
Chapter 3

Postulates of Quantum Mechanics

3.1 Introduction

The formalism of quantum mechanics is based on a number of postulates. These postulates are

in turn based on a wide range of experimental observations; the underlying physical ideas of

these experimental observations have been briefly mentioned in Chapter 1. In this chapter we

present a formal discussion of these postulates, and how they can be used to extract quantitative

information about microphysical systems.

These postulates cannot be derived; they result from experiment. They represent the mini-

mal set of assumptions needed to develop the theory of quantum mechanics. But how does one

find out about the validity of these postulates? Their validity cannot be determined directly;

only an indirect inferential statement is possible. For this, one has to turn to the theory built

upon these postulates: if the theory works, the postulates will be valid; otherwise they will

make no sense. Quantum theory not only works, but works extremely well, and this represents

its experimental justification. It has a very penetrating qualitative as well as quantitative pre-

diction power; this prediction power has been verified by a rich collection of experiments. So

the accurate prediction power of quantum theory gives irrefutable evidence to the validity of

the postulates upon which the theory is built.

3.2 The Basic Postulates of Quantum Mechanics

According to classical mechanics, the state of a particle is specified, at any time t , by two fun-
damental dynamical variables: the position r t and the momentum p t . Any other physical
quantity, relevant to the system, can be calculated in terms of these two dynamical variables.

In addition, knowing these variables at a time t , we can predict, using for instance Hamilton’s
equations dx dt H p and dp dt H x , the values of these variables at any later
time t .
The quantum mechanical counterparts to these ideas are specified by postulates, which

enable us to understand:

how a quantum state is described mathematically at a given time t ,

how to calculate the various physical quantities from this quantum state, and
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166 CHAPTER 3. POSTULATES OF QUANTUM MECHANICS

knowing the system’s state at a time t , how to find the state at any later time t ; that is,
how to describe the time evolution of a system.

The answers to these questions are provided by the following set of five postulates.

Postulate 1: State of a system

The state of any physical system is specified, at each time t , by a state vector t in a Hilbert

space H; t contains (and serves as the basis to extract) all the needed information about

the system. Any superposition of state vectors is also a state vector.

Postulate 2: Observables and operators

To every physically measurable quantity A, called an observable or dynamical variable, there
corresponds a linear Hermitian operator A whose eigenvectors form a complete basis.

Postulate 3: Measurements and eigenvalues of operators

The measurement of an observable A may be represented formally by the action of A on a state
vector t . The only possible result of such a measurement is one of the eigenvalues an
(which are real) of the operator A. If the result of a measurement of A on a state t is an ,
the state of the system immediately after the measurement changes to n :

A t an n (3.1)

where an n t . Note: an is the component of t when projected1 onto the eigen-

vector n .

Postulate 4: Probabilistic outcome of measurements

Discrete spectra: When measuring an observable A of a system in a state , the proba-

bility of obtaining one of the nondegenerate eigenvalues an of the corresponding operator
A is given by

Pn an
n

2 an 2
(3.2)

where n is the eigenstate of Awith eigenvalue an . If the eigenvalue an ism-degenerate,
Pn becomes

Pn an

m
j 1

j
n

2 m
j 1 a

j
n

2

(3.3)

The act of measurement changes the state of the system from to n . If the sys-

tem is already in an eigenstate n of A, a measurement of A yields with certainty the
corresponding eigenvalue an : A n an n .

Continuous spectra: The relation (3.2), which is valid for discrete spectra, can be ex-

tended to determine the probability density that a measurement of A yields a value be-
tween a and a da on a system which is initially in a state :

dP a

da

a 2 a 2

a 2da
(3.4)

for instance, the probability density for finding a particle between x and x dx is given
by dP x dx x 2 .

1To see this, we need only to expand t in terms of the eigenvectors of A which form a complete basis: t

n n n t n an n .
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Postulate 5: Time evolution of a system

The time evolution of the state vector t of a system is governed by the time-dependent

Schrödinger equation

ih
t

t
H t (3.5)

where H is the Hamiltonian operator corresponding to the total energy of the system.

Remark

These postulates fall into two categories:

The first four describe the system at a given time.

The fifth shows how this description evolves in time.

In the rest of this chapter we are going to consider the physical implications of each one of the

four postulates. Namely, we shall look at the state of a quantum system and its interpretation,

the physical observables, measurements in quantum mechanics, and finally the time evolution

of quantum systems.

3.3 The State of a System

To describe a system in quantum mechanics, we use a mathematical entity (a complex function)

belonging to a Hilbert space, the state vector t , which contains all the information we need
to know about the system and from which all needed physical quantities can be computed. As

discussed in Chapter 2, the state vector t may be represented in two ways:

A wave function r t in the position space: r t r t .

A momentum wave function p t in the momentum space: p t p t .

So, for instance, to describe the state of a one-dimensional particle in quantum mechanics we

use a complex function x t instead of two real real numbers x p in classical physics.
The wave functions to be used are only those that correspond to physical systems. What

are the mathematical requirements that a wave function must satisfy to represent a physical

system? Wave functions x that are physically acceptable must, along with their first deriv-

atives d x dx , be finite, continuous, and single-valued everywhere. As will be discussed in
Chapter 4, we will examine the underlying physics behind the continuity conditions of x
and d x dx (we will see that x and d x dx must be be continuous because the prob-
ability density and the linear momentum are continuous functions of x).

3.3.1 Probability Density

What about the physical meaning of a wave function? Only the square of its norm, r t 2,

has meaning. According to Born’s probabilistic interpretation, the square of the norm of

r t ,

P r t r t 2 (3.6)
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represents a position probability density; that is, the quantity r t 2d3r represents the prob-
ability of finding the particle at time t in a volume element d3r located between r and r dr .
Therefore, the total probability of finding the system somewhere in space is equal to 1:

r t 2d3r dx dy r t 2dz 1 (3.7)

A wave function r t satisfying this relation is said to be normalized. We may mention
that r has the physical dimensions of 1 L3, where L is a length. Hence, the physical
dimensions of r 2 is 1 L3: r 2 1 L3.

Note that the wave functions r t and ei r t , where is a real number, represent the

same state.

Example 3.1 (Physical and unphysical wave functions)

Which among the following functions represent physically acceptable wave functions: f x
3 sin x , g x 4 x , h2 x 5x , and e x x2.

Solution

Among these functions only f x 3 sin x represents a physically acceptable wave function,
since f x and its derivative are finite, continuous, single-valued everywhere, and integrable.
The other functions cannot be wave functions, since g x 4 x is not continuous,

not finite, and not square integrable; h2 x 5x is neither finite nor square integrable; and
e x x2 is neither finite nor square integrable.

3.3.2 The Superposition Principle

The state of a system does not have to be represented by a single wave function; it can be rep-
resented by a superposition of two or more wave functions. An example from the macroscopic
world is a vibrating string; its state can be represented by a single wave or by the superposition

(linear combination) of many waves.

If 1 r t and 2 r t separately satisfy the Schrödinger equation, then the wave function
r t 1 1 r t 2 2 r t also satisfies the Schrödinger equation, where 1 and 2 are

complex numbers. The Schrödinger equation is a linear equation. So in general, according to

the superposition principle, the linear superposition of many wave functions (which describe

the various permissible physical states of a system) gives a new wave function which represents

a possible physical state of the system:

i
i i (3.8)

where the i are complex numbers. The quantity

P
i

i i

2

(3.9)
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represents the probability for this superposition. If the states i are mutually orthonormal,
the probability will be equal to the sum of the individual probabilities:

P
i

i i

2

i
i
2 P1 P2 P3 (3.10)

where Pi i
2; Pi is the probability of finding the system in the state i .

Example 3.2

Consider a system whose state is given in terms of an orthonormal set of three vectors: 1 ,

2 , 3 as

3

3
1

2

3
2

2

3
3

(a) Verify that is normalized. Then, calculate the probability of finding the system in

any one of the states 1 , 2 , and 3 . Verify that the total probability is equal to one.

(b) Consider now an ensemble of 810 identical systems, each one of them in the state .

If measurements are done on all of them, how many systems will be found in each of the states

1 , 2 , and 3 ?

Solution

(a) Using the orthonormality condition j k jk where j , k 1 2 3, we can verify

that is normalized:

1

3
1 1

4

9
2 2

2

9
3 3

1

3

4

9

2

9
1 (3.11)

Since is normalized, the probability of finding the system in 1 is given by

P1 1
2 3

3
1 1

2

3
1 2

2

3
1 3

2
1

3
(3.12)

since 1 1 1 and 1 2 1 3 0.

Similarly, from the relations 2 2 1 and 2 1 2 3 0, we obtain the

probability of finding the system in 2 :

P2 2
2 2

3
2 2

2
4

9
(3.13)

As for 3 3 1 and 3 1 3 2 0, they lead to the probability of finding the

system in 3 :

P3 3
2 2

3
3 3

2
2

9
(3.14)

As expected, the total probability is equal to one:

P P1 P2 P3
1

3

4

9

2

9
1 (3.15)
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(b) The number of systems that will be found in the state 1 is

N1 810 P1
810

3
270 (3.16)

Likewise, the number of systems that will be found in states 2 and 3 are given, respec-

tively, by

N2 810 P2
810 4

9
360 N3 810 P3

810 2

9
180 (3.17)

3.4 Observables and Operators

An observable is a dynamical variable that can be measured; the dynamical variables encoun-

tered most in classical mechanics are the position, linear momentum, angular momentum, and

energy. How do we mathematically represent these and other variables in quantum mechanics?

According to the second postulate, a Hermitian operator is associated with every physical
observable. In the preceding chapter, we have seen that the position representation of the
linear momentum operator is given in one-dimensional space by P ih x and in three-

dimensional space by P ih .

In general, any function, f r p , which depends on the position and momentum variables,
r and p, can be "quantized" or made into a function of operators by replacing r and p with their
corresponding operators:

f r p F R P f R ih (3.18)

or f x p F X ih x . For instance, the operator corresponding to the Hamiltonian

H
1

2m
p 2 V r t (3.19)

is given in the position representation by

H
h2

2m
2 V R t (3.20)

where 2 is the Laplacian operator; it is given in Cartesian coordinates by: 2 2 x2
2 y2 2 z2.

Since the momentum operator P is Hermitian, and if the potential V R t is a real function,
the Hamiltonian (3.19) is Hermitian. We saw in Chapter 2 that the eigenvalues of Hermitian

operators are real. Hence, the spectrum of the Hamiltonian, which consists of the entire set

of its eigenvalues, is real. This spectrum can be discrete, continuous, or a mixture of both. In

the case of bound states, the Hamiltonian has a discrete spectrum of values and a continuous
spectrum for unbound states. In general, an operator will have bound or unbound spectra in the

same manner that the corresponding classical variable has bound or unbound orbits. As for R

and P , they have continuous spectra, since r and p may take a continuum of values.
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Table 3.1 Some observables and their corresponding operators.

Observable Corresponding operator

r R

p P ih

T p2

2m T h2

2m
2

E p2

2m V r t H h2

2m
2 V R t

L r p L ihR

According to Postulate 5, the total energy E for time-dependent systems is associated to the
operator

H ih
t

(3.21)

This can be seen as follows. The wave function of a free particle of momentum p and total
energy E is given by r t Aei p r Et h , where A is a constant. The time derivative of
r t yields

ih
r t

t
E r t (3.22)

Let us look at the eigenfunctions and eigenvalues of the momentum operator P . The eigen-
value equation

ih r p r (3.23)

yields the eigenfunction r corresponding to the eigenvalue p such that r 2d3r is the
probability of finding the particle with a momentum p in the volume element d3r centered
about r . The solution to the eigenvalue equation (3.23) is

r Aei p r h (3.24)

where A is a normalization constant. Since p hk is the eigenvalue of the operator P , the

eigenfunction (3.24) reduces to r Aeik r ; hence the eigenvalue equation (3.23) becomes

P r hk r (3.25)

To summarize, there is a one-to-one correspondence between observables and operators

(Table 3.1).

