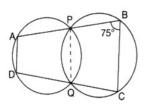
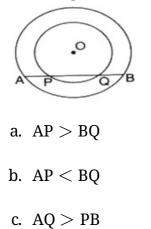
CBSE Test Paper 04 CH-10 Circles

1. The given figure shows two intersecting circles. If $\angle ABC = 75^o$, then the measure of $\angle PAD$ is

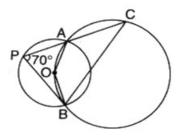


- a. 75°
- b. 105°
- c. 150°
- d. 125^o
- 2. ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and $\angle ADC = 140^o$, then $\angle BAC$ is equal to
 - a. 40°
 - b. 30°
 - c. 75°
 - d. 50°
- 3. Two circle are congruent if they have equal.
 - a. diameter
 - b. chord
 - c. radii
 - d. secant

4. If a straight line APQB is drawn to cut two concentric circles, then



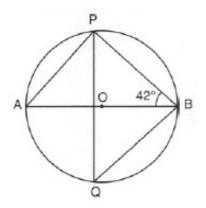
- d. AP = BQ
- 5. The figure shows two circles which intersect at A and B. The centre of the smaller circle is O and it lies on the circumference of the larger circle. If $\angle APB = 70^{o}$, then the measure of $\angle ACB$ is



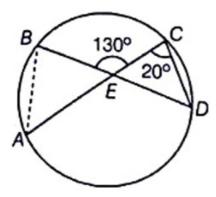
- a. 40°
- b. 50°
- c. 70°
- d. 50^o
- 6. Fill in the blanks:

The centre of a circle lies in _____ of the circle.

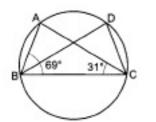
7. In the figure, find m \angle PQB where O is the centre of the circle.



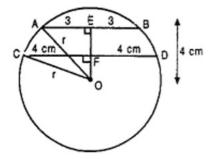
- 8. Two circles are drawn with sides AB, AC of a triangle ABC as diameters. The circles intersect at a point D. Prove that D lies on BC.
- 9. In the given figure, A, B, C, and D are four points on a circle. AC and BD intersect at point E such that \angle BEC =130° and \angle ECD = 20°. Find \angle BAC.



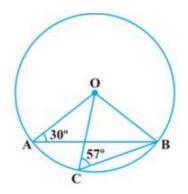
10. In given figure, $\angle ABC = 69^\circ$, $\angle ACB = 31^\circ$, find $\angle BDC$.



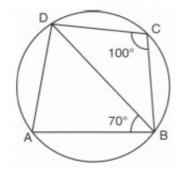
11. The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at the distance of 4 cm from the centre, what is the distance of the other chord form the centre?



12. $\angle OAB = 30^{\circ}$ and $\angle OCB = 57^{\circ}$. Find $\angle BOC$ and $\angle AOC$.



13. In Fig., ABCD is a cyclic quadrilateral. If \angle BCD = 100° and \angle ABD = 70°, find \angle ADB.



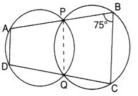
- 14. If two intersecting chords of a circle make equal angles with the diameter passing through their point of intersection, prove that the chords are equal.
- 15. PQ and RQ are chords of a circle equidistant from the centre. Prove that the diameter passing through Q bisects $\angle PQR$ and $\angle PSR$.

CBSE Test Paper 04 CH-10 Circles

Solution

1. (b) 105^{o}

Explanation:



Since $\angle PQC + \angle PBC = 180^{\circ}$ (Opposite angles of a cyclic quadrilateral) $\angle PQC = 180^{\circ} - 75^{\circ} = 105^{\circ}$ Again, $\angle DQP + \angle PQC = 180^{\circ}$ (Linear Pair) so, $\angle DQP = 75^{\circ}$ Also, $\angle PAD + \angle DQP = 180^{\circ}$ (Opposite angles of a cyclic quadrilateral) $\angle PAD = 105^{\circ}$

2. (d) 50°

Explanation:

In the given quadrilateral,

 $\angle ABC + \angle ADC = 180^{\circ}$

 $140^0 + \angle ABC = 180^0$

 $\angle ABC = 40^0$

Since, AB is diameter so ABCD lies in semi-circle.

thus, $\angle BCA = 90^{0}$

In triangle, ABC,

 $egin{aligned} & {} \angle A + {} \angle B + {} \angle C = 180^0 \ & {} \angle BAC = 180^0 - 40^0 - 90^0 = 180^0 - 130^0 = 50^0 \end{aligned}$

$$\angle BAC = 50^0$$

3. (c) radii

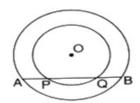
Explanation:

As per theorem,

two circles are congruent only if they have same radii.

