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Transverse Wave Motion

Partial Differentiation

From this chapter onwards we shall often need to use the notation of partial differentiation.

When we are dealing with a function of only one variable, y ¼ f ðxÞ say, we write the

differential coefficient

dy

dx
¼ lim

�x!0

f ðxþ �xÞ � f ðxÞ
�x

but if we consider a function of two or more variables, the value of this function will vary

with a change in any or all of the variables. For instance, the value of the co-ordinate z on

the surface of a sphere whose equation is x2þy2þz2 ¼ a2, where a is the radius of the

sphere, will depend on x and y so that z is a function of x and y written z ¼ zðx; yÞ. The
differential change of z which follows from a change of x and y may be written

dz ¼ @z

@x

� �
y

dxþ @z

@y

� �
x

dy

where ð@z=@xÞ y means differentiating z with respect to x whilst y is kept constant, so that

@z

@x

� �
y

¼ lim
�x!0

zðxþ �x; yÞ � zðx; yÞ
�x

The total change dz is found by adding the separate increments due to the change of each

variable in turn whilst the others are kept constant. In Figure 5.1 we can see that keeping y

constant isolates a plane which cuts the spherical surface in a curved line, and the

incremental contribution to dz along this line is exactly as though z were a function of x

only. Now by keeping x constant we turn the plane through 90� and repeat the process with

y as a variable so that the total increment of dz is the sum of these two processes.

If only two independent variables are involved, the subscript showing which variable is

kept constant is omitted without ambiguity.
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In wave motion our functions will be those of variables of distance and time, and we

shall write @=@x and @ 2=@x2 for the first or second derivatives with respect to x, whilst the

time t remains constant. Again, @=@t and @ 2=@t 2 will denote first and second derivatives

with respect to time, implying that x is kept constant.

Waves

One of the simplest ways to demonstrate wave motion is to take the loose end of a long

rope which is fixed at the other end and to move the loose end quickly up and down. Crests

and troughs of the waves move down the rope, and if the rope were infinitely long such

waves would be called progressive waves–these are waves travelling in an unbounded

medium free from possible reflection (Figure 5.2).

Plane y = constant

0

y

plane x = constant

Small element of
spherical surface, radius a

x 2+y 2+z 2 = a 2

x

dx
dy

dz1

dz1

dz2

z (y) only

gradient (     )∂z
∂yx

z (x) only

gradient (     )∂z
∂xy

z

Figure 5.1 Small element of a Spherical Surface showing dz ¼ dz 1 þ dz 2 ¼ ð@z=@xÞ y dxþ
ð@z=@yÞ x dy where each gradient is calculated with one variable remaining constant

Progressive waves on infinitely long string

trough

crest

Figure 5.2 Progressive transverse waves moving along a string
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If the medium is limited in extent; for example, if the rope were reduced to a violin

string, fixed at both ends, the progressive waves travelling on the string would be reflected

at both ends; the vibration of the string would then be the combination of such waves

moving to and fro along the string and standing waves would be formed.

Waves on strings are transverse waves where the displacements or oscillations in the

medium are transverse to the direction of wave propagation.When the oscillations are parallel

to the direction of wave propagation thewaves are longitudinal. Soundwaves are longitudinal

waves; a gas can sustain only longitudinal waves because transverse waves require a shear

force to maintain them. Both transverse and longitudinal waves can travel in a solid.

In this book we are going to discuss plane waves only. When we see wave motion as a

series of crests and troughs we are in fact observing the vibrational motion of the individual

oscillators in the medium, and in particular all of those oscillators in a plane of the medium

which, at the instant of observation, have the same phase in their vibrations.

If we take a plane perpendicular to the direction of wave propagation and all oscillators

lying within that plane have a common phase, we shall observe with time how that plane of

common phase progresses through the medium. Over such a plane, all parameters

describing the wave motion remain constant. The crests and troughs are planes of

maximum amplitude of oscillation which are � rad out of phase; a crest is a plane of

maximum positive amplitude, while a trough is a plane of maximum negative amplitude. In

formulating such wave motion in mathematical terms we shall have to relate the phase

difference between any two planes to their physical separation in space. We have, in

principle, already done this in our discussion on oscillators.

Spherical waves are waves in which the surfaces of common phase are spheres and the

source of waves is a central point, e.g. an explosion; each spherical surface defines a set of

oscillators over which the radiating disturbance has imposed a common phase in vibration.

In practice, spherical waves become plane waves after travelling a very short distance. A

small section of a spherical surface is a very close approximation to a plane.

Velocities in Wave Motion

At the outset we must be very clear about one point. The individual oscillators which make

up the medium do not progress through the medium with the waves. Their motion is simple

harmonic, limited to oscillations, transverse or longitudinal, about their equilibrium

positions. It is their phase relationships we observe as waves, not their progressive motion

through the medium.

There are three velocities in wave motion which are quite distinct although they are

connected mathematically. They are

1. The particle velocity, which is the simple harmonic velocity of the oscillator about its

equilibrium position.

2. The wave or phase velocity, the velocity with which planes of equal phase, crests or

troughs, progress through the medium.

3. The group velocity. A number of waves of different frequencies, wavelengths and

velocities may be superposed to form a group. Waves rarely occur as single
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monochromatic components; a white light pulse consists of an infinitely fine spectrum

of frequencies and the motion of such a pulse would be described by its group velocity.

Such a group would, of course, ‘disperse’ with time because the wave velocity of each

component would be different in all media except free space. Only in free space would

it remain as white light. We shall discuss group velocity as a separate topic in a later

section of this chapter. Its importance is that it is the velocity with which the energy in

the wave group is transmitted. For a monochromatic wave the group velocity and the

wave velocity are identical. Here we shall concentrate on particle and wave velocities.

The Wave Equation

This equation will dominate the rest of this text and we shall derive it, first of all, by

considering the motion of transverse waves on a string.

We shall consider the vertical displacement y of a very short section of a uniform string.

This section will perform vertical simple harmonic motions; it is our simple oscillator. The

displacement y will, of course, vary with the time and also with x, the position along the

string at which we choose to observe the oscillation.

The wave equation therefore will relate the displacement y of a single oscillator to

distance x and time t. We shall consider oscillations only in the plane of the paper, so that

our transverse waves on the string are plane polarized.

The mass of the uniform string per unit length or its linear density is �, and a constant

tension T exists throughout the string although it is slightly extensible.

This requires us to consider such a short length and such small oscillations that we may

linearize our equations. The effect of gravity is neglected.

Thus in Figure 5.3 the forces acting on the curved element of length ds are T at an angle �
to the axis at one end of the element, and T at an angle �þ d� at the other end. The length

of the curved element is

ds ¼ 1þ @y

@x

� �2
" #1=2

dx

displacement

y

x xdx

dS

x + dx

q

q + dq

String
element

T

T

Figure 5.3 Displaced element of string of length ds � dx with tension T acting at an angle � at x
and at �þ d� at x þ dx
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but within the limitations imposed @y=@x is so small that we ignore its square and take

ds ¼ dx. The mass of the element of string is therefore �ds ¼ �d _xx. Its equation of motion is

found from Newton’s Law, force equals mass times acceleration.

The perpendicular force on the element dx is T sin ð�þ d�Þ � T sin � in the positive y

direction, which equals the product of �dx (mass) and @ 2y=@t 2 (acceleration).

Since � is very small sin � � tan � ¼ @y=@x, so that the force is given by

T
@y

@x

� �
xþdx

� @y

@x

� �
x

� �

where the subscripts refer to the point at which the partial derivative is evaluated. The

difference between the two terms in the bracket defines the differential coefficient of the

partial derivative @y=@x times the space interval dx, so that the force is

T
@ 2y

@x2
dx

The equation of motion of the small element dx then becomes

T
@ 2y

@x2
dx ¼ � dx

@ 2y

@t 2

or

@ 2y

@x2
¼ �

T

@ 2y

@t 2

giving

@ 2y

@x2
¼ 1

c2
@ 2y

@t 2

where T=� has the dimensions of a velocity squared, so c in the preceding equation is a

velocity. THIS IS THE WAVE EQUATION.

It relates the acceleration of a simple harmonic oscillator in a medium to the second

derivative of its displacement with respect to its position, x, in the medium. The position of

the term c2 in the equation is always shown by a rapid dimensional analysis.

So far we have not explicitly stated which velocity c represents. We shall see that it is the

wave or phase velocity, the velocity with which planes of common phase are propagated. In

the string the velocity arises as the ratio of the tension to the inertial density of the string.

We shall see, whatever the waves, that the wave velocity can always be expressed as a

function of the elasticity or potential energy storing mechanism in the medium and the

inertia of the medium through which its kinetic or inductive energy is stored. For

longitudinal waves in a solid the elasticity is measured by Young’s modulus, in a gas by �P,
where � is the specific heat ratio and P is the gas pressure.
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Solution of the Wave Equation

The solution of the wave equation

@ 2y

@x2
¼ 1

c2
@ 2y

@t 2

will, of course, be a function of the variables x and t. We are going to show that any

function of the form y ¼ f1ðct � xÞ is a solution. Moreover, any function y ¼ f2ðct þ xÞ
will be a solution so that, generally, their superposition y ¼ f1ðct � xÞ þ f2ðct þ xÞ is the
complete solution.

