Transverse Wave Motion

Partial Differentiation

From this chapter onwards we shall often need to use the notation of partial differentiation.

When we are dealing with a function of only one variable, y = f(x) say, we write the differential coefficient

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x}$$

but if we consider a function of two or more variables, the value of this function will vary with a change in any or all of the variables. For instance, the value of the co-ordinate z on the surface of a sphere whose equation is $x^2+y^2+z^2 = a^2$, where a is the radius of the sphere, will depend on x and y so that z is a function of x and y written z = z(x, y). The differential change of z which follows from a change of x and y may be written

$$\mathrm{d}z = \left(\frac{\partial z}{\partial x}\right)_{y}\mathrm{d}x + \left(\frac{\partial z}{\partial y}\right)_{x}\mathrm{d}y$$

where $(\partial z/\partial x)_y$ means differentiating z with respect to x whilst y is kept constant, so that

$$\left(\frac{\partial z}{\partial x}\right)_{y} = \lim_{\delta x \to 0} \frac{z(x + \delta x, y) - z(x, y)}{\delta x}$$

The total change dz is found by adding the separate increments due to the change of each variable in turn whilst the others are kept constant. In Figure 5.1 we can see that keeping y constant isolates a plane which cuts the spherical surface in a curved line, and the incremental contribution to dz along this line is exactly as though z were a function of x only. Now by keeping x constant we turn the plane through 90° and repeat the process with y as a variable so that the total increment of dz is the sum of these two processes.

If only two independent variables are involved, the subscript showing which variable is kept constant is omitted without ambiguity.

The Physics of Vibrations and Waves, 6th Edition H. J. Pain

^{© 2005} John Wiley & Sons, Ltd

Figure 5.1 Small element of a Spherical Surface showing $dz = dz_1 + dz_2 = (\partial z/\partial x)_y dx + (\partial z/\partial y)_x dy$ where each gradient is calculated with one variable remaining constant

In wave motion our functions will be those of variables of distance and time, and we shall write $\partial/\partial x$ and $\partial^2/\partial x^2$ for the first or second derivatives with respect to x, whilst the time t remains constant. Again, $\partial/\partial t$ and $\partial^2/\partial t^2$ will denote first and second derivatives with respect to time, implying that x is kept constant.

Waves

One of the simplest ways to demonstrate wave motion is to take the loose end of a long rope which is fixed at the other end and to move the loose end quickly up and down. Crests and troughs of the waves move down the rope, and if the rope were infinitely long such waves would be called *progressive waves*-these are waves travelling in an unbounded medium free from possible reflection (Figure 5.2).

Figure 5.2 Progressive transverse waves moving along a string

If the medium is limited in extent; for example, if the rope were reduced to a violin string, fixed at both ends, the progressive waves travelling on the string would be reflected at both ends; the vibration of the string would then be the combination of such waves moving to and fro along the string and *standing waves* would be formed.

Waves on strings are *transverse waves* where the displacements or oscillations in the medium are transverse to the direction of wave propagation. When the oscillations are parallel to the direction of wave propagation the waves are *longitudinal*. Sound waves are longitudinal waves; a gas can sustain only longitudinal waves because transverse waves require a shear force to maintain them. Both transverse and longitudinal waves can travel in a solid.

In this book we are going to discuss *plane waves* only. When we see wave motion as a series of crests and troughs we are in fact observing the vibrational motion of the individual oscillators in the medium, and in particular all of those oscillators in a plane of the medium which, at the instant of observation, have the same phase in their vibrations.

If we take a plane perpendicular to the direction of wave propagation and all oscillators lying within that plane have a common phase, we shall observe with time how that plane of common phase progresses through the medium. Over such a plane, all parameters describing the wave motion remain constant. The crests and troughs are planes of maximum amplitude of oscillation which are π rad out of phase; a crest is a plane of maximum positive amplitude, while a trough is a plane of maximum negative amplitude. In formulating such wave motion in mathematical terms we shall have to relate the phase difference between any two planes to their physical separation in space. We have, in principle, already done this in our discussion on oscillators.

Spherical waves are waves in which the surfaces of common phase are spheres and the source of waves is a central point, e.g. an explosion; each spherical surface defines a set of oscillators over which the radiating disturbance has imposed a common phase in vibration. In practice, spherical waves become plane waves after travelling a very short distance. A small section of a spherical surface is a very close approximation to a plane.

Velocities in Wave Motion

At the outset we must be very clear about one point. The individual oscillators which make up the medium *do not* progress through the medium with the waves. Their motion is simple harmonic, limited to oscillations, transverse or longitudinal, about their equilibrium positions. It is their phase relationships we observe as waves, not their progressive motion through the medium.

There are three velocities in wave motion which are quite distinct although they are connected mathematically. They are

- 1. *The particle velocity*, which is the simple harmonic velocity of the oscillator about its equilibrium position.
- 2. *The wave or phase velocity*, the velocity with which planes of equal phase, crests or troughs, progress through the medium.
- 3. *The group velocity*. A number of waves of different frequencies, wavelengths and velocities may be superposed to form a group. Waves rarely occur as single

monochromatic components; a white light pulse consists of an infinitely fine spectrum of frequencies and the motion of such a pulse would be described by its group velocity. Such a group would, of course, 'disperse' with time because the wave velocity of each component would be different in all media except free space. Only in free space would it remain as white light. We shall discuss group velocity as a separate topic in a later section of this chapter. Its importance is that it is the velocity with which the energy in the wave group is transmitted. For a monochromatic wave the group velocity and the wave velocity are identical. Here we shall concentrate on particle and wave velocities.

The Wave Equation

This equation will dominate the rest of this text and we shall derive it, first of all, by considering the motion of transverse waves on a string.

We shall consider the vertical displacement y of a very short section of a uniform string. This section will perform vertical simple harmonic motions; it is our simple oscillator. The displacement y will, of course, vary with the time and also with x, the position along the string at which we choose to observe the oscillation.

The wave equation therefore will relate the displacement y of a single oscillator to distance x and time t. We shall consider oscillations only in the plane of the paper, so that our transverse waves on the string are plane polarized.

The mass of the uniform string per unit length or its linear density is ρ , and a constant tension T exists throughout the string although it is slightly extensible.

This requires us to consider such a short length and such small oscillations that we may linearize our equations. The effect of gravity is neglected.

Thus in Figure 5.3 the forces acting on the curved element of length ds are T at an angle θ to the axis at one end of the element, and T at an angle $\theta + d\theta$ at the other end. The length of the curved element is

Figure 5.3 Displaced element of string of length $ds \approx dx$ with tension *T* acting at an angle θ at *x* and at $\theta + d\theta$ at x + dx

but within the limitations imposed $\partial y/\partial x$ is so small that we ignore its square and take ds = dx. The mass of the element of string is therefore $\rho ds = \rho d\dot{x}$. Its equation of motion is found from Newton's Law, force equals mass times acceleration.

The perpendicular force on the element dx is $T \sin(\theta + d\theta) - T \sin \theta$ in the positive y direction, which equals the product of ρdx (mass) and $\frac{\partial^2 y}{\partial t^2}$ (acceleration).

Since θ is very small $\sin \theta \approx \tan \theta = \partial y / \partial x$, so that the force is given by

$$T\left[\left(\frac{\partial y}{\partial x}\right)_{x+\mathrm{d}x} - \left(\frac{\partial y}{\partial x}\right)_{x}\right]$$

where the subscripts refer to the point at which the partial derivative is evaluated. The difference between the two terms in the bracket defines the differential coefficient of the partial derivative $\partial y/\partial x$ times the space interval dx, so that the force is

$$T \frac{\partial^2 y}{\partial x^2} \,\mathrm{d} x$$

The equation of motion of the small element dx then becomes

$$T\frac{\partial^2 y}{\partial x^2} \,\mathrm{d}x = \rho \,\mathrm{d}x \,\frac{\partial^2 y}{\partial t^2}$$

or

$$\frac{\partial^2 y}{\partial x^2} = \frac{\rho}{T} \frac{\partial^2 y}{\partial t^2}$$

giving

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

where T/ρ has the dimensions of a velocity squared, so *c* in the preceding equation is a velocity. THIS IS THE WAVE EQUATION.

It relates the acceleration of a simple harmonic oscillator in a medium to the second derivative of its displacement with respect to its position, x, in the medium. The position of the term c^2 in the equation is always shown by a rapid dimensional analysis.

So far we have not explicitly stated which velocity c represents. We shall see that it is the wave or phase velocity, the velocity with which planes of common phase are propagated. In the string the velocity arises as the ratio of the tension to the inertial density of the string. We shall see, whatever the waves, that the wave velocity can always be expressed as a function of the elasticity or potential energy storing mechanism in the medium and the inertia of the medium through which its kinetic or inductive energy is stored. For longitudinal waves in a solid the elasticity is measured by Young's modulus, in a gas by γP , where γ is the specific heat ratio and P is the gas pressure.

Solution of the Wave Equation

The solution of the wave equation

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

will, of course, be a function of the variables x and t. We are going to show that any function of the form $y = f_1(ct - x)$ is a solution. Moreover, any function $y = f_2(ct + x)$ will be a solution so that, generally, their superposition $y = f_1(ct - x) + f_2(ct + x)$ is the complete solution.

If f'_1 represents the differentiation of the function with respect to the bracket (ct - x), then using the chain rule which also applies to *partial* differentiation

$$\frac{\partial y}{\partial x} = -f_1'(ct - x)$$

and

$$\frac{\partial^2 y}{\partial x^2} = f_1''(ct - x)$$

also

$$\frac{\partial y}{\partial t} = cf_1'(ct - x)$$

and

$$\frac{\partial^2 y}{\partial t^2} = c^2 f_1''(ct - x)$$

so that

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

for $y = f_1(ct - x)$. When $y = f_2(ct + x)$ a similar result holds.

(Problems 5.1, 5.2)

If y is the simple harmonic displacement of an oscillator at position x and time t we would expect, from Chapter 1, to be able to express it in the form $y = a \sin(\omega t - \phi)$, and in fact all of the waves we discuss in this book will be described by sine or cosine functions.

The bracket (ct - x) in the expression y = f(ct - x) has the dimensions of a length and, for the function to be a sine or cosine, its argument must have the dimensions of radians so that (ct - x) must be multiplied by a factor $2\pi/\lambda$, where λ is a length to be defined.

