Mathematics

(Chapter - 12) (Symmetry) (Exercise 12.1) (Class - VII)

Question 1:

Question 2: Express the following in exponential form: (a) (b) (c) (d) (e) Answer 2: Line(s) of symmetry Other holes on figures S.No. (a) (b) (c) (d) (e)

Question 3:

In the following figures, the mirror line (i.e., the line of symmetry) is given as a dotted line. Complete each figure performing reflection in the dotted (mirror) line. (You might perhaps place a mirror along the dotted line and look into the mirror for the image).

Are you able to recall the name of the figure you complete?

Question 4: The following figures have more than one line of symmetry. Such figures are said to have multiple lines of symmetry: (a) Identify multiple lines of symmetry, if any, in each of the following figures: (b) (a) (c) (d) (e) (g) Answer 4: **Problem Figures** S.No. Lines of symmetry (a) (b) (c) (d)

Question 5:

Copy the figure given here:

Take any one diagonal as a line of symmetry and shade a few more squares to make the figure symmetric about a diagonal. Is there more than one way to do that? Will the figure be symmetric about both the diagonals?

Answer figures are:

Yes, there is more than one way.

Yes, this figure will be symmetric about both the diagonals.

Question 6:

Copy the diagram and complete each shape to be symmetric about the mirror line(s):

Question 7:

State the number of lines of symmetry for the following figures:

(b)

- (a) An equilateral triangle
- (d) A square
- (g) A parallelogram

(a)

(j) A circle

Answer 7:

S.No.	Figure's name	Diagram with symmetry	Number of lines
(a)	Equilateral triangle		3
(b)	Isosceles triangle		
(c)	Scalene triangle		0

(c)

(c) A scalene triangle

(i) A regular hexagon

(f) A rhombus

(b) An isosceles triangle

(e) A rectangle

(h) A quadrilateral

Question 8:

What letters of the English alphabet have reflectional symmetry (i.e., symmetry related to mirror reflection) about.

- (a) a vertical mirror
- (b) a horizontal mirror
- (c) both horizontal and vertical mirrors

Answer 8:

(a) Vertical mirror – A, H, I, M, O, T, U, V, W, X and Y.

(b) Horizontal mirror - B, C, D, E, H, I, O and X.

14:	В	C	\mathbf{D}	\mathbf{E}	H	Ι	O	X
MILLOL	B		D	\mathbf{E}	<i>''''</i> Н	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	O	X

(c) Both horizontal and vertical mirror – H, I, O and X.

Question 9:

Give three examples of shapes with no line of symmetry.

Answer 9:

The three examples are:

- Quadrilateral
- Scalene triangle
- Parallelogram

Question 10:

What other name can you give to the line of symmetry of:

- (a) an isosceles triangle?
- (b) a circle?

Answer 10:

- (a) The line of symmetry of an isosceles triangle is median or altitude.
- (b) The line of symmetry of a circle is diameter.

Mathematics

(Chapter - 12) (Symmetry) (Exercise 12.2) (Class - VII)

Question 1:

Which of the following figures have rotational symmetry of order more than 1:

Answer 1:

Rotational symmetry of order more than 1 are (a),(b),(d),(e) and (f) because in these figures, a complete turn, more than 1 number of times, an object looks exactly the same.

Question 2:

Give the order the rotational symmetry for each figure:

Mathematics

(Chapter - 12) (Symmetry) (Exercise 12.3) (Class - VII)

Question 1:

Name any two figures that have both line symmetry and rotational symmetry.

Answer 1:

Circle and Square.

Question 2:

Draw, wherever possible, a rough sketch of:

- (i) a triangle with both line and rotational symmetries of order more than 1.
- (ii) a triangle with only line symmetry and no rotational symmetry of order more than 1.
- (iii) a quadrilateral with a rotational symmetry of order more than 1 but not a line symmetry.
- (iv) a quadrilateral with line symmetry but not a rotational symmetry of order more than 1.

Answer 2:

(i) An equilateral triangle has both line and rotational symmetries of order more than 1.

Line symmetry:

Rotational symmetry:

(ii) An isosceles triangle has only one line of symmetry and no rotational symmetry of order more than 1.

Line symmetry:

Rotational symmetry:

(iii) It is not possible because order of rotational symmetry is more than 1 of a figure, most acertain the line of symmetry.

(iv) A trapezium which has equal non-parallel sides, a quadrilateral with line symmetry but not a rotational symmetry of order more than 1.

Line symmetry:

Rotational symmetry:

Question 3:

If a figure has two or more lines of symmetry, should it have rotational symmetry of order more than 1?

Answer 3:

Yes, because every line through the centre forms a line of symmetry and it has rotational symmetry around the centre for every angle.

Question 4:

Fill in the blanks:

Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square			
Rectangle			
Rhombus			
Equilateral triangle			
Regular hexagon			
Circle			
Semi-circle			
Answer 4:			

Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square	Intersecting point of diagonals.	4	90°
Rectangle	Intersecting point of diagonals.	2	180
Rhombus	Intersecting point of diagonals.	2	180
Equilateral triangle	Intersecting point of medians.	3	120°
Regular hexagon	Intersecting point of diagonals.	6	60 °
Circle	Centre	infinite	At every point
Semi-circle	Mid-point of diameter	1	360

Question 5:

Name the quadrilateral which has both line and rotational symmetry of order more than 1.

Answer 5:

Square has both line and rotational symmetry of order more than 1.

Line symmetry:

Rotational symmetry:

Question 6:

After rotating by 60 about a centre, a figure looks exactly the same as its original position. At what other angles will this happen for the figure?

Answer 6:

 60°

Other angles will be 120°,180°,240°,300°,360°.

For 60 rotation: It will rotate six times.

For 120° rotation: It will rotate three times.

For 180° rotation: It will rotate two times.

For 360° rotation: It will rotate one time.

Question 7:

Can we have a rotational symmetry of order more than 1 whose angle of rotation is:

(i) 45°

(ii) 17°?

Answer 7:

- (i) If the angle of rotation is 45°, then symmetry of order is possible and would be 8 rotations.
- (ii) If the angle of rotational is 17°, then symmetry of order is not possible because 360° is not complete divided by 17.