo ethane Assert Assertion : 1-But the pr	(d) Ethyledine bromide ON & Reason For ANMS Aspirants ene on reaction with HBr in resence of a peroxide produces mo-butane.	13.	Reason : Assertion : Reason : Assertion :	Haloger catalys Haloger radical Neoper monosu
	(c) Bromo ethane Assertion : 1-But the pu 1-broi Reason : It i	(d) Ethyledine bromide ion & Reason For AIIMS Aspirants ene on reaction with HBr in resence of a peroxide produces mo-butane. nvolves the free radical	13.	Reason : Assertion : Reason : Assertion :	Haloger catalys Haloger radical Neoper Freezin more th Increas increas Knockin
	(c) Bromo ethane Assertion : 1-But the pu 1-broi Reason : It i	(d) Ethyledine bromide ion & Reason For ANMS Aspirants ene on reaction with HBr in resence of a peroxide produces mo-butane. nvolves the free radical anism.	13. 14.	Reason:Assertion:Reason:Assertion:Assertion:	Haloger catalys Haloger radical Neopen monosu Neopen Freezin more th Increas increas Knockin the eng
	(c) Bromo ethane Assertion : 1-But the pu 1-broi Reason : It i mech	(d) Ethyledine bromide ion & Reason For ANMS Aspirants ene on reaction with HBr in resence of a peroxide produces mo-butane. nvolves the free radical anism. [IIT-JEE (Screening) 2000]	13. 14.	Reason:Assertion:Reason:Assertion:Reason:	Haloger catalys Haloger radical Neopen Freezin more th Increas increas Knockin the eng Fuel
	(c) Bromo ethane Assertion : 1-But the pr 1-broi Reason : It i mech Assertion : Addit	(d) Ethyledine bromide ion & Reason For AIIMS Aspirants ene on reaction with HBr in resence of a peroxide produces mo-butane. nvolves the free radical anism. [IIT-JEE (Screening) 2000] ion of Br ₂ to 1-butene gives	13. 14. 15.	Reason:Assertion:Reason:Reason:Assertion:Assertion:Reason:	Haloger catalys Haloger radical Neoper Freezin more th Increas increas Knockin the eng Fuel propert
	(c) Bromo ethane Assertion : 1-But the pu 1-broi Reason : It i mech Assertion : Addit two o	(d) Ethyledine bromide ion & Reason For ANME Aspirants ene on reaction with HBr in resence of a peroxide produces mo-butane. nvolves the free radical anism. [IIT-JEE (Screening) 2000] ion of Br ₂ to 1-butene gives ptical isomers.	13. 14.	Reason:Assertion:Reason:Assertion:Assertion:	Haloger catalys Haloger radical Neoper monosu Neoper Freezin more th Increas increas Knockin the eng Fuel propert The pro
	(c) Bromo ethane Assertion : 1-But the pu 1-broi Reason : It i mech Assertion : Addit two o Reason : The	(d) Ethyledine bromide ion & Reason For AIIMS Aspirants ene on reaction with HBr in resence of a peroxide produces mo-butane. nvolves the free radical anism. [IIT-JEE (Screening) 2000] ion of Br ₂ to 1-butene gives	13. 14. 15.	Reason:Assertion:Reason:Assertion:Assertion:Reason:Assertion:	Haloger catalys Haloger radical Neopen Freezin more th Increas increas Knockin the eng Fuel propert The pro- solubili
	(c) Bromo ethane Assertion : 1-But the pr 1-broi Reason : It i mech Assertion : Addit two o Reason : The asymi Assertion : Cyclo	(d) Ethyledine bromide iON & Reason For ANMS Aspirants ene on reaction with HBr in resence of a peroxide produces mo-butane. nvolves the free radical anism. [IIT-JEE (Screening) 2000] ion of Br ₂ to 1-butene gives ptical isomers. product contains one metric carbon. [IIT 1998] butane is less stable than	13. 14. 15. 16.	Reason:Assertion:Reason:Assertion:Assertion:Assertion:Assertion:Assertion:Assertion:	Haloger catalys Haloger radical Neoper monosu Neoper Freezin more th Increas increas Knockin the eng Fuel propert The pro
-	(c) Bromo ethane Assertion : 1-But the pr 1-broi Reason : It i mech Assertion : Addit two o Reason : The asymi Assertion : Cyclo cyclog	(d) Ethyledine bromide ion & Reason For ANMS Aspirants and peroxide produces mo-butane. INT-JEE (Screening) 2000] ion of Br ₂ to 1-butene gives ptical isomers. product contains one metric carbon. [IIT 1998] butane is less stable than pentane	13. 14. 15.	Reason:Assertion:Reason:Assertion:Assertion:Reason:Assertion:	Haloger catalys Haloger radical Neoper monosu Neoper Freezin more th Increas increas Knockin the eng Fuel propert The pro solubili Alkenes 2-Butar
2.	(c) Bromo ethane Assertion : 1-But the pu 1-broi Reason : It i mech Assertion : Addit two o Reason : The asymi Assertion : Cyclo cyclog Reason : Prese	(d) Ethyledine bromide ion & Reason For ANME Aspirants or ANME Aspirants ene on reaction with HBr in resence of a peroxide produces mo-butane. nvolves the free radical anism. [IIT-JEE (Screening) 2000] ion of Br ₂ to 1-butene gives ptical isomers. product contains one metric carbon. [IIT 1998] butane is less stable than pentane nce of bent bonds causes "loss	13. 14. 15. 16.	Reason:Assertion:Reason:Assertion:Assertion:Assertion:Assertion:Assertion:Assertion:	Haloger catalys Haloger radical Neopen Freezin more th Increas increas Knockin the eng Fuel propert The pro- solubili Alkenes
1. 2. 3.	(c) Bromo ethane Assertion : 1-But the pu 1-broid Reason : It i mech Assertion : Addit two o Reason : The asymit Assertion : Cyclo cyclog Reason : Prese of ort	(d) Ethyledine bromide ion & Reason For ANMS Aspirants and peroxide produces mo-butane. INT-JEE (Screening) 2000] ion of Br ₂ to 1-butene gives ptical isomers. product contains one metric carbon. [IIT 1998] butane is less stable than pentane	13. 14. 15. 16.	Reason:Assertion:Reason:Assertion:Assertion:Assertion:Assertion:Assertion:	Haloger catalys Haloger radical Neopen monosu Neopen Freezin more th Increas increas Knockin the eng Fuel propert The pro- solubili Alkenes 2-Butar gives 1-

			Hydrocarbon 1137
	Reason	:	It has a cyclic, delocalised 6π electrons.
•	Assertion	:	[AIIMS 1995] CH_4 does not react with Cl_2 in dark.
	Reason	:	Chlorination of CH_4 takes place in sunlight. [AIIMS 2001]
•	Assertion	:	Alkyl benzene is not prepared by Friedel-Crafts alkylation of benzene.
	Reason	:	Alkyl halides are less reactive than acyl halides.[AIIMS 2003]
•	Assertion	:	2-Bromobutane on reaction with sodium ethoxide in ethanol gives 1- butene as a major product. [AIIMS 2004]
	Reason	:	1-Butene is more stable than 2- butene.
•	Assertion	:	Styrene on reaction with <i>HBr</i> gives 2-bromo-2- phenyl-ethane.
		:	Benzyl radical is more stable than alkyl radical.[AIIMS 2004]
•	Assertion	:	Melting point of <i>n</i> -butane is higher than propane.
	Reason	:	It is called oscillation effect.
) .	Assertion	:	Iodination of alkanes is reversible.
	Reason	:	Iodination is carried out in presence of iodic acid.
ι.	Assertion	:	Isobutane on oxidation with $KMnO_4$
			gives tert-butyl alcohol.
	Reason	:	Oxidising agents have no effect on alkanes.
2.	Assertion	:	Halogenation of alkanes is catalysed by tetraethyl lead.
	Reason	:	Halogenation proceeds through free radical mechanism.
3.	Assertion	:	Neopentane forms only one monosubstituted compound.
	Reason	:	Neopentane has high bond energy.
4.	Assertion	:	Freezing point of neopentane is more than <i>n</i> -pentane.
	Reason	:	Increase in Van der Waals forces increases freezing point.
5.	Assertion	:	Knocking lowers the efficiency of the engine.
	Reason	:	Fuel with minimum knocking property is preferred.
5.	Assertion	:	The presence of Ag^+ enhances the solubility of alkenes in water.
	Reason	:	Alkenes are weakly polar in nature.
7.	Assertion		2-Butanol on heating with H_2SO_4
	Reason	:	gives 1-butene and 2-butene. Dehydration of 2-butanol follows saytzeff rule.

18.	Assertion :	Ethene on treating with Br_2 in		Reas			Nitroso group is activating group. Benzene reacts with <i>CH</i> ₃ <i>COCl</i> to					
		presence of <i>NaCl</i> forms	30.	Assei	rtion :						CH_3CC	OCI to
		CH_2ClCH_2Br and $CH_2Br - CH_2 - Br$.		Deee	~ ~ ~		give ch Chlorin				ala atra	onhilia
	Reason :	This addition involves the formation of free radicals.		Reas	on :		substit				electi	ophilic
19.	Assertion :	Straight chain alkanes have very	31.	Assei	rtion :		Conjug	-				0
	_	low octane number.					number of carbon atoms is k as annulenes.				known	
	Reason :	Quality of gasoline is measured in terms of octane number.		Reason :			Genera			of a	nnule	nes is
20.	Assertion :	Corey-House reaction can be used					(CH = C					
		to prepare both symmetrical and	32.	Assei	rtion :	:	Tropyli	um o	cation	is	aroma	atic in
	Reason :	unsymmetrical alkanes. The reaction involves the					nature					
	Reason .	interaction between lithium dialkyl					$\left \right \geq$	+				
		copper with an alkyl halide both of										
		which may contain even or odd number of carbon atoms.		Reas	on :		The on					
21.	Assertion :	All the hydrogen atoms in					its aroi structu		behav	/iour	1S 1ts	planar
		$CH_2 = C = CH_2$ lie in one plane.	33.	Assei	rtion :		[10] A		ene i	s no	nt ar	omatic
	Reason :	All the carbon atoms in it are sp^2	33.	115501			though					
		hybridized.					of π -el	lectro	ns.			
22.	Assertion :	Propene reacts with <i>HBr</i> in		Reas	on :		Steric i					
		presence of benzoyl peroxide to yield 2-bromopropane.	24	Assei	rtion ·		hydrog Rates o				-	
	Reason :	In presence of peroxide, the	54.	110001			hexade					
		addition of <i>HBr</i> to propene follows		Reas	on :	:	C-H		d is	stro	onger	than
		ionic mechanism.					$C - D \mathbf{b}$					_
23.	Assertion :	Acetylene reacts with sodamide to evolve H_2 gas.	35.	Assei	rtion :		Cyclolp more st					much
	Reason :	Acetylene is a weaker acid than ammonia.		Reas	on :	:	Cyclopentadienyl anion is aromatic in character.					
24.	Assertion :	Aryl halides are less reactive										
		towards substitution of halogen			(7						
	Reason :	atom. Halogens are <i>o</i> , <i>p</i> – directing in			/	4	ns	\٨/	er	S		
	Reason .	nature.					110	• •		U		
25.	Assertion :	Benzene is a solvent for the Friedel										
		Craft's alkylation of bromobenzene.				-						
	Reason :	Friedel Craft's reaction is used to introduced on alkyl or acyl group in	_	_	_	_	AII	kane	_	_	_	_
		benzene nucleus.	1	d	2	а	3	а	4	а	5	b
26.	Assertion :	Benzene removes a butter stain	6	с	7	b	8	а	9	d	10	с
	_	from a table cloth.	11	d	12	а	13	с	14	d	15	b
	Reason :	Butter has an affinity towards benzene.	16	а	17	b	18	d	19	b	20	b
27.	Assertion :	Nitration of toluene is easier than	21	b	22	b	23	а	24	b	25	a
		benzene.	26	d	27	с	28	с	29	d	30	с
	Reason :	The methyl group in toluene is electron-releasing.	31	а	32	а	33	d	34	a	35	а
28.	Assertion :	Benzene forms benzene sulphonic	36	а	37	d	38	а	39	d	40	C
		acid with fuming H_2SO_4 at high	41	b	42	d	43	d	44	a	45	b
		temperature.	46	d	47	с	48	d	49	а	50	с
	Reason :	The attacking species is SO_3 .	51	d	52	а	53	а	54	с	55	а
29.	Assertion :	Activating groups are electron donors.	56	d	57	b	58	d	59	b	60	а