Figure 5.4 Locus of oscillator displacements in a continuous medium as a wave passes over them travelling in the positive *x*-direction. The wavelength λ is defined as the distance between any two oscillators having a phase difference of 2π rad

We can now write

$$y = a \sin(\omega t - \phi) = a \sin \frac{2\pi}{\lambda} (ct - x)$$

as a solution to the wave equation if $2\pi c/\lambda = \omega = 2\pi\nu$, where ν is the oscillation frequency and $\phi = 2\pi x/\lambda$.

This means that if a wave, moving to the right, passes over the oscillators in a medium and a photograph is taken at time t = 0, the locus of the oscillator displacements (Figure 5.4) will be given by the expression $y = a \sin(\omega t - \phi) = a \sin 2\pi (ct - x)/\lambda$. If we now observe the motion of the oscillator at the position x = 0 it will be given by $y = a \sin \omega t$.

Any oscillator to its right at some position x will be set in motion at some later time by the wave moving to the right; this motion will be given by

$$y = a \sin(\omega t - \phi) = a \sin \frac{2\pi}{\lambda} (ct - x)$$

having a phase lag of ϕ with respect to the oscillator at x = 0. This phase lag $\phi = 2\pi x/\lambda$, so that if $x = \lambda$ the phase lag is 2π rad that is, equivalent to exactly one complete vibration of an oscillator.

This defines λ as the *wavelength*, the separation in space between any two oscillators with a phase difference of 2π rad. The expression $2\pi c/\lambda = \omega = 2\pi\nu$ gives $c = \nu\lambda$, where c, the wave or phase velocity, is the product of the frequency and the wavelength. Thus, $\lambda/c = 1/\nu = \tau$, the period of oscillation, showing that the wave travels one wavelength in this time. An observer at any point would be passed by ν wavelengths per second, a distance per unit time equal to the velocity c of the wave.

If the wave is moving to the left the sign of ϕ is changed because the oscillation at x begins before that at x = 0. Thus, the bracket

(ct - x) denotes a wave moving to the right

and

$$(ct + x)$$
 gives a wave moving in the direction of negative x.

There are several equivalent expressions for y = f(ct - x) which we list here as sine functions, although cosine functions are equally valid.

They are:

$$y = a \sin \frac{2\pi}{\lambda} (ct - x)$$
$$y = a \sin 2\pi \left(\nu t - \frac{x}{\lambda}\right)$$
$$y = a \sin \omega \left(t - \frac{x}{c}\right)$$
$$y = a \sin \left(\omega t - kx\right)$$

where $k = 2\pi/\lambda = \omega/c$ is called the *wave number*; also $y = a e^{i(\omega t - kx)}$, the exponential representation of both sine and cosine.

Each of the expressions above is a solution to the wave equation giving the displacement of an oscillator and its phase with respect to some reference oscillator. The changes of the displacements of the oscillators and the propagation of their phases are what we observe as wave motion.

The wave or phase velocity is, of course, $\partial x/\partial t$, the rate at which the disturbance moves across the oscillators; the oscillator or particle velocity is the simple harmonic velocity $\partial y/\partial t$.

Choosing any one of the expressions above for a right-going wave, e.g.

$$y = a \sin(\omega t - kx)$$

we have

$$\frac{\partial y}{\partial t} = \omega a \cos\left(\omega t - kx\right)$$

and

$$\frac{\partial y}{\partial x} = -ka\cos\left(\omega t - kx\right)$$

so that

$$\frac{\partial y}{\partial t} = -\frac{\omega}{k} \frac{\partial y}{\partial x} = -c \frac{\partial y}{\partial x} \left(= -\frac{\partial x}{\partial t} \frac{\partial y}{\partial x} \right)$$

The particle velocity $\partial y/\partial t$ is therefore given as the product of the wave velocity

$$c = \frac{\partial x}{\partial t}$$

and the gradient of the wave profile preceded by a negative sign for a right-going wave

$$y = f(ct - x)$$

Figure 5.5 The magnitude and direction of the particle velocity $\partial y/\partial t = -c(\partial y/\partial x)$ at any point *x* is shown by an arrow in the right-going sine wave above

In Figure 5.5 the arrows show the direction of the particle velocity at various points of the right-going wave. It is evident that the particle velocity increases in the same direction as the transverse force in the wave and we shall see in the next section that this force is given by

$$-T\partial y/\partial x$$

where T is the tension in the string.

(Problem 5.3)

Characteristic Impedance of a String (the string as a forced oscillator)

Any medium through which waves propagate will present an impedance to those waves. If the medium is lossless, and possesses no resistive or dissipation mechanism, this impedance will be determined by the two energy storing parameters, inertia and elasticity, and it will be real. The presence of a loss mechanism will introduce a complex term into the impedance.

A string presents such an impedance to progressive waves and this is defined, because of the nature of the waves, as the transverse impedance

$$Z = \frac{\text{transverse force}}{\text{transverse velocity}} = \frac{F}{v}$$

Figure 5.6 The string as a forced oscillator with a vertical force $F_0 e^{i\omega t}$ driving it at one end

The following analysis will emphasize the dual role of the string as a medium and as a forced oscillator.

In Figure 5.6 we consider progressive waves on the string which are generated at one end by an oscillating force, $F_0 e^{i\omega t}$, which is restricted to the direction transverse to the string and operates only in the plane of the paper. The tension in the string has a constant value, *T*, and at the end of the string the balance of forces shows that the applied force is equal and opposite to $T \sin \theta$ at all time, so that

$$F_0 e^{i\omega t} = -T \sin \theta \approx -T \tan \theta = -T \left(\frac{\partial y}{\partial x}\right)$$

where θ is small.

The displacement of the progressive waves may be represented exponentially by

$$\mathbf{y} = \mathbf{A} \, \mathrm{e}^{\mathrm{i}(\omega t - kx)}$$

where the amplitude A may be complex because of its phase relation with F. At the end of the string, where x = 0,

$$F_0 e^{i\omega t} = -T \left(\frac{\partial y}{\partial x}\right)_{x=0} = ikTA e^{i(\omega t - k \cdot 0)}$$

giving

$$\mathbf{A} = \frac{F_0}{\mathbf{i}kT} = \frac{F_0}{\mathbf{i}\omega} \left(\frac{c}{T}\right)$$

and

$$\mathbf{y} = \frac{F_0}{\mathrm{i}\omega} \left(\frac{c}{T}\right) \mathrm{e}^{\mathrm{i}(\omega t - kx)}$$

(since $c = \omega/k$).

The transverse velocity

$$\mathbf{v} = \dot{\mathbf{y}} = F_0\left(\frac{c}{T}\right) e^{\mathbf{i}(\omega t - kx)}$$

where the velocity amplitude $v = F_0/Z$, gives a transverse impedance

$$Z = \frac{T}{c} = \rho c$$
 (since $T = \rho c^2$)

or Characteristic Impedance of the string.

Since the velocity c is determined by the inertia and the elasticity, the impedance is also governed by these properties.

(We can see that the amplitude of displacement $y = F_0/\omega Z$, with the phase relationship -i with respect to the force, is in complete accord with our discussion in Chapter 3.)

Reflection and Transmission of Waves on a String at a Boundary

We have seen that a string presents a characteristic impedance ρc to waves travelling along it, and we ask how the waves will respond to a sudden change of impedance; that is, of the value ρc . We shall ask this question of all the waves we discuss, acoustic waves, voltage and current waves and electromagnetic waves, and we shall find a remarkably consistent pattern in their behaviour.

We suppose that a string consists of two sections smoothly joined at a point x = 0 with a constant tension T along the whole string. The two sections have different linear densities ρ_1 and ρ_2 , and therefore different wave velocities $T/\rho_1 = c_1^2$ and $T/\rho_2 = c_2^2$. The specific impedances are $\rho_1 c_1$ and $\rho_2 c_2$, respectively.

An incident wave travelling along the string meets the discontinuity in impedance at the position x = 0 in Figure 5.7. At this position, x = 0, a part of the incident wave will be reflected and part of it will be transmitted into the region of impedance $\rho_2 c_2$.

We shall denote the impedance $\rho_1 c_1$ by Z_1 and the impedance $\rho_2 c_2$ by Z_2 . We write the displacement of the incident wave as $y_i = A_1 e^{i(\omega t - kx)}$, a wave of real (not complex)

Figure 5.7 Waves on a string of impedance $\rho_1 c_1$ reflected and transmitted at the boundary x = 0 where the string changes to impedance $\rho_2 c_2$

amplitude A_1 travelling in the positive x-direction with velocity c_1 . The displacement of the reflected wave is $y_r = B_1 e^{i(\omega t + k_1 x)}$, of amplitude B_1 and travelling in the negative x-direction with velocity c_1 .

The transmitted wave displacement is given by $y_t = A_2 e^{i(\omega t - k_2 x)}$, of amplitude A_2 and travelling in the positive x-direction with velocity c_2 .

We wish to find the reflection and transmission amplitude coefficients; that is, the relative values of B_1 and A_2 with respect to A_1 . We find these via two boundary conditions which must be satisfied at the impedance discontinuity at x = 0.

The boundary conditions which apply at x = 0 are:

- 1. A geometrical condition that the displacement is the same immediately to the left and right of x = 0 for all time, so that there is no discontinuity of displacement.
- 2. A dynamical condition that there is a continuity of the transverse force $T(\partial y/\partial x)$ at x = 0, and therefore a continuous slope. This must hold, otherwise a finite difference in the force acts on an infinitesimally small mass of the string giving an infinite acceleration; this is not permitted.