If f 01 represents the differentiation of the function with respect to the bracket ðct � xÞ,
then using the chain rule which also applies to partial differentiation

@y

@x
¼ �f 01ðct � xÞ

and

@ 2y

@x2
¼ f 001 ðct � xÞ

also

@y

@t
¼ cf 01ðct � xÞ

and

@ 2y

@t 2
¼ c2f 001 ðct � xÞ

so that

@ 2y

@x2
¼ 1

c2
@ 2y

@t 2

for y ¼ f1ðct � xÞ. When y ¼ f2ðct þ xÞ a similar result holds.

(Problems 5.1, 5.2)

If y is the simple harmonic displacement of an oscillator at position x and time t we

would expect, from Chapter 1, to be able to express it in the form y ¼ a sin ð!t � �Þ, and in
fact all of the waves we discuss in this book will be described by sine or cosine functions.

The bracket ðct � xÞ in the expression y ¼ f ðct � xÞ has the dimensions of a length and,

for the function to be a sine or cosine, its argument must have the dimensions of radians so

that ðct � xÞ must be multiplied by a factor 2�=�, where � is a length to be defined.
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We can now write

y ¼ a sin ð!t � �Þ ¼ a sin
2�

�
ðct � xÞ

as a solution to the wave equation if 2�c=� ¼ ! ¼ 2��, where � is the oscillation

frequency and � ¼ 2�x=�.
This means that if a wave, moving to the right, passes over the oscillators in a medium

and a photograph is taken at time t ¼ 0, the locus of the oscillator displacements (Fig-

ure 5.4) will be given by the expression y ¼ a sin ð!t � �Þ ¼ a sin 2�ðct � xÞ=�. If we now
observe the motion of the oscillator at the position x ¼ 0 it will be given by y ¼ a sin!t.
Any oscillator to its right at some position x will be set in motion at some later time by

the wave moving to the right; this motion will be given by

y ¼ a sin ð!t � �Þ ¼ a sin
2�

�
ðct � xÞ

having a phase lag of � with respect to the oscillator at x ¼ 0. This phase lag � ¼ 2�x=�,
so that if x ¼ � the phase lag is 2� rad that is, equivalent to exactly one complete vibration

of an oscillator.

This defines � as the wavelength, the separation in space between any two oscillators

with a phase difference of 2� rad. The expression 2�c=� ¼ ! ¼ 2�� gives c ¼ ��, where
c, the wave or phase velocity, is the product of the frequency and the wavelength. Thus,

�=c ¼ 1=� ¼ 	 , the period of oscillation, showing that the wave travels one wavelength in

this time. An observer at any point would be passed by � wavelengths per second, a

distance per unit time equal to the velocity c of the wave.

If the wave is moving to the left the sign of � is changed because the oscillation at x

begins before that at x ¼ 0. Thus, the bracket

ðct � xÞ denotes a wave moving to the right

λ

0
di

sp
la

ce
m

en
ty

a

x

Figure 5.4 Locus of oscillator displacements in a continuous medium as a wave passes over them
travelling in the positive x-direction. The wavelength � is defined as the distance between any two
oscillators having a phase difference of 2� rad
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and

ðct þ xÞ gives a wave moving in the direction of negative x:

There are several equivalent expressions for y ¼ f ðct � xÞ which we list here as sine

functions, although cosine functions are equally valid.

They are:

y ¼ a sin
2�

�
ðct � xÞ

y ¼ a sin 2� �t � x

�

� �
y ¼ a sin! t � x

c

� �
y ¼ a sin ð!t � kxÞ

where k ¼ 2�=� ¼ !=c is called the wave number; also y ¼ a eið!t�kxÞ, the exponential

representation of both sine and cosine.

Each of the expressions above is a solution to the wave equation giving the displacement

of an oscillator and its phase with respect to some reference oscillator. The changes of the

displacements of the oscillators and the propagation of their phases are what we observe as

wave motion.

The wave or phase velocity is, of course, @x=@t, the rate at which the disturbance moves

across the oscillators; the oscillator or particle velocity is the simple harmonic velocity

@y=@t.
Choosing any one of the expressions above for a right-going wave, e.g.

y ¼ a sin ð!t � kxÞ
we have

@y

@t
¼ !a cos ð!t � kxÞ

and
@y

@x
¼ �ka cos ð!t � kxÞ

so that

@y

@t
¼ �!

k

@y

@x
¼ �c

@y

@x
¼ � @x

@t

@y

@x

� �

The particle velocity @y=@t is therefore given as the product of the wave velocity

c ¼ @x

@t

and the gradient of the wave profile preceded by a negative sign for a right-going wave

y ¼ f ðct � xÞ
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In Figure 5.5 the arrows show the direction of the particle velocity at various points of

the right-going wave. It is evident that the particle velocity increases in the same direction

as the transverse force in the wave and we shall see in the next section that this force is

given by

�T@y=@x

where T is the tension in the string.

(Problem 5.3)

Characteristic Impedance of a String (the string as a forced
oscillator)

Any medium through which waves propagate will present an impedance to those waves. If

the medium is lossless, and possesses no resistive or dissipation mechanism, this

impedance will be determined by the two energy storing parameters, inertia and elasticity,

and it will be real. The presence of a loss mechanism will introduce a complex term into

the impedance.

A string presents such an impedance to progressive waves and this is defined, because of

the nature of the waves, as the transverse impedance

Z ¼ transverse force

transverse velocity
¼ F

v

y

x

x

∂y
∂t

∂y
∂x

= –c

Figure 5.5 The magnitude and direction of the particle velocity @y=@t ¼ �cð@y=@xÞ at any point x
is shown by an arrow in the right-going sine wave above
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The following analysis will emphasize the dual role of the string as a medium and as a

forced oscillator.

In Figure 5.6 we consider progressive waves on the string which are generated at one end

by an oscillating force, F0 e
i!t, which is restricted to the direction transverse to the string

and operates only in the plane of the paper. The tension in the string has a constant value, T,

and at the end of the string the balance of forces shows that the applied force is equal and

opposite to T sin � at all time, so that

F0 e
i!t ¼ �T sin � � �T tan � ¼ �T

@y

@x

� �

where � is small.

The displacement of the progressive waves may be represented exponentially by

y ¼ A eið!t�kxÞ

where the amplitude A may be complex because of its phase relation with F. At the end of

the string, where x ¼ 0,

F0 e
i!t ¼ �T

@y

@x

� �
x¼0

¼ ikTA eið!t�k�0Þ

giving

A ¼ F0

ikT
¼ F0

i!

c

T

� �

and

y ¼ F0

i!

c

T

� �
eið!t�kxÞ

(since c ¼ !=kÞ:

F0eiwt = –T sin q

F0eiwt

T

T

q
q

x

Figure 5.6 The string as a forced oscillator with a vertical force F0 e
i!t driving it at one end
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The transverse velocity

v ¼ _yy ¼ F0

c

T

� �
eið!t�kxÞ

where the velocity amplitude v ¼ F0=Z, gives a transverse impedance

Z ¼ T

c
¼ �c ðsince T ¼ �c2Þ

or Characteristic Impedance of the string.

Since the velocity c is determined by the inertia and the elasticity, the impedance is also

governed by these properties.

(We can see that the amplitude of displacement y ¼ F0=!Z, with the phase relationship

�i with respect to the force, is in complete accord with our discussion in Chapter 3.)

Reflection and Transmission of Waves on a String at a Boundary

We have seen that a string presents a characteristic impedance �c to waves travelling along

it, and we ask how the waves will respond to a sudden change of impedance; that is, of the

value �c. We shall ask this question of all the waves we discuss, acoustic waves, voltage

and current waves and electromagnetic waves, and we shall find a remarkably consistent

pattern in their behaviour.

We suppose that a string consists of two sections smoothly joined at a point x ¼ 0 with a

constant tension T along the whole string. The two sections have different linear densities

�1 and �2, and therefore different wave velocities T=�1 ¼ c21 and T=�2 ¼ c22. The specific

impedances are �1c1 and �2c2, respectively.

An incident wave travelling along the string meets the discontinuity in impedance at the

position x ¼ 0 in Figure 5.7. At this position, x ¼ 0, a part of the incident wave will be

reflected and part of it will be transmitted into the region of impedance �2c2.

We shall denote the impedance �1c1 by Z1 and the impedance �2c2 by Z2. We write the

displacement of the incident wave as yi ¼ A1 e
ið!t�kxÞ, a wave of real (not complex)

x = 0

P2C2

P1C1

TIncident wave

Transmitted wave

Reflected wave

T

Figure 5.7 Waves on a string of impedance �1c 1 reflected and transmitted at the boundary x ¼ 0
where the string changes to impedance � 2c 2
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amplitude A1 travelling in the positive x-direction with velocity c1. The displacement of

the reflected wave is yr ¼ B1 e
ið!tþk 1xÞ, of amplitude B1 and travelling in the negative

x-direction with velocity c1.

The transmitted wave displacement is given by yt ¼ A2 e
ið!t�k 2xÞ, of amplitude A2 and

travelling in the positive x-direction with velocity c2.

We wish to find the reflection and transmission amplitude coefficients; that is, the relative

values of B1 and A2 with respect to A1. We find these via two boundary conditions which

must be satisfied at the impedance discontinuity at x ¼ 0.

The boundary conditions which apply at x ¼ 0 are:

1. A geometrical condition that the displacement is the same immediately to the left and

right of x ¼ 0 for all time, so that there is no discontinuity of displacement.