4. (d)
$$AP = BQ$$

Explanation:

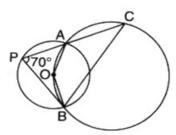


Let OD is perpendicular to AB. Then AD = DB.

Also DP = DQ Therefore, AP = AD - PD = BD - DQ = BQ Hence, AP = BQ

5. (a) 40°

Explanation:



Since, AB is a chord and makes $\angle APB = 70^{0}$ at the circumference, so $\angle AOB = 140^{0}$

Now, as AOBC is a cyclic quadrilateral then, sum of opposite angles must be 180° .

$$\angle AOB + \angle ACB = 180^{\circ}$$

 $\Rightarrow 140^{\circ} + \angle ACB = 180^{\circ}$

$$\Rightarrow \angle ACB = 40^{\circ}$$

- 6. interior
- 7. Since angle in a semi-circle is a right angle.

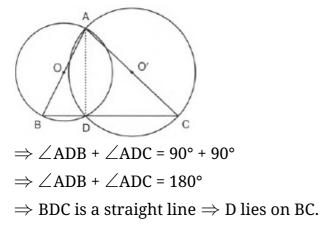
 $\therefore \angle APB = 90^{\circ}$ In $\triangle APB$, we have $\angle PAB + \angle PBA + \angle APB = 180^{\circ}$ $\Rightarrow \angle PAB + 42^{\circ} + 90^{\circ} = 180^{\circ}$ $\Rightarrow \angle PAB = 48^{\circ}$

Consider arc BP. We find that \angle PAB and \angle PQB are angles in the same segment of a circle.

 $\therefore \angle PQB = \angle PAB$ [: Angles in the same segment are equal]

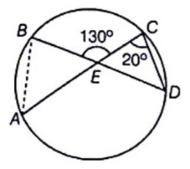
 $\Rightarrow \angle PQB = 48^{\circ}$

8. Join AD. Since angle in a semi-circle is a right angle.



9. Given: \angle BEC =130° and \angle ECD = 20°.

To Find : ∠BAC



Solution:Since the exterior angle of a triangle is equal to the sum of the interior opposite angles,

 $\therefore \angle BEC = \angle ECD + \angle CDE$ $\Rightarrow 130^{\circ} = 20^{\circ} + \angle CDE$ $\Rightarrow \angle CDE = 130^{\circ} - 20^{\circ} = 110^{\circ}$ $\angle BDC = 110^{\circ}$ Now, $\angle BAC = \angle BDC$ (Angles in the same segment) Hence $\angle BAC = 110^{\circ}$

10. From the given figure, in \triangle ABC, we can write

 $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$ (by angle sum property) $69^{\circ} + 31^{\circ} + \angle BAC = 180^{\circ}$ $\Rightarrow \angle BAC = 180^{\circ} - 100^{\circ} = 80^{\circ}$ $\angle BDC = \angle BAC$ (Angles in the same segment) $\therefore \angle BDC = 80^{\circ}$

11. Let AB = 6 cm and CD = 8 cm are the chords of circle with centre O.

Join OA and OC.

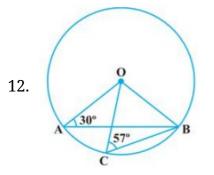
Since perpendicular from the centre of the circle to the chord bisects the chord.

 $\therefore AE = EB = \frac{1}{2} AB = \frac{1}{2} \times 6 = 3 \text{ cm}$ And $CF = FD = \frac{1}{2} CD = \frac{1}{2} \times 8 = 4 \text{ cm}$ Perpendicular distance of chord AB from the centre O is OE. $\therefore OE = 4 \text{ cm}$ Now in right angled triangle AOE, $OA^2 = AE^2 + OE^2$ [Using Pythagoras theorem] $\Rightarrow r^2 = 3^2 + 4^2$ $\Rightarrow r^2 = 9 + 16 = 25$ $\Rightarrow r = 5 \text{ cm}$ Perpendicular distance of chord CD from the center O is OF.

Now in right angled triangle OFC,

 $OC^2 = CF^2 + OF^2$ [Using Pythagoras theorem] $\Rightarrow r^2 = 4^2 + OF^2$ $\Rightarrow 5^2 = 16 + OF^2$ $\Rightarrow OF^2 = 25 - 16$ $\Rightarrow OF^2 = 9$ $\Rightarrow OF = 3cm$

Hence distance of other chord from the centre is 3 cm.