Condition (1) at x = 0 gives

$$y_i + y_r = y_t$$

or

$$A_{1}^{i(\omega t-k_{1}x)} + B_{1} e^{i(\omega t+k_{1}x)} = A_{2} e^{i(\omega t-k_{2}x)}$$

At x = 0 we may cancel the exponential terms giving

$$A_1 + B_1 = A_2 \tag{5.1}$$

Condition (2) gives

$$T\frac{\partial}{\partial x}\left(y_{i}+y_{r}\right)=T\frac{\partial}{\partial x}y_{t}$$

at x = 0 for all t, so that

$$-k_1TA_1 + k_1TB_1 = -k_2TA_2$$

or

$$-\omega \frac{T}{c_1} A_1 + \omega \frac{T}{c_1} B_1 = -\omega \frac{T}{c_2} A_2$$

after cancelling exponentials at x = 0. But $T/c_1 = \rho_1 c_1 = Z_1$ and $T/c_2 = \rho_2 c_2 = Z_2$, so that

$$Z_1(A_1 - B_1) = Z_2 A_2 \tag{5.2}$$

Equations (5.1) and (5.2) give the

Reflection coefficient of amplitude,
$$\frac{B_1}{A_1} = \frac{Z_1 - Z_2}{Z_1 + Z_2}$$

and the

Transmission coefficient of amplitude,
$$\frac{A_2}{A_1} = \frac{2Z_1}{Z_1 + Z_2}$$

We see immediately that these coefficients are independent of ω and hold for waves of all frequencies; they are real and therefore free from phase changes other than that of π rad which will change the sign of a term. Moreover, these ratios depend entirely upon the ratios of the impedances. (See summary on p. 546). If $Z_2 = \infty$, this is equivalent to x = 0 being a fixed end to the string because no transmitted wave exists. This gives $B_1/A_1 = -1$, so that the incident wave is completely reflected (as we expect) with a phase change of π (phase reversal)—conditions we shall find to be necessary for standing waves to exist. A group of waves having many component frequencies will retain its shape upon reflection at $Z_2 = \infty$, but will suffer reversal (Figure 5.8). If $Z_2 = 0$, so that x = 0 is a free end of the string, then $B_1/A_1 = 1$ and $A_2/A_1 = 2$. This explains the 'flick' at the end of a whip or free ended string when a wave reaches it.

Figure 5.8 A pulse of arbitrary shape is reflected at an infinite impedance with a phase change of π rad, so that the reflected pulse is the inverted and reversed shape of the initial waveform. The pulse at reflection is divided in the figure into three sections A, B, and C. At the moment of observation section C has already been reflected and suffered inversion and reversal to become C'. The actual shape of the pulse observed at this instant is A being A + B - C' where B = C'. The displacement at the point of reflection must be zero.

(Problems 5.4, 5.5, 5.6)

Reflection and Transmission of Energy

Our interest in waves, however, is chiefly concerned with their function of transferring energy throughout a medium, and we shall now consider what happens to the energy in a wave when it meets a boundary between two media of different impedance values.

If we consider each unit length, mass ρ , of the string as a simple harmonic oscillator of maximum amplitude A, we know that its total energy will be $E = \frac{1}{2}\rho\omega^2 A^2$, where ω is the wave frequency.

The wave is travelling at a velocity c so that as each unit length of string takes up its oscillation with the passage of the wave the rate at which energy is being carried along the string is

$$(\text{energy} \times \text{velocity}) = \frac{1}{2}\rho\omega^2 A^2 c$$

Thus, the rate of energy arriving at the boundary x = 0 is the energy arriving with the incident wave; that is

$$\frac{1}{2}\rho_1 c_1 \omega^2 A_1^2 = \frac{1}{2} Z_1 \omega^2 A_1^2$$

The rate at which energy leaves the boundary, via the reflected and transmitted waves, is

$$\frac{1}{2}\rho_1c_1\omega^2B_1^2 + \frac{1}{2}\rho_2c_2\omega^2A_2^2 = \frac{1}{2}Z_1\omega^2B_1^2 + \frac{1}{2}Z_2\omega^2A_2^2$$

which, from the ratio B_1/A_1 and A_2/A_1 ,

$$= \frac{1}{2}\omega^2 A_1^2 \frac{Z_1(Z_1 - Z_2)^2 + 4Z_1^2 Z_2}{(Z_1 + Z_2)^2} = \frac{1}{2} Z_1 \omega^2 A_1^2$$

Thus, energy is conserved, and all energy arriving at the boundary in the incident wave leaves the boundary in the reflected and transmitted waves.

The Reflected and Transmitted Intensity Coefficients

These are given by

$$\frac{\text{Reflected Energy}}{\text{Incident Energy}} = \frac{Z_1 B_1^2}{Z_1 A_1^2} = \left(\frac{B_1}{A_1}\right)^2 = \left(\frac{Z_1 - Z_2}{Z_1 + Z_2}\right)^2$$

$$\frac{\text{Fransmitted Energy}}{\text{Incident Energy}} = \frac{Z_2 A_2^2}{Z_1 A_1^2} = \frac{4Z_1 Z_2}{(Z_1 + Z_2)^2}$$

We see that if $Z_1 = Z_2$ no energy is reflected and the *impedances are said to be matched*.

(Problems 5.7, 5.8)

The Matching of Impedances

Impedance matching represents a very important practical problem in the transfer of energy. Long distance cables carrying energy must be accurately matched at all joints to avoid wastage from energy reflection. The power transfer from any generator is a maximum when the load matches the generator impedance. A loudspeaker is matched to the impedance of the power output of an amplifier by choosing the correct turns ratio on the coupling transformer. This last example, the insertion of a coupling element between two mismatched impedances, is of fundamental importance with applications in many branches of engineering physics and optics. We shall illustrate it using waves on a string, but the results will be valid for all wave systems.

We have seen that when a smooth joint exists between two strings of different impedances, energy will be reflected at the boundary. We are now going to see that the insertion of a particular length of another string between these two mismatched strings will allow us to eliminate energy reflection and match the impedances.

In Figure 5.9 we require to match the impedances $Z_1 = \rho_1 c_1$ and $Z_3 = \rho_3 c_3$ by the smooth insertion of a string of length *l* and impedance $Z_2 = \rho_2 c_2$. Our problem is to find the values of *l* and Z_2 .

Figure 5.9 The impedances Z_1 and Z_3 of two strings are matched by the insertion of a length l of a string of impedance Z_2 . The incident and reflected waves are shown for the boundaries x = 0 and x = l. The impedances are matched when $Z_2^2 = Z_1Z_3$ and $l = \lambda/4$ in Z_2 , results which are true for waves in all media

The incident, reflected and transmitted displacements at the junctions x = 0 and x = l are shown in Figure 5.9 and we seek to make the ratio

$$\frac{\text{Transmitted energy}}{\text{Incident energy}} = \frac{Z_3 A_3^2}{Z_1 A_1^2}$$

equal to unity.

The boundary conditions are that y and $T(\partial y/\partial x)$ are continuous across the junctions x = 0 and x = l.

Between Z_1 and Z_2 the continuity of y gives

$$A_1 e^{i(\omega t - k_1 x)} + B_1 e^{i(\omega t + k_1 x)} = A_2 e^{i(\omega t - k_2 x)} + B_2 e^{i(\omega t + k_2 x)}$$

or

$$A_1 + B_1 = A_2 + B_2 \text{ (at } x = 0) \tag{5.3}$$

Similarly the continuity of $T(\partial y/\partial x)$ at x = 0 gives

$$T(-ik_1A_1 + ik_1B_1) = T(-ik_2A_2 + ik_2B_2)$$

Dividing this equation by ω and remembering that $T(k/\omega) = T/c = \rho c = Z$ we have

$$Z_1(A_1 - B_1) = Z_2(A_2 - B_2)$$
(5.4)

Similarly at x = l, the continuity of y gives

$$A_2 e^{-ik_2 l} + B_2 e^{ik_2 l} = A_3$$
(5.5)

and the continuity of $T(\partial y/\partial x)$ gives

$$Z_2(A_2 e^{-ik_2l} - B_2 e^{ik_2l}) = Z_3 A_3$$
(5.6)

From the four boundary equations (5.3), (5.4), (5.5) and (5.6) we require the ratio A_3/A_1 . We use equations (5.3) and (5.4) to eliminate B_1 and obtain A_1 in terms of A_2 and B_2 . We then use equations (5.5) and (5.6) to obtain both A_2 and B_2 in terms of A_3 . Equations (5.3) and (5.4) give

$$Z_1(A_1 - A_2 - B_2 + A_1) = Z_2(A_2 - B_2)$$

or

$$A_1 = \frac{A_2(r_{12}+1) + B_2(r_{12}-1)}{2r_{12}}$$
(5.7)

where

$$r_{12} = \frac{Z_1}{Z_2}$$

Equations (5.5) and (5.6) give

$$A_2 = \frac{r_{23} + 1}{2r_{23}} A_3 e^{ik_2 l}$$
(5.8)

and

$$B_2 = \frac{r_{23} - 1}{2r_{23}} A_3 \,\mathrm{e}^{-\mathrm{i}k_2 l}$$

where

$$r_{23} = \frac{Z_2}{Z_3}$$

Equations (5.7) and (5.8) give

$$A_{1} = \frac{A_{3}}{4r_{12}r_{23}}[(r_{12}+1)(r_{23}+1)e^{ik_{2}l} + (r_{12}-1)(r_{23}-1)e^{-ik_{2}l}]$$

= $\frac{A_{3}}{4r_{13}}[(r_{13}+1)(e^{ik_{2}l} + e^{-ik_{2}l}) + (r_{12}+r_{23})(e^{ik_{2}l} - e^{-ik_{2}l})]$
= $\frac{A_{3}}{2r_{13}}[(r_{13}+1)\cos k_{2}l + i(r_{12}+r_{23})\sin k_{2}l]$

where

$$r_{12}r_{23} = \frac{Z_1}{Z_2}\frac{Z_2}{Z_3} = \frac{Z_1}{Z_3} = r_{13}$$

Hence

$$\left(\frac{A_3}{A_1}\right)^2 = \frac{4r_{13}^2}{\left(r_{13}+1\right)^2 \cos^2 k_2 l + \left(r_{12}+r_{23}\right)^2 \sin^2 k_2 l}$$

or

$$\frac{\text{transmitted energy}}{\text{incident energy}} = \frac{Z_3}{Z_1} \frac{A_3^2}{A_1^2} = \frac{1}{r_{13}} \frac{A_3^2}{A_1^2}$$
$$= \frac{4r_{13}}{(r_{13}+1)^2 \cos^2 k_2 l + (r_{12}+r_{23})^2 \sin^2 k_2 l}$$

If we choose $l = \lambda_2/4$, $\cos k_2 l = 0$ and $\sin k_2 l = 1$ we have

$$\frac{Z_3 A_3^2}{Z_1 A_1^2} = \frac{4r_{13}}{(r_{12} + r_{23})^2} = 1$$

when

$$r_{12} = r_{23}$$

that is, when

$$\frac{Z_1}{Z_2} = \frac{Z_2}{Z_3}$$
 or $Z_2 = \sqrt{Z_1 Z_3}$

We see, therefore, that if the impedance of the coupling medium is the harmonic mean of the two impedances to be matched and the thickness of the coupling medium is

$$\frac{\lambda_2}{4}$$
 where $\lambda_2 = \frac{2\pi}{k_2}$

all the energy at frequency ω will be transmitted with zero reflection.