2. A dynamical condition that there is a continuity of the transverse force Tð@y=@xÞ at

x ¼ 0, and therefore a continuous slope. This must hold, otherwise a finite difference in

the force acts on an infinitesimally small mass of the string giving an infinite

acceleration; this is not permitted.

Condition (1) at x ¼ 0 gives

yi þ yr ¼ yt

or

A
ið!t�k 1xÞ
1 þ B1 e

ið!tþk 1xÞ ¼ A2 e
ið!t�k 2xÞ

At x ¼ 0 we may cancel the exponential terms giving

A1 þ B1 ¼ A2 ð5:1Þ

Condition (2) gives

T
@

@x
ðyi þ yrÞ ¼ T

@

@x
yt

at x ¼ 0 for all t, so that

�k1TA1 þ k1TB1 ¼ �k2TA2

or

�!
T

c1
A1 þ !

T

c1
B1 ¼ �!

T

c2
A2

after cancelling exponentials at x ¼ 0. But T=c1 ¼ �1c1 ¼ Z1 and T=c2 ¼ �2c2 ¼ Z2,

so that

Z1ðA1 � B1Þ ¼ Z2A2 ð5:2Þ
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Equations (5.1) and (5.2) give the

Reflection coefficient of amplitude;
B1

A1

¼ Z1 � Z2

Z1 þ Z2

and the

Transmission coefficient of amplitude;
A2

A1

¼ 2Z1

Z1 þ Z2

We see immediately that these coefficients are independent of ! and hold for waves of all

frequencies; they are real and therefore free from phase changes other than that of � rad

which will change the sign of a term. Moreover, these ratios depend entirely upon the ratios

of the impedances. (See summary on p. 546). If Z2 ¼ 1, this is equivalent to x ¼ 0 being a

fixed end to the string because no transmitted wave exists. This gives B1=A1 ¼ �1, so that

the incident wave is completely reflected (as we expect) with a phase change of � (phase

reversal)—conditions we shall find to be necessary for standing waves to exist. A group of

waves having many component frequencies will retain its shape upon reflection at Z2 ¼ 1,

but will suffer reversal (Figure 5.8). If Z2 ¼ 0, so that x ¼ 0 is a free end of the string, then

B1=A1 ¼ 1 and A2=A1 ¼ 2. This explains the ‘flick’ at the end of a whip or free ended

string when a wave reaches it.

Reflection of pulse having many
                   frequency components

Incident
     Pulse

Reflected
     Pulse

Infinite
Impedance

pC = ∞

B

A C

C′

Figure 5.8 A pulse of arbitrary shape is reflected at an infinite impedance with a phase change of
� rad, so that the reflected pulse is the inverted and reversed shape of the initial waveform. The pulse
at reflection is divided in the figure into three sections A, B, and C. At the moment of observation
section C has already been reflected and suffered inversion and reversal to become C 0. The actual
shape of the pulse observed at this instant is A being Aþ B� C 0 where B¼ C 0. The displacement at
the point of reflection must be zero.
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(Problems 5.4, 5.5, 5.6)

Reflection and Transmission of Energy

Our interest in waves, however, is chiefly concerned with their function of transferring

energy throughout a medium, and we shall now consider what happens to the energy in a

wave when it meets a boundary between two media of different impedance values.

If we consider each unit length, mass �, of the string as a simple harmonic oscillator of

maximum amplitude A, we know that its total energy will be E ¼ 1
2
�!2A2, where ! is the

wave frequency.

The wave is travelling at a velocity c so that as each unit length of string takes up its

oscillation with the passage of the wave the rate at which energy is being carried along the

string is

(energy� velocity) ¼ 1
2
�!2A2c

Thus, the rate of energy arriving at the boundary x ¼ 0 is the energy arriving with the

incident wave; that is

1
2
�1c1!

2A2
1 ¼ 1

2
Z1!

2A2
1

The rate at which energy leaves the boundary, via the reflected and transmitted waves, is

1
2
�1c1!

2B2
1 þ 1

2
�2c2!

2A2
2 ¼ 1

2
Z1!

2B2
1 þ 1

2
Z2!

2A2
2

which, from the ratio B1=A1 and A2=A1,

¼ 1
2
!2A2

1

Z1ðZ1 � Z2Þ2 þ 4Z 2
1Z2

ðZ1 þ Z2Þ2
¼ 1

2
Z1!

2A2
1

Thus, energy is conserved, and all energy arriving at the boundary in the incident

wave leaves the boundary in the reflected and transmitted waves.

The Reflected and Transmitted Intensity Coefficients

These are given by

Reflected Energy

Incident Energy
¼ Z1B

2
1

Z1A
2
1

¼ B1

A1

� �2

¼ Z1 � Z2

Z1 þ Z2

� �2

Transmitted Energy

Incident Energy
¼ Z2A

2
2

Z1A
2
1

¼ 4Z1Z2

ðZ1 þ Z2Þ2

We see that if Z1 ¼ Z2 no energy is reflected and the impedances are said to be matched.

120 Transverse Wave Motion



(Problems 5.7, 5.8)

The Matching of Impedances

Impedance matching represents a very important practical problem in the transfer of

energy. Long distance cables carrying energy must be accurately matched at all joints to

avoid wastage from energy reflection. The power transfer from any generator is a

maximum when the load matches the generator impedance. A loudspeaker is matched to

the impedance of the power output of an amplifier by choosing the correct turns ratio on the

coupling transformer. This last example, the insertion of a coupling element between two

mismatched impedances, is of fundamental importance with applications in many branches

of engineering physics and optics. We shall illustrate it using waves on a string, but the

results will be valid for all wave systems.

We have seen that when a smooth joint exists between two strings of different

impedances, energy will be reflected at the boundary. We are now going to see that the

insertion of a particular length of another string between these two mismatched strings will

allow us to eliminate energy reflection and match the impedances.

In Figure 5.9 we require to match the impedances Z1 ¼ �1c1 and Z3 ¼ �3c3 by the

smooth insertion of a string of length l and impedance Z2 ¼ �2c2. Our problem is to find

the values of l and Z2.

yi = A1 ei(wt – k1x )

yr = B1 ei(wt + k1x )

yi = A2 ei(wt – k2x )

yi = A3 ei(wt – k3(x – L))

yr = B2 ei(wt + k2x )

l

x = 0

Z 2 = P2C2 Z 3 = P3C3Z 1 = P1C1

x = l

Figure 5.9 The impedances Z1 and Z3 of two strings are matched by the insertion of a length l of a
string of impedance Z 2. The incident and reflected waves are shown for the boundaries x ¼ 0 and
x ¼ l. The impedances are matched when Z 2

2 ¼ Z1Z 3 and l ¼ �=4 in Z2, results which are true for
waves in all media
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The incident, reflected and transmitted displacements at the junctions x ¼ 0 and x ¼ l are

shown in Figure 5.9 and we seek to make the ratio

Transmitted energy

Incident energy
¼ Z3A

2
3

Z1A
2
1

equal to unity.

The boundary conditions are that y and Tð@y=@xÞ are continuous across the junctions

x ¼ 0 and x ¼ l.

Between Z1 and Z2 the continuity of y gives

A1 e
ið!t�k 1xÞ þ B1 e

ið!tþk 1xÞ ¼ A2 e
ið!t�k 2xÞ þ B2 e

ið!tþk 2xÞ

or

A1 þ B1 ¼ A2 þ B2 ðat x ¼ 0Þ ð5:3Þ

Similarly the continuity of Tð@y=@xÞ at x ¼ 0 gives

Tð�ik1A1 þ ik1B1Þ ¼ Tð�ik2A2 þ ik2B2Þ

Dividing this equation by ! and remembering that Tðk=!Þ ¼ T=c ¼ �c ¼ Z we have

Z1ðA1 � B1Þ ¼ Z2ðA2 � B2Þ ð5:4Þ

Similarly at x ¼ l, the continuity of y gives

A2 e
�ik 2l þ B2 e

ik 2l ¼ A3 ð5:5Þ

and the continuity of Tð@y=@xÞ gives

Z2ðA2 e
�ik 2l � B2 e

ik 2lÞ ¼ Z3A3 ð5:6Þ

From the four boundary equations (5.3), (5.4), (5.5) and (5.6) we require the ratio A3=A1.

We use equations (5.3) and (5.4) to eliminate B1 and obtain A1 in terms of A2 and B2. We

then use equations (5.5) and (5.6) to obtain both A2 and B2 in terms of A3. Equations (5.3)

and (5.4) give

Z1ðA1 � A2 � B2 þ A1Þ ¼ Z2ðA2 � B2Þ
or

A1 ¼ A2ðr12 þ 1Þ þ B2ðr12 � 1Þ
2r12

ð5:7Þ

where

r12 ¼ Z1

Z2
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Equations (5.5) and (5.6) give

A2 ¼ r23 þ 1

2r23
A3 e

ik 2l ð5:8Þ

and

B2 ¼ r23 � 1

2r23
A3 e

�ik 2l

where

r23 ¼ Z2

Z3

Equations (5.7) and (5.8) give

A1 ¼ A3

4r12r23
½ðr12 þ 1Þðr23 þ 1Þ eik 2l þ ðr12 � 1Þðr23 � 1Þ e�ik 2l�

¼ A3

4r13
½ðr13 þ 1Þðeik 2l þ e�ik 2lÞ þ ðr12 þ r23Þðeik 2l � e�ik 2lÞ�

¼ A3

2r13
½ðr13 þ 1Þ cos k2lþ iðr12 þ r23Þ sin k2l �

where

r12r23 ¼ Z1

Z2

Z2

Z3

¼ Z1

Z3

¼ r13

Hence

A3

A1

� �2

¼ 4r 213

ðr13 þ 1Þ2 cos2 k2lþ ðr12 þ r23Þ2 sin2 k2l

or

transmitted energy

incident energy
¼ Z3

Z1

A2
3

A2
1

¼ 1

r13

A2
3

A2
1

¼ 4r13

ðr13 þ 1Þ2 cos2 k2lþ ðr12 þ r23Þ2 sin2 k2l

If we choose l ¼ �2=4; cos k2l ¼ 0 and sin k2l ¼ 1 we have

Z3

Z1

A2
3

A2
1

¼ 4r13

ðr12 þ r23Þ2
¼ 1

when

r12 ¼ r23
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that is, when

Z1

Z2

¼ Z2

Z3

or Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Z1Z3

p

We see, therefore, that if the impedance of the coupling medium is the harmonic mean of

the two impedances to be matched and the thickness of the coupling medium is

�2

4
where �2 ¼ 2�

k2

all the energy at frequency ! will be transmitted with zero reflection.