Example 3.3 (Orbital angular momentum)

Find the operator representing the classical orbital angular momentum.

Solution

The classical expression for the orbital angular momentum of a particle whose position and

linear momentum are r and p is given by L r p lx i ly j lzk, where lx ypz zpy ,
ly zpx xpz , lz xpy ypx .
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To find the operator representing the classical angular momentum, we need simply to re-

place r and p with their corresponding operators R and P ih : L ihR . This

leads to

Lx Y Pz Z Py ih Y
z

Z
y

(3.26)

L y Z Px X Pz ih Z
x

X
Z

(3.27)

L z X Py Y Px ih X
y

Y
x

(3.28)

Recall that in classical mechanics the position and momentum components commute, xpx
px x , and so do the components of the angular momentum, lx ly lylx . In quantum mechanics,

however, this is not the case, since X Px Px X ih and, as will be shown in Chapter 5,
Lx L y L yLx ihL z , and so on.

3.5 Measurement in Quantum Mechanics

Quantum theory is about the results of measurement; it says nothing about what might happen

in the physical world outside the context of measurement. So the emphasis is on measurement.

3.5.1 How Measurements Disturb Systems

In classical physics it is possible to perform measurements on a system without disturbing it

significantly. In quantum mechanics, however, the measurement process perturbs the system

significantly. While carrying out measurements on classical systems, this perturbation does

exist, but it is small enough that it can be neglected. In atomic and subatomic systems, however,

the act of measurement induces nonnegligible or significant disturbances.

As an illustration, consider an experiment that measures the position of a hydrogenic elec-

tron. For this, we need to bombard the electron with electromagnetic radiation (photons). If we

want to determine the position accurately, the wavelength of the radiation must be sufficiently

short. Since the electronic orbit is of the order of 10 10m, we must use a radiation whose

wavelength is smaller than 10 10m. That is, we need to bombard the electron with photons of

energies higher than

h h
c

h
3 108

10 10
104 eV (3.29)

When such photons strike the electron, not only will they perturb it, they will knock it com-

pletely off its orbit; recall that the ionization energy of the hydrogen atom is about 13 5 eV.

Thus, the mere act of measuring the position of the electron disturbs it appreciably.

Let us now discuss the general concept of measurement in quantum mechanics. The act of
measurement generally changes the state of the system. In theory we can represent the measur-
ing device by an operator so that, after carrying out the measurement, the system will be in one

of the eigenstates of the operator. Consider a system which is in a state . Before measuring

an observable A, the state can be represented by a linear superposition of eigenstates n
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of the corresponding operator A:

n
n n

n

an n (3.30)

According to Postulate 4, the act of measuring A changes the state of the system from to one

of the eigenstates n of the operator A, and the result obtained is the eigenvalue an . The only
exception to this rule is when the system is already in one of the eigenstates of the observable
being measured. For instance, if the system is in the eigenstate n , a measurement of the

observable A yields with certainty (i.e., with probability = 1) the value an without changing the
state n .

Before a measurement, we do not know in advance with certainty in which eigenstate,

among the various states n , a system will be after the measurement; only a probabilistic

outcome is possible. Postulate 4 states that the probability of finding the system in one particular

nondegenerate eigenstate n is given by

Pn
n

2

(3.31)

Note that the wave function does not predict the results of individual measurements; it instead

determines the probability distribution, P 2, over measurements on many identical sys-

tems in the same state.

Finally, we may state that quantum mechanics is the mechanics applicable to objects for

which measurements necessarily interfere with the state of the system. Quantum mechanically,

we cannot ignore the effects of the measuring equipment on the system, for they are important.

In general, certain measurements cannot be performed without major disturbances to other

properties of the quantum system. In conclusion, it is the effects of the interference by the
equipment on the system which is the essence of quantum mechanics.

3.5.2 Expectation Values

The expectation value A of A with respect to a state is defined by

A
A

(3.32)

For instance, the energy of a system is given by the expectation value of the Hamiltonian:

E H H .

In essence, the expectation value A represents the average result of measuring A on the
state . To see this, using the complete set of eigenvectors n of A as a basis (i.e., A is
diagonal in n), we can rewrite A as follows:

A
1

nm
m m A n n

n

an
n

2

(3.33)

where we have used m A n an nm . Since the quantity n
2 gives the

probability Pn of finding the value an after measuring the observable A, we can indeed interpret
A as an average of a series of measurements of A:

A
n

an
n

2

n

anPn (3.34)
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That is, the expectation value of an observable is obtained by adding all permissible eigenvalues

an , with each an multiplied by the corresponding probability Pn .
The relation (3.34), which is valid for discrete spectra, can be extended to a continuous

distribution of probabilities P a as follows:

A
a a 2da

a 2da
a dP a (3.35)

The expectation value of an observable can be obtained physically as follows: prepare a very

large number of identical systems each in the same state . The observable A is then mea-
sured on all these identical systems; the results of these measurements are a1, a2, , an , ;

the corresponding probabilities of occurrence are P1, P2, , Pn , . The average value of all

these repeated measurements is called the expectation value of A with respect to the state .

Note that the process of obtaining different results when measuring the same observable

on many identically prepared systems is contrary to classical physics, where these measure-

ments must give the same outcome. In quantum mechanics, however, we can predict only the

probability of obtaining a certain value for an observable.

Example 3.4

Consider a system whose state is given in terms of a complete and orthonormal set of five

vectors 1 , 2 , 3 , 4 , 5 as follows:

1

19
1

2

19
2

2

19
3

3

19
4

5

19
5

where n are eigenstates to the system’s Hamiltonian, H n n 0 n with n 1 2 3 4 5,

and where 0 has the dimensions of energy.

(a) If the energy is measured on a large number of identical systems that are all initially in

the same state , what values would one obtain and with what probabilities?

(b) Find the average energy of one such system.

Solution

First, note that is not normalized:

5

n 1

a2n n n

5

n 1

a2n
1

19

4

19

2

19

3

19

5

19

15

19
(3.36)

since j k jk with j , k 1 2 3 4 5.

(a) Since En n H n n 0 (n 1 2 3 4 5), the various measurements of the

energy of the system yield the values E1 0, E2 2 0, E3 3 0, E4 4 0, E5 5 0 with

the following probabilities:

P1 E1
1

2 1

19
1 1

2 19

15

1

15
(3.37)

P2 E2
2

2 2

19
2 2

2 19

15

4

15
(3.38)
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P3 E3
3

2 2

19
3 3

2
19

15

2

15
(3.39)

P4 E4
4

2 3

19
4 4

2
19

15

3

15
(3.40)

and

P5 E5
5

2 5

19
5 5

2
19

15

5

15
(3.41)

(b) The average energy of a system is given by

E
5

j 1

Pj E j
1

15
0

8

15
0

6

15
0

12

15
0

25

15
0

52

15
0 (3.42)

This energy can also be obtained from the expectation value of the Hamiltonian:

E
H 19

15

5

n 1

a2n n H n
19

15

1

19

8

19

6

19

12

19

25

19
0

52

15
0 (3.43)

where the values of the coefficients a2n are listed in (3.36).

3.5.3 Complete Sets of Commuting Operators (CSCO)

Two observables A and B are said to be compatible when their corresponding operators com-
mute, [A B] 0; observables corresponding to noncommuting operators are said to be non-
compatible.
In what follows we are going to consider the task of measuring two observables A and B

on a given system. Since the act of measurement generally perturbs the system, the result of
measuring A and B therefore depends on the order in which they are carried out. Measuring A
first and then B leads2 in general to results that are different from those obtained by measuring
B first and then A. How does this take place?

If A and B do not commute and if the system is in an eigenstate a
n of A, a measurement

of A yields with certainty a value an , since A
a
n an

a
n . Then, when we measure B, the

state of the system will be left in one of the eigenstates of B. If we measure A again, we will
find a value which will be different from an . What is this new value? We cannot answer this
question with certainty: only a probabilistic outcome is possible. For this, we need to expand

the eigenstates of B in terms of those of A, and thus provide a probabilistic answer as to the
value of measuring A. So if A and B do not commute, they cannot be measured simultaneously;
the order in which they are measured matters.

2The act of measuring A first and then B is represented by the action of product BA of their corresponding operators
on the state vector.
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What happens when A and B commute? We can show that the results of their measurements
will not depend on the order in which they are carried out. Before showing this, let us mention

a useful theorem.

Theorem 3.1 If two observables are compatible, their corresponding operators possess a set
of common (or simultaneous) eigenstates (this theorem holds for both degenerate and nonde-
generate eigenstates).

Proof

We provide here a proof for the nondegenerate case only. If n is a nondegenerate eigenstate

of A, A n an n , we have

m [A B] n am an m B n 0 (3.44)

since A and B commute. So m B n must vanish unless an am . That is,

m B n n B n nm (3.45)

Hence the n are joint or simultaneous eigenstates of A and B (this completes the proof).

Denoting the simultaneous eigenstate of A and B by a
n1

b
n2 , we have

A a
n1

b
n2 an1

a
n1

b
n2 (3.46)

B a
n1

b
n2 bn2

a
n1

b
n2 (3.47)

Theorem 3.1 can be generalized to the case of many mutually compatible observables A,
B, C , . These compatible observables possess a complete set of joint eigenstates

n
a
n1

b
n2

c
n3 (3.48)

The completeness and orthonormality conditions of this set are

n1 n2 n3

a
n1

b
n2

c
n3

a
n1

b
n2

c
n3 1 (3.49)

n n n n n1 n1 n2 n2 n3 n3 (3.50)

Let us now show why, when two observables A and B are compatible, the order in which
we carry out their measurements is irrelevant. Measuring A first, we would find a value an
and would leave the system in an eigenstate of A. According to Theorem 3.1, this eigenstate is
also an eigenstate of B. Thus a measurement of B yields with certainty bn without affecting the
state of the system. In this way, if we measure A again, we obtain with certainty the same initial
value an . Similarly, another measurement of B will yield bn and will leave the system in the
same joint eigenstate of A and B. Thus, if two observables A and B are compatible, and if the
system is initially in an eigenstate of one of their operators, their measurements not only yield

precise values (eigenvalues) but they will not depend on the order in which the measurements

were performed. In this case, A and B are said to be simultaneously measurable. So com-
patible observables can be measured simultaneously with arbitrary accuracy; noncompatible
observables cannot.
What happens if an operator, say A, has degenerate eigenvalues? The specification of

one eigenvalue does not uniquely determine the state of the system. Among the degenerate
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eigenstates of A, only a subset of them are also eigenstates of B. Thus, the set of states that
are joint eigenstates of both A and B is not complete. To resolve the degeneracy, we can
introduce a third operator C which commutes with both A and B; then we can construct a set of
joint eigenstates of A, B, and C that is complete. If the degeneracy persists, we may introduce a
fourth operator D that commutes with the previous three and then look for their joint eigenstates
which form a complete set. Continuing in this way, we will ultimately exhaust all the operators

(that is, there are no more independent operators) which commute with each other. When that

happens, we have then obtained a complete set of commuting operators (CSCO). Only then will
the state of the system be specified unambiguously, for the joint eigenstates of the CSCO are

determined uniquely and will form a complete set (recall that a complete set of eigenvectors of

an operator is called a basis). We should, at this level, state the following definition.

Definition: A set of Hermitian operators, A, B, C , , is called a CSCO if the operators

mutually commute and if the set of their common eigenstates is complete and not degenerate

(i.e., unique).