In ΔOBC we have

OB = OC [Radii of the same circle]

$$\therefore \angle OCB = \angle OBC = 57^{\circ}$$

Now, in ΔBOC , we have

 $\angle OCB + \angle OBC + \angle BOC = 180^{\circ}$

$$57^\circ + 57^\circ + \angle \mathrm{BOC} = 180^\circ$$

$$\Rightarrow ot BOC = 180^\circ - 114^\circ = 66^\circ$$

Again, in ΔAOB , we have

OB = OA [Radii of the same circle]

$$\angle OAB = \angle OBA = 30$$

$$\angle OAB + \angle OBA + \angle AOB = 180^{\circ}$$

$$\Rightarrow 30^{\circ} + 30^{\circ} + (\angle AOC + \angle BOC) = 180^{\circ}$$

$$\Rightarrow 60^{\circ} + ot AOC + 66^{\circ} = 180^{\circ}$$

$$\Rightarrow ot AOC = 180^\circ - 126^\circ = 54^\circ$$

Hence, $\angle BOC = 66^\circ$ and $\angle AOC = 54^\circ$

13. We have, $\angle BCD = 100^{\circ}$ and $\angle ABD = 70^{\circ}$

 $\therefore \angle$ DAB + \angle BCD = 180^o [Opposite angles of cyclic quad.]

 $\Rightarrow \angle \text{DAB} + 100^{\circ} = 180^{\circ}$

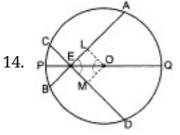
 $\Rightarrow \angle \text{DAB} + 180^{\circ} - 100^{\circ} = 80^{\circ}$

In \triangle DAB, by angle sum property,

$$\angle ADB + \angle DAB + \angle ABD = 180^{\circ}$$

$$\Rightarrow \angle ADB + 80^{\circ} + 70^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ADB = 180^{\circ} - 80^{\circ} - 70^{\circ} = 30^{\circ}$$



Given: AB and CD are two chords of a circle with centre O, intersecting at point E. PQ is a diameter through E, such that $\angle AEQ = \angle DEQ$. To prove: AB = CD Construction: Draw OL \perp AB and OM \perp CD Proof: \angle LOE + \angle LEO + \angle OLE = 180° (Angle sum property of a triangle) $\Rightarrow \angle LOE + \angle LEO + 90^\circ = 180^\circ$ $\angle LOE + \angle LEO = 90^{\circ}$ (i) Similarly, \angle MOE + \angle MEO + \angle OME = 180° $\Rightarrow \angle$ MOE + \angle MEO + 90° = 180° \angle MOE + \angle MEO = 90°(ii) From (i) and (ii) we get Also, \angle LEO = \angle MEO (Given) ...(iv) From (iii) and (iv) we obtain $\angle LOE = \angle MOE$ Now in triangles OLE and OME \angle LEO = \angle MEO (Given)

 $\therefore \angle LOE = \angle MOE$ (Proved above)

EO = EO (Common)

: by ASA congruence criterion we have:

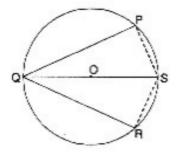
 $\bigtriangleup \mathsf{OLE} \cong \bigtriangleup \mathsf{OME}$

 \therefore OL = OM (by CPCT)

Thus, chords AB and CD are equidistant from the centre O of the circle. Since, chords of a circle which are equidistant from the centre are equal.

 \therefore AB = CD

15. Given: PQ and RQ are two chords of a circle equidistant from the centre. To prove: The diameter QS passing through Q bisects $\angle PQR$ and $\angle PQR$ Construction : Join PS and RS.



Proof : Chords PQ and RQ are equidistant from the centre.

 $\therefore PQ = RQ \mid \because \text{ chords of a circle equidistant from the centre are equal}$ Also $\angle QPS = \angle QRS = 90^{\circ} \mid \because$ An angle in a semi-circle is a right angle $\therefore \triangle \text{s PQS and RQS are right } \triangle s$ Now in right $\triangle s$ PQS and RQS PQ = RQ |Proved above Hyp. QS = Hyp.QS |Common $\therefore \triangle PQS \cong \triangle RQS \mid \text{R.H.S. Axiom}$ $\therefore \angle PQS = \angle RQS \mid \text{c.p.c.t}$ and $\angle PSQ = \angle RSQ \mid \text{c.p.c.t}$

i.e. The diameter QS passing through Q bisects $\angle PQR$ and $\angle PSR$ Proved.