The thickness of the dielectric coating of optical lenses which eliminates reflections

as light passes from air into glass is one quarter of a wavelength. The ‘bloomed’ appearance

arises because exact matching occurs at only one frequency. Transmission lines are matched

to loads by inserting quarter wavelength stubs of lines with the appropriate impedance.

(Problems 5.9, 5.10)

Standing Waves on a String of Fixed Length

We have already seen that a progressive wave is completely reflected at an infinite

impedance with a � phase change in amplitude. A string of fixed length l with both ends

rigidly clamped presents an infinite impedance at each end; we now investigate the

behaviour of waves on such a string. Let us consider the simplest case of a monochromatic

wave of one frequency ! with an amplitude a travelling in the positive x-direction and an

amplitude b travelling in the negative x-direction. The displacement on the string at any

point would then be given by

y ¼ a eið!t�kxÞ þ b eið!tþkxÞ

with the boundary condition that y ¼ 0 at x ¼ 0 and x ¼ l at all times.

The condition y ¼ 0 at x ¼ 0 gives 0 ¼ ðaþ bÞ e i!t for all t, so that a ¼ �b. This

expresses physically the fact that a wave in either direction meeting the infinite impedance

at either end is completely reflected with a � phase change in amplitude. This is a general

result for all wave shapes and frequencies.

Thus

y ¼ a ei!tðe�ikx � eikxÞ ¼ ð�2iÞa ei!t sin kx ð5:9Þ
an expression for y which satisfies the standing wave time independent form of the wave

equation

@ 2y=@x2 þ k 2y ¼ 0

because ð1=c2Þð@ 2y=@t 2Þ ¼ ð�!2=c2Þy ¼ �k 2y: The condition that y ¼ 0 at x ¼ l for all t

requires

sin kl ¼ sin
!l

c
¼ 0 or

!l

c
¼ n�
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limiting the values of allowed frequencies to

!n ¼ n�c

l

or

�n ¼ nc

2l
¼ c

�n

that is

l ¼ n�n

2

giving

sin
!nx

c
¼ sin

n�x

l

These frequencies are the normal frequencies or modes of vibration we first met in

Chapter 4. They are often called eigenfrequencies, particularly in wave mechanics.

Such allowed frequencies define the length of the string as an exact number of half

wavelengths, and Figure 5.10 shows the string displacement for the first four harmonics

ðn ¼ 1; 2; 3; 4Þ: The value for n ¼ 1 is called the fundamental.

As with the loaded string of Chapter 4, all normal modes may be present at the same

time and the general displacement is the superposition of the displacements at each

frequency. This is a more complicated problem which we discuss in Chapter 10 (Fourier

Methods).

For the moment we see that for each single harmonic n > 1 there will be a number of

positions along the string which are always at rest. These points occur where

sin
!nx

c
¼ sin

n�x

l
¼ 0

or

n�x

l
¼ r� ðr ¼ 0; 1; 2; 3; . . . nÞ

n = 4

n = 3

n = 2

n = 1

Figure 5.10 The first four harmonics, n ¼ 1; 2; 3; 4 of the standing waves allowed between the two
fixed ends of a string
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The values r¼0 and r ¼ n give x ¼ 0 and x ¼ l, the ends of the string, but between the ends

there are n� 1 positions equally spaced along the string in the nth harmonic where the

displacement is always zero. These positions are called nodes or nodal points, being the

positions of zero motion in a system of standing waves. Standing waves arise when a

single mode is excited and the incident and reflected waves are superposed. If the amplitudes

of these progressive waves are equal and opposite (resulting from complete reflection),

nodal points will exist. Often however, the reflection is not quite complete and the waves in

the opposite direction do not cancel each other to give complete nodal points. In this case

we speak of a standing wave ratio which we shall discuss in the next section but one.

Whenever nodal points exist, however, we know that the waves travelling in opposite

directions are exactly equal in all respects so that the energy carried in one direction is

exactly equal to that carried in the other. This means that the total energy flux; that is, the

energy carried across unit area per second in a standing wave system, is zero.

Returning to equation (5.9), we see that the complete expression for the displacement of

the nth harmonic is given by

yn ¼ 2að�iÞðcos!nt þ i sin!ntÞ sin !nx

c

We can express this in the form

yn ¼ ðAn cos!nt þ Bn sin!ntÞ sin !nx

c
ð5:10Þ

where the amplitude of the nth mode is given by ðA2
n þ B2

nÞ1=2 ¼ 2a:

(Problem 5.11)

Energy of a Vibrating String

A vibrating string possesses both kinetic and potential energy. The kinetic energy of an

element of length dx and linear density � is given by 1
2
� dx _yy2; the total kinetic energy is the

integral of this along the length of the string.

Thus

Ekin ¼ 1
2

ð 1

0

� _yy2 dx

The potential energy is the work done by the tension T in extending an element dx to a new

length ds when the string is vibrating.

Thus

Epot ¼
ð
Tðds� dxÞ ¼

ð
T 1þ @y

@x

� �2
" #1=2

�1

8<
:

9=
; dx

¼ 1

2
T

ð
@y

@x

� �2

dx

if we neglect higher powers of @y=@x.
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Now the change in the length of the element dx is 1
2
ð@y=@xÞ2 dx, and if the string is

elastic the change in tension is proportional to the change in length so that, provided

ð@y=@xÞ in the wave is of the first order of small quantities, the change in tension is of the

second order and T may be considered constant.

Energy in Each Normal Mode of a Vibrating String

The total displacement y in the string is the superposition of the displacements yn of the

individual harmonics and we can find the energy in each harmonic by replacing yn for y in

the results of the last section. Thus, the kinetic energy in the nth harmonic is

EnðkineticÞ ¼ 1
2

ð l

0

� _yy2n dx

and the potential energy is

EnðpotentialÞ ¼ 1
2
T

ð l

0

@yn
@x

� �2

dx

Since we have already shown for standing waves that

yn ¼ ðAn cos!nt þ Bn sin!ntÞ sin !nx

c

then

_yyn ¼ ð�An!n sin!nt þ Bn!n cos!ntÞ sin !nx

c

and

@yn
@x

¼ !n

c
ðAn cos!nt þ Bn sin!ntÞ cos !nx

c

Thus

EnðkineticÞ ¼ 1
2
�!2

n½�An sin!nt þ Bn cos!nt�2
ð l

0

sin2 !nx

c
dx

and

EnðpotentialÞ ¼ 1
2
T
!2

n

c2
½An cos!nt þ Bn sin!nt�2

ð l

0

cos2
!nx

c
dx

Remembering that T ¼ �c2 we have

Enðkineticþ potentialÞ ¼ 1
4
�l!2

nðA2
n þ B2

nÞ
¼ 1

4
m!2

nðA2
n þ B2

nÞ

where m is the mass of the string and ðA2
n þ B2

nÞ is the square of the maximum

displacement (amplitude) of the mode. To find the exact value of the total energy En of the
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mode we would need to know the precise value of An and Bn and we shall evaluate these in

Chapter 10 on Fourier Methods. The total energy of the vibrating string is, of course, the

sum of all the En’s of the normal modes.

(Problem 5.12)

Standing Wave Ratio

When a wave is completely reflected the superposition of the incident and reflected

amplitudes will give nodal points (zero amplitude) where the incident and reflected

amplitudes cancel each other, and points of maximum displacement equal to twice the

incident amplitude where they reinforce.

If a progressive wave system is partially reflected from a boundary let the amplitude

reflection coefficient B1=A1 of the earlier section be written as r, where r < 1.

The maximum amplitude at reinforcement is then A1 þ B1; the minimum amplitude is

given by A1 � B1. In this case the ratio of maximum to minimum amplitudes in the

standing wave system is called the

Standing Wave Ratio ¼ A1 þ B1

A1 � B1

¼ 1þ r

1� r

where r ¼ B1=A1.

Measuring the values of the maximum and minimum amplitudes gives the value of the

reflection coefficient for

r ¼ B1=A1 ¼ SWR� 1

SWRþ 1

where SWR refers to the Standing Wave Ratio.

(Problem 5.13)

Wave Groups and Group Velocity

Our discussion so far has been limited to monochromatic waves—waves of a single

frequency and wavelength. It is much more common for waves to occur as a mixture of

a number or group of component frequencies; white light, for instance, is composed of

a continuous visible wavelength spectrum extending from about 3000 Å in the blue to

7000 Å in the red. Examining the behaviour of such a group leads to the third kind of

velocity mentioned at the beginning of this chapter; that is, the group velocity.