The thickness of the dielectric coating of optical lenses which eliminates reflections as light passes from air into glass is one quarter of a wavelength. The 'bloomed' appearance arises because exact matching occurs at only one frequency. Transmission lines are matched to loads by inserting quarter wavelength stubs of lines with the appropriate impedance.

(Problems 5.9, 5.10)

Standing Waves on a String of Fixed Length

We have already seen that a progressive wave is completely reflected at an infinite impedance with a π phase change in amplitude. A string of fixed length *l* with both ends rigidly clamped presents an infinite impedance at each end; we now investigate the behaviour of waves on such a string. Let us consider the simplest case of a monochromatic wave of one frequency ω with an amplitude *a* travelling in the positive *x*-direction and an amplitude *b* travelling in the negative *x*-direction. The displacement on the string at any point would then be given by

$$v = a e^{i(\omega t - kx)} + b e^{i(\omega t + kx)}$$

with the boundary condition that y = 0 at x = 0 and x = l at all times.

The condition y = 0 at x = 0 gives $0 = (a + b) e^{i\omega t}$ for all t, so that a = -b. This expresses physically the fact that a wave in either direction meeting the infinite impedance at either end is completely reflected with a π phase change in amplitude. This is a general result for all wave shapes and frequencies.

Thus

$$y = a e^{i\omega t} (e^{-ikx} - e^{ikx}) = (-2i)a e^{i\omega t} \sin kx$$
(5.9)

an expression for *y* which satisfies the *standing wave time independent form* of the wave equation

$$\partial^2 y / \partial x^2 + k^2 y = 0$$

because $(1/c^2)(\partial^2 y/\partial t^2) = (-\omega^2/c^2)y = -k^2y$. The condition that y = 0 at x = l for all t requires

$$\sin kl = \sin \frac{\omega l}{c} = 0$$
 or $\frac{\omega l}{c} = n\pi$

limiting the values of allowed frequencies to

$$\omega_n = \frac{n\pi c}{l}$$

or

$$\nu_n = \frac{nc}{2l} = \frac{c}{\lambda_n}$$

that is

$$l=\frac{n\lambda_n}{2}$$

giving

$$\sin\frac{\omega_n x}{c} = \sin\frac{n\pi x}{l}$$

These frequencies are the *normal frequencies or modes of vibration* we first met in Chapter 4. They are often called *eigenfrequencies*, particularly in wave mechanics.

Such allowed frequencies define the length of the string as an exact number of half wavelengths, and Figure 5.10 shows the string displacement for the first four *harmonics* (n = 1, 2, 3, 4). The value for n = 1 is called the *fundamental*.

As with the loaded string of Chapter 4, all normal modes may be present at the same time and the general displacement is the superposition of the displacements at each frequency. This is a more complicated problem which we discuss in Chapter 10 (Fourier Methods).

For the moment we see that for each single harmonic n > 1 there will be a number of positions along the string which are always at rest. These points occur where

$$\sin\frac{\omega_n x}{c} = \sin\frac{n\pi x}{l} = 0$$

or

$$\frac{n\pi x}{l} = r\pi$$
 (r = 0, 1, 2, 3, ... n)

Figure 5.10 The first four harmonics, n = 1, 2, 3, 4 of the standing waves allowed between the two fixed ends of a string

The values r = 0 and r = n give x = 0 and x = l, the ends of the string, but between the ends there are n - 1 positions equally spaced along the string in the *n*th harmonic where the displacement is always zero. These positions are called *nodes* or *nodal points*, being the positions of zero motion in a system of *standing waves*. Standing waves arise when a single mode is excited and the incident and reflected waves are superposed. If the amplitudes of these progressive waves are equal and opposite (resulting from complete reflection), nodal points will exist. Often however, the reflection is not quite complete and the waves in the opposite direction do not cancel each other to give complete nodal points. In this case we speak of a *standing wave ratio* which we shall discuss in the next section but one.

Whenever nodal points exist, however, we know that the waves travelling in opposite directions are exactly equal in all respects so that the energy carried in one direction is exactly equal to that carried in the other. This means that the total energy flux; that is, the energy carried across unit area per second in a standing wave system, is zero.

Returning to equation (5.9), we see that the complete expression for the displacement of the *n*th harmonic is given by

$$y_n = 2a(-i)(\cos\omega_n t + i\sin\omega_n t)\sin\frac{\omega_n x}{c}$$

We can express this in the form

$$y_n = (A_n \cos \omega_n t + B_n \sin \omega_n t) \sin \frac{\omega_n x}{c}$$
(5.10)

where the amplitude of the *n*th mode is given by $(A_n^2 + B_n^2)^{1/2} = 2a$.

(Problem 5.11)

Energy of a Vibrating String

A vibrating string possesses both kinetic and potential energy. The kinetic energy of an element of length dx and linear density ρ is given by $\frac{1}{2}\rho dx \dot{y}^2$; the total kinetic energy is the integral of this along the length of the string.

Thus

$$E_{\rm kin} = \frac{1}{2} \int_0^1 \rho \dot{y}^2 \,\mathrm{d}x$$

The potential energy is the work done by the tension T in extending an element dx to a new length ds when the string is vibrating.

Thus

$$E_{\text{pot}} = \int T(ds - dx) = \int T\left\{ \left[1 + \left(\frac{\partial y}{\partial x}\right)^2 \right]^{1/2} - 1 \right\} dx$$
$$= \frac{1}{2}T \int \left(\frac{\partial y}{\partial x}\right)^2 dx$$

if we neglect higher powers of $\partial y/\partial x$.

Now the change in the length of the element dx is $\frac{1}{2}(\partial y/\partial x)^2 dx$, and if the string is elastic the change in tension is proportional to the change in length so that, provided $(\partial y/\partial x)$ in the wave is of the first order of small quantities, the change in tension is of the second order and T may be considered constant.

Energy in Each Normal Mode of a Vibrating String

The total displacement y in the string is the superposition of the displacements y_n of the individual harmonics and we can find the energy in each harmonic by replacing y_n for y in the results of the last section. Thus, the kinetic energy in the *n*th harmonic is

$$E_n(\text{kinetic}) = \frac{1}{2} \int_0^l \rho \dot{\mathbf{y}}_n^2 \, \mathrm{d}x$$

and the potential energy is

$$E_n(\text{potential}) = \frac{1}{2}T \int_0^l \left(\frac{\partial y_n}{\partial x}\right)^2 dx$$

Since we have already shown for standing waves that

$$y_n = (A_n \cos \omega_n t + B_n \sin \omega_n t) \sin \frac{\omega_n x}{c}$$

then

$$\dot{\mathbf{y}}_n = (-A_n \omega_n \sin \omega_n t + B_n \omega_n \cos \omega_n t) \sin \frac{\omega_n x}{c}$$

and

$$\frac{\partial y_n}{\partial x} = \frac{\omega_n}{c} (A_n \cos \omega_n t + B_n \sin \omega_n t) \cos \frac{\omega_n x}{c}$$

Thus

$$E_n(\text{kinetic}) = \frac{1}{2}\rho\omega_n^2 [-A_n \sin \omega_n t + B_n \cos \omega_n t]^2 \int_0^1 \sin^2 \frac{\omega_n x}{c} \, \mathrm{d}x$$

and

$$E_n(\text{potential}) = \frac{1}{2}T\frac{\omega_n^2}{c^2} [A_n \cos \omega_n t + B_n \sin \omega_n t]^2 \int_0^1 \cos^2 \frac{\omega_n x}{c} \, \mathrm{d}x$$

Remembering that $T = \rho c^2$ we have

$$E_n(\text{kinetic} + \text{potential}) = \frac{1}{4}\rho l\omega_n^2 (A_n^2 + B_n^2)$$
$$= \frac{1}{4}m\omega_n^2 (A_n^2 + B_n^2)$$

where *m* is the mass of the string and $(A_n^2 + B_n^2)$ is the square of the maximum displacement (amplitude) of the mode. To find the exact value of the total energy E_n of the

mode we would need to know the precise value of A_n and B_n and we shall evaluate these in Chapter 10 on Fourier Methods. The total energy of the vibrating string is, of course, the sum of all the E_n 's of the normal modes.

(Problem 5.12)

Standing Wave Ratio

When a wave is completely reflected the superposition of the incident and reflected amplitudes will give nodal points (zero amplitude) where the incident and reflected amplitudes cancel each other, and points of maximum displacement equal to twice the incident amplitude where they reinforce.

If a progressive wave system is partially reflected from a boundary let the amplitude reflection coefficient B_1/A_1 of the earlier section be written as r, where r < 1.

The maximum amplitude at reinforcement is then $A_1 + B_1$; the minimum amplitude is given by $A_1 - B_1$. In this case the ratio of maximum to minimum amplitudes in the standing wave system is called the

Standing Wave Ratio
$$= \frac{A_1 + B_1}{A_1 - B_1} = \frac{1 + r}{1 - r}$$

where $r = B_1/A_1$.

Measuring the values of the maximum and minimum amplitudes gives the value of the reflection coefficient for

$$r = B_1 / A_1 = \frac{\text{SWR} - 1}{\text{SWR} + 1}$$

where SWR refers to the Standing Wave Ratio.

(Problem 5.13)

Wave Groups and Group Velocity

Our discussion so far has been limited to monochromatic waves—waves of a single frequency and wavelength. It is much more common for waves to occur as a mixture of a number or group of component frequencies; white light, for instance, is composed of a continuous visible wavelength spectrum extending from about 3000 Å in the blue to 7000 Å in the red. Examining the behaviour of such a group leads to the third kind of velocity mentioned at the beginning of this chapter; that is, the group velocity.

Superposition of Two Waves of Almost Equal Frequencies

We begin by considering a group which consists of two components of equal amplitude *a* but frequencies ω_1 and ω_2 which differ by a small amount.

