
Chapter 2

Syntax Directed Translation

 Syntax directed translation

 Syntax directed defi nition

 Dependency graph

 Constructing syntax trees for expressions

 Types of SDD’s

 S-attributed defi nition

 L-attributed defi nitions

 Synthesized attributes on the parser

 Syntax directed translation schemes

 Bottom up evaluation of inherited attributes

LEARNING OBJECTIVES

SyntAx directed trAnSlAtion
To translate a programming language construct, a compiler may
need to know the type of construct, the location of the fi rst instruc-
tion, and the number of instructions generated . . . etc. So, we have
to use the term ‘attributes’ associated with constructs.

An attribute may represent type, number of arguments, memory
location, compatibility of variables used in a statement which can-
not be represented by CFG alone.

So, we need to have one more phase to do this, i.e., ‘semantic
analysis’ phase.

Semantic analysis
Semantically checked
syntax tree

Syntax
tree

In this phase, for each production CFG, we will give some seman-
tic rule.

Syntax directed translation scheme
A CFG in which a program fragment called output action (seman-
tic action or semantic rule) is associated with each production is
known as Syntax Directed Translation Scheme.

These semantic rules are used to

 1. Generate intermediate code.
 2. Put information into symbol table.
 3. Perform type checking.
 4. Issues error messages.

Notes:
1. Grammar symbols are associated with attributes.
2. Values of the attributes are evaluated by the semantic rules

associated with production rules.

Notations for Associating Semantic Rules
There are two techniques to associate semantic rules:

Syntax directed defi nition (SDD) It is high level specifi cation for
translation. They hide the implementation details, i.e., the order in
which translation takes place.

Attributes + CFG + Semantic rules = Syntax directed defi nition
(SDD).

Translation schemes These schemes indicate the order in which
semantic rules are to be evaluated. This is an input and output
mapping.

SyntAx directed definitionS
A SDD is a generalization of a CFG in which each grammar sym-
bol is associated with a set of attributes.

There are two types of set of attributes for a grammar symbol.
 1. Synthesized attributes
 2. Inherited attributes

Each production rule is associated with a set of semantic rules.

6.28 | Unit 6 • Compiler Design

Semantic rules setup dependencies between attributes
which can be represented by a dependency graph.

The dependency graph determines the evaluation order
of these semantic rules.

Evaluation of a semantic rule defines the value of an
attribute. But a semantic rule may also have some side
effects such as printing a value.
Attribute grammar: An attribute grammar is a syntax
directed definition in which the functions in semantic rules
‘cannot have side effects’.

Annotated parse tree: A parse tree showing the values of
attributes at each node is called an annotated parse tree.

The process of computing the attribute values at the
nodes is called annotating (or decorating) of the parse tree.

In a SDD, each production A → ∝ is associated with a
set of semantic rules of the form:
b = f (c

1
, c

2
,… c

n
) where

 f : A function
b can be one of the following:
b is a ‘synthesized attribute’ of A and c

1
, c

2
,…c

n
 are attrib-

utes of the grammar symbols in A → ∝.
The value of a ‘synthesized attribute’ at a node is com-

puted from the value of attributes at the children of that
node in the parse tree.

Example:

Production Semantic Rule

expr → expr1 + term expr.t: = expr1.t||term.t||’+’

expr → expr1 – term expr.t: = expr1.t||term.t||’-‘

expr → term expr.t: = term.t

term → 0 term.t: = ‘0’

term → 1 term.t: = ‘1’
. . .

. . .

term → 9 term.t: = ‘9’

expr⋅t = 9

expr⋅t = 95 −

expr⋅t = 95 − 2+

term⋅t = 2

term⋅t = 9

term⋅t = 5

+− 259

b is an ‘inherited attribute’ of one of the grammar symbols
on the right side of the production.

An ‘inherited attribute’ is one whose value at a node is
defined in terms of attributes at the parent and/or siblings of
that node. It is used for finding the context in which it appears.

Example: An inherited attribute distributes type informa-
tion to the various identifiers in a declaration.
For the grammar

D → TL
 T → int
 T → real
 L → L

1
, id

 L → id

That is, The keyword int or real followed by a list of
identifiers.

In this T has synthesized attribute type: T.type. L has an
inherited attribute in L.in

Rules associated with L call for procedure add type to the
type of each identifier to its entry in the symbol table.