61 b 62 a 63 b 64 c 65 c 66 b 67 c 68 b 69 d 70 c 71 b 72 a 73 c 74 c 75 b 76 c 77 c 78 c 79 a 80 c 81 c 82 a 83 d 84 a 85 b 86 a 87 a 88 d 89 a 90 a 91 a 92 b 93 c 94 a 95 c 96 b 97 a 98 d 99 a 100 d 101 c 102 a 103 a 104 b 105 d 106 b 107 d 108 c 109 d 110 b 111 a 112 b										
71 b 72 a 73 c 74 c 75 b 76 c 77 c 78 c 79 a 80 c 81 c 82 a 83 d 84 a 85 b 86 a 87 a 88 d 89 a 90 a 91 a 92 b 93 c 94 a 95 c 96 b 97 a 98 d 99 a 100 d 101 c 102 a 103 a 104 b 105 d 106 b 107 d 108 c 109 d 110 b 111 a 112 b 113 d 114 b 115 d 116 d 117 d 118 c 119 c 120 c 121 c 122 <td< td=""><td>61</td><td>b</td><td>62</td><td>a</td><td>63</td><td>b</td><td>64</td><td>с</td><td>65</td><td>C</td></td<>	61	b	62	a	63	b	64	с	65	C
76 c 77 c 78 c 79 a 80 c 81 c 82 a 83 d 84 a 85 b 86 a 87 a 88 d 89 a 90 a 91 a 92 b 93 c 94 a 95 c 96 b 97 a 98 d 99 a 100 d 101 c 102 a 103 a 104 b 105 d 106 b 107 d 108 c 109 d 110 b 111 a 112 b 113 d 114 b 115 d 116 d 117 d 118 c 119 c 120 c 121 c 122 b 123 a 124 d 125 c 126 a 127	66	b	67	c	68	b	69	d	70	c
81 c 82 a 83 d 84 a 85 b 86 a 87 a 88 d 89 a 90 a 91 a 92 b 93 c 94 a 95 c 96 b 97 a 98 d 99 a 100 d 101 c 102 a 103 a 104 b 105 d 106 b 107 d 108 c 109 d 110 b 111 a 112 b 113 d 114 b 115 d 116 d 117 d 118 c 119 c 120 c 121 c 122 b 123 a 124 d 125 c 126 a 127 a 128 b 129 b 130 c 131 a 132	71	b	72	a	73	c	74	c	75	b
86 a 87 a 88 d 89 a 90 a 91 a 92 b 93 c 94 a 95 c 96 b 97 a 98 d 99 a 100 d 101 c 102 a 103 a 104 b 105 d 106 b 107 d 108 c 109 d 110 b 111 a 112 b 113 d 114 b 115 d 116 d 117 d 118 c 119 c 120 c 121 c 122 b 123 a 124 d 125 c 126 a 127 a 128 b 129 b 130 c 131 a 132 a 133 a 134 b 135 b 136 c 137	76	C	77	C	78	C	79	а	80	C
91 a 92 b 93 c 94 a 95 c 96 b 97 a 98 d 99 a 100 d 101 c 102 a 103 a 104 b 105 d 106 b 107 d 108 c 109 d 110 b 111 a 112 b 113 d 114 b 115 d 116 d 117 d 118 c 119 c 120 c 121 c 122 b 123 a 124 d 125 c 126 a 127 a 128 b 129 b 130 c 131 a 132 a 133 a 134 b 135 b 136 c 137 a 138 c 139 a 140 c 141 a <t< td=""><td>81</td><td>C</td><td>82</td><td>a</td><td>83</td><td>d</td><td>84</td><td>a</td><td>85</td><td>b</td></t<>	81	C	82	a	83	d	84	a	85	b
96 b 97 a 98 d 99 a 100 d 101 c 102 a 103 a 104 b 105 d 106 b 107 d 108 c 109 d 110 b 111 a 112 b 113 d 114 b 115 d 111 a 112 b 113 d 114 b 115 d 116 d 117 d 118 c 119 c 120 c 121 c 122 b 123 a 124 d 125 c 126 a 127 a 128 b 129 b 130 c 131 a 132 a 133 a 134 b 135 b 136 c 137	86	a	87	a	88	d	89	a	90	a
101 c 102 a 103 a 104 b 105 d 106 b 107 d 108 c 109 d 110 b 111 a 112 b 113 d 114 b 115 d 116 d 117 d 118 c 119 c 120 c 121 c 122 b 123 a 124 d 125 c 126 a 127 a 128 b 129 b 130 c 131 a 132 a 133 a 134 b 135 b 136 c 137 a 138 c 139 a 140 c 141 a 142 b 143 a 144 c 145 b 146 c 147 d 148 c 149 d 150 b 151 a	91	a	92	b	93	C	94	a	95	C
106 b 107 d 108 c 109 d 110 b 111 a 112 b 113 d 114 b 115 d 116 d 117 d 118 c 119 c 120 c 121 c 122 b 123 a 124 d 125 c 126 a 127 a 128 b 129 b 130 c 131 a 132 a 133 a 134 b 135 b 136 c 137 a 138 c 139 a 140 c 141 a 142 b 143 a 144 c 145 b 146 c 147 d 148 c 149 d 150 b 151 a 152 c 153 a 154 b 155 ab 156 c <td>96</td> <td>b</td> <td>97</td> <td>a</td> <td>98</td> <td>d</td> <td>99</td> <td>a</td> <td>100</td> <td>d</td>	96	b	97	a	98	d	99	a	100	d
111 a 112 b 113 d 114 b 115 d 116 d 117 d 118 c 119 c 120 c 121 c 122 b 123 a 124 d 125 c 126 a 127 a 128 b 129 b 130 c 131 a 132 a 133 a 134 b 135 b 136 c 137 a 138 c 139 a 140 c 141 a 142 b 143 a 144 c 145 b 146 c 147 d 148 c 149 d 150 b 151 a 152 c 153 a 154 b 155 ab 156 c 157 b 158 a 159 a 160 c 161 e <td>101</td> <td>C</td> <td>102</td> <td>a</td> <td>103</td> <td>a</td> <td>104</td> <td>b</td> <td>105</td> <td>d</td>	101	C	102	a	103	a	104	b	105	d
116 d 117 d 118 c 119 c 120 c 121 c 122 b 123 a 124 d 125 c 126 a 127 a 128 b 129 b 130 c 131 a 132 a 133 a 134 b 135 b 136 c 137 a 138 c 139 a 140 c 141 a 142 b 143 a 144 c 145 b 146 c 147 d 148 c 149 d 150 b 151 a 152 c 153 a 154 b 155 ab 156 c 157 b 158 a 159 a 160 c 161 e 162 c 163 a 164 c 165 b 166 d <td>106</td> <td>b</td> <td>107</td> <td>d</td> <td>108</td> <td>C</td> <td>109</td> <td>d</td> <td>110</td> <td>b</td>	106	b	107	d	108	C	109	d	110	b
121 c 122 b 123 a 124 d 125 c 126 a 127 a 128 b 129 b 130 c 131 a 132 a 133 a 134 b 135 b 136 c 137 a 138 c 139 a 140 c 141 a 142 b 143 a 144 c 145 b 146 c 147 d 148 c 149 d 150 b 151 a 152 c 153 a 154 b 155 ab 156 c 157 b 158 a 159 a 160 c 161 e 162 c 163 a 164 c 165 b 166 d 167 d 168 c 169 c 170 c	111	а	112	b	113	d	114	b	115	d
126 a 127 a 128 b 129 b 130 c 131 a 132 a 133 a 134 b 135 b 136 c 137 a 138 c 139 a 140 c 141 a 142 b 143 a 144 c 145 b 146 c 147 d 148 c 149 d 150 b 151 a 152 c 153 a 154 b 155 ab 156 c 157 b 158 a 159 a 160 c 161 e 162 c 163 a 164 c 165 b 166 d 167 d 168 c 169 c 170 c	116	d	117	d	118	C	119	C	120	C
131 a 132 a 133 a 134 b 135 b 136 c 137 a 138 c 139 a 140 c 141 a 142 b 143 a 144 c 145 b 146 c 147 d 148 c 149 d 150 b 151 a 152 c 153 a 154 b 155 ab 156 c 157 b 158 a 159 a 160 c 161 e 162 c 163 a 164 c 165 b 166 d 167 d 168 c 169 c 170 c	121	C	122	b	123	a	124	d	125	C
136 c 137 a 138 c 139 a 140 c 141 a 142 b 143 a 144 c 145 b 146 c 147 d 148 c 149 d 150 b 151 a 152 c 153 a 154 b 155 ab 156 c 157 b 158 a 159 a 160 c 161 e 162 c 163 a 164 c 165 b 166 d 167 d 168 c 169 c 170 c	126	a	127	a	128	b	129	b	130	C
141 a 142 b 143 a 144 c 145 b 146 c 147 d 148 c 149 d 150 b 151 a 152 c 153 a 154 b 155 ab 156 c 157 b 158 a 159 a 160 c 161 e 162 c 163 a 164 c 165 b 166 d 167 d 168 c 169 c 170 c	131	a	132	a	133	a	134	b	135	b
146 c 147 d 148 c 149 d 150 b 151 a 152 c 153 a 154 b 155 ab 156 c 157 b 158 a 159 a 160 c 161 e 162 c 163 a 164 c 165 b 166 d 167 d 168 c 169 c 170 c	136	C	137	a	138	C	139	a	140	C
151 a 152 c 153 a 154 b 155 ab 156 c 157 b 158 a 159 a 160 c 161 e 162 c 163 a 164 c 165 b 166 d 167 d 168 c 169 c 170 c	141	a	142	b	143	a	144	C	145	b
156 c 157 b 158 a 159 a 160 c 161 e 162 c 163 a 164 c 165 b 166 d 167 d 168 c 169 c 170 c	146	C	147	d	148	C	149	d	150	b
161 e 162 c 163 a 164 c 165 b 166 d 167 d 168 c 169 c 170 c	151	a	152	C	153	a	154	b	155	ab
166 d 167 d 168 c 169 c 170 c	156	C	157	b	158	а	159	а	160	C
	161	е	162	c	163	а	164	C	165	b
	166	d	167	d	168	c	169	с	170	c
171 a 172 d 173 b 174 b 175 c	171	a	172	d	173	b	174	b	175	c

Alkene

1	C	2	b	3	a	4	b	5	a
6	d	7	а	8	d	9	b	10	d
11	d	12	а	13	а	14	C	15	b
16	а	17	d	18	d	19	b	20	C
21	b	22	d	23	c	24	b	25	C
26	а	27	b	28	d	29	d	30	d
31	c	32	d	33	C	34	а	35	C
36	c	37	а	38	b	39	ac	40	b
41	c	42	а	43	C	44	c	45	а
46	С	47	d	48	d	49	а	50	C
51	а	52	d	53	C	54	а	55	b
56	с	57	d	58	а	59	d	60	b
61	c	62	а	63	b	64	b	65	b
66	d	67	c	68	a	69	c	70	c
71	С	72	С	73	C	74	d	75	C
76	d	77	а	78	d	79	C	80	b
81	С	82	d	83	C	84	а	85	С
86	С	87	b	88	а	89	С	90	С
91	b	92	C	93	b	94	b	95	b

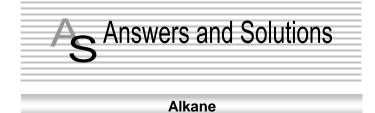
96	b	97	а	98	b	99	b	100	b
101	b	102	C	103	с	104	b	105	b
106	a	107	c	108	а	109	a	110	с
111	C	112	а	113	а	114	b	115	d
116	d	117	a	118	а	119	а	120	b
121	b	122	C	123	с	124	b	125	C
126	С	127	b	128	b	129	a	130	а
131	C	132	b,d	133	а	134	b	135	C
136	C	137	С	138	b	139	а	140	d
141	b	142	C	143	d	144	а	145	d
146	а	147	d	148	abc	149	а	150	а
151	а	152	b	153	С	154	b	155	а
156	C	157	b	158	d	159	b	160	С
161	d	162	b	163	b	164	a	165	a
166	a	167	b	168	с	169	b	170	b
171	a	172	С	173	С	174	a		

Alkyne

1	C	2	C	3	C	4	С	5	b
6	а	7	а	8	а	9	d	10	C
11	а	12	С	13	d	14	а	15	a
16	d	17	d	18	b	19	С	20	c
21	d	22	b	23	d	24	С	25	c
26	d	27	а	28	d	29	а	30	d
31	а	32	C	33	C	34	а	35	а
36	а	37	C	38	d	39	С	40	c
41	а	42	C	43	а	44	С	45	b
46	C	47	а	48	а	49	b	50	b
51	d	52	a	53	b	54	а	55	d
56	а	57	C	58	C	59	а	60	d
61	C	62	C	63	d	64	d	65	a
66	C	67	C	68	a	69	b	70	b
71	b	72	C	73	а	74	b	75	d
76	C	77	b	78	d	79	а	80	c
81	а	82	a	83	d	84	С	85	c
86	а	87	C	88	C	89	d	90	c
91	C	92	d	93	C	94	b	95	d
96	d	97	d	98	b	99	d	100	a
101	b	102	а	103	а	104	а	105	C

Aromatic hydrocarbon

1	С	2	d	3	с	4	с	5	a
6	b	7	C	8	b	9	а	10	c
11	b	12	b	13	а	14	а	15	а


16	d	17	a	18	b	19	b	20	a
21	C	22	а	23	b	24	C	25	C
26	d	27	C	28	a	29	C	30	b
31	d	32	b	33	b	34	c	35	d
36	C	37	b	38	b	39	a	40	a
41	а	42	C	43	а	44	b	45	C
46	d	47	d	48	a	49	a	50	d
51	b	52	b	53	b	54	C	55	C
56	C	57	C	58	C	59	b	60	d
61	е	62	C	63	C	64	b	65	b
66	a	67	d	68	C	69	b	70	C
71	b	72	C	73	а	74	a	75	a
76	b	77	d	78	а	79	C	80	d
81	d	82	b	83	b	84	b	85	a
86	C	87	b	88	а	89	d	90	a
91	b	92	C	93	a	94	b	95	a
96	d	97	d						

Critical Thinking Questions

1	a	2	a	3	c	4	b	5	C
6	C	7	a	8	а	9	a	10	С
11	а	12	b	13	d	14	b	15	d
16	d	17	c	18	a	19	d	20	а
21	b	22	b	23	С	24	b	25	а
26	a	27	a	28	d	29	d	30	а
31	b	32	d	33	С	34	a	35	d
36	b	37	b	38	C	39	d	40	b

Assertion and Reason

1	а	2	а	3	c	4	а	5	b
6	b	7	d	8	b	9	b	10	b
11	b	12	е	13	c	14	b	15	b
16	b	17	a	18	с	19	b	20	a
21	d	22	d	23	c	24	b	25	е
26	b	27	а	28	е	29	C	30	е
31	е	32	C	33	a	34	b	35	a

1. (d) $C_7 H_{16} (C_n H_{2n+2})$

3. (a) According to wurtz reaction. $2CH_3CH_2CH_2Br + 2Na \xrightarrow{\text{ether}} \rightarrow$

$$CH_3(CH_2)_4 CH_3 + 2NaBr$$

5. (b)
$$2CH_3COONa + 2H_2O$$
 Electolysis
Sodium acetate

6.

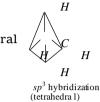
$$CH_3 - CH_3 + 2CO_2 + 2NaOH + H_2$$

(c)
$$Pb(C_2H_5)_4 \xrightarrow{\text{heat}} Pb + 4CH_3CH_2$$

Ethylradical
 $CH_2 - CH_2 + Pb \longrightarrow CH_2 = CH_2 + PbBr_2$
 $|$ Ethene Lead bromide
 $Br = Br$

As leaded gasoline burns, lead metal gets deposited in the engine which is removed by adding ethylene dibromide. The lead bromide is volatile and is carried off with the exhaust gases from the engine

9. (d) $C_2H_5I + 2Na + IC_2H_5 \xrightarrow{\text{Dry}} C_2H_5 - C_2H_5 + 2NaI$ Butane


10. (c)
$$(CH_3)_3 CH \xrightarrow{KMnO_4} (CH_3)_3 C - OH$$

tertiary butyl alcohol

13. (c)
$$RCl + 2Na + RCl \xrightarrow{Dry} 2NaCl + R - R$$

Ether Alkane

- 14. (d) *iso*-octane *i.e.* 2,2,4-trimethyl pentane has highest octane number.
- **17.** (b) With calculated amount of Grignard reagent, acetyl chloride forms ketones.

$$CH_3COCl + XMgCH_3 \rightarrow CH_3COCH_3 + Mg < Cl_X$$

18. (d) CH_4 is tetrahedral

- **22.** (b) Ethane is a saturated compound it can not be catalytically hydrogenated.
- **25.** (a) Branched hydrocarbons are more desirable because they are more volatile.
- **26.** (d) $CH_4 \xrightarrow{Cl_2} CH_3Cl \xrightarrow{Cl_2} CH_2Cl_2 \xrightarrow{Cl_2}$

 $CHCl_3 \xrightarrow{Cl_2} CCl_4$. Since this reaction takes place by free radical mechanism. Hence, there is a possibility of formation of ethane.

$$CH_3 + CH_3 \rightarrow CH_3 - CH_3$$

Methyl free radicals Ethane

28. (c) $Al_4C_3 + 6H_2O \rightarrow 3CH_4 + 2Al_2O_3$ Aluminium Aluminium Methane

31. (a)
$$C_2H_5O[H+CH_3] - Mg - Br \to CH_4 + Mg$$

- 32. (a) $CH_3I + 2H \xrightarrow{Zn/HCl} CH_4 + HI$ $CH_3I + 2Na + ICH_3 \xrightarrow{Dry} CH_3 - CH_3 + 2NaI$
- **36.** (a) Solvent for fat, oil, varnish and rubber
- **37.** (d) Synthetic dyes, drugs, perfumes all are made from coal tar.
- **38.** (a) In alkanes, hybridization is sp^3 . Hence bond angle is $109^{\circ}.5'$.