The complete commuting set may sometimes consist of only one operator. Any operator
with nondegenerate eigenvalues constitutes, all by itself, a CSCO. For instance, the position
operator X of a one-dimensional, spinless particle provides a complete set. Its momentum
operator P is also a complete set; together, however, X and P cannot form a CSCO, for they
do not commute. In three-dimensional problems, the three-coordinate position operators X , Y ,
and Z form a CSCO; similarly, the components of the momentum operator Px , Py , and Pz also

form a CSCO. In the case of spherically symmetric three-dimensional potentials, the set H ,

L 2, L z forms a CSCO. Note that in this case of spherical symmetry, we need three operators

to form a CSCO because H , L 2, and L z are all degenerate; hence the complete and unique
determination of the wave function cannot be achieved with one operator or with two.

In summary, when a given operator, say A, is degenerate, the wave function cannot be
determined uniquely unless we introduce one or more additional operators so as to form a

complete commuting set.

3.5.4 Measurement and the Uncertainty Relations

We have seen in Chapter 2 that the uncertainty condition pertaining to the measurement of any

two observables A and B is given by

A B
1

2
[A B] (3.51)

where A A
2

A 2.

Let us illustrate this on the joint measurement of the position and momentum observables.

Since these observables are not compatible, their simultaneous measurement with infinite ac-

curacy is not possible; that is, since [X P] ih there exists no state which is a simultaneous
eigenstate of X and P . For the case of the position and momentum operators, the relation (3.51)
yields

x p
h

2
(3.52)

This condition shows that the position and momentum of a microscopic system cannot be mea-

sured with infinite accuracy both at once. If the position is measured with an uncertainty x ,



178 CHAPTER 3. POSTULATES OF QUANTUM MECHANICS

the uncertainty associated with its momentum measurement cannot be smaller than h 2 x .
This is due to the interference between the two measurements. If we measure the position first,
we perturb the system by changing its state to an eigenstate of the position operator; then the

measurement of the momentum throws the system into an eigenstate of the momentum operator.

Another interesting application of the uncertainty relation (3.51) is to the orbital angular

momentum of a particle. Since its components satisfy the commutator [Lx L y] ihLz , we
obtain

Lx L y
1

2
h L z (3.53)

We can obtain the other two inequalities by means of a cyclic permutation of x , y, and z. If
L z 0, Lx and L y will have sharp values simultaneously. This occurs when the particle is in

an s state. In fact, when a particle is in an s state, we have Lx L y Lz 0; hence all

the components of orbital angular momentum will have sharp values simultaneously.

3.6 Time Evolution of the System’s State

3.6.1 Time Evolution Operator

We want to examine here how quantum states evolve in time. That is, given the initial state

t0 , how does one find the state t at any later time t? The two states can be related by
means of a linear operator U t t0 such that

t U t t0 t0 t t0 (3.54)

U t t0 is known as the time evolution operator or propagator. From (3.54), we infer that

U t0 t0 I (3.55)

where I is the unit (identity) operator.
The issue now is to find U t t0 . For this, we need simply to substitute (3.54) into the

time-dependent Schrödinger equation (3.5):

ih
t
U t t0 t0 H U t t0 t0 (3.56)

or
U t t0
t

i

h
HU t t0 (3.57)

The integration of this differential equation depends on whether or not the Hamiltonian depends

on time. If it does not depend on time, and taking into account the initial condition (3.55), we

can easily ascertain that the integration of (3.57) leads to

U t t0 e i t t0 H h and t e i t t0 H h t0 (3.58)

We will show in Section 3.7 that the operator U t t0 e i t t0 H h represents a finite time

translation.

If, on the other hand, H depends on time the integration of (3.57) becomes less trivial. We
will deal with this issue in Chapter 10 when we look at time-dependent potentials or at the
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time-dependent perturbation theory. In this chapter, and in all chapters up to Chapter 10, we

will consider only Hamiltonians that do not depend on time.

Note that U t t0 is a unitary operator, since

U t t0 U
† t t0 U t t0 U

1 t t0 e i t t0 H hei t t0 H h I (3.59)

or U† U 1.

3.6.2 Stationary States: Time-Independent Potentials

In the position representation, the time-dependent Schrödinger equation (3.5) for a particle of

mass m moving in a time-dependent potential V r t can be written as follows:

ih
r t

t

h2

2m
2 r t V r t r t (3.60)

Now, let us consider the particular case of time-independent potentials: V r t V r . In
this case the Hamiltonian operator will also be time independent, and hence the Schrödinger

equation will have solutions that are separable, i.e., solutions that consist of a product of two
functions, one depending only on r and the other only on time:

r t r f t (3.61)

Substituting (3.61) into (3.60) and dividing both sides by r f t , we obtain

ih
1

f t

d f t

dt

1

r

h2

2m
2 r V r r (3.62)

Since the left-hand side depends only on time and the right-hand side depends only on r , both
sides must be equal to a constant; this constant, which we denote by E , has the dimensions of
energy. We can therefore break (3.62) into two separate differential equations, one depending

on time only,

ih
d f t

dt
E f t (3.63)

and the other on the space variable r ,

h2

2m
2 V r r E r (3.64)

This equation is known as the time-independent Schrödinger equation for a particle of mass m
moving in a time-independent potential V r .
The solutions to (3.63) can be written as f t e i Et h ; hence the state (3.61) becomes

r t r e i Et h (3.65)

This particular solution of the Schrödinger equation (3.60) for a time-independent potential
is called a stationary state. Why is this state called stationary? The reason is obvious: the
probability density is stationary, i.e., it does not depend on time:

r t 2 r e i Et h 2 r 2 (3.66)
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Note that such a state has a precise value for the energy, E h .

In summary, stationary states, which are given by the solutions of (3.64), exist only for

time-independent potentials. The set of energy levels that are solutions to this equation are

called the energy spectrum of the system. The states corresponding to discrete and continuous
spectra are called bound and unbound states, respectively. We will consider these questions in
detail in Chapter 4.

The most general solution to the time-dependent Schrödinger equation (3.60) can be written

as an expansion in terms of the stationary states n r exp i Ent h :

r t
n

cn n r exp
i Ent

h
(3.67)

where cn n t 0 n r r d3r . The general solution (3.67) is not a stationary
state, because a linear superposition of stationary states is not necessarily a stationary state.

Remark

The time-dependent and time-independent Schrödinger equations are given in one dimension

by (see (3.60) and (3.64))

ih
x t

t

h2

2m

2 x t

x2
V x t x t (3.68)

h2

2m

d2 x

dx2
V x x E x (3.69)

3.6.3 Schrödinger Equation and Wave Packets

Can we derive the Schrödinger equation (3.5) formally from first principles? No, we cannot;

we can only postulate it. What we can do, however, is to provide an educated guess on the

formal steps leading to it. Wave packets offer the formal tool to achieve that. We are going to
show how to start from a wave packet and end up with the Schrödinger equation.

As seen in Chapter 1, the wave packet representing a particle of energy E and momentum
p moving in a potential V is given by

x t
1

2 h
p exp

i

h
px Et dp

1

2 h
p exp

i

h
px

p2

2m
V t dp (3.70)

recall that wave packets unify the corpuscular (E and p) and the wave (k and ) features of

particles: k p h, h E p2 2m V . A partial time derivative of (3.70) yields

ih
t

x t
1

2 h
p

p2

2m
V exp

i

h
px

p2

2m
V t dp (3.71)
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Since p2 2m h2 2m 2 x2 and assuming that V is constant, we can take the term
h2 2m 2 x2 V outside the integral sign, for it does not depend on p:

ih
t

x t
h2

2m

2

x2
V

1

2 h
p exp

i

h
px

p2

2m
V t dp

(3.72)

This can be written as

ih
t

x t
h2

2m

2

x2
V x t (3.73)

Now, since this equation is valid for spatially varying potentials V V x , we see that we have
ended up with the Schrödinger equation (3.68).

3.6.4 The Conservation of Probability

Since the Hamiltonian operator is Hermitian, we can show that the norm t t , which is
given by

t t r t 2 d3r (3.74)

is time independent. This means, if t is normalized, it stays normalized for all subsequent

times. This is a direct consequence of the hermiticity of H .
To prove that t t is constant, we need simply to show that its time derivative is

zero. First, the time derivative of t t is

d

dt
t t

d

dt
t t t

d t

dt
(3.75)

where d t dt and d t dt can be obtained from (3.5):

d

dt
t

i

h
H t (3.76)

d

dt
t

i

h
t H†

i

h
t H (3.77)

Inserting these two equations into (3.75), we end up with

d

dt
t t

i

h

i

h
t H t 0 (3.78)

Thus, the probability density does not evolve in time.

In what follows we are going to calculate the probability density in the position representa-

tion. For this, we need to invoke the time-dependent Schrödinger equation

ih
r t

t

h2

2m
2 r t V r t r t (3.79)

and its complex conjugate

ih
r t

t

h2

2m
2 r t V r t r t (3.80)
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Multiplying both sides of (3.79) by r t and both sides of (3.80) by r t , and subtracting
the two resulting equations, we obtain

ih
t

r t r t
h2

2m
r t 2 r t 2 (3.81)

We can rewrite this equation as

r t

t
J 0 (3.82)

where r t and J are given by

r t r t r t J r t
ih

2m
(3.83)

r t is called the probability density, while J r t is the probability current density, or sim-
ply the current density, or even the particle density flux. By analogy with charge conservation
in electrodynamics, equation (3.82) is interpreted as the conservation of probability.
Let us find the relationship between the density operators t and t0 . Since t

U t t0 t0 and t t0 U† t t0 , we have

t t t U t t0 0 0 U† t t0 (3.84)

This is known as the density operator for the state t . Hence knowing t0 we can calcu-
late t as follows:

t U t t0 t0 U
† t t0 (3.85)

3.6.5 Time Evolution of Expectation Values

We want to look here at the time dependence of the expectation value of a linear operator; if the

state t is normalized, the expectation value is given by

A t A t (3.86)

Using (3.76) and (3.77), we can write d A dt as follows:

d

dt
A

1

ih
t AH H A t t

A

t
t (3.87)

or

d

dt
A

1

ih
[A H ]

A

t
(3.88)

Two important results stem from this relation. First, if the observable A does not depend ex-
plicitly on time, the term A t will vanish, so the rate of change of the expectation value of A
is given by [A H ] ih. Second, besides not depending explicitly on time, if the observable A
commutes with the Hamiltonian, the quantity d A dt will then be zero; hence the expectation
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value A will be constant in time. So if A commutes with the Hamiltonian and is not dependent
on time, the observable A is said to be a constant of the motion; that is, the expectation value of
an operator that does not depend on time and that commutes with the Hamiltonian is constant
in time:

If [H A] 0 and
A

t
0

d A

dt
0 A constant (3.89)

For instance, we can verify that the energy, the linear momentum, and the angular momentum

of an isolated system are conserved: d H dt 0, d P dt 0, and d L dt 0. This

implies that the expectation values of H , P , and L are constant. Recall from classical physics
that the conservation of energy, linear momentum, and angular momentum are consequences

of the following symmetries, respectively: homogeneity of time, homogeneity of space, and

isotropy of space. We will show in the following section that these symmetries are associated,

respectively, with invariances in time translation, space translation, and space rotation.

As an example, let us consider the time evolution of the expectation value of the den-

sity operator t t t ; see (3.84). From (3.5), which leads to t t
1 ih H t and t t 1 ih t H , we have

t

t

1

ih
H t t

1

ih
t t H

1

ih
[ t H ] (3.90)

A substitution of this relation into (3.88) leads to

d

dt
t

1

ih
[ t H ]

t

t

1

ih
[ t H ]

1

ih
[ t H ] 0 (3.91)

So the density operator is a constant of the motion. In fact, we can easily show that

[ t H ] t [ t t H ] t

t t t H t t H t t t

0 (3.92)

which, when combined with (3.90), yields t t 0.