Their separate displacements are given by

$$y_1 = a\cos\left(\omega_1 t - k_1 x\right)$$

and

$$y_2 = a\cos\left(\omega_2 t - k_2 x\right)$$

Superposition of amplitude and phase gives

$$y = y_1 + y_2 = 2a \cos\left[\frac{(\omega_1 - \omega_2)t}{2} - \frac{(k_1 - k_2)x}{2}\right] \cos\left[\frac{(\omega_1 + \omega_2)t}{2} - \frac{(k_1 + k_2)x}{2}\right]$$

a wave system with a frequency $(\omega_1 + \omega_2)/2$ which is very close to the frequency of either component but with a maximum amplitude of 2*a*, modulated in space and time by a very slowly varying envelope of frequency $(\omega_1 - \omega_2)/2$ and wave number $(k_1 - k_2)/2$.

This system is shown in Figure 5.11 and shows, of course a behaviour similar to that of the equivalent coupled oscillators in Chapter 4. The velocity of the new wave is $(\omega_1 - \omega_2)/(k_1 - k_2)$ which, if the phase velocities $\omega_1/k_1 = \omega_2/k_2 = c$, gives

$$\frac{\omega_1 - \omega_2}{k_1 - k_2} = c \frac{(k_1 - k_2)}{k_1 - k_2} = c$$

so that the component frequencies and their superposition, or *group* will travel with the same velocity, the profile of their combination in Figure 5.11 remaining constant.

If the waves are sound waves the intensity is a maximum whenever the amplitude is a maximum of 2*a*; this occurs twice for every period of the modulating frequency; that is, at a frequency $\nu_1 - \nu_2$.

Figure 5.11 The superposition of two waves of slightly different frequency ω_1 and ω_2 forms a group. The faster oscillation occurs at the average frequency of the two components $(\omega_1 + \omega_2)/2$ and the slowly varying group envelope has a frequency $(\omega_1 - \omega_2)/2$, half the frequency difference between the components

The *beats* of maximum intensity fluctuations thus have a frequency equal to the difference $\nu_1 - \nu_2$ of the components. In the example here where the components have equal amplitudes *a*, superposition will produce an amplitude which varies between 2*a* and 0; this is called complete or 100% modulation.

More generally an amplitude modulated wave may be represented by

$$y = A\cos(\omega t - kx)$$

where the modulated amplitude

$$A = a + b\cos\omega' t$$

This gives

$$y = a\cos(\omega t - kx) + \frac{b}{2} \{ [\cos(\omega + \omega')t - kx] + [\cos(\omega - \omega')t - kx] \}$$

so that here amplitude modulation has introduced two new frequencies $\omega \pm \omega'$, known as combination tones or sidebands. Amplitude modulation of a carrier frequency is a common form of radio transmission, but its generation of sidebands has led to the crowding of radio frequencies and interference between stations.

Wave Groups and Group Velocity

Suppose now that the two frequency components of the last section have different phase velocities so that $\omega_1/k_1 \neq \omega_2/k_2$. The velocity of the maximum amplitude of the group; that is, the group velocity

$$\frac{\omega_1 - \omega_2}{k_1 - k_2} = \frac{\Delta \omega}{\Delta k}$$

is now different from each of these velocities; the superposition of the two waves will no longer remain constant and the group profile will change with time.

A medium in which the phase velocity is frequency dependent (ω/k not constant) is known as a dispersive medium and a *dispersion relation* expresses the variation of ω as a function of k. If a group contains a number of components of frequencies which are nearly equal the original expression for the group velocity is written

$$\frac{\Delta\omega}{\Delta k} = \frac{\mathrm{d}\omega}{\mathrm{d}k}$$

The group velocity is that of the maximum amplitude of the group so that it is the velocity with which the energy in the group is transmitted. Since $\omega = kv$, where v is the phase velocity, the group velocity

$$v_g = \frac{d\omega}{dk} = \frac{d}{dk}(kv) = v + k\frac{dv}{dk}$$
$$= v - \lambda \frac{dv}{d\lambda}$$

Figure 5.12 Curves illustrating dispersion relations: (a) a straight line representing a nondispersive medium, $v = v_g$; (b) a normal dispersion relation where the gradient $v = \omega/k > v_g = d\omega/dk$; (c) an anomalous dispersion relation where $v < v_g$

where $k = 2\pi/\lambda$. Usually $dv/d\lambda$ is positive, so that $v_g < v$. This is called *normal* dispersion, but anomalous dispersion can arise when $dv/d\lambda$ is negative, so that $v_g > v$.

We shall see when we discuss electromagnetic waves that an electrical conductor is anomalously dispersive to these waves whilst a dielectric is normally dispersive except at the natural resonant frequencies of its atoms. In the chapter on forced oscillations we saw that the wave then acted as a driving force upon the atomic oscillators and that strong absorption of the wave energy was represented by the dissipation fraction of the oscillator impedance, whilst the anomalous dispersion curve followed the value of the reactive part of the impedance.

The three curves of Figure 5.12 represent

- A non-dispersive medium where ω/k is constant, so that $v_g = v$, for instance free space behaviour towards light waves.
- A normal dispersion relation $v_g < v$.
- An anomalous dispersion relation $v_g > v$.

Example. The electric vector of an electromagnetic wave propagates in a dielectric with a velocity $v = (\mu \varepsilon)^{-1/2}$ where μ is the permeability and ε is the permittivity. In free space the velocity is that of light, $c = (\mu_0 \varepsilon_0)^{-1/2}$. The refractive index $n = c/v = \sqrt{\mu \varepsilon / \mu_0 \varepsilon_0} = \sqrt{\mu_r \varepsilon_r}$ where $\mu_r = \mu / \mu_0$ and $\varepsilon_r = \varepsilon / \varepsilon_0$. For many substances μ_r is constant and ~ 1 , but ε_r is frequency dependent, so that v depends on λ .

The group velocity

$$v_g = v - \lambda \, \mathrm{d}v/\mathrm{d}\lambda = v \left(1 + \frac{\lambda}{2\varepsilon_r} \frac{\partial \varepsilon_r}{\partial \lambda}\right)$$

Figure 5.13 Anomalous dispersion showing the behaviour of the refractive index $n = \sqrt{\varepsilon_r}$ versus ω and λ , where ω_0 is a resonant frequency of the atoms of the medium. The absorption in such a region is also shown by the dotted line

so that $v_g > v$ (anomalous dispersion) when $\partial \epsilon_r / \partial \lambda$ is +ve. Figure 5.13 shows the behaviour of the refractive index $n = \sqrt{\epsilon_r}$ versus ω , the frequency, and λ , the wavelength, in the region of anomalous dispersion associated with a resonant frequency. The dotted curve shows the energy absorption (compare this with Figure 3.9).

(Problems 5.14, 5.15, 5.16, 5.17, 5.18, 5.19)

Wave Group of Many Components. The Bandwidth Theorem

We have so far considered wave groups having only two frequency components. We may easily extend this to the case of a group of many frequency components, each of amplitude a, lying within the narrow frequency range $\Delta \omega$.

We have already covered the essential physics of this problem on p. 20, where we found the sum of the series

$$R = \sum_{0}^{n-1} a\cos\left(\omega t + n\delta\right)$$

where δ was the constant phase difference between successive components. Here we are concerned with the constant phase difference $(\delta\omega)t$ which results from a constant frequency difference $\delta\omega$ between successive components. The spectrum or range of frequencies of this group is shown in Figure 5.14a and we wish to follow its behaviour with time.

We seek the amplitude which results from the superposition of the frequency components and write it

$$R = a\cos\omega_1 t + a\cos(\omega_1 + \delta\omega)t + a\cos(\omega_1 + 2\delta\omega)t + \cdots + a\cos[\omega_1 + (n-1)(\delta\omega)]t$$

Figure 5.14 A rectangular wave band of width $\Delta \omega$ having *n* frequency components of amplitude *a* with a common frequency difference $\delta \omega$. (b) Representation of the frequency band on a time axis is a cosine curve at the average frequency $\bar{\omega}$, amplitude modulated by a $\sin \alpha / \alpha$ curve where $\alpha = \Delta \omega \cdot t/2$. After a time $t = 2\pi / \Delta \omega$ the superposition of the components gives a zero amplitude

The result is given on p. 21 by

$$R = a \frac{\sin \left[n(\delta \omega) t/2 \right]}{\sin \left[(\delta \omega) t/2 \right]} \cos \bar{\omega} t$$

where the average frequency in the group or band is

$$\bar{\omega} = \omega_1 + \frac{1}{2}(n-1)(\delta\omega)$$

Now $n(\delta\omega) = \Delta\omega$, the bandwidth, so the behaviour of the resultant R with time may be written

$$R(t) = a \frac{\sin\left(\Delta\omega \cdot t/2\right)}{\sin\left(\Delta\omega \cdot t/n2\right)} \cos \bar{\omega}t = na \frac{\sin\left(\Delta\omega \cdot t/2\right)}{\Delta\omega \cdot t/2} \cos \bar{\omega}t$$

when *n* is large,

or

$$R(t) = A \frac{\sin \alpha}{\alpha} \cos \bar{\omega} t$$

where A = na and $\alpha = \Delta \omega \cdot t/2$ is half the phase difference between the first and last components at time t.

This expression gives us the time behaviour of the band and is displayed on a time axis in Figure 5.14b. We see that the amplitude R(t) is given by the cosine curve of the average frequency $\bar{\omega}$ modified by the $A \sin \alpha / \alpha$ term.

At t = 0, $\sin \alpha / \alpha \to 1$ and all the components superpose with zero phase difference to give the maximum amplitude R(t) = A = na. After some time interval Δt when

$$\alpha = \frac{\Delta \omega \Delta t}{2} = \pi$$

the phases between the frequency components are such that the resulting amplitude R(t) is zero.

The time Δt which is a measure of the width of the central pulse of Figure 5.14b is therefore given by

$$\frac{\Delta\omega\Delta t}{2} = \pi$$

or $\Delta \nu \Delta t = 1$ where $\Delta \omega = 2\pi \Delta \nu$.

The true width of the base of the central pulse is $2\Delta t$ but the interval Δt is taken as an arbitrary measure of time, centred about t = 0, during which the amplitude R(t) remains significantly large (> A/2). With this arbitrary definition the exact expression

$$\Delta \nu \, \Delta t = 1$$

becomes the approximation

$$\Delta \nu \Delta t \approx 1$$
 or $(\Delta \omega \Delta t \approx 2\pi)$

and this approximation is known as the Bandwidth Theorem.

It states that the components of a band of width $\Delta \omega$ in the frequency range will superpose to produce a significant amplitude R(t) only for a time Δt before the band decays from random phase differences. The greater the range $\Delta \omega$ the shorter the period Δt .