39. (d)
$$2CH_3COONa + 2H_2O \xrightarrow{\text{Electrolysis}}$$

$$CH_3 - CH_3 + 2CO_2 + 2NaOH + H_2$$

41. (b)
$$CH_3 - CH_2 - COOH + 6HI \xrightarrow{\text{Red } P}$$

Propanoic acid

$$CH_3 - CH_2 - CH_3 + 2H_2O + 3I_2$$

Propane

42. (d)
$$C_2H_5I + 2Na + C_3H_7I \xrightarrow{\text{Dry}} C_2H_5 - C_3H_7 + 2NaI$$

 $C_2H_5I + 2Na + C_2H_5I \xrightarrow{\text{Dry}} C_2H_5 - C_2H_5 + 2NaI$
 $C_3H_7I + 2Na + C_3H_7I \xrightarrow{\text{Dry}} C_3H_7 - C_3H_7 + 2NaI$
Hexane

48. (d) Cyclohexane, is immiscible and lighter than water. Hence, floats on the surface of water.

- **49.** (a) Methane is the main component of natural gas.
- **53.** (a) *Pt./Ni* is used in catalytic reduction of hydrocarbon.
- **55.** (a) Fractional distillation is used because the difference between the boiling point of different component is less.

56. (d)
$$CH_3 - CH_2 - Cl + KOH \rightarrow CH_2 = CH_2 + KCl + H_2O$$

(alc.) Ethene

In presence of alc. *KOH* dehydrohalogenation occur and alkene is formed.

57. (b) Liquefied petroleum gas is a mixture of ethane, propane and butane. The main component is butane.

58. (d)
$$CH_4 + O_2 \xrightarrow{\Delta} C + 2H_2O$$

supply
of air

It contains 98-99% carbon. It is used in making black ink, paints and shoe polishes.

- **59.** (b) Tetraethyl lead is anti-knocking agent it increases the octane no. of the fuel.
- **60.** (a) *n*-hexane because it is linear therefore strong Vander Waal force.
- **61.** (b) Knocking Sudden and irregular burning of the fuel mixture causing jerks against the piston and gives rise to violent sound. This is known as knocking.
- **63.** (b) *n*-octane
 - Boiling point depends on molecular mass. Greater the molecular mass higher will be the boiling point.
 - Boiling point also depends on the structure. If two compounds have same molecular mass then straight chain or linear compound has higher boiling point.

64. (c)
$$2CH_3COOK + 2H_2O \xrightarrow{\text{Electrolysis}}$$

Potassium acetate $CH_2 - CH_2 + 2CO_2 + 2KOH + H_2$

$$CH_3 - CH_3 + 2CO_2 + 2KOH + H_2$$

Anode Cathode

65. (c) Ethane does not decolourise bromine solution because it is a saturated compound.

66. (b)
$$CH_3COONa + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$$

Sodium acetate Methane

68. (b) Octane number is related to the percentage of *iso*-octane since *iso*-octane is 81% hence octane number is 81%.

70. (c)
$$2CH_3COOK + 2H_2O \xrightarrow{\text{Electrolyss}}$$

$$\underbrace{2CO_2 + CH_3 - CH_3 + 2KOH + H_2}_{\text{Anode}}$$

71. (b)
$$CH_3 - C = CH_2 + HCl \rightarrow CH_3 - C - CH_3$$

 $CH_3 - CH_3 - CH_3$
 $CH_3 - CHCl_2$

- (a) Boiling point of alkanes increases with the 72. number of carbon atoms because surface area increases which increases the Vander Waal forces.
- (c) The enthalpy of combustion *i.e.*, ΔH is always 74. negative. It means combustion is an exothermic reaction.

78. (c)
$$CH_3CH_2COONa + NaOH \xrightarrow{CaO} C_2H_6 + Na_2CO_3$$

~ ~

79. (a)
$$CH_3 - CH_2 - CH_2 - CH_3 + Br_2 \xrightarrow{\text{Light}}_{130^{\circ}C}$$

 $CH_3 - CH - CH_2 - CH_3 + CH_3 - CH_2 - CH_2 - CH_2 - Br$
 Br
2-Bromo butane
(Minor)

2-Bromobutane is the main product because

 2^{o} carbonium ion is more stable than 1^{o} .

80. (c)
$$CH_3CH_2CH_2CH_3 \xrightarrow{Cracking}_{n-\text{Butane}}$$

$$CH_4 + CH_3 - CH = CH_2$$

- (d) Anti-knocking properties of fuel increases. 83.
- (a) $C_6H_{14} \xrightarrow{\Delta} C_4H_{10} + C_2H_2$ Hexane Ethene Ethene Gas 84.
- 87. (a) Compounds having active hydrogen $(ROH, H_2O, R - NH_2)$ can form alkane when treated with Grignard's reagent

$$CH_3CH_2OH + CH_3M_gBr \rightarrow CH_4 + M_g < \stackrel{Br}{OCH_2CH_3}$$

- (a) It is not possible to prepare CH_4 by wurtz 91. reaction.
- (b) Octane number is the percentage by volume of 92. iso-octane in the mixture of iso-octane and *n*heptane which has the same antiknocking properties as the fuel under examination. Given fuel (25% *n*-heptane +75% iso-octane) Hence, octane number = 75 (because iso octane is 75%)

93. (c)
$$CH_3 - CH_2 - CH_2 - Br \xrightarrow[Dehydro halogenation]{CH_3 - CH = CH_2 + HBA}$$

94. (a) % of hydrogen =
$$\frac{\text{Mass of hydrogen}}{\text{Mass of compound}} \times 100$$

$$CH_4 = \frac{4}{16} \times 100 = 25\%$$
 .

(c) Molecular mass can be obtained by the victor 95. mayer process

Molecular mass
$$=\frac{\text{Weight}}{Vml.} \times 22400$$

$$=\frac{11}{5600} \times 22400 = 44$$

97. (a)
$$CH_3 - CH - CH_2 - CH_3 + Zn \rightarrow Br Br$$

 $2,3 - dibromo - 3 - methyl pentane$

$$CH_{3}$$

$$CH_{3} - CH = C - CH_{2} - CH_{3} + ZnBr_{2}$$

$$HI + \bigvee_{Red P (Reduction)} Red P (Reduction)$$

$$CH_{3} - CH_{2} - CH - CH_{2} - CH_{3}$$

$$CH_{3}$$

$$3 - Methyl pentane$$

98. (d) Gasoline, kerosene oil, diesel

99. (a)
$$CH_3 - CH_2 - COONa \xrightarrow{\text{Soda lime}} CH_3 - CH_3$$

100. (d) Gasoline or petrol composition $C_7 - C_{12}$.

101. (c)
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Methane
 $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$
Ethene
All hydrocarbons saturated or unsaturated on
complete combustion always produce CO_2 and
 H_2O .

- 102. (a) Free rotation around carbon-carbon bond takes place easily in alkanes. Now ethane and hexachloroethane both are alkanes. But in hexachloroethane bulky chlorine atom hinders the rotation. Therefore least hindered rotation takes place in ethane.
- 103. (a) Hydrocarbons on complete oxidation produce CO_2 and water

$$CH_3 - CH_3 + 3\frac{1}{2}O_2 \rightarrow 2CO_2 + 3H_2O_2$$

104. (b)
$$C_{10}H_{22} \xrightarrow{900 K} C_4H_8 + C_6H_{14}$$

Decane CH_3

106. (b)
$$CH_3 - C - CH_3$$

Replaceable hydrogen atoms are present only on 4 primary carbon atoms. Hence, it gives only are monochloro Substituted product.

107. (d)
$$CH_3COONa + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$$

Sod. acetate
 $CH_3I + 2H \xrightarrow{Reduction} CH_4 + HI$
Iodomethan e
 $Al_4C_3 + 6H_2O \rightarrow 3CH_4 + 2Al_2O_3$
Aluminiumcarbide

108. (c) Acetylene reacts with ammonical cuprous chloride to form red ppt. of copper acetylide while methane and ethylene do not react (since they do not have acidic hydrogen) They come out from the bottle CH

$$I \equiv CH + 2[Cu(NH_3)_2]OH \rightarrow$$

$$Cu - C \equiv C - Cu + 4NH_3 + 2H_2O$$

 CH_4 + Ammonical $Cu_2Cl_2 \rightarrow$ No reaction

 C_2H_4 + Ammonical $Cu_2Cl_2 \rightarrow$ No reaction

- 110. (b) Alkanes do not give addition reactions because multiple bond is absent.
- **111.** (a) $C_6H_{14} \xrightarrow{Pyrolysis} C_2H_4 + C_4H_{10}$ Hexane Δ Ethene Butane

114.

113. (d) In gemdihalide both the halogen atoms are present on the same carbon atom while in vicdihalide both the halogen atoms are present on adjacent carbon atoms.

$$CH_{3} - CHBr_{2}$$
Gemdihalide
$$CH_{2} - CH_{2}$$

$$Br$$

$$Br$$

$$vic-dihalide$$

$$CH_{3} CH_{3}$$
(b)
$$H_{3}C - H_{2}C - C - C - CH_{3}$$

$$CH_{3} CH_{3}$$

$$CH_{3} CH_{3}$$

$$CH_{3} CH_{3}$$

$$CH_{3} CH_{3}$$

$$CH_{3}$$

$$H_{3}C - H_{2}C - H_{2}C - HC - CH_{3}$$

isopropyl group 2-methylpentane

$$CH_{3}CH_{3} \qquad CH_{3}$$

$$H_{3}C - H_{2}C - HC - C - CH_{3}H_{3}C - H_{2}C - C - CH_{2} - CH_{3}$$

$$H_{3}C - H_{2}C - HC - C - CH_{3}H_{3}C - H_{2}C - C - CH_{2} - CH_{3}$$

$$H_{3}C - H_{2}C - HC - C - CH_{3}H_{3}C - H_{2}C - C - CH_{2} - CH_{3}$$

$$H_{3}C - H_{2}C - HC - C - CH_{3}H_{3}C - H_{2}C - C - CH_{2} - CH_{3}$$

$$H_{3}C - H_{2}C - HC - C - CH_{3}H_{3}C - H_{2}C - C - CH_{2} - CH_{3}$$

$$H_{3}C - H_{2}C - HC - C - CH_{3}H_{3}C - H_{2}C - C - CH_{3}H_{3}C - H_{2}C - CH_{3}$$

- **116.** (d) All-butane, Ethane and Propane are possible in this reaction.
- **118.** (c) Formation of branches in the chain of C atoms C - C - C - Cstraightchain C - C - C - C

- 119. (c) Chlorination of alkane in photochomical reaction which takes place by free radical mechanism. Free radicals are formed by homolytic bond fission or homolysis.
- **120.** (c) Marsh gas, Natural gas and coal gas contains CH_4 but producer gas is a mixture of CO and N_2

$$2C + \underbrace{O_2 + 4N_2}_{\text{Coke}} \rightarrow \underbrace{2CO + 4N_2}_{\text{Air}} \xrightarrow{\text{Producer gas}}$$

- **123.** (a) Fractional distillation is based on the difference in the boiling point of different components.
- **124.** (d) Tetraethyl lead (TEL) is an anti-knocking compounds when mixed with petrol tend to improve the octane no. and therefore, decreases the knocking in the cylinder of the combustion engine.
- **128.** (b) Petrol sample 30% *n*-heptane + 70% *iso*-octane since *iso*-octane is 70%. Hence, octane no. is 70.

131. (a)
$$CH_3 - CH = CH_2 + H_2 \xrightarrow{Ni} CH_3 - CH_2 - CH_3$$

Propene Propane

132. (a) As the number of branches increases, surface area decreases, due to which Vander Waal

forces of attraction decreases. Hence, boiling point also decreases.

135. (b)

$$CH_{3}CH_{2}CH_{2}CH_{3} \xrightarrow{\text{Anhyd. AlCl}_{3}} CH_{3} - CH_{3} - CH_{3}$$

$$CH_{3} = CH_{3} - CH_{3}$$
iso butane
$$H_{3} = CH_{2} - Br + KOH \xrightarrow{\text{Dehydrohal ogenation}} H_{3}$$

$$CH_2 = CH_2 + KBr + H_2O$$

In alcoholic *KOH* alkoxide ions (*RO*⁻) are present which is a strong base. They abstract proton from β -carbon of alkyl halide and favours elimination reaction $ROH + KOH \rightarrow ROK + H_2O$ Alcohol Potassium alkoxide

$$ROK \rightarrow \frac{RO^{-}}{\text{Alkoxideion}} + K^{+}$$

$$RO^{-} + H - CH_{2} - CH_{2} - Br \rightarrow ROH + CH_{2} = CH_{2} + Br$$

$$RO^{-} + H - CH_{2} - CH_{2} - Br \rightarrow ROH + CH_{2} = CH_{2} + Br$$

137. (a) $Al_4C_3 + 6H_2O \rightarrow 3CH_4 + 2Al_2O_3$ Methane

138. (c) In C_2H_6 , C-C bond length is 1.54Å.

139.

(a)

$$R - COOK + 2H_2O \xrightarrow{\text{Electrolysis}} R - R + CO_2 + 2KOH + H_2$$

142. (b)
$$CH_3COONa + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$$

143. (a) 90

Cyclopropan Cyclopentane Cyclobutane

Cyclopropane with a bond angle of 60° is very strained and hence very reactive.

- 145. (b) Marsh gas mainly consists of methane.
- **146.** (c) $CH_3 Cl + 2H \xrightarrow{Zn/HCl} CH_4 + HCl$
- **149.** (d) Propane is a saturated compound. Ozonide is formed only by alkenes or alkynes

$$CH_2 = CH_2 + O_3 \rightarrow \bigcup_{\substack{CH_2 \\ O \\ Ethene \text{ ozoniele}}}^{O} O$$

$$CH = CH + O_3 \rightarrow \begin{array}{c} O \\ CH - CH \\ O - O \\ CH \\ O \\ O - O \\ CH \\ O \\ O \\ O \\ O$$

150. (b) $H - \overset{sp^2}{C} = \overset{sp^2}{C} - H$ sp^2 -hybridisation (trigonal $\overset{|}{H} \overset{|}{H} \overset{|}{H}$

planar).