Superposition of Two Waves of Almost Equal Frequencies

We begin by considering a group which consists of two components of equal amplitude a

but frequencies !1 and !2 which differ by a small amount.

Their separate displacements are given by

y1 ¼ a cos ð!1t � k1xÞ
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and

y2 ¼ a cos ð!2t � k2xÞ

Superposition of amplitude and phase gives

y¼y1þ y2 ¼ 2a cos
ð!1 � !2Þt

2
� ðk1 � k2Þx

2

� �
cos

ð!1 þ !2Þt
2

� ðk1 þ k2Þx
2

� �

a wave system with a frequency ð!1 þ !2Þ=2 which is very close to the frequency of either

component but with a maximum amplitude of 2a, modulated in space and time by a very

slowly varying envelope of frequency ð!1 � !2Þ=2 and wave number ðk1 � k2Þ=2.
This system is shown in Figure 5.11 and shows, of course a behaviour similar to that of

the equivalent coupled oscillators in Chapter 4. The velocity of the new wave is

ð!1�!2Þ=ðk1�k2Þ which, if the phase velocities !1=k1 ¼ !2=k2 ¼ c, gives

!1 � !2

k1 � k2
¼ c

ðk1 � k2Þ
k1 � k2

¼ c

so that the component frequencies and their superposition, or group will travel with the

same velocity, the profile of their combination in Figure 5.11 remaining constant.

If the waves are sound waves the intensity is a maximum whenever the amplitude is a

maximum of 2a; this occurs twice for every period of the modulating frequency; that is, at

a frequency �1 � �2.

Oscillation of

frequency ω1 + ω2

2

Envelope of

frequency ω1 – ω2

2

2a

Figure 5.11 The superposition of two waves of slightly different frequency !1 and !2 forms a
group. The faster oscillation occurs at the average frequency of the two components ð!1 þ ! 2Þ=2
and the slowly varying group envelope has a frequency ð!1 � !2Þ=2, half the frequency difference
between the components
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The beats of maximum intensity fluctuations thus have a frequency equal to the

difference �1 � �2 of the components. In the example here where the components have

equal amplitudes a, superposition will produce an amplitude which varies between 2a and

0; this is called complete or 100% modulation.

More generally an amplitude modulated wave may be represented by

y ¼ A cos ð!t � kxÞ

where the modulated amplitude

A ¼ aþ b cos! 0t

This gives

y ¼ a cos ð!t � kxÞ þ b

2
f½cos ð!þ ! 0Þt � kx� þ ½cos ð!� ! 0Þt � kx�g

so that here amplitude modulation has introduced two new frequencies !� ! 0, known as

combination tones or sidebands. Amplitude modulation of a carrier frequency is a common

form of radio transmission, but its generation of sidebands has led to the crowding of radio

frequencies and interference between stations.

Wave Groups and Group Velocity

Suppose now that the two frequency components of the last section have different phase

velocities so that !1=k1 6¼ !2=k2. The velocity of the maximum amplitude of the group;

that is, the group velocity

!1 � !2

k1 � k2
¼ �!

�k

is now different from each of these velocities; the superposition of the two waves will no

longer remain constant and the group profile will change with time.

A medium in which the phase velocity is frequency dependent ð!=k not constant) is

known as a dispersive medium and a dispersion relation expresses the variation of ! as a

function of k. If a group contains a number of components of frequencies which are nearly

equal the original expression for the group velocity is written

�!

�k
¼ d!

dk

The group velocity is that of the maximum amplitude of the group so that it is the velocity

with which the energy in the group is transmitted. Since ! ¼ kv, where v is the phase

velocity, the group velocity

v g ¼ d!

dk
¼ d

dk
ðkvÞ ¼ v þ k

dv

dk

¼ v � �
dv

d�
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where k ¼ 2�=�. Usually dv=d� is positive, so that v g < v. This is called normal

dispersion, but anomalous dispersion can arise when dv=d� is negative, so that v g > v.
We shall see when we discuss electromagnetic waves that an electrical conductor is

anomalously dispersive to these waves whilst a dielectric is normally dispersive except at the

natural resonant frequencies of its atoms. In the chapter on forced oscillations we saw that

the wave then acted as a driving force upon the atomic oscillators and that strong

absorption of the wave energy was represented by the dissipation fraction of the oscillator

impedance, whilst the anomalous dispersion curve followed the value of the reactive part of

the impedance.

The three curves of Figure 5.12 represent

� A non-dispersive medium where !=k is constant, so that v g ¼ v, for instance free space
behaviour towards light waves.

� A normal dispersion relation v g < v.

� An anomalous dispersion relation v g > v.

Example. The electric vector of an electromagnetic wave propagates in a dielectric with a

velocity v ¼ ð
"Þ�1=2
where 
 is the permeability and " is the permittivity. In free space

the velocity is that of light, c ¼ ð
0"0Þ�1=2
. The refractive index

n ¼ c=v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"=
0"0

p ¼ ffiffiffiffiffiffiffiffiffiffi

 r" r

p
where 
 r ¼ 
=
0 and " r ¼ "="0. For many substances


 r is constant and 	 1, but " r is frequency dependent, so that v depends on �.
The group velocity

v g ¼ v � � dv=d� ¼ v 1þ �

2" r

@" r
@�

� �

ω (k)

k

ω
k

V =

ω
k

V =
dω
dk

Vg =

dω
dk

Vg =

gradient

gradient

(c)

(a)

(b)

Vg > V

Vg = V

Vg < V

anomalous
dispersion

no dispersion

normal
dispersion

Figure 5.12 Curves illustrating dispersion relations: (a) a straight line representing a non-
dispersive medium, v ¼ v g; (b) a normal dispersion relation where the gradient v ¼ !=k >
v g ¼ d!=dk; (c) an anomalous dispersion relation where v < v g
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so that v g > v (anomalous dispersion) when @� r=@� is þve. Figure 5.13 shows the

behaviour of the refractive index n ¼ ffiffiffiffiffi
" r

p
versus !, the frequency, and �, the wavelength,

in the region of anomalous dispersion associated with a resonant frequency. The dotted

curve shows the energy absorption (compare this with Figure 3.9).

(Problems 5.14, 5.15, 5.16, 5.17, 5.18, 5.19)

Wave Group of Many Components. The Bandwidth Theorem

We have so far considered wave groups having only two frequency components. We may

easily extend this to the case of a group of many frequency components, each of amplitude

a, lying within the narrow frequency range �!.
We have already covered the essential physics of this problem on p. 20, where we found

the sum of the series

R ¼
Xn�1

0

a cos ð!t þ n�Þ

where � was the constant phase difference between successive components. Here we are

concerned with the constant phase difference ð�!Þt which results from a constant frequency

difference �! between successive components. The spectrum or range of frequencies of this

group is shown in Figure 5.14a and we wish to follow its behaviour with time.

We seek the amplitude which results from the superposition of the frequency

components and write it

R ¼ a cos!1t þ a cos ð!1 þ �!Þt þ a cos ð!1 þ 2�!Þt þ � � �
þ a cos ½!1 þ ðn� 1Þð�!Þ�t

Refractive
index

n = 2

n = 1

n =    r

Absorption
curve

λ ω0 ω

∋

Figure 5.13 Anomalous dispersion showing the behaviour of the refractive index n ¼ ffiffiffiffiffi
" r

p
versus !

and �, where !0 is a resonant frequency of the atoms of the medium. The absorption in such a region
is also shown by the dotted line
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The result is given on p. 21 by

R ¼ a
sin ½nð�!Þt=2�
sin ½ð�!Þt=2� cos �!!t

where the average frequency in the group or band is

�!! ¼ !1 þ 1
2
ðn� 1Þð�!Þ

Now nð�!Þ ¼ �!, the bandwidth, so the behaviour of the resultant R with time may be

written

RðtÞ ¼ a
sin ð�! � t=2Þ
sin ð�! � t=n2Þ cos �!!t ¼ na

sin ð�! � t=2Þ
�! � t=2 cos �!!t

when n is large,

or

RðtÞ ¼ A
sin�

�
cos �!!t

a

(a)

(b)

2A

half width
of maximum

t = 0

R (t )max = A

R (t ) =

A

∆ω

∆ω⋅t

∆t

δω
ω

π

ω
ω1

2
∆ω⋅t
2

sin

t

2πt  = ∆ω

cos ω t

Figure 5.14 A rectangular wave band of width �! having n frequency components of amplitude a
with a common frequency difference �!. (b) Representation of the frequency band on a time axis is a
cosine curve at the average frequency �!!, amplitude modulated by a sin�=� curve where
� ¼ �! � t=2. After a time t ¼ 2�=�! the superposition of the components gives a zero amplitude
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where A ¼ na and � ¼ �! � t=2 is half the phase difference between the first and last

components at time t.

This expression gives us the time behaviour of the band and is displayed on a time axis in

Figure 5.14b. We see that the amplitude RðtÞ is given by the cosine curve of the average

frequency �!! modified by the A sin�=� term.

At t ¼ 0, sin�=� ! 1 and all the components superpose with zero phase difference to

give the maximum amplitude RðtÞ ¼ A ¼ na. After some time interval �t when

� ¼ �!�t

2
¼ �

the phases between the frequency components are such that the resulting amplitude RðtÞ is
zero.