Production Semantic Rule

D → TL L.in = T.type

T → int T.type = integer

T → real T.type = real

L → L1, id addtype L1.in = L.in(id.entry, L.in)

L → id addtype (id.entry, L.in)

The annotated parse tree for the sentence real id
1
, id

2
, id

3
 is

shown below:

D

T ⋅type = real L ⋅in = real

L .in = real

L ⋅in = real

,

,

Id1

id2

id3real

SyntheSized Attribute
The value of a synthesized attribute at a node is computed
from the value of attributes at the children of that node in a
parse tree. Consider the following grammar:

L → E
n

E → E
1
 + T

E → T
T → T

1
*F

T → F
F → (E)

F → digit.

Let us consider synthesized attribute value with each of the
non-terminals E, T and F.

Token digit has a synthesized attribute lexical supplied
by lexical analyzer.

Chapter 2 • Syntax Directed Translation | 6.29

Production Semantic Rule

L → En
print (E.val)

E → E1 + T E.val: = E1.val + T.val

E → T E.val: = T1.val

T → T1*F T.val: = T1.val*F.val

T → F T.val: = F.val

F → (E) F.val: = E.val

F → digit F.val: = digit.lexval

The Annotated parse tree for the expression 5 + 3 * 4 is
shown below:

E⋅val = 17

E⋅val = 5

T ⋅val = 5 T ⋅val = 3

F ⋅val = 5 F ⋅val = 3

F ⋅val = 4

T ⋅val = 12

return

*

digit⋅lexval = 3

digit⋅lexval = 4

digit⋅lexval = 5

+

D

Example 1: Consider an example, which shows semantic
rules for Infix to posfix translation:

Production Semantic Rules

expr → expr1 + term expr.t: = expr1.t||term.t||’+’

expr → expr1 – term expr.t: = expr1.t||term.t ||‘-‘

expr → term expr.t: = term.t

term → 0 term.t: = ‘0’

. . .

. . .

term→ 9 term.t := ‘9’

Example 2: Write a SDD for the following grammar to
determine number.val.

number → number digit digit.val := 0

digit.val := 1

digit.val = 9

‘ ’

‘ ’

‘ ’

�

digit→ 0|1| . . . 9

number.val:=number.val * 10 + digit.val
Annotated tree for 131 is

1 3

131

number⋅val = 13∗10 number⋅val = 1

digit⋅val = 1number⋅val∗10 +

+

digit⋅valdigit⋅val

number⋅val

dependency GrAph
The interdependencies among the attributes at the nodes
in a parse tree can be depicted by a directed graph called
dependency graph.

 • Synthesized attributes have edges pointing upwards.
 • Inherited attributes have edges pointing downwards and/

or sidewise.
Example 1: A.a:= f (X.x, Y.y) is a semantic rule for A →
XY. For each semantic rule that consists of a procedure call:

A⋅a

X⋅x Y⋅y

Example 2:

+E1
E2

E
val

val val

Example 3: real p, q;

T ⋅type = real

L⋅in = real

L1⋅in = real
id⋅entry = q

id⋅entry = p

add type (q⋅real)

add type (P ⋅real)

Evaluation order
A topological sort of directed acyclic graph is an ordering
m

1
, m

2
, . . . m

k
 of nodes of the graph S. t edges go from nodes

earlier in the ordering to later nodes.

m
i
→ m

j
 means m

i
 appears before m

j
 in the ordering.

If b: = f (c
1
, c

2
, …, c

k
), the dependent attributes c

1
, c

2
,...c

k
 are

available at node before f is evaluated.

Abstract syntax tree
It is a condensed form of parse tree useful for representing
language constructs.
Example

if-then-else

B S
1

S
1

conStructinG SyntAx treeS
for expreSSionS
Each node in a syntax tree can be implemented as a record
with several fields.

In the node for an operator, one field identifies the opera-
tor and the remaining fields contain pointers to the nodes for
the operands.
 1. mknode (op, left, right)
 2. mkleaf (id, entry). Entry is a pointer to symbol table.
 3. mkleaf (num, val)

6.30 | Unit 6 • Compiler Design

Example:

Production Semantic Rules

E→E1+T E.nptr := mknode (‘+’, E1.nptr, T.nptr)

E→E1 – T E.nptr := mknode (‘-‘, E1.nptr, T.nptr)

E→T E.nptr := T.nptr

T→ (E) T.nptr := E.nptr

T→id T.nptr := mkleaf(id, id.entry)

T→num T.nptr := mkleaf(num, num.val)

Construction of a syntax tree for a – 4 + c

E⋅nptr

E ⋅nptr

E ⋅nptr

T ⋅nptr

T ⋅nptr

T ⋅nptr
+

+−

−

id

idid

id

4

num

num

to entry for a

to entry for c

typeS of Sdd’S
Syntax Directed defi nitions (SDD) are used to specify syn-
tax directed translations. There are two types of SDD.
 1. S-Attributed Defi nitions
 2. L-Attributed Defi nitions.