- **151.** (a) $Ag C \equiv C Ag + 2HCl \rightarrow CH \equiv CH + 2AgCl$
- **152.** (c) Wurtz reaction

$$C_2H_5 - I + 2Na + I - C_2H_5 \xrightarrow{\text{Dry}} C_2H_5 - C_2H_5 + 2NaI$$

Butane

- **154.** (b) All the C-C bond are single bonds. Hence sp^3 -hybridization and tetrahedral structure.
- **155.** (a.b) $CH_3MgI + CH_3 CH_2 NH_2 \rightarrow$

$$CH_4 + CH_3 CH_2 NHMgI$$

$$CH_3MgI + C_2H_5OH \rightarrow CH_4 + C_2H_5OMgI$$

Alkyl group of Grignard's reagent is involved in the formation of alkane.

- **159.** (a) General formula of alkane $C_n H_{2n+2}$ (*n* = no. of atoms).
- **160.** (c) $CH_3Br + H_2 \xrightarrow{LiAlH_4} CH_4$ (methane)

$$\xrightarrow{Na} CH_3 - CH_3$$
 (Ethane)

161. (e) Photochemical chlorination of alkane take place by free radical mechanism which are possible by Homolysis of C - C bond $Cl = \frac{hv}{c} \rightarrow Cl^{\bullet} + Cl^{\bullet}$

$$Cl_2 \longrightarrow Cl + Cl$$

$$CH_3 - CH_3 + Cl^{\bullet} \rightarrow CH_3Cl^{\bullet} + CH_3$$

- **163.** (a) Producer gas CO and N_2
- 164. (c) Among alkanes, boiling point increase with increasing molecular weight. For isomeric alkanes straight chain alkanes have higher boiling point than the branched alkanes.
- **165.** (b) Graphite is a good conductor of heat of electricity.
- 166. (d) Among the isomeric alkanes, the normal isomer has a higher boiling point than the branched chain isomer. The greater the branching of the chain, the lower is the boiling point. The *n*-alkane have larger surface area in comparison to branched chain isomer (as the shape approaches that of a sphere in the branched chain isomers). Thus, intermolecular forces are weaker in branched chain isomers, there fore they have lower point in comparison to straight chain isomers.
- 167. (d) The octane numbers of Fuel can be improved by increasing the percentage of branched chain alkanes, alkenes and aromatic hydrocarbon. Thus octane number can be changed by isomerisation (reforming), alkylation and aromatisation (cyclisation) etc.
- **168.** (c) The approximate composition of gasoline is $C_6 C_{11}$ at boiling point 70-200°C and is used in motor fuel, dry cleaning, petrol gas etc.

169. (c)
$$CH_4 + O_2 \rightarrow CO_2 + 2H_2C$$

- **170.** (c) Straight chain olefins has highest knocking.
- **171.** (a) $Al_4C_3 + 12H_2O \rightarrow 3CH_4 + 4Al(OH)_3$

$$CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2$$

172. (d) Except 2,2 dimethyl butane rest compound contain 5 carbon i.e., pantane while 2,2 dimethyl butane contain 6 carbon i.e., Hexane *CH*₂

$$CH_3 - CH_2 - C - CH_3$$

173. (b)
$$H_3C - CH - CH_2 - CH_3 + Br_2 \longrightarrow$$

$$Br$$

$$|$$

$$H_{3}C - C - CH_{2} - CH_{3}$$

$$|$$

$$CH_{3}$$
Maior

$$CH_{3} CH_{3}$$

$$| |$$
174. (b) $H_{3}C - C - C - CH_{3} \xrightarrow{Cl_{2}}$

$$| |$$

$$H H$$

$$CH_{2}Cl CH_{3} CH_{3} CH_{3}$$

$$| | |$$

$$H_{3}C - C - C - CH_{3} + H_{3}C - C - C - CH_{3}$$

$$| | |$$

$$H H Cl H$$

175. (c)
$$C_2H_5Cl + H_2 \xrightarrow{Pd/C} C_2H_6 + HCl$$

This reaction is used for the preparation of pure alkanes.

Alkene

2. (b)
$$CH_2 - CH_2 + Zn \rightarrow CH_2 = CH_2 + Br_2$$

| | | Alkene
 $Br \quad Br$
3. (a) $CH_2 = CH_2 + Br_2 \xrightarrow{CCl_4} - CH_2 - CH_2$
 $Br \quad Br$
 $1, 2 - dibromo$
ethane
4. (b) $CH_2 = CH_2 \xrightarrow{HOCl} - CH_2 - CH_2 \xrightarrow{aq \, NaHCO_3} - CH_2 - CH_2 \xrightarrow{cH_2 - CH_2} - CH_2 - CH_2 \xrightarrow{cH_2 - CH_2} - CH_2 - CH_2$

 $CH_2 - OH_{Glycol}$

- (a) Alkenes are unsaturated hydrocarbon having double bond so generally gives addition reaction.
- **6.** (d) According to markownikoff's rule.
- 7.

14.

(a)

$$CH_{3} - CH_{2} - OH \xrightarrow{Conc. H_{2}SO_{4}} CH_{2} = CH_{2} + H_{2}O$$
8. (d)
$$CH_{3} - CH_{3} - CH_{3} \xrightarrow{KMnO_{4}} CH_{3} - CH_{3} - CH_{3} \xrightarrow{KMnO_{4}} CH_{3} - CH_{3} - CH_{3} \xrightarrow{CH_{3}} CH_{3} - CH_{3} \xrightarrow{CH_{3}} CH_{3} - CH_{3} \xrightarrow{CH_{3}} CH_{3$$

10. (d) $C_2H_5I + alc.KOH \rightarrow C_2H_4 + KI + H_2O$

12. (a)
$$CH_3 - CH_2 - Br + KOH \rightarrow CH_2 = CH_2 + KBr + H_2O$$

13. (a) Methane can not be obtained by Sabatier and Sendern's reaction because in this the product obtained contain minimum two carbon atoms.

$$CH_{2} = CH_{2} + H_{2} \xrightarrow{Ni} CH_{3} - CH_{3}$$

$$CH \equiv CH + 2H_{2} \xrightarrow{Ni} CH_{3} - CH_{3}$$

$$CH_{3}$$

$$(c) \quad CH_{3} - CH - C - CH_{3} \xrightarrow{H_{2}SO_{4}}$$

$$OH \quad CH_{3}$$

$$CH_{3} \xrightarrow{+} CH_{3} + OH^{-} \xrightarrow{\text{Methyl shift}} CH_{3} \xrightarrow{+} CH_{3} + OH^{-} \xrightarrow{\text{Methyl shift}} Rearrangem ent}$$

$$CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_{3}$$

$$CH_{3} - C = C - CH_{3} \leftarrow -H^{+} CH_{3} - CH - C - CH_{3}$$

$$2.3 - \text{dimethy} |-2 - \text{Butene}$$
[Most synnetrialStructure] 3^{0} Carbonium ion (More stable)

20. (c)
$$CH_3 - CH = CH - CH_3 + HBr \xrightarrow{\text{Peroxide}}$$

$$CH_3 - CH_2 - CH_1 - CH_3$$

 Br
2-Bromobutan e

Anti-markownikoff's rule is not applicable to symmetrical alkenes.

21. (b)
$$CH_2 = CH_2 + KMnO_4 \xrightarrow{[O]} CH_2 - CH_2 + MnO_2$$

alk. $H_2O \xrightarrow{[]} H_2O \xrightarrow{[]} Brown$
 $OH OH$
 $Colour less$
 $CH = CH + KMnO_4 \xrightarrow{[O]} COOH + MnO_2$
 $COOH$
 $COOH$
 $Ordic acid$
 $Brown$

 22. (d) Octane number increases in the order Straight chain alkanes < Branched chain alkanes < Olefins < Cyclo alkanes < Aromatic compounds Since, straight chain alkane has minimum octane number. Hence, it produces maximum knocking.

23. (c)
$$R - CH = CH - R \xrightarrow{\text{dil. aqueous } KMnO_4} \rightarrow R - CH - CH - R$$

room temp. $R - CH - CH - R$
 $OH = OH$
(Alcohol)

 $R - CH = CH - R \xrightarrow{\text{Conc. } KMnO_4} R - COOH + R - COOH$ heat CH_2

24. (b)
$$CH_{2} = \stackrel{\uparrow}{C} - CH_{2} - CH_{3} + H_{2}O \xrightarrow{H_{2}SO_{4}}_{\text{Markowniko ffs rule}}$$
$$CH_{3} \\CH_{3} - \stackrel{\uparrow}{C} - CH_{2} - CH_{3} \\OH \\2 - Methyl-2 - butanol$$

27. (b)
$$CH_3 - CH = CH_2 + H_2O \xrightarrow{Conc. H_2SO_4} CH_3 - CH_3 - CH_3 - CH_3$$

Markowniko ffs rule OH
Isopropy lakohol

32. (d)

$$CH_3 - CH - CH_2 - CH_3 \xrightarrow{alc. KOH} CH_3 CH = CHCH_3$$

 Br

The reaction is dehydrohalogenation.

 \sim

34. (a)
$$CH_2 = CH_2 + O_3 \longrightarrow CH_2 \xrightarrow{CH_2} CH_2 \longrightarrow 2HCHO$$

 $0 \longrightarrow 0$

35. (c) Oil are unsaturated esters which are converted into fats by saturating it by catalytic hydrogenation.

36. (c)
$$>C = C < \xrightarrow{\text{Hydrogenation}} >C - C < \xrightarrow{H}$$

37. (a)
$$CH_2$$

 CH_2 CH_2
Cyclo Propane

. ...

38. (b) e.g. $CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$

Half of the double bond is broken. It means π bond is broken while sigma bond is retained also two new C-Br bonds are formed.

40. (b)
$$CH_3 - CH - CH_2 - CH_3 + KOH \rightarrow$$

 $CH_3 - CH = CH - CH_3 + KBr + H_2O$
Butene -2
 $CH_3 - CH = CH - CH_3 + KBr + H_2O$

41. (c)
$$(\operatorname{cyclo pentene} \xrightarrow{\text{Alkaline}} KMnO_4$$
 $(\operatorname{cyclo pentene} OH OH$ $(\operatorname{cis 1, 2-cyclopentanediol})$

42. (a) We know that greater the number of alkyl groups attached to double bonded carbon atoms, more stable is the alkene. Therefore most stable is $R_2C = CR_2$

- **43.** (c) $CH_2 = CH_2 + 2[O] \xrightarrow{KMnO_4} HCHO + HCHO$ Formaldehy de
- 44. (c) Paraffins are non-polar compounds. The intermolecular forces are weak Vander Waal's forces. As the molecular mass increases Vander Waal's forces increases. Hence boiling point increases.
- **45.** (a) $CH_2 CH_2 + Zn \rightarrow ZnBr_2 + CH_2 = CH_2$ | | Br Br

46. (c)
$$CH_3CH_2I + KOH(alc) \rightarrow CH_2 = CH_2 + KI + H_2O$$

 $CH_2 = CH_2 + KMnO_4 \xrightarrow{H_2O} CH_2 - CH_2 + MnO_2$
Alk.Pink $OH OH$
Colourless

47. (d)
$$CH_2 = CH - Br \xrightarrow{HBr} CH_3 - CH < Br_{Br}$$

According to Markownikoff's rule H atom or positive part goes to that carbon atom which is more hydrogenated.

48. (d)
$$CH_3 - CH_2 - Br + KOH \rightarrow CH_2 = CH_2 + KBr + H_2O$$

(alc) Ethene

49. (a)
$$CH_3 - CH_2 - OH \xrightarrow{\text{Conc. } H_2SO_4} CH_2 = CH_2 + H_2O$$

Dehydration

50. (c) Electrophillic addition reactions are shown by alkenes or alkynes in these reactions attacking species is electrophiles

$$CH_{3} - CH = CH_{2} + H^{+} \xrightarrow{\text{Slow}} CH_{3} - CH - CH_{3}$$

$$2^{\circ} \text{ carbonium ion}$$

$$CH_{3} - \overset{+}{CH} - CH_{3} + Br^{-} \xrightarrow{\text{Fast}} CH_{3} - CH - CH_{3}$$

$$Br$$
2-Bromo propane

51.

(a)
$$CH_3CH_2CH_2Cl + KOH \rightarrow$$

 $CH_3 - CH = CH_2 + KCl + H_2O$
 $CH_3 - CH - CH_3 + KOH \rightarrow CH_3 - CH = CH_2 + KCl + H_2O$

52. (d)
$$CH_2 = CH_2 \xrightarrow{\text{Cold.alk.}KMnO_4} CH_2 - CH_2$$

Ethene $H_2 = CH_2 \xrightarrow{\text{Cold.alk.}KMnO_4} CH_2 - CH_2$
 $H_2 = CH_2 \xrightarrow{\text{Cold.}KMnO_4} CH_2$
 $H_2 = CH_2 \xrightarrow{\text{Cold.}K$

53. (c) Ethane and Methane does not decolourise $KMnO_4$ and does not react with ammonical cuprous chloride. Acetylene decolourise $KMnO_4$ solution and also gives red ppt. with ammonical cuprous chloride. On the other hand ethene decolourize $KMnO_4$ solution but does not react with ammonical cuprous chloride.

54. (a)
$$CH_2 = CH_2 + HOCl \rightarrow CH_2 - CH_2$$

| | |
 $OH Cl$
1-Chloro-2-hydroxy ethane

55. (b)
$$n(CH_2 = CH_2) \xrightarrow[\text{high pressure}]{400°C} (-CH_2 - CH_2 -)_n$$

(polyethylene)

57. (d)
$$\begin{array}{c} CH_{3} \\ H-C-Br \\ H-C-Br \\ H-C-Br \\ CH_{3} \\ CH \\ H-C-Br \\ -Br_{2} \\ H \\ CH_{3} \\ CH \\ CH_{3} \\ CH \\ CH_{3} \\ CH \\ CH_{3} \\$$

58. (a)
$$ClCH_2 - CH_2 - CH_2 - CH_3 \xrightarrow{alc. KOH}$$

$$CH_2 = CH - CH_2 - CH_3$$

1-butene

59. (d)
$$CH_3CH_2CH = CHCH_3 \xrightarrow[Zn/H_2O]{O_3} CH_3CH_2CHO + CHOCH_3$$

Propanal Ethanal

61. (c)
$$CH_3 = C = CH_2$$

 $sp^2 sp sp^2$
Propadiene

Propadiene has both sp and sp^2 -hybridized carbon atoms.

62. (a)
$$C_2H_4 + Cl_2 \xrightarrow{CCl_4} Cl - CH_2 - CH_2 - Cl_2$$

Ethelene Chloride

64. (b) Paraffins or alkanes are non-polar compounds. Hence soluble in benzene.

65. (b)
$$CH_3 - CH = CH_2 + HCl \xrightarrow{Peroxide} CH_3 - CH - CH_3$$

Peroxide rule is applicable only to HBr.