Finally, we should note that the constants of motion are nothing but observables that can be

measured simultaneously with the energy to arbitrary accuracy. If a system has a complete set

of commuting operators (CSCO), the number of these operators is given by the total number of

constants of the motion.

3.7 Symmetries and Conservation Laws

We are interested here in symmetries that leave the Hamiltonian of an isolated system invariant.
We will show that for each such symmetry there corresponds an observable which is a constant

of the motion. The invariance principles relevant to our study are the time translation invariance

and the space translation invariance. We may recall from classical physics that whenever a

system is invariant under space translations, its total momentum is conserved; and whenever it

is invariant under rotations, its total angular momentum is also conserved.

To prepare the stage for symmetries and conservation laws in quantum mechanics, we are

going to examine the properties of infinitesimal and finite unitary transformations that are most

essential to these invariance principles.
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3.7.1 Infinitesimal Unitary Transformations

In Chapter 2 we saw that the transformations of a state vector and an operator A under an
infinitesimal unitary transformation U G I i G are given by

I i G (3.93)

A I i G A I i G A i [G A] (3.94)

where and G are called the parameter and the generator of the transformation, respectively.
Let us consider two important applications of infinitesimal unitary transformations: time

and space translations.

3.7.1.1 Time Translations: G H h

The application of U t H I i h t H on a state t gives

I
i

h
t H t t

i

h
t H t (3.95)

Since H t ih t t we have

I
i

h
t H t t t

t

t
t t (3.96)

because t t t t is nothing but the first-order Taylor expansion of t t . We
conclude from (3.96) that the application ofU t H to t generates a state t t which

consists simply of a time translation of t by an amount equal to t . The Hamiltonian in
I i h t H is thus the generator of infinitesimal time translations. Note that this translation
preserves the shape of the state t , for its overall shape is merely translated in time by t .

3.7.1.2 Spatial Translations: G Px h

The application of U Px I i h Px to x gives

I
i

h
Px x x

i

h
Px x (3.97)

Since Px ih x and since the first-order Taylor expansion of x is given by

x x x x , we have

I
i

h
Px x x

x

x
x (3.98)

So, when U Px acts on a wave function, it translates it spatially by an amount equal to .

Using [X Px ] ih we infer from (3.94) that the position operator X transforms as follows:

X I
i

h
Px X I

i

h
Px X

i

h
[Px X] X (3.99)

The relations (3.98) and (3.99) show that the linear momentum operator in I i h Px is a
generator of infinitesimal spatial translations.
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3.7.2 Finite Unitary Transformations

In Chapter 2 we saw that a finite unitary transformation can be constructed by performing a
succession of infinitesimal transformations. For instance, by applying a single infinitesimal

time translation N times in steps of N , we can generate a finite time translation

U H lim
N

N

k 1

I
i

h N
H lim

N
I

i

h
H

N

exp
i

h
H (3.100)

where the Hamiltonian is the generator of finite time translations. We should note that the

time evolution operator U t t0 e i t t0 H h , displayed in (3.58), represents a finite unitary

transformation where H is the generator of the time translation.
By analogy with (3.96) we can show that the application of U H to t yields

U H t exp
i

h
H t t (3.101)

where t is merely a time translation of t .

Similarly, we can infer from (3.98) that the application ofUa P exp ia P h to a wave
function causes it to be translated in space by a vector a:

Ua P r exp
i

h
a P r r a (3.102)

To calculate the transformed position vector operator R , let us invoke a relation we derived
in Chapter 2:

A ei G Ae i G A i [G A]
i 2

2!
[G [G A]]

i 3

3!
[G [G [G A]]]

(3.103)

An application of this relation to the spatial translation operator Ua P yields

R exp
i

h
a P R exp

i

h
a P R

i

h
[a P R] R a (3.104)

In deriving this, we have used the fact that [a P R] iha and that the other commutators

are zero, notably [a P [a P R]] 0. From (3.102) and (3.104), we see that the linear

momentum in exp ia P h is a generator of finite spatial translations.

3.7.3 Symmetries and Conservation Laws

We want to show here that every invariance principle of H is connected with a conservation
law.

The Hamiltonian of a system transforms under a unitary transformation ei G as follows;
see (3.103):

H ei GHe i G H i [G H ]
i 2

2!
[G [G H ]]

i 3

3!
[G [G [G H ]]]

(3.105)
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If H commutes with G, it also commutes with the unitary transformation U G ei G .
In this case we may infer two important conclusions. On the one hand, there is an invariance
principle: the Hamiltonian is invariant under the transformation U G , since

H ei GHe i G ei Ge i GH H (3.106)

On the other hand, if in addition to [G H ] 0, the operator G does not depend on time
explicitly, there is a conservation law: equation (3.88) shows that G is a constant of the motion,
since

d

dt
G

1

ih
[G H]

G

t
0 (3.107)

We say that G is conserved.
So whenever the Hamiltonian is invariant under a unitary transformation, the generator of

the transformation is conserved. We may say, in general, that for every invariance symmetry of
the Hamiltonian, there corresponds a conservation law.

3.7.3.1 Conservation of Energy and Linear Momentum

Let us consider two interesting applications pertaining to the invariance of the Hamiltonian

of an isolated system with respect to time translations and to space translations. First, let us
consider time translations. As shown in (3.58), time translations are generated in the case of

time-independent Hamiltonians by the evolution operator U t t0 e i t t0 H h . Since H
commutes with the generator of the time translation (which is given by H itself), it is invariant
under time translations. As H is invariant under time translations, the energy of an isolated
system is conserved. We should note that if the system is invariant under time translations,
this means there is a symmetry of time homogeneity. Time homogeneity implies that the time-

displaced state t , like t , satisfies the Schrödinger equation.
The second application pertains to the spatial translations, or to transformations under

Ua P exp ia P h , of an isolated system. The linear momentum is invariant underUa P
and the position operator transforms according to (3.104):

P P R R a (3.108)

For instance, since the Hamiltonian of a free particle does not depend on the coordinates, it

commutes with the linear momentum [H P] 0. The Hamiltonian is then invariant under

spatial translations, since

H exp
i

h
a P H exp

i

h
a P exp

i

h
a P exp

i

h
a P H H (3.109)

Since [H P] 0 and since the linear momentum operator does not depend explicitly on time,

we infer from (3.88) that P is a constant of the motion, since

d

dt
P

1

ih
[P H ]

P

t
0 (3.110)

So if [H P] 0 the Hamiltonian will be invariant under spatial translations and the linear
momentum will be conserved. A more general case where the linear momentum is a constant
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of the motion is provided by an isolated system, for its total linear momentum is conserved.

Note that the invariance of the system under spatial translations means there is a symmetry of

spatial homogeneity. The requirement for the homogeneity of space implies that the spatially

displaced wave function r a , much like r , satisfies the Schrödinger equation.
In summary, the symmetry of time homogeneity gives rise to the conservation of energy,

whereas the symmetry of space homogeneity gives rise to the conservation of linear momentum.

In Chapter 7 we will see that the symmetry of space isotropy, or the invariance of the

Hamiltonian with respect to space rotations, leads to conservation of the angular momentum.

Parity operator

The unitary transformations we have considered so far, time translations and space translations,

are continuous. We may consider now a discrete unitary transformation, the parity. As seen in
Chapter 2, the parity transformation consists of an inversion or reflection through the origin of

the coordinate system:

P r r (3.111)

If the parity operator commutes with the system’s Hamiltonian,

[H P] 0 (3.112)

the parity will be conserved, and hence a constant of the motion. In this case the Hamiltonian
and the parity operator have simultaneous eigenstates. For instance, we will see in Chapter 4

that the wave functions of a particle moving in a symmetric potential, V r V r , have
definite parities: they can be only even or odd. Similarly, we can ascertain that the parity of an

isolated system is a constant of the motion.

3.8 Connecting Quantum to Classical Mechanics

3.8.1 Poisson Brackets and Commutators

To establish a connection between quantum mechanics and classical mechanics, we may look

at the time evolution of observables.

Before describing the time evolution of a dynamical variable within the context of classical

mechanics, let us review the main ideas of the mathematical tool relevant to this description,

the Poisson bracket. The Poisson bracket between two dynamical variables A and B is defined
in terms of the generalized coordinates qi and the momenta pi of the system:

A B
j

A

q j

B

p j

A

p j

B

q j
(3.113)

Since the variables qi are independent of pi , we have q j pk 0, p j qk 0; thus we can

show that

q j qk p j pk 0 q j pk jk (3.114)

Using (3.113) we can easily infer the following properties of the Poisson brackets:

Antisymmetry

A B B A (3.115)
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Linearity

A B C D A B A C A D (3.116)

Complex conjugate

A B A B (3.117)

Distributivity

A BC A B C B A C AB C A B C A C B (3.118)

Jacobi identity

A B C B C A C A B 0 (3.119)

Using d f n x dx n f n 1 x d f x dx , we can show that

A Bn nBn 1 A B An B nAn 1 A B (3.120)

These properties are similar to the properties of the quantum mechanical commutators seen in

Chapter 2.

The total time derivative of a dynamical variable A is given by

d A

dt
j

A

q j

q j
t

A

p j

p j
t

A

t
j

A

q j

H

p j

A

p j

H

p j

A

t
(3.121)

in deriving this relation we have used the Hamilton equations of classical mechanics:

dq j
dt

H

p j

dp j
dt

H

q j
(3.122)

where H is the Hamiltonian of the system. The total time evolution of a dynamical variable A
is thus given by the following equation of motion:

d A

dt
A H

A

t
(3.123)

Note that if A does not depend explicitly on time, its time evolution is given simply by d A dt
A H . If d A dt 0 or A H 0, A is said to be a constant of the motion.
Comparing the classical relation (3.123) with its quantum mechanical counterpart (3.88),

d

dt
A

1

ih
[A H ]

A

t
(3.124)

we see that they are identical only if we identify the Poisson bracket A H with the commuta-

tor [A H ] ih . We may thus infer the following general rule. The Poisson bracket of any pair
of classical variables can be obtained from the commutator between the corresponding pair of

quantum operators by dividing it by ih:

1

ih
[A B] A B classical (3.125)
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Note that the expressions of classical mechanics can be derived from their quantum counter-

parts, but the opposite is not possible. That is, dividing quantum mechanical expressions by ih
leads to their classical analog, but multiplying classical mechanical expressions by ih doesn’t
necessarily lead to their quantum counterparts.

Example 3.5

(a) Evaluate the Poisson bracket x p between the position, x , and momentum, p, vari-
ables.

(b) Compare the commutator X P with Poisson bracket x p calculated in Part (a).

Solution

(a) Applying the general relation

A B
j

A

x j

B

p j

A

p j

B

x j
(3.126)

to x and p, we can readily evaluate the given Poisson bracket:

x p
x

x

p

p

x

p

p

x
x

x

p

p
1

(3.127)

(b) Using the fact that [X P] ih , we see that

1

ih
[ X P] 1 (3.128)

which is equal to the Poisson bracket (3.127); that is,

1

ih
[ X P] x p classical 1 (3.129)

This result is in agreement with Eq. (3.125).