Alternatively, the theorem states that a single pulse of time duration Δt is the result of the superposition of frequency components over the range $\Delta \omega$; the shorter the period Δt of the pulse the wider the range $\Delta \omega$ of the frequencies required to represent it.

When $\Delta \omega$ is zero we have a single frequency, the monochromatic wave which is therefore required (in theory) to have an infinitely long time span.

We have chosen to express our wave group in the two parameters of frequency and time (having a product of zero dimensions), but we may just as easily work in the other pair of parameters wave number k and distance x.

Replacing ω by k and t by x would define the length of the wave group as Δx in terms of the range of component wavelengths $\Delta(1/\lambda)$.

The Bandwidth Theorem then becomes

$$\Delta x \,\Delta k \approx 2\pi$$

or

$$\Delta x \Delta (1/\lambda) \approx 1$$
 i.e. $\Delta x \approx \lambda^2 / \Delta \lambda$

Note again that a monochromatic wave with $\Delta k = 0$ requires $\Delta x \to \infty$; that is, an infinitely long wavetrain.

In the wave group we have just considered the problem has been simplified by assuming all frequency components to have the same amplitude a. When this is not the case, the different values $a(\omega)$ are treated by Fourier methods as we shall see in Chapter 10.

We shall meet the ideas of this section several times in the course of this text, noting particularly that in modern physics the Bandwidth Theorem becomes Heisenberg's Uncertainty Principle.

(Problem 5.20)

Transverse Waves in a Periodic Structure

At the end of the chapter on coupled oscillations we discussed the normal transverse vibrations of *n* equal masses of separation *a* along a light string of length (n + 1)a under a tension *T* with both ends fixed. The equation of motion of the *r*th particle was found to be

$$m\ddot{y}_{r} = \frac{T}{a}(y_{r+1} + y_{r-1} - 2y_{r})$$

and for n masses the frequencies of the normal modes of vibration were given by

$$\omega_j^2 = \frac{2T}{ma} \left(1 - \cos \frac{j\pi}{n+1} \right) \tag{4.15}$$

where j = 1, 2, 3, ..., n. When the separation *a* becomes infinitesimally small (= δx , say) the term in the equation of motion

$$\frac{1}{a}(y_{r+1} + y_{r-1} - 2y_r) \rightarrow \frac{1}{\delta x}(y_{r+1} + y_{r-1} - 2y_r)$$
$$= \frac{(y_{r+1} - y_r)}{\delta x} - \frac{(y_r - y_{r-1})}{\delta x} = \left(\frac{\partial y}{\partial x}\right)_{r+1/2} - \left(\frac{\partial y}{\partial x}\right)_{r-1/2} = \left(\frac{\partial^2 y}{\partial x^2}\right)_r dx$$

so that the equation of motion becomes

$$\frac{\partial^2 y}{\partial t^2} = \frac{T}{\rho} \frac{\partial^2 y}{\partial x^2},$$

the wave equation, where $\rho = m/\delta x$, the linear density and

$$v \propto e^{i(\omega t - kx)}$$

We are now going to consider the propagation of transverse waves along a linear array of atoms, mass m, in a crystal lattice where the tension T now represents the elastic force between the atoms (so that T/a is the stiffness) and a, the separation between the atoms, is

about 1 Å or 10^{-10} m. When the clamped ends of the string are replaced by the ends of the crystal we can express the displacement of the *r*th particle due to the transverse waves as

$$y_r = A_r e^{i(\omega t - kx)} = A_r e^{i(\omega t - kra)},$$

since x = ra. The equation of motion then becomes

$$-\omega^2 m = \frac{T}{a} (e^{ika} + e^{-ika} - 2)$$

= $\frac{T}{a} (e^{ika/2} - e^{-ika/2})^2 = -\frac{4T}{a} \sin^2 \frac{ka}{2}$

giving the permitted frequencies

$$\omega^2 = \frac{4T}{ma} \sin^2 \frac{ka}{2} \tag{5.11}$$

This expression for ω^2 is equivalent to our earlier value at the end of Chapter 4:

$$\omega_j^2 = \frac{2T}{ma} \left(1 - \cos \frac{j\pi}{n+1} \right) = \frac{4T}{ma} \sin^2 \frac{j\pi}{2(n+1)}$$
(4.15)

if

$$\frac{ka}{2} = \frac{j\pi}{2(n+1)}$$

where j = 1, 2, 3, ..., n.

But (n + 1)a = l, the length of the string or crystal, and we have seen that wavelengths λ are allowed where $p\lambda/2 = l = (n + 1)a$.

Thus

$$\frac{ka}{2} = \frac{2\pi}{\lambda} \cdot \frac{a}{2} = \frac{\pi a}{\lambda} = \frac{ja\pi}{2(n+1)a} = \frac{j}{p} \cdot \frac{\pi a}{\lambda}$$

if j = p. When j = p, a unit change in j corresponds to a change from one allowed number of half wavelengths to the next so that the minimum wavelength is $\lambda = 2a$, giving a maximum frequency $\omega_m^2 = 4T/ma$. Thus, both expressions may be considered equivalent.

When $\lambda = 2a$, $\sin ka/2 = 1$ because $ka = \pi$, and neighbouring atoms are exactly π rad out of phase because

$$\frac{y_r}{y_{r+1}} \propto \mathrm{e}^{\mathrm{i}ka} = \mathrm{e}^{\mathrm{i}\pi} = -1$$

The highest frequency is thus associated with maximum coupling, as we expect.

If in equation (5.11) we plot $|\sin ka/2|$ against k (Figure 5.15) we find that when ka is increased beyond π the phase relationship is the same as for a negative value of

Figure 5.15 $|\sin \frac{ka}{2}|$ versus *k* from equation (5.11) shows the repetition of values beyond the region $\frac{-\pi}{a} \le k \le \frac{\pi}{a'}$ this region defines a Brillouin zone

ka beyond $-\pi$. It is, therefore, sufficient to restrict the values of k to the region

$$\frac{-\pi}{a} \le k \le \frac{\pi}{a}$$

which is known as the first Brillouin zone. We shall use this concept in the section on electron waves in solids in Chapter 13.

For long wavelengths or low values of the wave number k, $\sin ka/2 \rightarrow ka/2$ so that

$$\omega^2 = \frac{4T}{ma} \frac{k^2 a^2}{4}$$

and the velocity of the wave is given by

$$c^2 = \frac{\omega^2}{k^2} = \frac{Ta}{m} = \frac{T}{\rho}$$

as before, where $\rho = m/a$.

In general the phase velocity is given by

$$v = \frac{\omega}{k} = c \left[\frac{\sin ka/2}{ka/2} \right]$$
(5.12)

a dispersion relation which is shown in Figure 5.16. Only at very short wavelengths does the atomic spacing of the crystal structure affect the wave propagation, and here the limiting or maximum value of the wave number $k_m = \pi/a \approx 10^{10} \,\mathrm{m^{-1}}$. The elastic force constant T/a for a crystal is about 15 Nm⁻¹; a typical 'reduced' atomic

The elastic force constant T/a for a crystal is about 15 Nm⁻¹; a typical 'reduced' atomic mass is about 60×10^{-27} kg. These values give a maximum frequency

$$\omega^2 = \frac{4T}{ma} \approx \frac{60}{60 \times 10^{-27}} = 10^{27} \,\mathrm{rad}\,s^{-1}$$

that is, a frequency $\nu \approx 5 \times 10^{12}$ Hz.

Figure 5.16 The dispersion relation $\omega(k)$ versus k for waves travelling along a linear onedimensional array of atoms in a periodic structure

(Note that the value of T/a used here for the crystal is a factor of 8 lower than that found in Problem 4.4 for a single molecule. This is due to the interaction between neighbouring ions and the change in their equilibrium separation.)

This frequency is in the infrared region of the electromagnetic spectrum. We shall see in a later chapter that electromagnetic waves of frequency ω have a transverse electric field vector $E = E_0 e^{i\omega t}$, where E_0 is the maximum amplitude, so that charged atoms or ions in a crystal lattice could respond as forced oscillators to radiation falling upon the crystal, which would absorb any radiation at the resonant frequency of its oscillating atoms.

Linear Array of Two Kinds of Atoms in an Ionic Crystal

We continue the discussion of this problem using a one dimensional line which contains two kinds of atoms with separation a as before, those atoms of mass M occupying the odd numbered positions, 2r - 1, 2r + 1, etc. and those of mass m occupying the even numbered positions, 2r, 2r + 2, etc. The equations of motion for each type are

$$m\ddot{y}_{2r} = \frac{T}{a}(y_{2r+1} + y_{2r-1} - 2y_{2r})$$

and

$$M\ddot{y}_{2r+1} = \frac{T}{a}(y_{2r+2} + y_{2r} - 2y_{2r+1})$$

with solutions

$$y_{2r} = A_m e^{i(\omega t - 2rka)}$$
$$y_{2r+1} = A_M e^{i(\omega t - (2r+1)ka)}$$

where A_m and A_M are the amplitudes of the respective masses.

The equations of motion thus become

$$-\omega^2 m A_m = \frac{TA_M}{a} (e^{-ika} + e^{ika}) - \frac{2TA_m}{a}$$

and

$$-\omega^2 M A_M = \frac{T A_m}{a} (e^{-ika} + e^{ika}) - \frac{2T A_M}{a}$$

equations which are consistent when

$$\omega^2 = \frac{T}{a} \left(\frac{1}{m} + \frac{1}{M}\right) \pm \frac{T}{a} \left[\left(\frac{1}{m} + \frac{1}{M}\right)^2 - \frac{4\sin^2 ka}{mM} \right]^{1/2}$$
(5.13)

Plotting the dispersion relation ω versus k for the positive sign and m > M gives the upper curve of Figure 5.17 with

$$\omega^2 = \frac{2T}{a} \left(\frac{1}{m} + \frac{1}{M} \right) \quad \text{for} \quad k = 0$$

and

$$\omega^2 = \frac{2T}{aM}$$
 for $k_m = \frac{\pi}{2a}$ (minimum $\lambda = 4a$)

The negative sign in equation (5.13) gives the lower curve of Figure 5.17 with

$$\omega^2 = \frac{2Tk^2 a^2}{a(M+m)} \quad \text{for very small } k$$

and

$$\omega^2 = \frac{2T}{am}$$
 for $k = \frac{\pi}{2a}$

Figure 5.17 Dispersion relations for the two modes of transverse oscillation in a crystal structure

Figure 5.18 The displacements of the different atomic species in the two modes of transverse oscillations in a crystal structure (a) the optical mode, and (b) the acoustic mode

The upper curve is called the 'optical' branch and the lower curve is known as the 'acoustical' branch. The motions of the two types of atom for each branch are shown in Figure 5.18.