The time �t which is a measure of the width of the central pulse of Figure 5.14b is

therefore given by

�!�t

2
¼ �

or ���t ¼ 1 where �! ¼ 2���.
The true width of the base of the central pulse is 2�t but the interval �t is taken as an

arbitrary measure of time, centred about t ¼ 0, during which the amplitude RðtÞ remains

significantly large ð> A=2Þ. With this arbitrary definition the exact expression

���t ¼ 1

becomes the approximation

���t � 1 or ð�!�t � 2�Þ

and this approximation is known as the Bandwidth Theorem.

It states that the components of a band of width �! in the frequency range will

superpose to produce a significant amplitude RðtÞ only for a time �t before the band

decays from random phase differences. The greater the range�! the shorter the period�t.

Alternatively, the theorem states that a single pulse of time duration �t is the result of

the superposition of frequency components over the range �!; the shorter the period �t of

the pulse the wider the range �! of the frequencies required to represent it.

When �! is zero we have a single frequency, the monochromatic wave which is

therefore required (in theory) to have an infinitely long time span.

We have chosen to express our wave group in the two parameters of frequency and time

(having a product of zero dimensions), but we may just as easily work in the other pair of

parameters wave number k and distance x.

Replacing ! by k and t by x would define the length of the wave group as �x in terms of

the range of component wavelengths �ð1=�Þ.
The Bandwidth Theorem then becomes

�x�k � 2�

134 Transverse Wave Motion



or

�x�ð1=�Þ � 1 i:e: �x � �2=��

Note again that a monochromatic wave with �k ¼ 0 requires �x ! 1; that is, an

infinitely long wavetrain.

In the wave group we have just considered the problem has been simplified by assuming

all frequency components to have the same amplitude a. When this is not the case, the

different values að!Þ are treated by Fourier methods as we shall see in Chapter 10.

We shall meet the ideas of this section several times in the course of this text, noting

particularly that in modern physics the Bandwidth Theorem becomes Heisenberg’s

Uncertainty Principle.

(Problem 5.20)

Transverse Waves in a Periodic Structure

At the end of the chapter on coupled oscillations we discussed the normal transverse

vibrations of n equal masses of separation a along a light string of length ðnþ 1Þa under a

tension T with both ends fixed. The equation of motion of the rth particle was found to be

m€yyr ¼ T

a
ðyrþ1 þ yr�1 � 2yrÞ

and for n masses the frequencies of the normal modes of vibration were given by

!2
j ¼

2T

ma
1� cos

j�

nþ 1

� �
ð4:15Þ

where j ¼ 1; 2; 3; . . . ; n. When the separation a becomes infinitesimally small ð¼ �x, say)
the term in the equation of motion

1

a
ðyrþ1 þ yr�1 � 2yrÞ ! 1

�x
ðyrþ1 þ yr�1 � 2yrÞ

¼ ðyrþ1 � yrÞ
�x

� ðyr � yr�1Þ
�x

¼ @y

@x

� �
rþ1=2

� @y

@x

� �
r�1=2

¼ @ 2y

@x2

� �
r

dx

so that the equation of motion becomes

@ 2y

@t 2
¼ T

�

@ 2y

@x2
;

the wave equation, where � ¼ m=�x, the linear density and

y / eið!t�kxÞ

We are now going to consider the propagation of transverse waves along a linear array of

atoms, mass m, in a crystal lattice where the tension T now represents the elastic force

between the atoms (so that T=a is the stiffness) and a, the separation between the atoms, is
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about 1 Å or 10�10 m. When the clamped ends of the string are replaced by the ends of

the crystal we can express the displacement of the rth particle due to the transverse

waves as

yr ¼ Ar e
ið!t�kxÞ ¼ Ar e

ið!t�kraÞ;

since x ¼ ra. The equation of motion then becomes

�!2m ¼ T

a
ðeika þ e�ika � 2Þ

¼ T

a
ðeika=2 � e�ika=2Þ2 ¼ � 4T

a
sin2 ka

2

giving the permitted frequencies

!2 ¼ 4T

ma
sin2 ka

2
ð5:11Þ

This expression for !2 is equivalent to our earlier value at the end of Chapter 4:

!2
j ¼

2T

ma
1� cos

j�

nþ 1

� �
¼ 4T

ma
sin2 j�

2ðnþ 1Þ ð4:15Þ

if

ka

2
¼ j�

2ðnþ 1Þ
where j ¼ 1; 2; 3; . . . ; n.
But ðnþ 1Þa ¼ l, the length of the string or crystal, and we have seen that wavelengths

� are allowed where p�=2 ¼ l ¼ ðnþ 1Þa.
Thus

ka

2
¼ 2�

�
� a
2
¼ �a

�
¼ ja�

2ðnþ 1Þa ¼ j

p
� �a
�

if j ¼ p. When j ¼ p, a unit change in j corresponds to a change from one allowed number

of half wavelengths to the next so that the minimum wavelength is � ¼ 2a, giving a

maximum frequency !2
m ¼ 4T=ma. Thus, both expressions may be considered equivalent.

When � ¼ 2a, sin ka=2 ¼ 1 because ka ¼ �, and neighbouring atoms are exactly � rad

out of phase because

yr

yrþ1

/ eika ¼ ei� ¼ �1

The highest frequency is thus associated with maximum coupling, as we expect.

If in equation (5.11) we plot jsin ka=2j against k (Figure 5.15) we find that when ka

is increased beyond � the phase relationship is the same as for a negative value of
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ka beyond ��. It is, therefore, sufficient to restrict the values of k to the region

��

a

 k 
 �

a

which is known as the first Brillouin zone. We shall use this concept in the section on

electron waves in solids in Chapter 13.

For long wavelengths or low values of the wave number k, sin ka=2 ! ka=2 so that

!2 ¼ 4T

ma

k 2a2

4

and the velocity of the wave is given by

c2 ¼ !2

k 2
¼ Ta

m
¼ T

�

as before, where � ¼ m=a.
In general the phase velocity is given by

v ¼ !

k
¼ c

sin ka=2

ka=2

� �
ð5:12Þ

a dispersion relation which is shown in Figure 5.16. Only at very short wavelengths does

the atomic spacing of the crystal structure affect the wave propagation, and here the limiting

or maximum value of the wave number km ¼ �=a � 1010 m�1.

The elastic force constant T=a for a crystal is about 15 Nm�1; a typical ‘reduced’ atomic

mass is about 60� 10�27 kg. These values give a maximum frequency

!2 ¼ 4T

ma
� 60

60� 10�27
¼ 1027 rad s�1

that is, a frequency � � 5� 1012 Hz.

−2π/a 2π/a
k

−π/a

sin ka/2

π/a0

Figure 5.15 jsin ka
2 j versus k from equation (5.11) shows the repetition of values beyond the region

��
a 
 k 
 �

a; this region defines a Brillouin zone
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(Note that the value of T=a used here for the crystal is a factor of 8 lower than that found
in Problem 4.4 for a single molecule. This is due to the interaction between neighbouring

ions and the change in their equilibrium separation.)

This frequency is in the infrared region of the electromagnetic spectrum. We shall see in

a later chapter that electromagnetic waves of frequency ! have a transverse electric field

vector E ¼ E0 e
i!t, where E0 is the maximum amplitude, so that charged atoms or ions in a

crystal lattice could respond as forced oscillators to radiation falling upon the crystal,

which would absorb any radiation at the resonant frequency of its oscillating atoms.

Linear Array of Two Kinds of Atoms in an Ionic Crystal

We continue the discussion of this problem using a one dimensional line which contains

two kinds of atoms with separation a as before, those atoms of mass M occupying the odd

numbered positions, 2r � 1; 2r þ 1, etc. and those of mass m occupying the even numbered

positions, 2r; 2r þ 2, etc. The equations of motion for each type are

m€yy2r ¼ T

a
ðy2rþ1 þ y2r�1 � 2y2rÞ

and

M€yy2rþ1 ¼ T

a
ðy2rþ2 þ y2r � 2y2rþ1Þ

with solutions

y2r ¼ Am eið!t�2rkaÞ

y2rþ1 ¼ AM eið!t�ð2rþ1ÞkaÞ

where Am and AM are the amplitudes of the respective masses.

The equations of motion thus become

�!2mAm ¼ TAM

a
ðe�ika þ eikaÞ � 2TAm

a

kπ
akm =

ω

ωm

Figure 5.16 The dispersion relation !ðkÞ versus k for waves travelling along a linear one-
dimensional array of atoms in a periodic structure
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and

�!2MAM ¼ TAm

a
ðe�ika þ e ikaÞ � 2TAM

a

equations which are consistent when

!2 ¼ T

a

1

m
þ 1

M

� �
� T

a

1

m
þ 1

M

� �2

� 4 sin2ka

mM

" #1=2

ð5:13Þ

Plotting the dispersion relation ! versus k for the positive sign and m > M gives the upper

curve of Figure 5.17 with

!2 ¼ 2T

a

1

m
þ 1

M

� �
for k ¼ 0

and

!2 ¼ 2T

aM
for km ¼ �

2a
ðminimum � ¼ 4aÞ

The negative sign in equation (5.13) gives the lower curve of Figure 5.17 with

!2 ¼ 2Tk 2a2

aðM þ mÞ for very small k

and

!2 ¼ 2T

am
for k ¼ �

2a

Optical branch

m > M

Acoustical
branch

π
2a

ω

k

2T
a

1 +
m

1
2

1
M

2T
aM

1
2

2T
am

1
2

Figure 5.17 Dispersion relations for the two modes of transverse oscillation in a crystal structure
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The upper curve is called the ‘optical’ branch and the lower curve is known as the

‘acoustical’ branch. The motions of the two types of atom for each branch are shown in

Figure 5.18.