3.8.2 The Ehrenfest Theorem

If quantum mechanics is to be more general than classical mechanics, it must contain classical

mechanics as a limiting case. To illustrate this idea, let us look at the time evolution of the

expectation values of the position and momentum operators, R and P , of a particle moving in
a potential V r , and then compare these relations with their classical counterparts.
Since the position and the momentum observables do not depend explicitly on time, within

the context of wave mechanics, the terms R t and P t are zero. Hence, inserting
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H P 2 2m V R t into (3.88) and using the fact that R commutes with V R t , we can
write

d

dt
R

1

ih
[R H ]

1

ih
[R

P 2

2m
V R t ]

1

2imh
[R P 2] (3.130)

Since

[R P 2] 2ihP (3.131)

we have
d

dt
R

1

m
P (3.132)

As for d P dt , we can infer its expression from a treatment analogous to d R dt . Using

[P V R t ] ih V R t (3.133)

we can write
d

dt
P

1

ih
[P V R t ] V R t (3.134)

The two relations (3.132) and (3.134), expressing the time evolution of the expectation values

of the position and momentum operators, are known as the Ehrenfest theorem, or Ehrenfest
equations. Their respective forms are reminiscent of the Hamilton–Jacobi equations of classical

mechanics,
dr

dt

p

m

d p

dt
V r (3.135)

which reduce to Newton’s equation of motion for a classical particle of mass m, position r , and
momentum p:

d p

dt
m
d2r

dt2
V r (3.136)

Notice h has completely disappeared in the Ehrenfest equations (3.132) and (3.134). These two
equations certainly establish a connection between quantum mechanics and classical mechan-

ics. We can, within this context, view the center of the wave packet as moving like a classical

particle when subject to a potential V r .

3.8.3 Quantum Mechanics and Classical Mechanics

In Chapter 1 we focused mainly on those experimental observations which confirm the failure

of classical physics at the microscopic level. We should bear in mind, however, that classical

physics works perfectly well within the realm of the macroscopic world. Thus, if the theory

of quantum mechanics is to be considered more general than classical physics, it must yield

accurate results not only on the microscopic scale but at the classical limit as well.

How does one decide on when to use classical or quantummechanics to describe the motion

of a given system? That is, how do we know when a classical description is good enough or

when a quantum description becomes a must? The answer is provided by comparing the size of

those quantities of the system that have the dimensions of an action with the Planck constant,

h. Since, as shown in (3.125), the quantum relations are characterized by h, we can state that



3.9. SOLVED PROBLEMS 191

if the value of the action of a system is too large compared to h, this system can be accurately
described by means of classical physics. Otherwise, the use of a quantal description becomes

unavoidable. One should recall that, for microscopic systems, the size of action variables is of

the order of h; for instance, the angular momentum of the hydrogen atom is L nh, where n
is finite.

Another equivalent way of defining the classical limit is by means of "length." Since
h p the classical domain can be specified by the limit 0. This means that, when the de

Broglie wavelength of a system is too small compared to its size, the system can be described

accurately by means of classical physics.

In summary, the classical limit can be described as the limit h 0 or, equivalently, as the

limit 0. In these limits the results of quantum mechanics should be similar to those of

classical physics:

lim
h 0

Quantum Mechanics Classical Mechanics (3.137)

lim
0
Quantum Mechanics Classical Mechanics (3.138)

Classical mechanics can thus be regarded as the short wavelength limit of quantum mechanics.

In this way, quantum mechanics contains classical mechanics as a limiting case. So, in the limit

of h 0 or 0, quantum dynamical quantities should have, as proposed by Bohr, a one-to-

one correspondence with their classical counterparts. This is the essence of the correspondence
principle.
But how does one reconcile, in the classical limit, the probabilistic nature of quantum me-

chanics with the determinism of classical physics? The answer is quite straightforward: quan-

tum fluctuations must become negligible or even vanish when h 0, for Heisenberg’s un-

certainty principle would acquire the status of certainty; when h 0, the fluctuations in the

position and momentum will vanish, x 0 and p 0. Thus, the position and momentum

can be measured simultaneously with arbitrary accuracy. This implies that the probabilistic as-

sessments of dynamical quantities by quantum mechanics must give way to exact calculations

(these ideas will be discussed further when we study the WKB method in Chapter 9).

So, for those cases where the action variables of a system are too large compared to h
(or, equivalently, when the lengths of this system are too large compared to its de Broglie

wavelength), quantum mechanics gives the same results as classical mechanics.

In the rest of this text, we will deal with the various applications of the Schrödinger equation.

We start, in Chapter 4, with the simple case of one-dimensional systems and later on consider

more realistic systems.

3.9 Solved Problems

Problem 3.1

A particle of mass m, which moves freely inside an infinite potential well of length a, has the
following initial wave function at t 0:

x 0
A

a
sin

x

a

3

5a
sin

3 x

a

1

5a
sin

5 x

a
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where A is a real constant.
(a) Find A so that x 0 is normalized.
(b) If measurements of the energy are carried out, what are the values that will be found and

what are the corresponding probabilities? Calculate the average energy.

(c) Find the wave function x t at any later time t .
(d) Determine the probability of finding the system at a time t in the state x t
2 a sin 5 x a exp i E5t h ; then determine the probability of finding it in the state
x t 2 a sin 2 x a exp i E2t h .

Solution

Since the functions

n x
2

a
sin

n x

a
(3.139)

are orthonormal,

n m

a

0
n x m x dx

2

a

a

0

sin
n x

a
sin

m x

a
dx nm (3.140)

it is more convenient to write x 0 in terms of n x :

x 0
A

a
sin

x

a

3

5a
sin

3 x

a

1

5a
sin

5 x

a

A

2
1 x

3

10
3 x

1

10
5 x (3.141)

(a) Since n m nm the normalization of x 0 yields

1
A2

2

3

10

1

10
(3.142)

or A 6 5; hence

x 0
3

5
1 x

3

10
3 x

1

10
5 x (3.143)

(b) Since the second derivative of (3.139) is given by d2 n x dx2 n2 2 a2 n x ,
and since the Hamiltonian of a free particle is H h2 2m d2 dx2, the expectation value of
H with respect to n x is

En n H n
h2

2m

a

0
n x

d2 n x

dx2
dx

n2 2h2

2ma2
(3.144)

If a measurement is carried out on the system, we would obtain En n2 2h2 2ma2 with
a corresponding probability of Pn En n

2. Since the initial wave function (3.143)

contains only three eigenstates of H , 1 x , 3 x , and 5 x , the results of the energy mea-
surements along with the corresponding probabilities are

E1 1 H 1

2h2

2ma2
P1 E1 1

2 3

5
(3.145)

E3 3 H 3
9 2h2

2ma2
P3 E3 3

2 3

10
(3.146)

E5 5 H 5
25 2h2

2ma2
P5 E5 5

2 1

10
(3.147)
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The average energy is

E
n

PnEn
3

5
E1

3

10
E3

1

10
E5

29 2h2

10ma2
(3.148)

(c) As the initial state x 0 is given by (3.143), the wave function x t at any later
time t is

x t
3

5
1 x e

i E1t h
3

10
3 x e

i E3t h
1

10
5 x e

i E5t h (3.149)

where the expressions of En are listed in (3.144) and n x in (3.139).
(d) First, let us express x t in terms of n x :

x t
2

a
sin

5 x

a
e i E5t h

5 x e
i E5t h (3.150)

The probability of finding the system at a time t in the state x t is

P 2
a

0

x t x t dx
2 1

10

a

0
5 x 5 x dx

2 1

10
(3.151)

since 1 3 0 and 5 exp i E5t h .
Similarly, since x t 2 a sin 2 x a exp i E2t h 2 x exp i E2t h , we

can easily show that the probability for finding the system in the state x t is zero:

P 2
a

0

x t x t dx
2

0 (3.152)

since 1 3 5 0.

Problem 3.2

A particle of massm, which moves freely inside an infinite potential well of length a, is initially
in the state x 0 3 5a sin 3 x a 1 5a sin 5 x a .
(a) Find x t at any later time t .
(b) Calculate the probability density x t and the current density, J x t .
(c) Verify that the probability is conserved, i.e., t J x t 0.

Solution

(a) Since x 0 can be expressed in terms of n x 2 a sin n x a as

x 0
3

5a
sin

3 x

a

1

5a
sin

5 x

a

3

10
3 x

1

10
5 x (3.153)

we can write

x t
3

5a
sin

3 x

a
e i E3t h

1

5a
sin

5 x

a
e i E5t h

3

10
3 x e

i E3t h
1

10
5 x e

i E5t h (3.154)
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where the expressions for En are listed in (3.144): En n2 2h2 2ma2 .
(b) Since x t x t x t , where x t is given by (3.154), we can write

x t
3

10
2
3 x

3

10
3 x 5 x ei E3 E5 t h e i E3 E5 t h

1

10
2
5 x (3.155)

From (3.144) we have E3 E5 9E1 25E1 16E1 8 2h2 ma2 . Thus, x t
becomes

x t
3

10
2
3 x

3

5
3 x 5 x cos

16E1t

h

1

10
2
5 x

3

5a
sin2

3 x

a

2 3

5a
sin

3 x

a
sin

5 x

a
cos

16E1t

h

1

5a
sin2

5 x

a
(3.156)

Since the system is one-dimensional, the action of the gradient operator on x t and x t
is given by x t d x t dx i and x t d x t dx i . We can thus write

the current density J x t ih 2m x t x t x t x t as

J x t
ih

2m
x t

d x t

dx
x t

d x t

dx
i (3.157)

Using (3.154) we have

d x t

dx

3

a

3

5a
cos

3 x

a
e i E3t h

5

a

1

5a
cos

5 x

a
e i E5t h (3.158)

d x t

dx

3

a

3

5a
cos

3 x

a
ei E3t h

5

a

1

5a
cos

5 x

a
ei E5t h (3.159)

A straightforward calculation yields

d

dx

d

dx
2i

3

5a2
5 sin

3 x

a
cos

5 x

a
3 sin

5 x

a
cos

3 x

a

sin
E3 E5
h

t (3.160)

Inserting this into (3.157) and using E3 E5 16E1, we have

J x t
h

m

3

5a2
5 sin

3 x

a
cos

5 x

a
3 sin

5 x

a
cos

3 x

a
sin

16E1t

h
i

(3.161)

(c) Performing the time derivative of (3.156) and using the expression 32 3E1 5ah
16 2h 3 5ma3 , since E1 2h2 2ma2 , we obtain

t

32 3E1
5ah

sin
3 x

a
sin

5 x

a
sin

16E1t

h

16 2h 3

5ma3
sin

3 x

a
sin

5 x

a
sin

16E1t

h
(3.162)
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Now, taking the divergence of (3.161), we end up with

J x t
d J x t

dx

16 2h 3

5ma3
sin

3 x

a
sin

5 x

a
sin

16E1t

h
(3.163)

The addition of (3.162) and (3.163) confirms the conservation of probability:

t
J x t 0 (3.164)

Problem 3.3

Consider a one-dimensional particle which is confined within the region 0 x a and whose
wave function is x t sin x a exp i t .
(a) Find the potential V x .
(b) Calculate the probability of finding the particle in the interval a 4 x 3a 4.

Solution

(a) Since the first time derivative and the second x derivative of x t are given by
x t t i x t and 2 x t x2 2 a2 x t , the Schrödinger equa-

tion (3.68) yields

ih i x t
h2

2m

2

a2
x t V x t x t (3.165)

Hence V x t is time independent and given by V x h h2 2 2ma2 .
(b) The probability of finding the particle in the interval a 4 x 3a 4 can be obtained

from (3.4):

P

3a 4
a 4 x 2dx
a
0 x 2dx

3a 4
a 4 sin2 x a dx
a
0 sin

2 x a dx

2

2
0 82 (3.166)

Problem 3.4

A system is initially in the state 0 [ 2 1 3 2 3 4 ] 7, where n are

eigenstates of the system’s Hamiltonian such that H n n2E0 n .

(a) If energy is measured, what values will be obtained and with what probabilities?