66. (d)
$$CH_3 - CH = CH_2 + HI \xrightarrow{\text{Peroxide}} CH_3 - CH_2 - CH_2 I$$

69. (c)
$$CH_3 - CH - CH - CH_2 \xrightarrow{alc. NaOH} -HCl \rightarrow H Cl H$$

$$CH_3CH = CH - CH_3$$

73. (c) $CH_3 - CH = CH - CH_2 - CH_3$ it decolourizes $KMnO_4$ solution because double bond is present.

77. (a)
$$CH_2 = CH - CH_2 - C \equiv CH + Br_2 \rightarrow$$

 $CH_2 = CH - CH_2 - C = CH$
 $|$ $|$ $|$
 Br Br

78. (d)
$$CH_3COCH_3 + PCl_5 \rightarrow CH_3 - CCl_2 - CH_3 + POCl_3$$

80. (b)
$$3R - CH = CH_2 + \frac{1}{2}B_2H_6 \xrightarrow[\text{Ether}]{\text{Ether}} (R - CH_2CH_2)_3B$$

 $OH^-_H_{2O}H^-_H_{2O}$
 $3R - CH_2CH_2OH_{Alcohol}$

83. (c) CH Cl Anhydrous $AlCl_3$ HII H $AsCl_2$ $CH + AsCl_2$ Arsenictrichloride CHCl H $CH AsCl_2$ Lewisite (β -Chlorovinyl dichloroarsine)

Lewisite is more poisonous than mustard gas and was used in world war -II.

84. (a)
$$CH_3 - CH = CH_2 + Cl_2 \xrightarrow{500^{\circ}C} CH_2 - CH = CH_2 + HCl$$

This reaction is called allylic halogenation reaction because halogenation occurs at the allylic position of an alkene

85. (c)
$$n(CH_2 = CH - Cl) \xrightarrow{\text{Polymerization}} (-CH_2 - CH_2)_n$$

(PVC)
86. (c) $CH_2 = CH_2 + Br_2 \xrightarrow{NaCl} CH_2 - CH_2$
 $Br Br$
 $1,2 - \text{dibromo ethane}$
 $+ CH_2 - CH_2$
 $I = I$
 $Cl Br$

87. (b)
$$CH_3 - CH = CH_2 + HBr \xrightarrow{\text{Markownikoff rule}} CH_3 - CH - CH_3$$

2-Bromopropa ne

88. (a)
$$CH_3 - CH = CH_2 + HBr \xrightarrow{\text{Peroxide}} CH_3 - CH_2 - CH_2 - Br$$

89. (c) $CH_3 - CH_2 - CH_3 \xrightarrow{(1)O_2} CH_3 \xrightarrow{(2)Zn/H_2O} CH_3 \xrightarrow{(2)Zn/H_$

$$CH_3COCH_3 + CHOCH_3$$

Ketone Aldehyde

90. (c)
$$R - CH = C - R \xrightarrow{(1)O_3} R - CHO + R_2CO$$

| $(2)Zn/H_2O$ Aldehyde R Ketone

92. (c)
$$CH_3 - CH_2 - OH \xrightarrow{\text{Conc.}} CH_2 = CH_2 + H_2O$$

93. (b)
$$CH_3 - CH_2 - Cl \xrightarrow{\text{alc. KOH}} CH_2 = CH_2 + KCl + H_2O$$

Ethyl Chloride Alkene

- 94. (b) Olefin because double bond is present.
- **95.** (b) In $CH_2 = \frac{\pi}{\sigma} CH_2$ double bond consist of one σ and one π bond

96. (b)
$$R - CH_2 - CH_2 - X \xrightarrow{\text{Elimination}} alc. KOH$$

Alkylhalide $R - CH = CH_2 + HX$

9

$$-CH = CH_2 + HX$$

Alkene Halogen acid

7. (a)
$$CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{H_2SO_4} 475 K$$

 $CH_3 - CH = CH - CH_3$
More symmetrica l(major product)
 $CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{H_2SO_4} 475 K$
 $CH_2 = CH - CH_2 - CH_3$
Less symmetrica l or
unsymmetric cal
(minor product)

It is based on Saytzeff's rule. According to this more symmetrical or more alkylated alkene predominates.

98. (b)
$$CH_3 - CH_2 - CH_2 - OH \xrightarrow{PCl_3} CH_3 - CH_2 - CH_2 - Cl \xrightarrow{Alc.KOH} CH_3 - CH = CH_2$$

(a) (b) Propene

99. (b)
$$CH_3 - CH_2 - CH_2 - Br + KOH \xrightarrow{C_2H_5OH}_{n-\text{Propyl bromide}} CH_3 - CH = CH_2 + KBr + H_2O$$

100. (b)
$$CH_3 \xrightarrow{-C} - CH_2 - Br + KOH \xrightarrow{-C} - CH_3$$

$$CH_{3}$$

$$CH_{3} - C = CH - CH_{3} + KBr + H_{2}O$$

Propene

In this reaction 1^{o} carbonium ion is formed which rearranges to form 3^{o} carbonium ion from which base obstruct proton. Hence 2methyl-2-butene is formed as a main product.

$$CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3}$$

$$CH_{3} \xrightarrow{-C} CH_{2} \xrightarrow{Methyl shift} CH_{3} \xrightarrow{-C} CH_{2} - CH_{3}$$

$$CH_{3}$$
1° carbonium less stable
Elimination of proton from β

$$CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{-C} CH_{3} \xrightarrow{-C} CH_{3}$$

$$CH_{3} \xrightarrow{-C} CH_{3} \xrightarrow{-$$

 $CH_3 - C = CH - CH_3$ 2-Methyl-2-Butene

101. (b) Alkyne > Alkene > Alkane

102. (c)
$$H = C = C H$$

Ethylene sp^2 -hybridization; Shape = Planar.

104. (b)
$$CH_2 = CH - Cl \xrightarrow{HCl} CH_3 - CH < \binom{Cl}{Cl}$$

According to Markownikoff's rule *H* atom of the reagent goes to that carbon atom which is more hydrogenated.

Markownikoffs rule

105. (b)
$$CH_3 - CH = CH_2 + HBr \xrightarrow{\text{Presence of peroxid } e}$$

 $CH_3 - CH - CH_3 + HBr \xrightarrow{\text{Presence of peroxid } e}$
 Br
2-Bromopropa ne

 $CH_3 - CH_2 - CH_2 - Br$ 1-Bromopropa ne

106. (a) Peroxide rule is applicable only to *HBr* and not for *HCl*, *HF* and *HI*.

109. (a)
$$n \begin{pmatrix} CH_2 = C - CH = CH_2 \\ | \\ Cl \\ Chloroproe ne \end{pmatrix} \xrightarrow{\text{Polymerization}} \begin{pmatrix} -CH_2 - C = CH - CH_2 \end{pmatrix}$$

110. (c)
$$CH_3 - CH_2 - CH_2 - H_2 - H_2 - H_2 - H_2 - H_3 - H_2 - H_3 - H_3 + C_2 - H_3 - H_3 + H_3 - H_$$

ClNeoprene

111. (c)
$$CH_3 - CH_2 - C = CH - CH_3 + HOCl \rightarrow | CH_3$$

$$CH_3 - CH_2 - CH_2 - CH_3 -$$

Addition takes place according to

Markownikoff's rule in which Cl^+ goes to that carbon atom which is more hydrogenated.

- 112. (a) In case of ethene double bond is present. Hence, addition reactions occur easily.
- **113.** (a) $CH_3 CH = CH_2 + Br_2 \rightarrow CH_3 CH_2 CH_2$ Propane 1 mole Br Br 42 gms 1 mole 42 gms 1,2-dibromo propane

:: 42 gms of propene reacts with 160 gms of bromine.

$$\therefore$$
 21gms of propene $\frac{160}{42} \times 21 = 80 \text{ gms}$.

114. (b) Butadiene $CH_2 = CH - CH = CH_2$

A single bond separated by two double bonds is known as conjugated double bond.

CH.

115. (d)
$$CH_3 \xrightarrow[]{CH_3} CH_3 \xrightarrow[]{Cu} CH_3 \xrightarrow[]{CH_3} CH_3 \xrightarrow[]{CH_3} CH_3 \xrightarrow[]{CH_3} CH_2 \xrightarrow[]{CH_2} CH_2$$

Isobutene

117. (a) Cyclic hydrocarbon in which all the carbon atoms are present in the same plane is benzene. In this C-C bond length is 1.39Å which is more than 1.34*A*° but less than 1.54Å. Hence bond angle is 120° with sp^2 hybridization.

119. (a)
$$CH_3 - \overset{(H_3)}{C} - CH = CH_2 \xrightarrow{(h_g(OAc)_2; H_2O)}_{(i) NaBH_4} \rightarrow CH_3$$

CH

$$CH_{3} = CH_{3} = C$$

120. (b) C_3H_6 is an alkene therefore decolourizes alkaline $KMnO_4$ solution.

123. (c)
$$CH_3 - C = C - CH_3 \xrightarrow{(1)O_3} (2)Zn/H_2O$$

 $CH_3 CH_3$
 $CH_3 - CO + OC - CH_3$
 $CH_3 - CH = CH - CHO \xrightarrow{Acidic} CH_3 - CH = CH - CHO$
 $I24.$ (b) $CH_3 - CH = CH - CHO \xrightarrow{Acidic} KMnO_4$
 $CH_3 - CH = CH - COOH$
127. (b) $CH_3 - CH_2 - CH = CH_2 \xrightarrow{HBr} CH_3 - CH_2 - CH - CH_3$
 Br
 2 -Bromo butane

128. (b)
$$CH_2 = C - CH_3 + HCl \rightarrow CH_3 - C - CH_3$$

 $CH_3 \qquad CH_3$
 2 -chloro-2-methyl
propane

129. (a) Ozonolysis is useful in locating the position of a double bond in an alkene. The double bond is obtained by joining the carbon atoms of the two carbonyl compounds. For example Let the product of ozonolysis be two molecules of ethanal.

$$H \qquad H \qquad H \\ CH_3 - C = O + O = C - CH_3 \rightarrow CH_3 - CH = CH - CH_3$$

2-Butene

131. (c)

$$CH_3 - CH - CH_2 - CH_3 \rightarrow CH_3 - CH = CH - CH_3 + HBr$$

 Br
 $2-Bromo butane$
 CH_3
 CH_3
 CH_3

134. (b)
$$CH_3 - \stackrel{|}{C} - CH_3 \xrightarrow{H_2SO_4} CH_3 - \stackrel{|}{C} = CH_2 + H_2O$$

 OH
2Methyl-2-hydroxy propane
Isobutene

 $\| C$

135. (c)
$$CH_2 = CH_2 + H_2 \xrightarrow[-300]{Ni} CH_3 - CH_3$$

Ethene CH_2COOK Electrolucie

136. (c)
$$\downarrow$$
 H_2COOK $+ 2H_2O \xrightarrow{\text{Electrolysis}}$

$$\begin{array}{c} CH_2 + 2CO_2 + 2KOH + H_2 \\ \parallel \\ CH_2 \\ \text{Anode} \end{array}$$

137. (c)
$$CH_2 = CH_2 + H_2 \xrightarrow{Ni} CH_3 - CH_3$$

Ethylene does not give precipitate with ammonical silver nitrate solution because it does not have acidic hydrogen.

139. (a)

 $CH_{2} = CH - CH = CH_{2} \xrightarrow{Br_{2}} CH_{2} - CH = CH - CH_{2}$ $| \qquad | \qquad |$ $Br \qquad Br$ 1,4 - di bromo -2 - butene

143. (d) *Pd* acts as catalyst.

144. (a)
$$CH - CH = CH_2 + HBr \xrightarrow{\text{peroxide}}$$

$$CH_3 - CH_2 - CH_2 - Br$$

n-propyl bromide

In presence of peroxide addition takes place according to Anti Markownikoff's rule and hydrogen atom goes to that carbon atom which is less hydrogenated.

145. (d)
$$CH_3 - CH_2 - OH + H_2SO_4 \xrightarrow{110^{\circ}C} Conc.$$

Ethanol Conc. $CH_3CH_2HSO_4$
Ethylhydrogen sulphate

146. (a)
$$CH_2 = CH_2 \xrightarrow{1)O_3} HCHO + HCHO$$

 $\xrightarrow{2)Zn/H_2O}$ Formaldehy de

147. (d) C_2H_4, C_3H_6 and C_4H_8 all an alkene. Therefore they discharge the red colour of bromine.

149. (a)
$$HI \to H^+ + I^-$$

$$CH_3 - CH = CH_2 + H^+ \rightarrow$$

$$CH_{3} - CH_{2} - CH_{2} + CH_{3} - CH - CH_{3}$$
(Minor)
(Major)
(Major)
(Major)
(Major)
(Major)
(More stable)
(More stable)

и

$$CH_{3} - CH - CH_{3} + I^{-} \rightarrow CH_{3} - CH - CH_{3}$$

$$2^{o} \text{ Carbonium ion}$$

$$I$$
Isopropyliodide
(Major product)

150. (a)
$$CH_3 - CH_2 - CH = CH_2 + Br_2 \rightarrow CH_3 - CH_2 - CH - CH_2$$

 $|$ $|$ $|$ Br $|$ Br
 1.2 -dibromo butane

151. (a)
$$CH_2 = CH_2 \xrightarrow{(1)O_3} HCHO + HCHO$$

153. (c) $(CH_3)_2 - C = CH \xrightarrow[]{\text{Catalytic}} Hydro genation (CH_3)_2 - CH - CH_2 \\ H_3 \xrightarrow[]{\text{CH}_3} (CH_3)_2 - CH - CH_3 \\ H_3 \xrightarrow[]{\text{CH}_3} (CH_3)_3 - CH$

154. (b)
$$CH_3 - C = CH_2 + HBr \xrightarrow{Peroxide} CH_3 - C = CH_2 - Br$$

 $CH_3 \xrightarrow{C} CH_3 - C = CH_2 - Br$

155. (a)
$${}^{sp^2}_{CH_2} = {}^{sp^2}_{CH-C} = {}^{sp}_{CH}$$

156. (c) $CH_3 - CH = CH_2 + H^+Br^- \to CH_3 - CH - CH_3$
 Br
2-Bromopropa ne

157. (b) Reaction is of dehydration

$$C_2H_5OH \xrightarrow{\text{Conc. } H_2SO_4} CH_2 = CH_2$$

- **158.** (d) $CH_3 CH = CH CH_2 CH_3$ will be the most stable because greater the number of alkyl groups attached to double bonded carbon atoms, more stable is the alkene.
- **159.** (b) Markownikoff's rule can not be applied for symmetrical alkene.

160. (c)
$$CH_3 - C = CH_2 \xrightarrow{H_3O^+} CH_3 - CH_3 \xrightarrow{Ph} CH_3 = CH_3$$

161. (d) Solution of bromine in carbon tetrachloride is used to test for unsaturation of alkene. Red colour of bromine disappears due to the formation of colourless dibromo ethane $(C_2H_4Br_2)$.

$$CH_{2} = CH - CH_{3} + H_{2}O \xrightarrow{H_{2}So_{4}} \rightarrow OH$$

$$OH$$

$$CH_{3} - CH - CH_{3}$$
Isopropyl alcohol

Thus in this reaction isopropyl alcohol is formed.