In the optical branch for long wavelengths and small k;Am=AM ¼ �M=m, and the atoms

vibrate against each other, so that the centre of mass of the unit cell in the crystal remains

fixed. This motion can be generated by the action of an electromagnetic wave when

alternate atoms are ions of opposite charge; hence the name ‘optical branch’. In the

acoustic branch, long wavelengths and small k give Am ¼ AM, and the atoms and their

centre of mass move together (as in longitudinal sound waves). We shall see in the next

chapter that the atoms may also vibrate in a longitudinal wave.

The transverse waves we have just discussed are polarized in one plane; they may also

vibrate in a plane perpendicular to the plane considered here. The vibrational energy of

these two transverse waves, together with that of the longitudinal wave to be discussed in

the next chapter, form the basis of the theory of the specific heats of solids, a topic to which

we shall return in Chapter 9.

Absorption of Infrared Radiation by Ionic Crystals

Radiation of frequency 3� 1012 Hz. gives an infrared wavelength of 100 mm (10�4 m) and

a wave number k ¼ 2�=� � 6:104 m�1. We found the cut-off frequency in the crystal

lattice to give a wave number km � 1010 m�1, so that the k value of infrared radiation is a

negligible quantity relative to km and may be taken as zero. When the ions of opposite

charge �e move under the influence of the electric field vector E ¼ E0 e
i!t of

electromagnetic radiation, the equations of motion (with k ¼ 0) become

�!2mAm ¼ 2T

a
ðAM � AmÞ � eE0

Optical mode

Acoustical mode

Figure 5.18 The displacements of the different atomic species in the two modes of transverse
oscillations in a crystal structure (a) the optical mode, and (b) the acoustic mode
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and

�!2MAM ¼ �2T

a
ðAM � AmÞ þ eE0

which may be solved to give

AM ¼ eE0

Mð!2
0 � !2Þ and Am ¼ �e

m

E0

ð!2
0 � !2Þ

where

!2
0 ¼

2T

a

1

m
þ 1

M

� �

the low k limit of the optical branch.

Thus, when ! ¼ !0 infrared radiation is strongly absorbed by ionic crystals and the ion

amplitudes AM and Am increase. Experimentally, sodium chloride is found to absorb

strongly at � ¼ 61mm; potassium chloride has an absorption maximum at � ¼ 71mm.

(Problem 5.21)

Doppler Effect

In the absence of dispersion the velocity of waves sent out by a moving source is constant

but the wavelength and frequency noted by a stationary observer are altered.

In Figure 5.19 a stationary source S emits a signal of frequency � and wavelength � for a

period t so the distance to a stationary observer O is ��t. If the source S 0 moves towards O

at a velocity u during the period t then O registers a new frequency � 0.
We see that

��t ¼ ut þ �� 0t

S

S′

O

O

n t λ′

ut

n t λ

Figure 5.19 If waves from a stationary source S are received by a stationary observer O at frequency
� and wavelength � the frequency is observed as � 0 and the wavelength as � 0 at O if the source S 0

moves during transmission. This is the Doppler effect
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which, for

c ¼ �� ¼ � 0� 0

gives

c� u

�
¼ � 0 ¼ c

� 0

Hence

� 0 ¼ �c

c� u

This observed change of frequency is called the Doppler Effect.

Suppose that the source S is now stationary but that an observer O 0 moves with a velocity

v away from S. If we superimpose a velocity �v on observer, source and waves, we bring

the observer to rest; the source now has a velocity �v and waves a velocity of c� v.
Using these values in the expression for � 0 gives a new observed frequency

� 00 ¼ �ðc� vÞ
c

(Problems 5.22, 5.23, 5.24, 5.25, 5.26, 5.27, 5.28, 5.29, 5.30, 5.31)

Problem 5.1
Show that y ¼ f2ðct þ xÞ is a solution of the wave equation

@ 2y

@x2
¼ 1

c2
@ 2y

@t 2

Problem 5.2
Show that the wave profile; that is,

y ¼ f1ðct � xÞ
remains unchanged with time when c is the wave velocity. To do this consider the expression for y at

a time t þ�t where �t ¼ �x=c.
Repeat the problem for y ¼ f 2ðct þ xÞ.

Problem 5.3
Show that

@y

@t
¼ þc

@y

@x

for a left-going wave drawing a diagram to show the particle velocities as in Figure 5.5 (note that c is

a magnitude and does not change sign).

Problem 5.4
A triangular shaped pulse of length l is reflected at the fixed end of the string on which it travels

ðZ 2 ¼ 1Þ. Sketch the shape of the pulse (see Figure 5.8) after a length (a) l=4 (b) l=2 (c) 3l=4 and

(d) l of the pulse has been reflected.
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Problem 5.5
A point mass M is concentrated at a point on a string of characteristic impedance �c. A transverse

wave of frequency ! moves in the positive x direction and is partially reflected and transmitted at the

mass. The boundary conditions are that the string displacements just to the left and right of the mass

are equal ðy i þ yr ¼ y tÞ and that the difference between the transverse forces just to the left and

right of the mass equal the mass times its acceleration. If A1, B1 and A2 are respectively the incident,

reflected and transmitted wave amplitudes show that

B1

A1

¼ �iq

1þ iq
and

A2

A1

¼ 1

1þ iq

where q ¼ !M=2�c and i2 ¼ �1.

Problem 5.6
In problem 5.5, writing q ¼ tan �, show that A2 lags A1 by � and that B1 lags A1 by ð�=2þ �Þ for
0 < � < �=2.
Show also that the reflected and transmitted energy coefficients are represented by sin2 � and

cos2 �, respectively.

Problem 5.7
If the wave on the string in Figure 5.6 propagates with a displacement

y ¼ a sin ð!t � kxÞ

Show that the average rate of working by the force (average value of transverse force times

transverse velocity) equals the rate of energy transfer along the string.

Problem 5.8
A transverse harmonic force of peak value 0.3 N and frequency 5 Hz initiates waves of amplitude

0.1 m at one end of a very long string of linear density 0.01 kg=m. Show that the rate of energy

transfer along the string is 3�=20 W and that the wave velocity is 30=�ms�1.

Problem 5.9
In the figure, media of impedances Z 1 and Z 3 are separated by a

medium of intermediate impedance Z2 and thickness �=4 mea-

sured in this medium. A normally incident wave in the first

medium has unit amplitude and the reflection and transmission

coefficients for multiple reflections are shown. Show that the total

reflected amplitude in medium 1 which is

Rþ tTR 0ð1þ rR 0 þ r 2R 02 . . .Þ

is zero at R ¼ R 0 and show that this defines the condition

Z 2
2 ¼ Z 1Z 3

(Note that for zero total reflection in medium 1, the first reflection

R is cancelled by the sum of all subsequent reflections.)

T

1

R

T tR ′

T R ′

T R ′ r

T R ′3r 2

T tR ′3r 2

T tR ′2r T R ′2r 2

T R ′2r

Z 1 Z 2 Z 3
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Problem 5.10
The relation between the impedance Z and the refractive index n of a dielectric is given by Z ¼ 1=n.
Light travelling in free space enters a glass lens which has a refractive index of 1.5 for a free space

wavelength of 5:5� 10�7 m. Show that reflections at this wavelength are avoided by a coating of

refractive index 1.22 and thickness 1:12� 10�7 m.

Problem 5.11
Prove that the displacement yn of the standing wave expression in equation (5.10) satisfies the time

independent form of the wave equation

@ 2y

@x2
þ k 2y ¼ 0:

Problem 5.12
The total energy En of a normal mode may be found by an alternative method. Each section dx of the

string is a simple harmonic oscillator with total energy equal to the maximum kinetic energy of

oscillation

k:e:max ¼ 1
2
� dxð _yy2nÞmax ¼ 1

2
� dx!2

nðy 2nÞmax

Now the value of ðy2nÞmax at a point x on the string is given by

ðy2nÞmax ¼ ðA2
n þ B2

nÞ sin2 !nx

c

Show that the sum of the energies of the oscillators along the string; that is, the integral

1
2
�!2

n

ð l

0

ðy2nÞmax dx

gives the expected result.

Problem 5.13
The displacement of a wave on a string which is fixed at both ends is given by

yðx; tÞ ¼ A cos ð!t � kxÞ þ rA cos ð!t þ kxÞ

where r is the coefficient of amplitude reflection. Show that this may be expressed as the

superposition of standing waves

yðx; tÞ ¼ Að1þ rÞ cos!t cos kxþ Að1� rÞ sin!t sin kx:

Problem 5.14
A wave group consists of two wavelengths � and �þ�� where ��=� is very small.

Show that the number of wavelengths � contained between two successive zeros of the modulating
envelope is � �=��.

Problem 5.15
The phase velocity v of transverse waves in a crystal of atomic separation a is given by

v ¼ c
sin ðka=2Þ
ðka=2Þ

� �
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where k is the wave number and c is constant. Show that the value of the group velocity is

c cos
ka

2

What is the limiting value of the group velocity for long wavelengths?