(b) Consider an operator A whose action on n is defined by A n n 1 a0 n . If

A is measured, what values will be obtained and with what probabilities?
(c) Suppose that a measurement of the energy yields 4E0. If we measure A immediately

afterwards, what value will be obtained?

Solution

(a) A measurement of the energy yields En n H n n2E0, that is

E1 E0 E2 4E0 E3 9E0 E4 16E0 (3.167)

Since 0 is normalized, 0 0 2 3 1 1 7 1, and using (3.2), we can write the

probabilities corresponding to (3.167) as P En n 0
2

0 0 n 0
2; hence,
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using the fact that n m nm , we have

P E1
2

7
1 1

2
2

7
P E2

3

7
2 2

2
3

7
(3.168)

P E3
1

7
3 3

2
1

7
P E4

1

7
4 4

2
1

7
(3.169)

(b) Similarly, a measurement of the observable A yields an n A n n 1 a0; that
is,

a1 2a0 a2 3a0 a3 4a0 a4 5a0 (3.170)

Again, using (3.2) and since 0 is normalized, we can ascertain that the probabilities cor-

responding to the values (3.170) are given by P an n 0
2

0 0 n 0
2,

or

P a1
2

7
1 1

2
2

7
P a2

3

7
2 2

2
3

7
(3.171)

P a3
1

7
3 3

2
1

7
P a4

1

7
4 4

2
1

7
(3.172)

(c) An energy measurement that yields 4E0 implies that the system is left in the state 2 .

A measurement of the observable A immediately afterwards leads to

2 A 2 3a0 2 2 3a0 (3.173)

Problem 3.5

(a) Assuming that the system of Problem 3.4 is initially in the state 3 , what values for the

energy and the observable A will be obtained if we measure: (i)H first then A, (ii) A first then
H?
(b) Compare the results obtained in (i) and (ii) and infer whether H and A are compatible.

Calculate [H A] 3 .

Solution

(a) (i) The measurement of H first then A is represented by AH 3 . Using the relations

H n n2E0 n and A n na0 n 1 , we have

AH 3 9E0A 3 27E0a0 4 (3.174)

(ii) Measuring A first and then H , we will obtain

H A 3 3a0H 4 48E0a0 4 (3.175)

(b) Equations (3.174) and (3.175) show that the actions of AH and H A yield different
results. This means that H and A do not commute; hence they are not compatible. We can thus
write

[H A] 3 48 27 E0a0 4 17E0a0 4 (3.176)
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Problem 3.6

Consider a physical system whose Hamiltonian H and initial state 0 are given by

H E

0 i 0

i 0 0

0 0 1
0

1

5

1 i
1 i
1

where E has the dimensions of energy.

(a) What values will we obtain when measuring the energy and with what probabilities?

(b) Calculate H , the expectation value of the Hamiltonian.

Solution

(a) The results of the energy measurement are given by the eigenvalues of H . A diago-
nalization of H yields a nondegenerate eigenenergy E1 E and a doubly degenerate value

E2 E3 E whose respective eigenvectors are given by

1
1

2

1

i
0

2
1

2

i
1

0
3

0

0

1

(3.177)

these eigenvectors are orthogonal since H is Hermitian. Note that the initial state 0 can be

written in terms of 1 , 2 , and 3 as follows:

0
1

5

1 i
1 i
1

2

5
1

2

5
2

1

5
3 (3.178)

Since 1 , 2 , and 3 are orthonormal, the probability of measuring E1 E is given by

P1 E1 1 0
2 2

5
1 1

2
2

5
(3.179)

Now, since the other eigenvalue is doubly degenerate, E2 E3 E , the probability of

measuring E can be obtained from (3.3):

P2 E2 2 0
2

3 0
2 2

5

1

5

3

5
(3.180)

(b) From (3.179) and (3.180), we have

H P1E1 P2E2
2

5
E

3

5
E

1

5
E (3.181)

We can obtain the same result by calculating the expectation value of H with respect to 0 .

Since 0 0 1, we have H 0 H 0 0 0 0 H 0 :

H 0 H 0
E

5
1 i 1 i 1

0 i 0

i 0 0

0 0 1

1 i
1 i
1

1

5
E

(3.182)
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Problem 3.7

Consider a system whose Hamiltonian H and an operator A are given by the matrices

H E0

1 1 0

1 1 0

0 0 1

A a
0 4 0

4 0 1

0 1 0

where E0 has the dimensions of energy.

(a) If we measure the energy, what values will we obtain?

(b) Suppose that when we measure the energy, we obtain a value of E0. Immediately

afterwards, we measure A. What values will we obtain for A and what are the probabilities
corresponding to each value?

(c) Calculate the uncertainty A.

Solution

(a) The possible energies are given by the eigenvalues of H . A diagonalization of H yields
three nondegenerate eigenenergies E1 0, E2 E0, and E3 2E0. The respective eigen-

vectors are

1
1

2

1

1

0
2

0

0

1
3

1

2

1

1

0

(3.183)

these eigenvectors are orthonormal.

(b) If a measurement of the energy yields E0, this means that the system is left in the

state 2 . When we measure the next observable, A, the system is in the state 2 . The result

we obtain for A is given by any of the eigenvalues of A. A diagonalization of A yields three
nondegenerate values: a1 17a, a2 0, and a3 17a; their respective eigenvectors
are given by

a1
1

34

4

17

1

a2
1

17

1

0

4

a3
1

2

4

17

1
(3.184)

Thus, when measuring A on a system which is in the state 2 , the probability of finding

17a is given by

P1 a1 a1 2
2 1

34
4 17 1

0

0

1

2

1

34
(3.185)

Similarly, the probabilities of measuring 0 and 17a are

P2 a2 a2 2
2 1

17
1 0 4

0

0

1

2

16

17
(3.186)

P3 a3 a3 2
2 1

34
4 17 1

0

0

1

2

1

34
(3.187)
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(c) Since the system, when measuring A is in the state 2 , the uncertainty A is given by
A 2 A2 2 2 A 2

2, where

2 A 2 a 0 0 1

0 4 0

4 0 1

0 1 0

0

0

1

0 (3.188)

2 A
2

2 a2 0 0 1

0 4 0

4 0 1

0 1 0

0 4 0

4 0 1

0 1 0

0

0

1

a2 (3.189)

Thus we have A a.

Problem 3.8

Consider a system whose state and two observables are given by

t
1

2

1

A
1

2

0 1 0

1 0 1

0 1 0

B
1 0 0

0 0 0

0 0 1

(a) What is the probability that a measurement of A at time t yields 1?

(b) Let us carry out a set of two measurements where B is measured first and then, imme-
diately afterwards, A is measured. Find the probability of obtaining a value of 0 for B and a
value of 1 for A.
(c) Now we measure A first then, immediately afterwards, B. Find the probability of ob-

taining a value of 1 for A and a value of 0 for B.
(d) Compare the results of (b) and (c). Explain.

(e) Which among the sets of operators A , B , and A B form a complete set of com-

muting operators (CSCO)?

Solution

(a) A measurement of A yields any of the eigenvalues of A which are given by a1 1,

a2 0, a3 1; the respective (normalized) eigenstates are

a1
1

2

1

2

1

a2
1

2

1

0

1

a3
1

2

1

2

1

(3.190)

The probability of obtaining a1 1 is

P 1
a1 t 2

t t

1

6

1

2
1 2 1

1

2

1

2

1

3
(3.191)

where we have used the fact that t t 1 2 1

1

2

1

6.

(b) A measurement of B yields a value which is equal to any of the eigenvalues of B:
b1 1, b2 0, and b3 1; their corresponding eigenvectors are

b1

0

0

1

b2

0

1

0

b3

1

0

0

(3.192)
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Since the system was in the state t , the probability of obtaining the value b2 0 for B is

P b2
b2 t 2

t t

1

6
0 1 0

1

2

1

2

2

3
(3.193)

We deal now with the measurement of the other observable, A. The observables A and B do
not have common eigenstates, since they do not commute. After measuring B (the result is
b2 0), the system is left, according to Postulate 3, in a state which can be found by

projecting t onto b2 :

b2 b2 t
0

1

0

0 1 0

1

2

1

0

2

0

(3.194)

The probability of finding 1 when we measure A is given by

P a3
a3

2 1

4

1

2
1 2 1

0

2

0

2

1

2
(3.195)

since 4. In summary, when measuring B then A, the probability of finding a value of
0 for B and 1 for A is given by the product of the probabilities (3.193) and (3.195):

P b2 a3 P b2 P a3
2

3

1

2

1

3
(3.196)

(c) Next we measure A first then B. Since the system is in the state t , the probability
of measuring a3 1 for A is given by

P a3
a3 t 2

t t

1

6

1

2
1 2 1

1

2

1

2

1

3
(3.197)

where we have used the expression (3.190) for a3 .
We then proceed to the measurement of B. The state of the system just after measuring A

(with a value a3 1) is given by a projection of t onto a3 :

a3 a3 t
1

4

1

2

1

1 2 1

1

2

1

2

2

1

2

1

(3.198)

So the probability of finding a value of b2 0 when measuring B is given by

P b2
b2

2 1

2

2

2
0 1 0

1

2

1

2

1

2
(3.199)

since 2.
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So when measuring A then B, the probability of finding a value of 1 for A and 0 for B is
given by the product of the probabilities (3.199) and (3.197):

P a3 b2 P a3 P b2
1

3

1

2

1

6
(3.200)

(d) The probabilities P b2 a3 and P a3 b2 , as shown in (3.196) and (3.200), are different.
This is expected, since A and B do not commute. The result of the successive measurements
of A and B therefore depends on the order in which they are carried out. The probability of
obtaining 0 for B then 1 for A is equal to 1

3
. On the other hand, the probability of obtaining 1

for A then 0 for B is equal to 1
6
. However, if the observables A and B commute, the result of the

measurements will not depend on the order in which they are carried out (this idea is illustrated

in the following solved problem).

(e) As stated in the text, any operator with non-degenerate eigenvalues constitutes, all by

itself, a CSCO. Hence each of A and B forms a CSCO, since their eigenvalues are not

degenerate. However, the set A B does not form a CSCO since the opertators A and B
do not commute.

Problem 3.9

Consider a system whose state and two observables A and B are given by

t
1

6

1

0

4

A
1

2

2 0 0

0 1 i
0 i 1

B
1 0 0

0 0 i
0 i 0

(a) We perform a measurement where A is measured first and then, immediately afterwards,
B is measured. Find the probability of obtaining a value of 0 for A and a value of 1 for B.
(b) Now we measure B first then, immediately afterwards, A. Find the probability of ob-

taining a value of 1 for B and a value of 0 for A.
(c) Compare the results of (b) and (c). Explain.

(d) Which among the sets of operators A , B , and A B form a complete set of com-

muting operators (CSCO)?