In the optical branch for long wavelengths and small k, $A_m/A_M = -M/m$, and the atoms vibrate against each other, so that the centre of mass of the unit cell in the crystal remains fixed. This motion can be generated by the action of an electromagnetic wave when alternate atoms are ions of opposite charge; hence the name 'optical branch'. In the acoustic branch, long wavelengths and small k give $A_m = A_M$, and the atoms and their centre of mass move together (as in longitudinal sound waves). We shall see in the next chapter that the atoms may also vibrate in a longitudinal wave.

The transverse waves we have just discussed are polarized in one plane; they may also vibrate in a plane perpendicular to the plane considered here. The vibrational energy of these two transverse waves, together with that of the longitudinal wave to be discussed in the next chapter, form the basis of the theory of the specific heats of solids, a topic to which we shall return in Chapter 9.

Absorption of Infrared Radiation by Ionic Crystals

Radiation of frequency 3×10^{12} Hz. gives an infrared wavelength of 100 µm (10^{-4} m) and a wave number $k = 2\pi/\lambda \approx 6.10^4$ m⁻¹. We found the cut-off frequency in the crystal lattice to give a wave number $k_m \approx 10^{10}$ m⁻¹, so that the k value of infrared radiation is a negligible quantity relative to k_m and may be taken as zero. When the ions of opposite charge $\pm e$ move under the influence of the electric field vector $E = E_0 e^{i\omega t}$ of electromagnetic radiation, the equations of motion (with k = 0) become

$$-\omega^2 m A_m = \frac{2T}{a} (A_M - A_m) - eE_0$$

and

$$-\omega^2 M A_M = \frac{-2T}{a} (A_M - A_m) + e E_0$$

which may be solved to give

$$A_{M} = \frac{eE_{0}}{M(\omega_{0}^{2} - \omega^{2})}$$
 and $A_{m} = \frac{-e}{m} \frac{E_{0}}{(\omega_{0}^{2} - \omega^{2})}$

where

$$\omega_0^2 = \frac{2T}{a} \left(\frac{1}{m} + \frac{1}{M} \right)$$

the low k limit of the optical branch.

Thus, when $\omega = \omega_0$ infrared radiation is strongly absorbed by ionic crystals and the ion amplitudes A_M and A_m increase. Experimentally, sodium chloride is found to absorb strongly at $\lambda = 61 \,\mu\text{m}$; potassium chloride has an absorption maximum at $\lambda = 71 \,\mu\text{m}$.

(Problem 5.21)

Doppler Effect

In the absence of dispersion the velocity of waves sent out by a moving source is constant but the wavelength and frequency noted by a stationary observer are altered.

In Figure 5.19 a stationary source S emits a signal of frequency ν and wavelength λ for a period t so the distance to a stationary observer O is $\nu\lambda t$. If the source S' moves towards O at a velocity u during the period t then O registers a new frequency ν' .

We see that

$$\nu\lambda t = ut + \nu\lambda't$$

Figure 5.19 If waves from a stationary source *S* are received by a stationary observer 0 at frequency ν and wavelength λ the frequency is observed as ν' and the wavelength as λ' at 0 if the source *S'* moves during transmission. This is the Doppler effect

which, for

gives

$$\frac{c-u}{\nu} = \lambda' = \frac{c}{\nu'}$$

 $c = \nu \lambda = \nu' \lambda'$

Hence

$$\nu' = \frac{\nu c}{c - u}$$

This observed change of frequency is called the Doppler Effect.

Suppose that the source S is now stationary but that an observer O' moves with a velocity v away from S. If we superimpose a velocity -v on observer, source and waves, we bring the observer to rest; the source now has a velocity -v and waves a velocity of c - v. Using these values in the expression for ν' gives a new observed frequency

$$\nu'' = \frac{\nu(c-v)}{c}$$

(Problems 5.22, 5.23, 5.24, 5.25, 5.26, 5.27, 5.28, 5.29, 5.30, 5.31)

Problem 5.1

Show that $y = f_2(ct + x)$ is a solution of the wave equation

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

Problem 5.2

Show that the wave profile; that is,

$$y = f_1(ct - x)$$

remains unchanged with time when c is the wave velocity. To do this consider the expression for y at a time $t + \Delta t$ where $\Delta t = \Delta x/c$.

Repeat the problem for $y = f_2(ct + x)$.

Problem 5.3

Show that

$$\frac{\partial y}{\partial t} = +c\frac{\partial y}{\partial x}$$

for a left-going wave drawing a diagram to show the particle velocities as in Figure 5.5 (note that c is a magnitude and does not change sign).

Problem 5.4

A triangular shaped pulse of length l is reflected at the fixed end of the string on which it travels $(Z_2 = \infty)$. Sketch the shape of the pulse (see Figure 5.8) after a length (a) l/4 (b) l/2 (c) 3l/4 and (d) l of the pulse has been reflected.

142

Problem 5.5

A point mass M is concentrated at a point on a string of characteristic impedance ρc . A transverse wave of frequency ω moves in the positive x direction and is partially reflected and transmitted at the mass. The boundary conditions are that the string displacements just to the left and right of the mass are equal $(y_i + y_r = y_t)$ and that the difference between the transverse forces just to the left and right of the mass times its acceleration. If A_1 , B_1 and A_2 are respectively the incident, reflected and transmitted wave amplitudes show that

$$\frac{B_1}{A_1} = \frac{-iq}{1+iq}$$
 and $\frac{A_2}{A_1} = \frac{1}{1+iq}$

where $q = \omega M/2\rho c$ and $i^2 = -1$.

Problem 5.6

In problem 5.5, writing $q = \tan \theta$, show that $A_2 \operatorname{lags} A_1$ by θ and that $B_1 \operatorname{lags} A_1$ by $(\pi/2 + \theta)$ for $0 < \theta < \pi/2$.

Show also that the reflected and transmitted energy coefficients are represented by $\sin^2 \theta$ and $\cos^2 \theta$, respectively.

Problem 5.7

If the wave on the string in Figure 5.6 propagates with a displacement

$$y = a\sin\left(\omega t - kx\right)$$

Show that the average rate of working by the force (average value of transverse force times transverse velocity) equals the rate of energy transfer along the string.

Problem 5.8

A transverse harmonic force of peak value 0.3 N and frequency 5 Hz initiates waves of amplitude 0.1 m at one end of a very long string of linear density 0.01 kg/m. Show that the rate of energy transfer along the string is $3\pi/20$ W and that the wave velocity is $30/\pi$ m s⁻¹.

Problem 5.9

In the figure, media of impedances Z_1 and Z_3 are separated by a medium of intermediate impedance Z_2 and thickness $\lambda/4$ measured in this medium. A normally incident wave in the first medium has unit amplitude and the reflection and transmission coefficients for multiple reflections are shown. Show that the total reflected amplitude in medium 1 which is

$$R + tTR'(1 + rR' + r^2R'^2\ldots)$$

is zero at R = R' and show that this defines the condition

$$Z_{2}^{2} = Z_{1}Z_{3}$$

(Note that for zero total reflection in medium 1, the first reflection R is cancelled by the sum of all subsequent reflections.)

Problem 5.10

The relation between the impedance Z and the refractive index n of a dielectric is given by Z = 1/n. Light travelling in free space enters a glass lens which has a refractive index of 1.5 for a free space wavelength of 5.5×10^{-7} m. Show that reflections at this wavelength are avoided by a coating of refractive index 1.22 and thickness 1.12×10^{-7} m.

Problem 5.11

Prove that the displacement y_n of the standing wave expression in equation (5.10) satisfies the time independent form of the wave equation

$$\frac{\partial^2 y}{\partial x^2} + k^2 y = 0.$$

Problem 5.12

The total energy E_n of a normal mode may be found by an alternative method. Each section dx of the string is a simple harmonic oscillator with total energy equal to the maximum kinetic energy of oscillation

$$k.e._{\max} = \frac{1}{2}\rho \,\mathrm{d}x(\dot{y}_n^2)_{\max} = \frac{1}{2}\rho \,\mathrm{d}x\omega_n^2(y_n^2)_{\max}$$

Now the value of $(y_n^2)_{max}$ at a point x on the string is given by

$$(y_n^2)_{\max} = (A_n^2 + B_n^2)\sin^2\frac{\omega_n x}{c}$$

Show that the sum of the energies of the oscillators along the string; that is, the integral

$$\frac{1}{2}\rho\omega_n^2\int_0^l (y_n^2)_{\max}\,\mathrm{d}x$$

gives the expected result.

Problem 5.13

The displacement of a wave on a string which is fixed at both ends is given by

$$y(x,t) = A\cos(\omega t - kx) + rA\cos(\omega t + kx)$$

where r is the coefficient of amplitude reflection. Show that this may be expressed as the superposition of standing waves

$$y(x,t) = A(1+r)\cos\omega t \cos kx + A(1-r)\sin\omega t \sin kx.$$

Problem 5.14

A wave group consists of two wavelengths λ and $\lambda + \Delta \lambda$ where $\Delta \lambda / \lambda$ is very small.

Show that the number of wavelengths λ contained between two successive zeros of the modulating envelope is $\approx \lambda/\Delta\lambda$.

Problem 5.15

The phase velocity v of transverse waves in a crystal of atomic separation a is given by

$$v = c \left(\frac{\sin\left(ka/2\right)}{(ka/2)} \right)$$

where k is the wave number and c is constant. Show that the value of the group velocity is

 $c\cos\frac{ka}{2}$

What is the limiting value of the group velocity for long wavelengths?