Problem 5.16
The dielectric constant of a gas at a wavelength � is given by

" r ¼ c2

v 2
¼ Aþ B

�2
� D�2

where A, B and D are constants, c is the velocity of light in free space and v is its phase velocity. If
the group velocity is Vg show that

Vg" r ¼ vðA� 2D�2Þ

Problem 5.17
Problem 3.10 shows that the relative permittivity of an ionized gas is given by

" r ¼ c2

v 2
¼ 1� ! e

!

� �2

where v is the phase velocity, c is the velocity of light and ! e is the constant value of the

electron plasma frequency. Show that this yields the dispersion relation !2 ¼ !2
e þ c2k 2,

and that as ! ! ! e the phase velocity exceeds that of light, c, but that the group velocity

(the velocity of energy transmission) is always less than c.

Problem 5.18
The electron plasma frequency of Problem 5.17 is given by

!2
e ¼

nee
2

me" 0

:

Show that for an electron number density ne 	 1020ð10�5 of an atmosphere), electromagnetic waves

must have wavelengths � < 3� 10�3 m (in the microwave region) to propagate. These are typical

wavelengths for probing thermonuclear plasmas at high temperatures.

" 0 ¼ 8:8� 10�12 Fm�1

me ¼ 9:1� 10�31 kg

e ¼ 1:6� 10�19 C

Problem 5.19
In relativistic wave mechanics the dispersion relation for an electron of velocity v ¼ �hk=m is given

by !2=c2 ¼ k 2 þ m2c 2=�h 2, where c is the velocity of light, m is the electron mass (considered

constant at a given velocity) �h ¼ h=2� and h is Planck’s constant. Show that the product of the group

and particle velocities is c 2.
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Problem 5.20
The figure shows a pulse of length �t given by y ¼ A cos!0t.
Show that the frequency representation

yð!Þ ¼ a cos!1t þ a cos ð!1 þ �!Þt � � � þ a cos ½!1 þ ðn� 1Þð�!Þ�t
is centred on the average frequency !0 and that the range of frequencies making significant

contributions to the pulse satisfy the criterion

�!�t � 2�

Repeat this process for a pulse of length �x with y ¼ A cos k 0x to show that in k space the pulse is

centred at k0 with the significant range of wave numbers �k satisfying the criterion �x�k � 2�:

∆ t

t

A y = A cos ω0 t

Problem 5.21
The elastic force constant for an ionic crystal is 	 15Nm�1. Show that the experimental values for

the frequencies of infrared absorption quoted at the end of this chapter for NaCl and KCl are in

reasonable agreement with calculated values.

1 a:m:u: ¼ 1:66� 10�27 kg

Na mass ¼ 23 a:m:u:

K mass ¼ 39 a:m:u:

Cl mass ¼ 35 a:m:u:

Problem 5.22
Show that, in the Doppler effect, the change of frequency noted by a stationary observer O as a

moving source S 0 passes him is given by

�� ¼ 2�cu

ðc 2 � u 2Þ
where c ¼ ��, the signal velocity and u is the velocity of S 0.

Problem 5.23
Suppose, in the Doppler effect, that a source S 0 and an observer O 0 move in the same direction with

velocities u and v, respectively. Bring the observer to rest by superimposing a velocity �v on the

system to show that O 0 now registers a frequency

� 000 ¼ �ðc� vÞ
ðc� uÞ

Problem 5.24
Light from a star of wavelength 6� 10�7 m is found to be shifted 10�11 m towards the red when

compared with the same wavelength from a laboratory source. If the velocity of light is

3� 108 m s�1 show that the earth and the star are separating at a velocity of 5 Km s�1.
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Problem 5.25
An aircraft flying on a level course transmits a signal of 3� 109 Hz which is reflected from a distant

point ahead on the flight path and received by the aircraft with a frequency difference of 15 kHz.

What is the aircraft speed?

Problem 5.26
Light from hot sodium atoms is centred about a wavelength of 6� 10�7 m but spreads 2� 10�12 m

on either side of this wavelength due to the Doppler effect as radiating atoms move towards and

away from the observer. Calculate the thermal velocity of the atoms to show that the gas temperature

is 	 900K.

Problem 5.27
Show that in the Doppler effect when the source and observer are not moving in the same direction

that the frequencies

� 0 ¼ �c

c� u 0 ; � 00 ¼ �ðc� vÞ
c

and

� 000 ¼ �
c� v

c� u

� �
are valid if u and v are not the actual velocities but the components of these velocities along the

direction in which the waves reach the observer.

Problem 5.28
In extending the Doppler principle consider the accompanying figure where O is a stationary

observer at the origin of the coordinate system Oðx; tÞ and O 0 is an observer situated at the origin of

the system O 0ðx 0; t 0Þ which moves with a constant velocity v in the x direction relative to the system

O. When O and O 0 are coincident at t ¼ t 0 ¼ 0 a light source sends waves in the x direction with

constant velocity c. These waves obey the relation

0 � x2 � c 2t 2ðseen by OÞ � x 02 � c2t 02ðseen by O 0Þ: ð1Þ
Since there is only one relative velocity v, the transformation

x 0 ¼ kðx� vtÞ ð2Þ
and

x ¼ k 0ðx 0 þ vt 0Þ ð3Þ
must also hold. Use (2) and (3) to eliminate x 0 and t 0 from (1) and show that this identity is satisfied

only by k ¼ k 0 ¼ 1=ð1� 
 2Þ 1=2, where 
 ¼ v=c. (Hint—in the identity of equation (1) equate

coefficients of the variables to zero.).

0 0 ′v

v t

0 (xt ) 0′ (x ′t ′)
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This is the Lorentz transformation in the theory of relativity giving

x 0 ¼ ðx� vtÞ
ð1� 
 2Þ 1=2

; x ¼ x 0 þ vt 0

ð1� 
 2Þ 1=2

t 0 ¼ ðt � ðv=c 2ÞxÞ
ð1� 
 2Þ 1=2

; t ¼ ðt 0 þ ðv=c 2Þx 0Þ
ð1� 
 2Þ1=2

Problem 5.29
Show that the interval �t ¼ t2 � t 1 seen by O in Problem 5.28 is seen as �t 0 ¼ k�t by O 0 and that

the length l ¼ x2 � x1 seen by O is seen by O 0 as l 0 ¼ l=k.

Problem 5.30
Show that two simultaneous events at x 2 and x1ðt2 ¼ t1Þ seen by O in the previous problems are not

simultaneous when seen by O 0 (that is, t 01 6¼ t 02Þ.

Problem 5.31
Show that the order of events seen by Oðt2 > t1Þ of the previous problems will not be reversed

when seen by O 0 (that is, t 02 > t 01Þ as long as the velocity of light c is the greatest velocity

attainable.

Summary of Important Rules

Wave Equation
@ 2y

@x2
¼ 1

c2
@ 2y

@t 2

Wave (phase) velocity ¼ c ¼ !

k
¼ @x

@t

k ¼ wave number ¼ 2�

�

where the wavelength � defines separation between two oscillations with phase difference

of 2� rad.

Particle velocity
@y

@t
¼ �c

@y

@x

Displacement y ¼ a eið!t�kxÞ;
where a is wave amplitude.

Characteristic Impedance of a String

Z ¼ transverse force

transverse velocity
¼ �T

@y

@x

. @y

@t
¼ �c
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Reflection and Transmission Coefficients

Reflected Amplitude

Incident Amplitude
¼ Z1 � Z2

Z1 þ Z2

Transmitted Amplitude

Incident Amplitude
¼ 2Z1

Z1 þ Z2

Reflected Energy

Incident Energy
¼ Z1 � Z2

Z1 þ Z2

� �2

Transmitted Energy

Incident Energy
¼ 4Z1Z2

ðZ1 þ Z2Þ2

Impedance Matching

Impedances Z1 and Z3 are matched by insertion of impedance Z2 where Z 2
2 ¼ Z1Z3

Thickness of Z2 is �=4 measured in Z2.

Standing Waves. Normal Modes. Harmonics

Solution of wave equation separates time and space dependence to satisfy time independent

wave equation

@ 2y

@x2
þ k 2y ¼ 0 ðcancel e i!tÞ

Standing waves on string of length l have wavelength �n where

n
�n

2
¼ l

Displacement of nth harmonic is

yn ¼ ðAn cos!nt þ Bn sin!ntÞ sin !nx

c

Energy of nth harmonic (string mass m)

En ¼ KEn þ PEn ¼ 1

4
m!2

nðA2
n þ B2

nÞ
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Group Velocity

In a dispersive medium the wave velocity v varies with frequency ! (wave number k). The

energy of a group of such waves travels with the group velocity

v g ¼ d!

dk
¼ v þ k dv

dk
¼ v � �

dv

d�

Rectangular Wave Group of n Frequency Components Amplitude a, Width �!, represented
in time by

RðtÞ ¼ a � sin ð�! � t=2Þ
sin ð�! � t=n � 2Þ cos �!!t

where �!! is average frequency. RðtÞ is zero when

�! � t
2

¼ �

i.e. Bandwidth Theorem gives

�! ��t ¼ 2�

or

�x�k ¼ 2�

A pulse of duration �t requires a frequency band width �! to define it in frequency space

and vice versa.

Doppler Effect

Signal of frequency � and velocity c transmitted by a stationary source S and received by a

stationary observer O becomes

� 0 ¼ �c

c� u

when source is no longer stationary but moves towards O with a velocity u.
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