Solution

(a) A measurement of A yields any of the eigenvalues of A which are given by a1 0 (not

degenerate) and a2 a3 2 (doubly degenerate); the respective (normalized) eigenstates are

a1
1

2

0

i
1

a2
1

2

0

i
1

a3

1

0

0

(3.201)

The probability that a measurement of A yields a1 0 is given by

P a1
a1 t 2

t t

36

17

1

2

1

6
0 i 1

1

0

4

2

8

17
(3.202)

where we have used the fact that t t 1
36

1 0 4

1

0

4

17
36
.
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Since the system was initially in the state t , after a measurement of A yields a1 0,

the system is left, as mentioned in Postulate 3, in the following state:

a1 a1 t
1

2

1

6

0

i
1

0 i 1

1

0

4

1

3

0

i
1

(3.203)

As for the measurement of B, we obtain any of the eigenvalues b1 1, b2 b3 1; their

corresponding eigenvectors are

b1
1

2

0

i
1

b2
1

2

0

i
1

b3

1

0

0

(3.204)

Since the system is now in the state , the probability of obtaining the (doubly degenerate)

value b2 b3 1 for B is

P b2
b2

2 b3
2

1

2

1

2
0 i 1

0

i
1

2

1

2
1 0 0

0

i
1

2

1 (3.205)

The reason P b2 1 is because the new state is an eigenstate of B; in fact 2 3 b2 .
In sum, when measuring A then B, the probability of finding a value of 0 for A and 1 for B

is given by the product of the probabilities (3.202) and (3.205):

P a1 b2 P a1 P b2
8

17
(3.206)

(b) Next we measure B first then A. Since the system is in the state t and since the

value b2 b3 1 is doubly degenerate, the probability of measuring 1 for B is given by

P b2
b2 t 2

t t

b3 t 2

t t

36

17

1

36

1

2
0 i 1

1

0

4

2

1 0 0

1

0

4

2

9

17
(3.207)

We now proceed to the measurement of A. The state of the system immediately after measuring
B (with a value b2 b3 1) is given by a projection of t onto b2 , and b3

b2 b2 t b3 b3 t

1

12

0

i
1

0 i 1

1

0

4

1

6

1

0

0

1 0 0

1

0

4

1

6

1

2i
2i

(3.208)
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So the probability of finding a value of a1 0 when measuring A is given by

P a1
a1

2 36

9

1

6 2
0 i 1

1

2i
2i

2

8

9
(3.209)

since 9
36
.

Therefore, when measuring B then A, the probability of finding a value of 1 for B and 0 for
A is given by the product of the probabilities (3.207) and (3.209):

P b2 a3 P b2 P a1
9

17

8

9

8

17
(3.210)

(c) The probabilities P a1 b2 and P b2 a1 , as shown in (3.206) and (3.210), are equal.
This is expected since A and B do commute. The result of the successive measurements of A
and B does not depend on the order in which they are carried out.
(d) Neither A nor B forms a CSCO since their eigenvalues are degenerate. The set

A B , however, does form a CSCO since the opertators A and B commute. The set of

eigenstates that are common to A B are given by

a2 b1
1

2

0

i
1

a1 b2
1

2

0

i
1

a3 b3

1

0

0

(3.211)

Problem 3.10

Consider a physical system which has a number of observables that are represented by the

following matrices:

A
5 0 0

0 1 2

0 2 1

B
1 0 0

0 0 3

0 3 0

C
0 3 0

3 0 2

0 2 0

D
1 0 0

0 0 i
0 i 0

(a) Find the results of the measurements of these observables.

(b) Which among these observables are compatible? Give a basis of eigenvectors common

to these observables.

(c) Which among the sets of operators A , B , C , D and their various combinations,

such as A B , A C , B C , A D , A B C , form a complete set of commuting operators
(CSCO)?

Solution

(a) The measurements of A, B, C and D yield a1 1, a2 3, a3 5, b1 3, b2 1,

b3 3, c1 1 2, c2 0, c3 1 2, d1 1, d2 d3 1; the respective eigenvectors

of A, B, C and D are

a1
1

2

0

1

1

a2
1

2

0

1

1

a3

1

0

0

(3.212)

b1
1

2

0

1

1

b2

1

0

0

b3
1

2

0

1

1

(3.213)
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c1
1

26

3

13

2

c2
1

13

2

0

3

c3
1

26

3

13

2

(3.214)

d1
1

2

0

i
1

d2

1

0

0

d3
1

2

0

1

i
(3.215)

(b)We can verify that, among the observables A, B,C , and D, only A and B are compatible,
since the matrices A and B commute; the rest do not commute with one another (neither A nor
B commutes with C or D; C and D do not commute).
From (3.212) and (3.213) we see that the three states a1 b1 , a2 b3 , a3 b2 ,

a1 b1
1

2

0

1

1

a2 b3
1

2

0

1

1

a3 b2

1

0

0

(3.216)

form a common, complete basis for A and B, since A an bm an an bm and B an bm
bm an bm .
(c) First, since the eigenvalues of the operators A , B , and C are all nondegenerate,

each one of A , B , and C forms separately a CSCO. Additionally, since two eigenvalues

of D are degenerate (d2 d3 1), the operator D does not form a CSCO.

Now, among the various combinations A B , A C , B C , A D , and A B C , only
A B forms a CSCO, because A and B are the only operators that commute; the set of

their joint eigenvectors are given by a1 b1 , a2 b3 , a3 b2 .

Problem 3.11

Consider a system whose initial state 0 and Hamiltonian are given by

0
1

5

3

0

4

H
3 0 0

0 0 5

0 5 0

(a) If a measurement of the energy is carried out, what values would we obtain and with

what probabilities?

(b) Find the state of the system at a later time t ; you may need to expand 0 in terms of

the eigenvectors of H .
(c) Find the total energy of the system at time t 0 and any later time t ; are these values

different?

(d) Does H form a complete set of commuting operators?

Solution

(a) A measurement of the energy yields the values E1 5, E2 3, E3 5; the

respective (orthonormal) eigenvectors of these values are

1
1

2

0

1

1
2

1

0

0
3

1

2

0

1

1

(3.217)
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The probabilities of finding the values E1 5, E2 3, E3 5 are given by

P E1 1 0 2 1

5 2
0 1 1

3

0

4

2

8

25
(3.218)

P E2 2 0 2 1

5
1 0 0

3

0

4

2

9

25
(3.219)

P E3 3 0 2 1

5 2
0 1 1

3

0

4

2

8

25
(3.220)

(b) To find t we need to expand 0 in terms of the eigenvectors (3.217):

0
1

5

3

0

4

2 2

5
1

3

5
2

2 2

5
3 (3.221)

hence

t
2 2

5
e i E1t

1
3

5
e i E2t

2
2 2

5
e i E3t

3
1

5

3e 3i t

4i sin 5t
4 cos 5t

(3.222)

(c) We can calculate the energy at time t 0 in three quite different ways. The first method

uses the bra-ket notation. Since 0 0 1, n m nm and since H n En n ,

we have

E 0 0 H 0
8

25
1 H 1

9

25
2 H 2

8

25
3 H 3

8

25
5

9

25
3

8

25
5

27

25
(3.223)

The second method uses matrix algebra:

E 0 0 H 0
1

25
3 0 4

3 0 0

0 0 5

0 5 0

3

0

4

27

25
(3.224)

The third method uses the probabilities:

E 0
2

n 1

P En En
8

25
5

9

25
3

8

25
5

27

25
(3.225)

The energy at a time t is

E t t H t
8

25
ei E1te i E1t

1 H 1
9

25
ei E2te i E2t

2 H 2

8

25
ei E3te i E3t

3 H 3
8

25
5

9

25
3

8

25
5

27

25
E 0 (3.226)
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As expected, E t E 0 since d H dt 0.

(d) Since none of the eigenvalues of H is degenerate, the eigenvectors 1 , 2 , 3 form

a compete (orthonormal) basis. Thus H forms a complete set of commuting operators.

Problem 3.12

(a) Calculate the Poisson bracket between the x and y components of the classical orbital
angular momentum.

(b) Calculate the commutator between the x and y components of the orbital angular mo-
mentum operator.

(c) Compare the results obtained in (a) and (b).

Solution

(a) Using the definition (3.113) we can write the Poisson bracket lx ly as

lx ly
3

j 1

lx
q j

ly
p j

lx
p j

ly
q j

(3.227)

where q1 x , q2 y, q3 z, p1 px , p2 py , and p3 pz . Since lx ypz zpy ,
ly zpx xpz , lz xpy ypx , the only partial derivatives that survive are lx z py ,
ly pz x , lx pz y, and ly z px . Thus, we have

lx ly
lx
z

ly
pz

lx
pz

ly
z

xpy ypx lz (3.228)

(b) The components of L are listed in (3.26) to (3.28): Lx Y Pz Z Py , L y Z Px X Pz ,

and LZ X Py Y Px . Since X , Y , and Z mutually commute and so do Px , Py , and Pz , we
have

[Lx L y] [Y Pz Z Py Z Px X Pz]

[Y Pz Z Px ] [Y Pz X Pz] [Z Py Z Px ] [Z Py X Pz]

Y [Pz Z ]Px X [Z Pz]Py ih X Py Y Px

ihLz (3.229)

(c) A comparison of (3.228) and (3.229) shows that

lx ly lz [Lx L y] ihLz (3.230)

Problem 3.13

Consider a charged oscillator, of positive charge q and massm, which is subject to an oscillating
electric field E0 cos t ; the particle’s Hamiltonian is H P2 2m kX2 2 qE0X cos t .
(a) Calculate d X dt , d P dt , d H dt .
(b) Solve the equation for d X dt and obtain X t such that X 0 x0.

Solution
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(a) Since the position operator X does not depend explicitly on time (i.e., X t 0),

equation (3.88) yields

d

dt
X

1

ih
[X H ]

1

ih
X
P2

2m

P

m
(3.231)

Now, since [P X ] ih, [P X2] 2ihX and P t 0, we have

d

dt
P

1

ih
[P H ]

1

ih
P
1

2
kX2 qE0X cos t k X qE0 cos t

(3.232)

d

dt
H

1

ih
[H H ]

H

t

H

t
qE0 X sin t (3.233)

(b) To find X we need to take a time derivative of (3.231) and then make use of (3.232):

d2

dt2
X

1

m

d

dt
P

k

m
X

qE0
m
cos t (3.234)

The solution of this equation is

X t X 0 cos
k

m
t

qE0
m

sin t A (3.235)

where A is a constant which can be determined from the initial conditions; since X 0 x0
we have A 0, and hence

X t x0 cos
k

m
t

qE0
m

sin t (3.236)

Problem 3.14

Consider a one-dimensional free particle of mass m whose position and momentum at time
t 0 are given by x0 and p0, respectively.
(a) Calculate P t and show that X t p0t2 m x0.
(b) Show that d X2 dt 2 PX m ih m and d P2 dt 0.

(c) Show that the position and momentum fluctuations are related by d2 x 2 dt2

2 p 2 m2 and that the solution to this equation is given by x 2 p 20t
2 m2 x 20

where x 0 and p 0 are the initial fluctuations.

Solution

(a) From the Ehrenfest equations d P dt [P V x t ] ih as shown in (3.134), and
since for a free particle V x t 0, we see that d P dt 0. As expected this leads to

P t p0, since the linear momentum of a free particle is conserved. Inserting P p0
into Ehrenfest’s other equation d X dt P m (see (3.132)), we obtain

d X

dt

1

m
p0 (3.237)
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The solution of this equation with the initial condition X 0 x0 is

X t
p0
m
t x0 (3.238)

(b) First, the proof of d P2 dt 0 is straightforward. Since [P2 H ] [P2 P2 2m] 0

and P2 t 0 (the momentum operator does not depend on time), (3.124) yields

d

dt
P2

1

ih
[P2 H ]

P2

t
0 (3.239)

For d X2 dt we have

d

dt
X2

1

ih
[X2 H ]

1

2imh
[X2 P2] (3.240)

since X2 t 0. Using [X P] ih, we obtain

[X2 P2] P[X2 P] [X2 P]P

PX [X P] P[X P]X X [X P]P [X P]X P

2ih PX X P 2ih 2PX ih (3.241)

hence
d

dt
X2

2

m
PX

ih

m
(3.242)

(c) As the position fluctuation is given by x 2 X2 X 2, we have

d x 2

dt

d X2

dt
2 X

d X

dt

2

m
PX

ih

m

2

m
X P (3.243)

In deriving this expression we have used (3.242) and d X dt P m. Now, since
d X P dt P d X dt P 2 m and

d PX

dt

1

ih
[PX H ]

1

2imh
[PX P2]

1

m
P2 (3.244)

we can write the second time derivative of (3.243) as follows:

d2 x 2

dt2
2

m

d PX

dt

d X P

dt

2

m2
P2 P 2 2

m2
p 20 (3.245)

where p 20 P2 P 2 P2 0 P 2
0; the momentum of the free particle is a constant

of the motion. We can verify that the solution of the differential equation (3.245) is given by

x 2
1

m2
p 20t

2 x 20 (3.246)

This fluctuation is similar to the spreading of a Gaussian wave packet we derived in Chapter 1.
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3.10 Exercises

Exercise 3.1

A particle in an infinite potential box with walls at x 0 and x a (i.e., the potential is infinite
for x 0 and x a and zero in between) has the following wave function at some initial time:

x
1

5a
sin

x

a

2

5a
sin

3 x

a

(a) Find the possible results of the measurement of the system’s energy and the correspond-

ing probabilities.