163. (b) Propene gives formaldehyde and acetaldehyde on ozonolysis.

$$CH_{2} = CH.CH_{3} \xrightarrow{O_{3}} CH_{2} - CH.CH_{3} - \frac{Z_{1}/H_{2}O}{H_{2}O_{2}} HCHO + CH_{3}CHO$$

164. (a) When ethylene is treated with cold alkaline *KMnO*4 , ethylene glycol is formed.

$$H \rightarrow C = C < H \xrightarrow{KMnO4} H \rightarrow C - C < H \\ H \xrightarrow{Cold alkaline} H \rightarrow H \rightarrow C - C < H \\ H \xrightarrow{OH OH} H \\ Ethylene glycol$$

165. (a)
$$C_6H_6 + H_2C = CH_2 \xrightarrow{AlCl_3.Hl} C_6H_5CH_2CH_3$$

- **166.** (a) Markownikoff as well as anti-Markownikoff's rule is valid only for unsymmetrical alkenes.
- 167. (b) The formation of *n*-propyl bromide in presence of peroxide can be explained as follows.Step-1: Peroxide undergo fission to give free

radicals $R - O - O - R \rightarrow 2 - R - O$ Step-2 : *HBr* combines with free radical to form bromine free radical $R - O + HBr \rightarrow R - OH + Br$

Step-3 : $B\dot{r}$ attacks the double bond of the alkene to form a more stable free radical

$$CH_{3} - CH_{2} - CH_{2}Br$$
(more stable)
$$CH_{3}CH = CH_{2} + Br$$

$$Br$$

$$| \dot{C}H_3 - CH - \dot{C}H_2$$
(less stable)

Step-4 : More stable free radical attacks the *HBr*

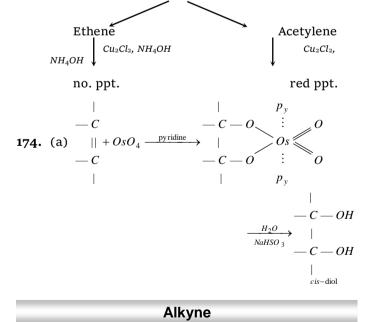
$$CH_3 - CH - CH_2 - Br + HBr \rightarrow CH_3 CH_2 CH_2 Br + Br$$

n-propyl bromide

Step-5: $B\dot{r} + B\dot{r} \rightarrow Br_2$

169. (b) According to Markownikoff's rule, the negative part of the unsymmetrical reagent adds to less hydrogenated (more substituted) carbon atom of the double bond.

$$C_{6}H_{5}CH = CH - CH_{3} + HBr \rightarrow C_{6}H_{5}CHCH_{2}CH_{3}$$


171. (a)

 $\begin{array}{c} CH_2 \\ \parallel \\ CH_2 \end{array} + H_2 SO_4 \rightarrow | \\ CH_2 HSO_4 \end{array} \xrightarrow{H_2O} \begin{array}{c} CH_3 \\ \parallel \\ CH_2 OH \end{array} + H_2 SO_4$

Except ethyl alcohol, no other primary alcohol can be prepared by this method as the addition of H_2SO_4 follows Markownikoff's rule. Generally secondary and tertiary alcohols are obtained.

172. (c)
$$CH_3 - C = CH_2 \xrightarrow{HBr / peroxide} CH_3 - CHCH_2 - Br$$

 $CH_3 \xrightarrow{I} CH_3 \xrightarrow{I} CH_3$

173. (c) Decolourisation of $KMnO_4$

1. (c) $2CH \equiv CH + 5O_2 \rightarrow 4CO_2 + 2H_2O \Delta H = -1300 KJ$ The combustion of acetylene is highly exothermic and the heat produced during the combustion can be used for welding purposes in the form of oxy acetylene flame.

2. (c)
$$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$$

 $CH \equiv CH + 2[Ag(NH_3)_2]OH \rightarrow$
 $Ag - C \equiv C - Ag + 4NH_3 + 2H_2O$
Whiteppt.

3. (c)
$$CH_3 - CH_2 - C \equiv CH \xrightarrow{\text{Cold}} CH_3 CH_2 COOH + CO_2$$

4. (c)
$$CH_3 - COOH \xrightarrow{LiAlH_4} CH_3 - CH_2 - OH \xrightarrow{H^+}_{443 K}$$

 $CH_2 = CH_2 \xrightarrow{Br_2} CH_2 - CH_2 \xrightarrow{alc.}_{KOH}$
 $Rr = Rr$

$$CH \equiv CH + 2KBr + 2H_2O$$
Acetylene

5. (b)
$$C \equiv C < C = C < C - C$$

1.20 A° 1.34 A° 1.54 A°

6. (a)
$$HC \equiv C - CH = CH_2$$

7. (a)
$$3 CH \equiv CH \xrightarrow{\text{Re } d \text{ hot}} \bigcirc$$

Fe tube
Benzene

10. (c)
$$H_2$$

Cyclohexene Cyclohexane
 $Cyclohexene$ H_2
 $Cyclohexene$ $Cyclohexane$
 CH_2
 CH

11. (a)
$$HC \equiv CH + AsCl_3 \longrightarrow ClHC = CH AsCl_2$$

2-chlorovinyl dichloroarsine

12. (c)
$$CH_3 - C \equiv C - CH_2 - CH_3 \xrightarrow{O_3}$$

$$CH_{3} - C \longrightarrow C - CH_{2} - CH_{3}$$

$$O \longrightarrow O$$

$$\xrightarrow{H_{2}O} CH_{3} - C - C - CH_{2} - CH_{3} + H_{2}O_{2} - CH_{3} -$$

14. (a) $-C \equiv C - is$ most reactive because *sp*-hybridization.

16. (d) $CH = CH \xrightarrow{NaNH_2} CH = C^-Na^+ \xrightarrow{CH_3I} CH = C - CH_3$ $C_2H_5 - C \equiv C - CH_3 \xleftarrow{C_2H_5I} Na^+ C^- \equiv C - CH_3$ Pent-2-yne 17. (d) $CH_3 - C \equiv CH + H_2O \xrightarrow{H_2SO_4 / HgSO_4}$

$$CH_{3}-C-CH_{3} \underbrace{\text{Toutonaris m}}_{O} \begin{bmatrix} OH\\ CH_{3}-C=CH_{2} \\ Prop-1-ene 2-ol \end{bmatrix}$$
Prop-1-ene 2-ol
18. (b) $CH = CH + HCl \rightarrow CH_{2} = CH - Cl \xrightarrow{HCl} CH_{2} \\ CH_{3} - CH \leqslant Cl_{1} \\ I-di-chloroethane$
19. (c) $CaC_{2} \xrightarrow{H_{2}O} HC \equiv CH \xrightarrow{Dil.H_{2}SO_{4}} CH_{3}CH_{2} - OH \\ Acceylene \xrightarrow{N_{1}} CH_{3}CH_{2} - OH \\ Hg^{+2} \xrightarrow{N_{1}} CH_{3}CH_{2} - OH \\ Hg^{+2} \xrightarrow{N_{2}} CH_{3}CH_{2} - OH \\ Ethylalcohol$
20. (c) $R - CH_{2} - CCl_{2} - R \xrightarrow{KOH + C_{2}H_{3}OH} \\ R - C = C - R + 2HCl \\ This reaction is an example of dehydrohalogenation Hence, alcoholic KOH is used as a reagent.
 $CH - COOK$
21. (d) ||| $+ 2H_{2}O \xrightarrow{Electrolysis} \\ CH - COOK$
22. (b) $CH - COOK + 2H_{2}O \xrightarrow{Electrolysis} CH + 2CO_{2} \\ H \\ CH_{2} - COOK + 2H_{2}O \xrightarrow{Electrolysis} CH + 2CO_{2} \\ CH + COOK \\ CH = CH - COOK + 2H_{2}O \xrightarrow{Electrolysis} CH + 2CO_{2} \\ CH_{2} - COONa + 2H_{2}O \xrightarrow{Electrolysis} CH + 2CO_{2} \\ CH_{2} - COONa + 2H_{2}O \xrightarrow{Electrolysis} CH + 2CO_{2} \\ CH_{2} - COONa + 2H_{2}O \xrightarrow{Electrolysis} CH + 2CO_{2} \\ CH_{2} - COONa + 2H_{2}O \xrightarrow{Electrolysis} CH + 2CO_{2} \\ CH_{2} - COONa + 2H_{2}O \xrightarrow{Electrolysis} CH + 2CO_{2} \\ CH_{2} - COONa + 2H_{2}O \xrightarrow{Electrolysis} CH + 2CO_{2} \\ CH_{2} - COONa + 2H_{2}O \xrightarrow{Electrolysis} CH + 2CO_{2} \\ CH_{2} - COONa + 2H_{2}O \xrightarrow{Electrolysis} CH + 2CO_{2} \\ CH_{2} - COONa + 2H_{2}O \xrightarrow{Electrolysis} CH + 2CO_{2} \\ CH_{2} - COONa + 2H_{2}O \xrightarrow{Electrolysis} CH + 2CO_{2} \\ CH_{2} - COONa + 2H_{2}O \xrightarrow{Electrolysis} CH + 2CO_{2} \\ CH_{2} - COONa + 2H_{2}O \xrightarrow{Electrolysis} \\ CH_{2} - COONa + CH_{2} + 2CO_{2} + 2NaOH + H_{2} \\ CH_{2} - COONa + 2H_{2}O \xrightarrow{Electrolysis} \\ CH_{2} - COONa + CH_{2} +$$

$$CH_{3} - CH_{2} - OH \xrightarrow{P_{4}/Br_{2}} C_{2}H_{5}Br$$

$$(c) \quad 4CH \equiv CH \xrightarrow{Ni(CN)_{2}} Cyclo$$

26. (d) Ethyne have acidic hydrogen to form salt.

27. (a)

$$CH_3 - CH_2 - C \equiv CH + 2Br_2 \rightarrow CH_3 - CH_2 - \begin{bmatrix} Br & Br \\ & - & C \\ CH_3 - Butyne \end{bmatrix}$$

Since the molecule takes 2 moles of Br_2 . Therefore it is alkyne. Also it gives white *ppt* with Tollen's reagent therefore acidic *H* is present. Hence it is 1-Butyne.

28. (d)
$$2CH = CH + 2Na \rightarrow 2CH = C^{-}Na^{+} + H_{2}$$

29. (a)
$$CH_3 \equiv CH + AgNO_3 \rightarrow Ag - C \equiv C - Ag$$

(Animonical) Whiteppt.

$$CH_3 \equiv CH + CuCl_2 \rightarrow Cu - Cl_R \equiv C - Cu$$

(Ammonica)

32. (c)
$$sp - sp > sp^2 - sp^2 > sp^3 - sp^3$$

Order of bond strength

33. (c) Ethylene and Benzene 120° 120° sp^2 sp^2

34. (a)
$$CH_3 - CH_2 - C \equiv CH \xrightarrow{H_8 SO_4, 60^\circ C} CH_3 - CH_2 - CH_2 - CH_3$$

35. (a)
$$CH \equiv CH + NaNH_2 \rightarrow CH \equiv C^-Na^+ + NH_3$$

36. (a)
$$CH = CH + 2Br_2 \xrightarrow{CCl_4} \xrightarrow{CCl_4} \xrightarrow{CH - CH} \stackrel{|}{\underset{Br Br}{\overset{CH}{\underset{Br}{\atopBr}{\underset{Br}{\atopBr}{\underset{Br}{\atopBr}{\underset{Br}{\atopBr}{I}{I}}}}}}}}}}}}}}}}}}}}}}$$

$$CH \equiv CH + NH_4OH + AgNO_3 \rightarrow Ag - C \equiv C - Ag$$

Di-silver acety lide
white ppt.

38. (d) C_2H_2 and C_3H_4 are homologue because they differ by $-CH_2$ group. Both have triple bond in their molecule.

39. (c)
$$CH \equiv CH + HCl \xrightarrow{HgCl_2} CH_2 = CH - Cl$$

Vinylchloride

40. (c)
$$CH_3 - C \equiv CH + H_2O \xrightarrow{40\% H_2SO_4} 1\% HgSO_4$$

41. (a)
$$3CH_3 - C = CH_2 \xrightarrow{\text{Rearrangem ent}} CH_3 - C - CH_3$$

 OH
 $CH_3 - C = CH \xrightarrow{OH} CH_3$
 $CH_3 - C = CH \xrightarrow{CH} CH_3$
 $CH_3 - CH_3$

Mesitylene or 1,3,5-trimethyl benzene

42. (c)
$$2NH_4OH + Cu_2Cl_2 \rightarrow 2CuOH + 2NH_4Cl$$

 $NH_4OH + CuOH \rightarrow [Cu(NH_3)_2]OH$ Diamnine copper (l)hydroxide

$$2[Cu(NH_3)_2]OH + HC \equiv CH -$$

 $Cu - C \equiv C - Cu + 4NH_3 + 2H_2O$ copper acetylide Red ppt.

45. (b)
$$CH = CH + H_2O \xrightarrow{40\% H_2SO_4} CH_3 - CHO$$

 $1\% HgSO_4$

- **46.** (c) Acetylene reacts with ammonical cuprous chloride to give brown *ppt* where as ethylene does not give this reaction.
- **47.** (a) $Ag(NH_3)_2^+$ gives white *ppt* with terminal alkynes.
- **50.** (b) Bond length decreases with increase in number of bonds.

55. (d) $3 HC \equiv CH \xrightarrow{\text{Red}}$ Benzene

56. (a) Reaction of acetic acid with acetylene is catalysed by Hq^{2+} salts.

$$HC \equiv CH \xrightarrow{CH_3COOH} CH_2 = CHOOCCH_3$$

_{vinylacetate}

$$\xrightarrow{CH_3COOH}_{Hg(OOCCH_3)_2} CH_3 - CH(OOCCH_3)_2$$

ethylidene diacetate

57. (c)
$$2C + H_2 \xrightarrow{Electricarc} CH \equiv CH$$

58. (c)
$$CH \equiv CH \xrightarrow{40\% H_2SO_4} CH_2 = CH - OH$$

 $1\% HgSO_4 \qquad Vinylalcohol$

 $\xrightarrow{\text{Rearrangem ent}} CH_3 - CHO$ Acetaldehyde

- **63.** (d) In CH = CH triple bond consists of one σ and two π bonds.
- 65. (a) Nucleophiles and alkalies normally do not react with acetylene. Thus *NaOH* does not react.

66. (c)
$$HC \equiv CH + 2HOCl \rightarrow [CHCl_2 - CH(OH)_2]$$

 $\downarrow -H_2O$
 $CHCl_2 - CHO$
Dichloroacetal dehyde

69. (b)
$$CH_3 - CH = CH - C \equiv C - H$$
. Acidic hydrogen (*H* atom attached to triple bond) is present therefore it gives reaction with ammoniacal $AgNO_3$.