Problem 5.16

The dielectric constant of a gas at a wavelength λ is given by

$$\varepsilon_r = \frac{c^2}{v^2} = A + \frac{B}{\lambda^2} - D\lambda^2$$

where A, B and D are constants, c is the velocity of light in free space and v is its phase velocity. If the group velocity is V_g show that

$$V_g \varepsilon_r = v(A - 2D\lambda^2)$$

Problem 5.17

Problem 3.10 shows that the relative permittivity of an ionized gas is given by

$$\varepsilon_r = \frac{c^2}{v^2} = 1 - \left(\frac{\omega_e}{\omega}\right)^2$$

where v is the phase velocity, c is the velocity of light and ω_e is the constant value of the electron plasma frequency. Show that this yields the dispersion relation $\omega^2 = \omega_e^2 + c^2 k^2$, and that as $\omega \to \omega_e$ the phase velocity exceeds that of light, c, but that the group velocity (the velocity of energy transmission) is always less than c.

Problem 5.18

The electron plasma frequency of Problem 5.17 is given by

$$\omega_e^2 = \frac{n_e e^2}{m_e \varepsilon_0}.$$

Show that for an electron number density $n_e \sim 10^{20} (10^{-5} \text{ of an atmosphere})$, electromagnetic waves must have wavelengths $\lambda < 3 \times 10^{-3}$ m (in the microwave region) to propagate. These are typical wavelengths for probing thermonuclear plasmas at high temperatures.

$$\varepsilon_0 = 8.8 \times 10^{-12} \,\mathrm{Fm^{-1}}$$

 $m_e = 9.1 \times 10^{-31} \,\mathrm{kg}$
 $e = 1.6 \times 10^{-19} \,\mathrm{C}$

Problem 5.19

In relativistic wave mechanics the dispersion relation for an electron of velocity $v = \hbar k/m$ is given by $\omega^2/c^2 = k^2 + m^2c^2/\hbar^2$, where c is the velocity of light, m is the electron mass (considered constant at a given velocity) $\hbar = h/2\pi$ and h is Planck's constant. Show that the product of the group and particle velocities is c^2 .

Problem 5.20

The figure shows a pulse of length Δt given by $y = A \cos \omega_0 t$.

Show that the frequency representation

 $y(\omega) = a\cos\omega_1 t + a\cos(\omega_1 + \delta\omega)t \dots + a\cos[\omega_1 + (n-1)(\delta\omega)]t$

is centred on the average frequency ω_0 and that the range of frequencies making significant contributions to the pulse satisfy the criterion

$$\Delta\omega\Delta t \approx 2\pi$$

Repeat this process for a pulse of length Δx with $y = A \cos k_0 x$ to show that in k space the pulse is centred at k_0 with the significant range of wave numbers Δk satisfying the criterion $\Delta x \Delta k \approx 2\pi$.

Problem 5.21

The elastic force constant for an ionic crystal is $\sim 15 \,\text{N}\,\text{m}^{-1}$. Show that the experimental values for the frequencies of infrared absorption quoted at the end of this chapter for NaCl and KCl are in reasonable agreement with calculated values.

1 a.m.u. =
$$1.66 \times 10^{-27}$$
 kg
Na mass = 23 a.m.u.
K mass = 39 a.m.u.
Cl mass = 35 a.m.u.

Problem 5.22

Show that, in the Doppler effect, the change of frequency noted by a stationary observer O as a moving source S' passes him is given by

$$\Delta \nu = \frac{2\nu cu}{(c^2 - u^2)}$$

where $c = \nu \lambda$, the signal velocity and *u* is the velocity of S'.

Problem 5.23

Suppose, in the Doppler effect, that a source S' and an observer O' move in the same direction with velocities u and v, respectively. Bring the observer to rest by superimposing a velocity -v on the system to show that O' now registers a frequency

$$\nu''' = \frac{\nu(c-v)}{(c-u)}$$

Problem 5.24

Light from a star of wavelength 6×10^{-7} m is found to be shifted 10^{-11} m towards the red when compared with the same wavelength from a laboratory source. If the velocity of light is 3×10^8 m s⁻¹ show that the earth and the star are separating at a velocity of 5 Km s⁻¹.

Problem 5.25

An aircraft flying on a level course transmits a signal of 3×10^9 Hz which is reflected from a distant point ahead on the flight path and received by the aircraft with a frequency difference of 15 kHz. What is the aircraft speed?

Problem 5.26

Light from hot sodium atoms is centred about a wavelength of 6×10^{-7} m but spreads 2×10^{-12} m on either side of this wavelength due to the Doppler effect as radiating atoms move towards and away from the observer. Calculate the thermal velocity of the atoms to show that the gas temperature is ~ 900 K.

Problem 5.27

Show that in the Doppler effect when the source and observer are not moving in the same direction that the frequencies

$$\nu' = \frac{\nu c}{c - u'}, \quad \nu'' = \frac{\nu (c - v)}{c}$$

and

$$\nu''' = \nu \left(\frac{c-v}{c-u}\right)$$

are valid if u and v are not the actual velocities but the components of these velocities along the direction in which the waves reach the observer.

Problem 5.28

In extending the Doppler principle consider the accompanying figure where O is a stationary observer at the origin of the coordinate system O(x, t) and O' is an observer situated at the origin of the system O'(x', t') which moves with a constant velocity v in the x direction relative to the system O. When O and O' are coincident at t = t' = 0 a light source sends waves in the x direction with constant velocity c. These waves obey the relation

$$0 \equiv x^{2} - c^{2}t^{2}(\text{seen by } O) \equiv x'^{2} - c^{2}t'^{2}(\text{seen by } O').$$
(1)

Since there is only one relative velocity v_i , the transformation

$$x' = k(x - vt) \tag{2}$$

and

$$x = k'(x' + vt') \tag{3}$$

must also hold. Use (2) and (3) to eliminate x' and t' from (1) and show that this identity is satisfied only by $k = k' = 1/(1 - \beta^2)^{1/2}$, where $\beta = v/c$. (Hint—in the identity of equation (1) equate coefficients of the variables to zero.).

This is the Lorentz transformation in the theory of relativity giving

$$\begin{aligned} x' &= \frac{(x - vt)}{(1 - \beta^2)^{1/2}}, \quad x = \frac{x' + vt'}{(1 - \beta^2)^{1/2}} \\ t' &= \frac{(t - (v/c^2)x)}{(1 - \beta^2)^{1/2}}, \quad t = \frac{(t' + (v/c^2)x')}{(1 - \beta^2)^{1/2}} \end{aligned}$$

Problem 5.29

Show that the interval $\Delta t = t_2 - t_1$ seen by *O* in Problem 5.28 is seen as $\Delta t' = k\Delta t$ by *O'* and that the length $l = x_2 - x_1$ seen by *O* is seen by *O'* as l' = l/k.

Problem 5.30

Show that two simultaneous events at x_2 and $x_1(t_2 = t_1)$ seen by O in the previous problems are not simultaneous when seen by O' (that is, $t'_1 \neq t'_2$).

Problem 5.31

Show that the order of events seen by $O(t_2 > t_1)$ of the previous problems will not be reversed when seen by O' (that is, $t'_2 > t'_1$) as long as the velocity of light c is the greatest velocity attainable.

Summary of Important Rules

Wave Equation
$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

Wave (phase) velocity $= c = \frac{\omega}{k} = \frac{\partial x}{\partial t}$
 $k = \text{wave number} = \frac{2\pi}{\lambda}$

where the wavelength λ defines separation between two oscillations with phase difference of 2π rad.

Particle velocity
$$\frac{\partial y}{\partial t} = -c \frac{\partial y}{\partial x}$$

Displacement $y = a e^{i(\omega t - kx)}$, where *a* is wave amplitude.

Characteristic Impedance of a String

$$Z = \frac{\text{transverse force}}{\text{transverse velocity}} = -T\frac{\partial y}{\partial x} / \frac{\partial y}{\partial t} = \rho c$$

Reflection and Transmission Coefficients

$$\frac{\text{Reflected Amplitude}}{\text{Incident Amplitude}} = \frac{Z_1 - Z_2}{Z_1 + Z_2}$$

$$\frac{\text{Transmitted Amplitude}}{\text{Incident Amplitude}} = \frac{2Z_1}{Z_1 + Z_2}$$

$$\frac{\text{Reflected Energy}}{\text{Incident Energy}} = \left(\frac{Z_1 - Z_2}{Z_1 + Z_2}\right)^2$$

$$\frac{\text{Transmitted Energy}}{\text{Incident Energy}} = \frac{4Z_1Z_2}{(Z_1 + Z_2)^2}$$

Impedance Matching

Impedances Z_1 and Z_3 are matched by insertion of impedance Z_2 where $Z_2^2 = Z_1 Z_3$ Thickness of Z_2 is $\lambda/4$ measured in Z_2 .

Standing Waves. Normal Modes. Harmonics

Solution of wave equation separates time and space dependence to satisfy time independent wave equation

$$\frac{\partial^2 y}{\partial x^2} + k^2 y = 0 \quad \text{(cancel } e^{i\omega t}\text{)}$$

Standing waves on string of length l have wavelength λ_n where

$$n\frac{\lambda_n}{2} = l$$

Displacement of *n*th harmonic is

$$y_n = (A_n \cos \omega_n t + B_n \sin \omega_n t) \sin \frac{\omega_n x}{c}$$

Energy of *n*th harmonic (string mass *m*)

$$E_n = KE_n + PE_n = \frac{1}{4}m\omega_n^2(A_n^2 + B_n^2)$$

Group Velocity

In a dispersive medium the wave velocity v varies with frequency ω (wave number k). The energy of a group of such waves travels with the group velocity

$$v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k} = v + \frac{k\,\mathrm{d}v}{\mathrm{d}k} = v - \lambda \frac{\mathrm{d}v}{\mathrm{d}\lambda}$$

Rectangular Wave Group of n Frequency Components Amplitude a, Width $\Delta \omega$, represented in time by

$$R(t) = a \cdot \frac{\sin\left(\Delta\omega \cdot t/2\right)}{\sin\left(\Delta\omega \cdot t/n \cdot 2\right)} \cos \bar{\omega}t$$

where $\bar{\omega}$ is average frequency. R(t) is zero when

$$\frac{\Delta\omega\cdot t}{2} = \pi$$

i.e. Bandwidth Theorem gives

$$\Delta \omega \cdot \Delta t = 2\pi$$

or

$$\Delta x \Delta k = 2\pi$$

A pulse of duration Δt requires a frequency band width $\Delta \omega$ to define it in frequency space and vice versa.

Doppler Effect

Signal of frequency ν and velocity *c* transmitted by a stationary source *S* and received by a stationary observer O becomes

$$\nu' = \frac{\nu c}{c - u}$$

when source is no longer stationary but moves towards O with a velocity u.