(b) Find the form of the wave function after such a measurement.

(c) If the energy is measured again immediately afterwards, what are the relative probabili-

ties of the possible outcomes?

Exercise 3.2

Let n x denote the orthonormal stationary states of a system corresponding to the energy En .
Suppose that the normalized wave function of the system at time t 0 is x 0 and suppose
that a measurement of the energy yields the value E1 with probability 1/2, E2 with probability
3/8, and E3 with probability 1/8.
(a) Write the most general expansion for x 0 consistent with this information.
(b) What is the expansion for the wave function of the system at time t , x t ?
(c) Show that the expectation value of the Hamiltonian does not change with time.

Exercise 3.3

Consider a neutron which is confined to an infinite potential well of width a 8 fm. At time

t 0 the neutron is assumed to be in the state

x 0
4

7a
sin

x

a

2

7a
sin

2 x

a

8

7a
sin

3 x

a

(a) If an energy measurement is carried out on the system, what are the values that will be

found for the energy and with what probabilities? Express your answer in MeV (the mass of

the neutron is mc2 939MeV, hc 197MeV fm).

(b) If this measurement is repeated on many identical systems, what is the average value of

the energy that will be found? Again, express your answer in MeV.

(c) Using the uncertainty principle, estimate the order of magnitude of the neutron’s speed

in this well as a function of the speed of light c.

Exercise 3.4

Consider the dimensionless harmonic oscillator Hamiltonian

H
1

2
P2

1

2
X2 with P i

d

dx

(a) Show that the two wave functions 0 x e x2 2 and 1 x xe x2 2 are eigenfunc-

tions of H with eigenvalues 1 2 and 3 2, respectively.

(b) Find the value of the coefficient such that 2 x 1 x2 e x2 2 is orthogonal to

0 x . Then show that 2 x is an eigenfunction of H with eigenvalue 5 2.
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Exercise 3.5

Consider that the wave function of a dimensionless harmonic oscillator, whose Hamiltonian is

H 1
2
P2 1

2
X2, is given at time t 0 by

x 0
1

8
0 x

1

18
2 x

1

8
e x2 2 1

18
1 2x2 e x2 2

(a) Find the expression of the oscillator’s wave function at any later time t .
(b) Calculate the probability P0 to find the system in an eigenstate of energy 1 2 and the

probability P2 of finding the system in an eigenstate of energy 5 2.
(c) Calculate the probability density, x t , and the current density, J x t .
(d) Verify that the probability is conserved; that is, show that t J x t 0.

Exercise 3.6

A particle of mass m, in an infinite potential well of length a, has the following initial wave
function at t 0:

x 0
3

5a
sin

3 x

a

1

5a
sin

5 x

a
(3.247)

and an energy spectrum En h2 2n2 2ma2 .
Find x t at any later time t , then calculate t and the probability current density vector

J x t and verify that t J x t 0. Recall that x t x t and J x t
ih
2m x t x t x t x t .

Exercise 3.7

Consider a system whose initial state at t 0 is given in terms of a complete and orthonormal

set of three vectors: 1 , 2 , 3 as follows: 0 1 3 1 A 2 1 6 3 ,

where A is a real constant.
(a) Find A so that 0 is normalized.

(b) If the energies corresponding to 1 , 2 , 3 are given by E1, E2, and E3, respec-
tively, write down the state of the system t at any later time t .
(c) Determine the probability of finding the system at a time t in the state 3 .

Exercise 3.8

The components of the initial state i of a quantum system are given in a complete and

orthonormal basis of three states 1 , 2 , 3 by

1 i
i

3
2 i

2

3
3 i 0

Calculate the probability of finding the system in a state f whose components are given in

the same basis by

1 f
1 i

3
2 f

1

6
3 f

1

6
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Exercise 3.9

(a) Evaluate the Poisson bracket x2 p2 .

(b) Express the commutator X2 P2 in terms of X P plus a constant in h2.

(c) Find the classical limit of x2 p2 for this expression and then compare it with the result
of part (a).

Exercise 3.10

A particle bound in a one-dimensional potential has a wave function

x
Ae5ikx cos 3 x a a 2 x a 2
0 x a 2

(a) Calculate the constant A so that x is normalized.
(b) Calculate the probability of finding the particle between x 0 and x a 4.

Exercise 3.11

(a) Show that any component of the momentum operator of a particle is compatible with its

kinetic energy operator.

(b) Show that the momentum operator is compatible with the Hamiltonian operator only if

the potential operator is constant in space coordinates.

Exercise 3.12

Consider a physical system whose Hamiltonian H and an operator A are given by

H E0

2 0 0

0 1 0

0 0 1

A a0

5 0 0

0 0 2

0 2 0

where E0 has the dimensions of energy.

(a) Do H and A commute? If yes, give a basis of eigenvectors common to H and A.
(b) Which among the sets of operators H , A , H A , H2 A form a complete set of

commuting operators (CSCO)?

Exercise 3.13

Show that the momentum and the total energy can be measured simultaneously only when the

potential is constant everywhere.

Exercise 3.14

The initial state of a system is given in terms of four orthonormal energy eigenfunctions 1 ,

2 , 3 , and 4 as follows:

0 t 0
1

3
1

1

2
2

1

6
3

1

2
4

(a) If the four kets 1 , 2 , 3 , and 4 are eigenvectors to the Hamiltonian H with
energies E1, E2, E3, and E4, respectively, find the state t at any later time t .
(b) What are the possible results of measuring the energy of this system and with what

probability will they occur?

(c) Find the expectation value of the system’s Hamiltonian at t 0 and t 10 s.
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Exercise 3.15

The complete set expansion of an initial wave function x 0 of a system in terms of orthonor-
mal energy eigenfunctions n x of the system has three terms, n 1 2 3. The measurement

of energy on the system represented by x 0 gives three values, E1 and E2 with probability
1 4 and E3 with probability 1 2.
(a) Write down x 0 in terms of 1 x , 2 x , and 3 x .
(b) Find x 0 at any later time t , i.e., find x t .

Exercise 3.16

Consider a system whose Hamiltonian H and an operator A are given by the matrices

H E0

0 i 0

i 0 2i
0 2i 0

A a0

0 i 0

i 1 1

0 1 0

(a) If we measure energy, what values will we obtain?

(b) Suppose that when we measure energy, we obtain a value of 5E0. Immediately af-

terwards, we measure A. What values will we obtain for A and what are the probabilities
corresponding to each value?

(c) Calculate the expectation value A .

Exercise 3.17

Consider a physical system whose Hamiltonian and initial state are given by

H E0

1 1 0

1 1 0

0 0 1
0

1

6

1

1

2

where E0 has the dimensions of energy.

(a) What values will we obtain when measuring the energy and with what probabilities?

(b) Calculate the expectation value of the Hamiltonian H .

Exercise 3.18

Consider a system whose state t and two observables A and B are given by

t
5

1

3

A
1

2

2 0 0

0 1 1

0 1 1

B
1 0 0

0 0 1

0 1 0

(a) We perform a measurement where A is measured first and then B immediately after-
wards. Find the probability of obtaining a value of 2 for A and a value of 1 for B.
(b) Now we measure B first and then A immediately afterwards. Find the probability of

obtaining a value of 1 for B and a value of 2 for A.
(c) Compare the results of (a) and (b). Explain.

Exercise 3.19

Consider a system whose state t and two observables A and B are given by

t
1

3

i
2

0

A
1

2

1 i 1

i 0 0

1 0 0

B
3 0 0

0 1 i
0 i 0
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(a) Are A and B compatible? Which among the sets of operators A , B , and A B form

a complete set of commuting operators?

(b) Measuring A first and then B immediately afterwards, find the probability of obtaining
a value of 1 for A and a value of 3 for B.
(c) Now, measuring B first then A immediately afterwards, find the probability of obtaining

3 for B and 1 for A. Compare this result with the probability obtained in (b).

Exercise 3.20

Consider a physical system which has a number of observables that are represented by the

following matrices:

A
1 0 0

0 0 1

0 1 0

B
0 0 1

0 0 i
1 i 4

C
2 0 0

0 1 3

0 3 1

(a) Find the results of the measurements of the compatible observables.

(b) Which among these observables are compatible? Give a basis of eigenvectors common

to these observables.

(c) Which among the sets of operators A , B , C , A B , A C , B C form a com-

plete set of commuting operators?

Exercise 3.21

Consider a system which is initially in a state 0 and having a Hamiltonian H , where

0

4 i
2 5i
3 2i

H
1

2

0 i 0

i 3 3

0 3 0

(a) If a measurement of H is carried out, what values will we obtain and with what proba-
bilities?

(b) Find the state of the system at a later time t ; you may need to expand 0 in terms of

the eigenvectors of H .
(c) Find the total energy of the system at time t 0 and any later time t ; are these values

different?

(d) Does H form a complete set of commuting operators?

Exercise 3.22

Consider a particle which moves in a scalar potential V r Vx x Vy y Vz z .

(a) Show that the Hamiltonian of this particle can be written as H Hx Hy Hz , where

Hx p2x 2m Vx x , and so on.

(b) Do Hx , Hy , and Hz form a complete set of commuting operators?

Exercise 3.23

Consider a system whose Hamiltonian is H E
0 i
i 0

, where E is a real constant with

the dimensions of energy.

(a) Find the eigenenergies, E1 and E2, of H .

(b) If the system is initially (i.e., t 0) in the state 0
1

0
, find the probability so

that a measurement of energy at t 0 yields: (i) E1, and (ii) E2.
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(c) Find the average value of the energy H and the energy uncertainty H2 H 2.

(d) Find the state t .

Exercise 3.24

Prove the relation

d

dt
AB

A

t
B A

B

t

1

ih
[A H ]B

1

ih
A[B H ]

Exercise 3.25

Consider a particle of mass m which moves under the influence of gravity; the particle’s Hamil-
tonian is H P2z 2m mgZ , where g is the acceleration due to gravity, g 9 8m s 2.

(a) Calculate d Z dt , d Pz dt , d H dt .
(b) Solve the equation d Z dt and obtain Z t , such that Z 0 h and Pz 0 0.

Compare the result with the classical relation z t 1
2
gt2 h.

Exercise 3.26

Calculate d X dt , d Px dt , d H dt for a particle with H P2x 2m 1
2
m 2X2 V0X3.

Exercise 3.27

Consider a system whose initial state at t 0 is given in terms of a complete and orthonormal

set of four vectors 1 , 2 , 3 , 4 as follows:

0
A

12
1

1

6
2

2

12
3

1

2
4

where A is a real constant.
(a) Find A so that 0 is normalized.

(b) If the energies corresponding to 1 , 2 , 3 , 4 are given by E1, E2, E3, and E4,
respectively, write down the state of the system t at any later time t .
(c) Determine the probability of finding the system at a time t in the state 2 .