72. (c) $CH_3 - C \equiv C - CH_3$, 2-butyne does not have acidic hydrogen. Hence, does not give white ppt. with ammonical $AgNO_3$ solution.

73. (a)
$$(CH = CH) \xrightarrow[NaOH]{O_3} CH - CH \xrightarrow[Hydrolysis]{Hydrolysis}$$

$$CHO - CHO \xrightarrow{Zn} CH_2 - OH$$

$$Glyoxal \xrightarrow{CH_3COOH} CH_2 - OH$$

$$CH_2Br$$

77. (b)
$$|$$
 + 2*KOH* (alcoholic) $\xrightarrow{\Lambda} CH = CH + 2KBr$
 CH_2Br

$$+2H_2O$$

- **78.** (d) All are alkenes but 2-butyne is not.
- **80.** (c) Reduction of alkynes with liquid NH_3/Li gives trans alkenes.
- **82.** (a) Ethyne reacts with ammonical A_{gNO_3} to give white ppt of silver acetylide while ethane and ethene do not react because acidic hydrogen is absent.
- **83.** (d) Acidic property because H atoms are replaced by Silver metal atoms.
- **87.** (c) The hydrogen atom which is attached to triple bond is acidic.
- **88.** (c) In acetylene both carbons are *sp*-hybridised so it has linear structure.

89. (d)
$$CaC_2 + 2H_2O \rightarrow CH \equiv CH + Ca(OH)_2$$

Acetylene

90. (c)
$$CH \equiv CH + HCN \xrightarrow{Ba(CN)_2} CH_2 = CH - C \equiv N$$

Vinylcyanide

91. (c) Because $CH_3CH_2 - C \equiv CH$ has one acidic hydrogen.

92. (d)
$$CH \equiv CH + 2Na \xrightarrow{Liq.NH_3} C.Na \equiv C.Na + H_2$$

94. (b)
$$CH = CH + H_2O \xrightarrow{\text{dil}.H_2SO_4} CH_2 = C - OH \rightarrow H_gSO_4$$

$$CH_3 - C - H$$

- **95.** (d) $CH_3 C \equiv C CH_3$ has not acidic character.
- **96.** (d) Addition $CH \equiv CH + 3H_2 \xrightarrow{Ni} CH_3 CH_3$ Substitution –

$$CH = CH + Na \longrightarrow CH = C^{-}Na^{+} + \frac{1}{2}H_{2}$$

Polymerization -

$$3CH = CH \xrightarrow{\text{hot } Cu \text{ tube}} C_6H_6$$

Polymerization Benzene

- (d) Bond length decrease with increase in Bond 97. order. Hence triple bonded carbon has minimum bond length.
 - C C bond length = 1.54 Å
 - C = C bond length = 1.33 Å C = C bond length = 1.22 Å
- (b) Acetylene can be obtained by the reaction of 98. silver and chloroform (or iodo form)

$$2CHI_3 + 6Ag \xrightarrow{\Delta} C_2H_2 + 6Ag$$
acetylene

- 99. (d) The partial reduction of alkynes by active metal in liquid ammonia takes place through trans vinylic anion which ultimately produces trans alkene.
- 100. (a) We know that C C bond length = 1.54 A, C = C bond length =1.34A and $C \equiv C$ bond length = 1.20A. Since propyne has triple bond; there fore it has minimum bond length.

101. (b)
$$CH \equiv CH + H_2 \xrightarrow[Catalyst]{Catalyst}_{pd. BaSO_4} CH_2 = CH_2$$

Ethylene

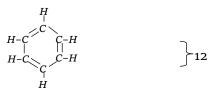
- **102.** (a) $HC\sigma = CH$ one sigma and two π bond
- 103. (a) Propyne reacts with ammoniacal $AgNO_3$ due to presence of acidic hydrogen atom. $CH C = CH + A_{q}NO + NH OH \rightarrow$

104. (a)
$$CH \equiv CH \xrightarrow{HgSO_4} CH_3CHO \xrightarrow{CH_3MgBr} OH$$

 $OMgBr OH$

$$CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3}$$

$$H \qquad CH_{3}$$


$$Br$$

105. (c) $Mg_2C_3 + 4H_2O \rightarrow CH_3C \equiv CH + 2Mg(OH)_2$

Aromatic Hydrocarbon

(a) Coal tar is a main source of aromatic 5٠ hydrocarbons like naphthalene, benzene, anthracene, phenol etc

$$C - C\pi$$
 bonds = 3

 $C - C\sigma$ bonds = 6 $C - H\sigma$ bonds = 6

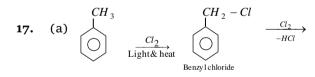
Hence 12σ and 3π bonds

12

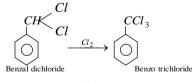
 σ bonds

7.

(c)


8. (b) Ratio =
$$\frac{\sigma \text{ bonds}}{\pi \text{ bonds}} = \frac{12}{3} = 4$$

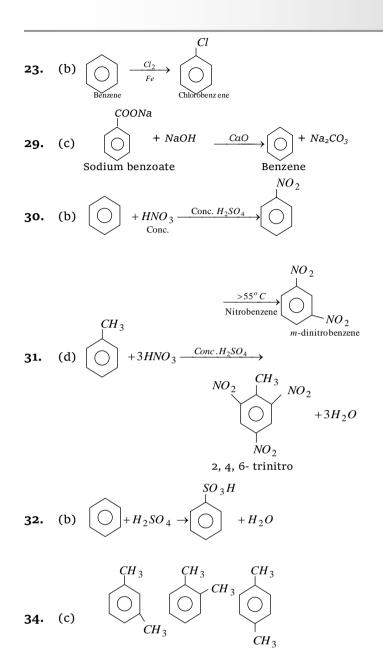
11. (b) \bigcirc + $3Cl_2 \xrightarrow{\text{Sunlight}}_{\text{Addition reaction}} Cl \xrightarrow{Cl}_{Cl}$ (BHC)


4. (a)
$$C_6H_6 + C_2H_5Cl \xrightarrow{AlCl_3} C_6H_5 - C_2H_5 + HCl_3$$

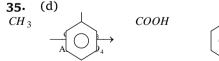
(a) $C_6H_5CHC_6H_5$ is the most stable carbonium 15. ion due to resonance.

16. (d)
$$\bigcirc$$
 $+Cl_2 \rightarrow \bigcirc$ $CH_3 \qquad CH_3 \qquad CH$

 \sim



(b) $HO - NO_2 + H^+ HSO_4^- \rightarrow H_2O + NO_2^+ + HSO_4^-$ 18. Nitroniumion (attacking species)


19. (b)
$$\bigcirc$$
 + $HNO_3 \xrightarrow{\text{Conc.} H_2SO_4}$ \bigcirc NO 2

 $\xrightarrow{\text{anhyd.}} C_6H_5CH_3 + HCl \text{, it is a}$ **22.** (a) $C_6H_6 + CH_3Cl -$ AlCl₃ Friedel-craft's reaction.

m-xylene *o*-xylene *p*-xylene

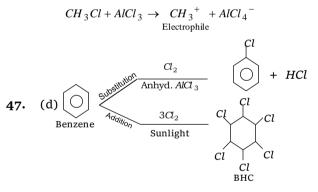
m-xylene is most easily sulphonated because O and P both positions are free with respect to methyl group.

Toluene

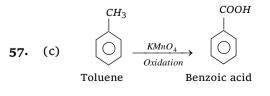
Benzoic acid

36. (c)
$$+\frac{9}{2}O_2 \xrightarrow{V_2O_5} H \xrightarrow{CH-COOH} \xrightarrow{-H_2O}$$

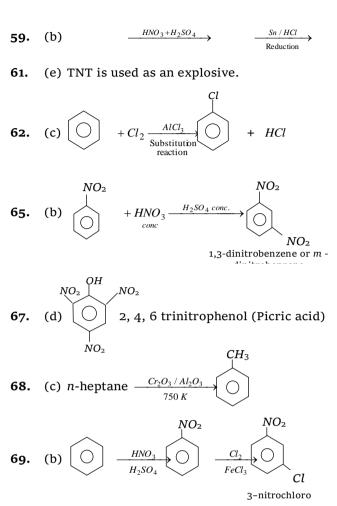
Maleic acid


- $O \\ CH C \\ U \\ CH C \\ U \\ O \\ O$ Maleic anhydride
- **38.** (b) Phenol is most easily nitrated.

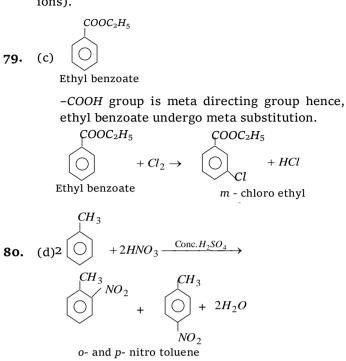
$$\begin{array}{c} \mathbf{H}_{1} \quad (a) \quad \overbrace{}^{CH_{3}} \quad \overbrace{}^{CH_{2}H^{+}} \quad \overbrace{}^{CH_{2}H^{+}} \quad \overbrace{}^{CH_{2}H^{+}} \quad \overbrace{}^{CH_{2}H^{+}} \quad \overbrace{}^{H_{2}H^{+}} \quad \overbrace{}^{H_{$$

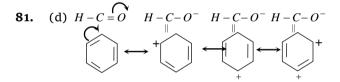

43. (a) Nitrobenzene is least reactive towards bromine because of presence of $-NO_2$ group decreases electron density at *o* and *p* positions and hence attack of electrophile on the benzene nucleus is difficult because + *ve* charge on *o* and *p* position repel the incoming electrophile.

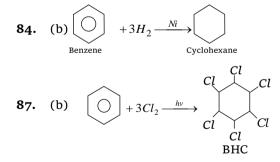
$$O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) O^{-} \underbrace{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xrightarrow{\bullet} O \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$$


46. (d) $AlCl_3$ is an electron deficient compound. It generates electrophile in the reaction

- **51.** (b) Benzene can be obtained by polymerisation of acetylene.
- **53.** (b) Benzene C_6H_6 is made up of hydrogen and carbon only.
- **54.** (c) They have a relatively high percentage of carbon
- **55.** (c) All 6 carbons of Benzene are sp^2 -hybridised so it is planar.




58. (c) 2,4,6-Trinitro toluene (TNT) is used as explosive. NO_2 NH_2


- 71. (b) In benzene due to resonance all the carboncarbon bond lengths are equal 1.39Å which is between C - C(1.54 Å) and C = C(1.34 Å)
- 72. (c) $C_6H_5COONa + NaOH \xrightarrow{CaO} C_6H_6 + Na_2CO_3$ Sodium benzoate Benzene
- **73.** (a) Friedel-Craft's reaction involves the introduction of an alkyl or acyl group into benzene ring in the presence of a catalyst. The presence of an electron withdrawing group in the ring hinders the reaction. Therefore phenyl acetanilide is not used.
- **74.** (a) Halogenation is initiated by free redical.
- **76.** (b) In benzene all the six carbon atoms are present in the same plane. All the carbon atoms are sp^2 hybridized. Hence, it is a planar molecule.
- 77. (d) Basicity of amines is due to availability of an unshared pair (lone pair) of electrons on nitrogen. This lone pair of electrons is available for the formation of a new bond with a proton or Lewis acid.
 Pyridine is less basic than triethylamine because lone pair of nitrogen in pyridine is delocalised.

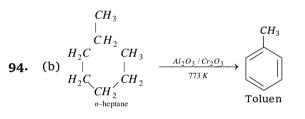
78. (a) In chlorination electrophile is Cl^+ (chloronium ions).

Presence of -CHO decrease electron density at *o* to *p* positions. Hence, attack of an electrophile occurs at *m*-position. therefore it is meta directing group.

- **88.** (a) Benzene on fractional distillation gives light oil [It is lighter than water and hence called as light oil]
- **89.** (d) Because Ammonical $AgNO_3$ reduce C = CH bond of yne.
- **90.** (a) Bond length $\propto \frac{1}{\text{Bond order}}$ Bond order = $\frac{\text{Bonding} - \text{ antibondin g electron}}{2}$

Bond order is highest for C_2H_6 so it has minimum bond strength.

(b) $C_6H_5COOH + NaOH \rightarrow C_6H_5COONa + H_2O$ 91. (x)

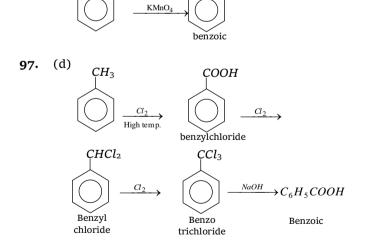

$$\xrightarrow{\text{NaOII}} C_6H_6 + Na_2CO_3$$

$$C_6H_5OH + Zn \xrightarrow{\text{distill}} C_6H_6 + ZnO$$

N OU

- (c) Unsaturated hydrocarbons are more reactive 92. than saturated hydrocarbons. Among ethyne (C_2H_2) and ethene (C_2H_4) the later is more reactive as $C \equiv C$ triple bond is quite strong bond and therefore ethyne generally require catalysts (like Hg^{2+} etc) in its reactions.
- (a) Kolbe's methods Electrolysis of a 93. concentrated aqueous solution of either sodium or potassium salts of saturated mono carboxylic acids yields higher alkanes at anode.

$$CH_{3}COONa \rightleftharpoons CH_{3}COO^{-} + Na +$$
Anode : $2CH_{3}COO^{-} \xrightarrow{-2e^{-}} CH_{3} - CH_{3} + 2CO_{2}$
Cathode : $2Na^{+} + 2e^{-} \rightarrow 2Na$
 $2Na + 2H_{2}O \rightarrow 2NaOH + H_{2}$


96.

(d)

 CH_3

(a) $-NH_2$ group is not linked with benzene ring. 95.

СООН

Critical Thinking Question

1. (a) The difference between any two successive members of the homologous series $-CH_2$ i.e., the molecular weight of every two adjacent members differ by 14. $(CH_2 = 12 + 2 = 14)$

2. (a)
$$\begin{array}{c} \overset{1^{o}}{CH_{3}} \\ \overset{3^{o}}{CH_{3}} - \overset{3^{o}}{CH_{3}} - \overset{2^{o}}{CH_{3}} - \overset{3^{o}}{CH_{2}} - \overset{2^{o}}{CH_{2}} - \overset{3^{o}}{CH_{2}} - \overset{2^{o}}{CH_{2}} - \overset{1^{o}}{CH_{2}} \\ \overset{1^{o}}{CH_{3}} \\ \overset{1^{o}}{CH_{3}} \\ \overset{1^{o}}{CH_{3}} \\ \overset{1^{o}}{CH_{3}} \\ \overset{1^{o}}{Primary} \\ \overset{1^{o}}{S} \Rightarrow \text{Secondary } 2 \\ 3^{o} \Rightarrow \text{Tertiary } 2, 4^{o} \Rightarrow \text{Quanternar } y1 \\ 3. (c) \text{ Octane number of fuel is the percentage of } \end{array}$$

iso- octane in mixture. (b) $CH_3 - CH - CH_2 - CH_3 \rightarrow CH_3 - CH = CH - CH_3$ 4.

According to this rule *H* atom goes from that β - carbon which is less hydrogenated.

5. (c)
$$CH_3 - C \equiv C - CH_3 \xrightarrow{(1)O_3} CH_3 - C - C - CH_3$$

(ii) Zn / H_2O $\parallel \parallel \parallel O O$

6. (c) Friedel-craft's reaction

OH

$$\begin{array}{c} CH_3COCl + C_6H_6 & \xrightarrow{\text{anhydrous } AlCl_3} \\ \text{Acetykhloride} & \text{Benzene} & \text{Acetophenone} \end{array}$$

- (a) $C_2H_6(\text{excess}) + Cl_2 \xrightarrow{U.V.\text{Light}} C_2H_5Cl + HCl$ 7. Ethylchloride (Major product)
- $\xrightarrow{\text{Red }P} CH_3 CH_3 + H_2O + I_2$ 8. (a) $CH_3CH_2 - OH + 2HI -$ Ethane Ethylalcohol
- (a) Fischer-Tropsch process -9.

$$\underbrace{CO + H_2}_{\text{Water gas}} + \underbrace{H_2}_{\text{Excess}} \xrightarrow{\text{CO or Ni}}_{\text{heat}} \text{Mixture of hydrocarbo ns} + H_2C$$

Br

10. (c)
$$CH_3 - CH_2 - CH_2 - Br + \bigcirc + 2Na \xrightarrow{Dry}_{ether} + ether$$

$$2NaBr + CH_3 - CH_2 - CH_2$$

n-propyl benzene

(a) Hydroboration of alkenes followed 11. bv hydrolysis in basic medium yield alcohols and not the alkanes.

$$R - CH = CH_2 \xrightarrow{B_2H_6} (R - CH_2 - CH_2)_3 - B$$

$$\xrightarrow{OH} R - CH_2 - CH_2OH$$

(b) Koch reaction : (Carboxylation of Alkene) 12. COOH

$$CH_3 - CH = CH_2 \xrightarrow{\text{Water gas}(CO + H_2)} CH_3 - CH_3 - CH_3 - CH_3$$

 $400^{\,o} C, H_3 PO_4 \xrightarrow{\text{Isobuty ric acid}} CH_3 - CH_3 - CH_3$

13. (d)
$$CH_3 - \overset{|}{C} = CH - CH_3 \xrightarrow{NaIO_4} CH_3COCH_3$$

CH₃

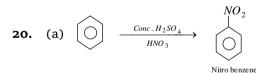
14.

(b)
$$HC = CH + 2AgNO_3 \xrightarrow{NH_4OH}$$

$$Ag - C \equiv C - Ag + 2NH_4NO_3 + 2H_2O$$

 $+CH_3CHO$

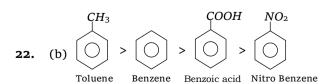
- 15. (d) Naphthalene is a molecular solid. If the crystals contains only individuals atoms; as in solid argon or krypton or if they are composed of non polar molecules as in naphthalene, the only attraction between the molecules are the London forces.
- 16. (d) A compound is said to be aromatic if it is planar and there is complete delocalization of π electrons, which is only possible if it is a conjugated cyclic system and number of electrons used in delocalization is (4n + 2). 1, 3, 5 heptatriene is not an aromatic compound because complete delocalization of π electrons, is not possible in it.

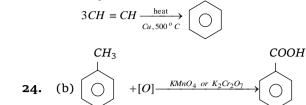

17. (c)
$$CH = CH + HCN \xrightarrow{Ba(CN)_2} CH_2 = CHCN$$

Acetylene Vinylcyanide

- **18.** (a) Addition reaction means addition on double bond.
- **19.** (d) $CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$ 64 g

 $C_2H_2 + H_2 \rightarrow C_2H_4$


64g of CaC_2 gives 28g of ethylene


 \therefore 64kg of CaC_2 will give 28kg of polyethylene

21. (b) Electron accepting groups which make the substitution difficult are known of deactivating groups. the group or substituent already present on the ring also decides the position of incoming group.

ortho and para directing groups are as follow $-CH_3, C_2H_5(-R), -NH_2, -OH$, halogens, (Cl, Br, I)

25. (a) Wohler reaction :

(c) Polymerisation

$$CaC_2 + 2H_2O \longrightarrow C_2H_2 + Ca(OH)_2$$

$$C_{2}H_{2} \xrightarrow[60^{o}C]{dil.H_{2}SO_{4}/H_{g}SO_{4}} [CH_{2} = CHOH] \rightarrow CH_{3}CHO$$
Acetylene
$$C_{2}H_{2} \xrightarrow[60^{o}C]{dil.H_{2}SO_{4}/H_{g}SO_{4}} [CH_{2} = CHOH] \rightarrow CH_{3}CHO$$
Acetaldehyde

26.

33.

(a)

23.

$$CH_{3}CHO \xrightarrow{\text{Oxidation}} CH_{3}COOH$$
Acetic acid

- **27.** (a) $CaC_2 + 2D_2O \longrightarrow C_2D_2 + Ca(OD)_2$
- **28.** (d) It is a unsymmetrical olefin. In such cases addition of H-X is governed by 'Markownikoff's rule'

29. (d)
$$CH_3 - CH = CH_2 \xrightarrow{\text{Conc.}} CH_3COOH + HCOOH$$

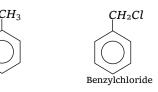
30. (a)
$$\bigcirc$$
 1, 2 or 1, 6 = ortho 1, 3 or 1, 5 = meta 1, 4 = para.

31. (b) Biological oxidation of benzene gives cinnamic acid.

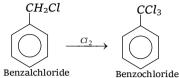
32. (d)
$$CH \equiv CH \xrightarrow{HBr} CH_2 = CH - Br \xrightarrow{HBr}$$

 $CH_3CH \leq \frac{Br}{Br}$ Ethylidenedibromide

(c) Electron accepting groups which make the substitution difficult are known or deactivating groups.


o. p. directing groups are as follow :

$$-CH_3, C_2H_5(-R), -NH_2, -OH$$
, halogens (Cl, Br, I) .


34. (a) 2-butene shows geometrical isomerism.

$$\begin{array}{ccc} H-C-CH_{3} & H-C-CH_{3} \\ \parallel & \parallel \\ H-C-CH_{3} & CH_{3}-C-H_{1} \\ \text{cis-Butene -2} & \text{trans-Butene -2} \end{array}$$

35. (d) Sidechain chlorination and bromination is favoured by high temperature, light and in absence of halogen carrier.

$$Cl_2$$
 Cl_2

- (b) $C_2H_4 + CO + H_2O \xrightarrow{\text{Ligh temp.}} C_2H_5 COOH$ 36. Propionic acid Ethv lene
- (b) Cyclohexane C_6H_{12} is alicyclic compound. 37.

38. (c)
$$CH_2 = CH_2 \xrightarrow{HBr} CH_3 - CH_2 \xrightarrow{Hydrolysis} Br$$

$$\begin{array}{c} CH_{3} - CH_{2} \xrightarrow{Na_{2}CO_{3}} CHI_{3} \\ | \\ OH \end{array} \xrightarrow{I_{2} \text{ excess}} CHI_{3} \\ \begin{array}{c} CHI_{3} \\ Vellowpt \\ (Iodoform) \end{array}$$

(d) On oxidation, with $KMnO_4$, they give different 39. alcohols

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{3} \xrightarrow{KMnO_{4}} [O]$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CHOH_{2}$$

$$I^{\circ} \text{ alcohol}$$

$$CH_{3}CH_{2} - CH - CH_{3} \xrightarrow{KMnO_{4}} CH_{3}CH_{2} - \begin{vmatrix} OH \\ -CH_{3} \\ CH_{3} \end{vmatrix}$$

$$CH_{3}CH_{2} - CH_{3} \xrightarrow{KMnO_{4}} CH_{3}CH_{2} - \begin{vmatrix} CH \\ -CH \\ -CH \\ CH_{3} \\$$

(b) $CH \equiv CH + HBr \rightarrow CH_2 = CHBr$ Acetylene Vinyl bromide 40. Vinyl bromide

Assertion & Reason

(a) This reaction is followed by against of 1. Markownikoff rule

In this reaction anti Markownikoff's addition is explained on the basis of the fact that in the presence of peroxide the addition takes place Via a free radical mechanism rather than the ionic mechanism.

2. (a)
$$CH_3 - CH_2 - CH = CH_2 + Br_2 \rightarrow 1$$
 Butene

$$H$$

$$CH_2 - CH_2 - C^{\bullet} - CH_2Br$$

$$Br$$
1,2 dibrom obut ane

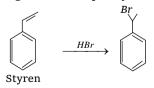
- (a) Pyrrole is a heterocyclic compound having five 4. membered ring. It has 6π electrons. As 4π electrons in the ring and 2π electrons donated by nitrogen atom present in the ring.
- (b) The assertion that chlorination of CH_4 does 5٠ not take place in dark is correct because it is a free radical reaction and free radicals are obtained in presence of sun light.
- (b) The alkyl benzene is not prepared by Friedel 6. Craft's alkylation of benzene because the monoalkyl product formed undergo alkylation to produce polyalkylated benzene.

The reason that alkyl halides are less reactive than acyl halides is also correct but this is not the correct explanation of assertion.

(d) 2-bromobutane on reaction with sodium 7. ethoxide in ethanol gives 2-butene as a major product. EtO⁻

$$\begin{array}{c} H-CH-CH(CH_3)-Br \rightarrow \\ | \\ CH_3 \end{array}$$

$$EtOH + CH = CH + Br^{-}$$


$$|$$

$$CH_{2}$$

This is according to saytzeff's rule i.e. the Predominant product is the most substituted alkene, i.e. are carrying the largest number of alkyl substituents of hydrogen is eliminated preferentially from the carbon atom joined to the least number of hydrogen atoms.

2-butene is more stable than 1-butene due to presence of large number of hyperconjugating structures in 2-butene.

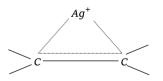
8. (b) HBr adds to the double bond of the styrene forming 1-bromo-1-phenylethane.

This is an example of elimination-addition reaction.

Note : Here given assertion is wrong.

(b) Alkanes with odd carbon atoms have their and 9. carbon atom on the same side of the molecule

and in even carbon atom alkane, the end carbon atom on opposite side. Thus alkanes with even carbon atoms are packed closely in crystal lattice to permit greater intermolecular attractions and hence higher melting point.


10. (b) Iodination is reversible since formed *HI* is a strong reducing agent and reduces the alkyl iodide back to alkane.

$$CH_4 + I_2 \Rightarrow CH_3I + HI$$

(b) Normally oxidising agents have no effect on alkanes. However, alkanes containing a tertiary hydrogen atom can be oxidised by oxidising agents such as *KMnO*₄ to the corresponding alcohols. For example,

$$CH_{3} \xrightarrow[]{} CH_{3} \xrightarrow[]{} CH_$$

- (e) Halogenation of alkanes is catalysed by radical initiators like benzoyl peroxide.
- 13. (c) Neopentane has four identical methyl groups attached on 4° carbon atom and thus only one product is possible during monosubstitution.
- 14. (b) Neopentane is more symmetric than *n*-pentane and it is expected to show more stable crystal lattice than that of *n*-pentane and thus have high melting point.
- 15. (b) Knocking involves the production of metallic sound due to irregular burning of the fuel. This irregular burning lowers the efficiency of the engine.
- **16.** (b) Ag^+ coordinates with the alkene by $p\pi d\pi$ bonding giving an ion and the solubility increases.

17. (a) In the dehydration of secondary and tertiary alcohols. When there is a possibility of formation of two isomers. The hydrogen atom is preferentially eliminated from the adjacent carbon atom with the fewer number of hydrogen atoms. This is Saytzeff's rule.

$$CH_{3} - CH_{2} - CH_{2} - CH_{3} - CH_{3} \xrightarrow{60\%H_{2}SO_{4}} (CH_{3} - CH_{3} - CH$$

18. (c) The addition of Br_2 follows ionic mechanism

$$H_{2}C = CH_{2} \xrightarrow{A^{+} a^{-}} H_{2}C = CH_{2} \xrightarrow{+Br_{2}(Br-Br)} H_{2}C = CH_{2} \xrightarrow{+Br}$$

$$H_{2}C = CH_{2}Br \xrightarrow{+Br} H_{2}C = CH_{2}Br$$

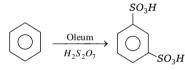
$$H_{2}C = CH_{2}Br \xrightarrow{+Br} CH_{2} - CH_{2}Br$$

$$H_{2}C = CH_{2}Br \xrightarrow{+Br} CH_{2} - CH_{2}Br$$

$$H_{2}C = CH_{2}Br \xrightarrow{+Br} CICH_{2} - CH_{2}Br$$

- 19. (b) Straight chain alkanes have very low octane number because as the length of the chain increases, octane number further decreases.
- 21. (d) The two hydrogen atoms on first carbon and the two *H*-atoms on the third carbon atom lie in perpendicular planes. The central carbon atom is *sp*-hybridized while terminal carbon atoms are sp^2 -hybridized.
- 22. (d) Propene reacts with *HBr* in presence of benzoyl peroxide to give 1-bromopropane. In presence of peroxide, the addition of *HBr* to propane occurs by free radical mechanism.
- **24.** (b) Arylhalide shows resonance stabilization and thus resistant to substitution reaction.
- **25.** (e) During alkylation of bromobenzene, if benzene is used as solvent, alkylation of benzene will take place because benzene is more reactive for S_E reactions than bromo benzene, benzene is not used as a solvent for this reaction.

26. (b) Benzene is a polar solvent Butter is composed of organic compounds of low polarity. So it gets dissolved in benzene. CH_{2}


27. (a)

In toluene 🔾

, the $-CH_3$ group is electron

Pushing. It is an activating group. By its+I effect, $-CH_3$ group activates the benzene ring at ortho and para position relative to it. Due to increased activity towards electrophilitic substitution toluene can be more easily nitrated than benzene.

28. (e) With fuming H_2SO_4 or oleum (conc. $H_2SO_4 + SO_3$) at high temperature benzene forms *m*-benzene disulphonic acid.

m-Benzene disulphonic

- (c) Like halogens, the nitroso group (-N = O) is 29. also deactivating but o, p-directing. It is deactivating because 0 is more electronegative than N and hence No group as whole withdraws electrons from the benzene ring.
- (e) Completely conjugated polyenes containing 31. even number of carbon atoms is known as annulenes.
- (c) $(4n+2)\pi$ electrons and planar structure are 32. the essential conditions for aromaticity.
- **33.** (a)

Due to severe non-bonded interactions between the internal hydrogen (as shown in figure), the ring assumes non-planar geometry.