S-attributed defi nitions
 • Only synthesized attributes used in syntax direct defi nition.
 • S-attributed grammars interact well with LR (K) parsers

since the evaluation of attributes is bottom-up. They do
not permit dependency graphs with cycles.

L-attributed defi nitions
 • Both inherited and synthesized attribute are used.
 • L-attributed grammar support the evaluation of attributes

associated with a production body, dependency–graph
edges can go from left to right only.

 • Each S-attributed grammar is also a L-attributed grammar.
 • L-attributed grammars can be incorporated conveniently

in top down parsing.
 • These grammars interact well with LL (K) parsers (both

table driven and recursive descent).

Synthesized Attributes on the
Parser Stack
A translator for an S-attributed defi nition often be imple-
mented with LR parser generator. Here the stack is imple-
mented by a pair of array state and val.
 • Each state entry is pointed to a LR (1) parsing table.
 • Each val[i] holds the value of the attributes associated

with the node. For A → xyz, the stack will be:

Top →

State Val

Z Z.z

Y Y.y

X X.x

Example: Consider the following grammar:

S → E $ {print(E.val)}

E → E + E {E.val := E.val + E.val}

E → E*E {E.val := E.val * E.val}

E → (E) {E.val := E.val}

E → I {I.val := I.val * 10 + digit}

 I → I digit

 I → digit {I.val := digit}

Implementation

S → E $ print (val [top])

E → E + E val[ntop] := val[top] + val[top-2]

E → E*E val[ntop] := val[top] * val[top-2]

E → (E) val[ntop] := val[top-1]

E → I val[ntop] := val[top]

 I → I digit val[ntop] := 10*val[top] + digit

 I → digit val[ntop] := digit

L-attributed Defi nitions
A syntax directed defi nition is L-attributed if each inherited
attribute of X

j
, 1≤ j ≤ n, on the right side of A → X

1
 X

2
…X

n
,

depends only on

1. The attributes of symbols X
1
, X

2
, . . ., Xj-1

 to the left of
X

j
 in the production.

 2. The inherited attributes of A.

Every S-attributed defi nition is L-attributed, because the
above two rules apply only to the inherited attributes.

SyntAx directed trAnSlAtion
SchemeS
A translation scheme is a CFG in which attributes are asso-
ciated with grammar symbols and semantic actions are
enclosed between braces { } are inserted within the right
sides of productions.

Example: E → TR

R → op T {print (op.lexeme)} R
1
|∈

T → num {print (num.val)}

Using this, the parse tree for 9 – 5 + 2 is

Chapter 2 • Syntax Directed Translation | 6.31

 E

T

T

T

R1

R1

R

 2
5

9

{print(‘2’)}{print(‘5’)}

{print(‘9’)}

{print(‘+’)}

{print(‘−’)}

∈

−

+

If we have both inherited and synthesized attributes then we
have to follow the following rules:

 1. An inherited attribute for a symbol on the right side
of a production must be computed in an action before
that symbol.

 2. An action must not refer to a synthesized attribute of
a symbol on the right side of the action.

 3. A synthesized attribute for the non–terminal on the left
can only be computed after all attributes it references,
have been computed.

Note: In the implementation of L-attributed definitions dur-
ing predictive parsing, instead of syntax directed transla-
tions, we will work with translation schemes.

Eliminating left recursion from
translation scheme
Consider following grammar, which has left recursion

E → E + T {print (‘+’) ;}

When transforming the grammar, treat the actions as if they
were terminal symbols. After eliminating recursion from
the above grammar.
E → TR
R → +T {print (‘+’);} R
R → ∈

bottom-up evAluAtion
of inherited AttributeS
 • Using a bottom up translation scheme, we can implement

any L-attributed definition based on LL (1) grammar.
 • We can also implement some of L-attributed definitions

based on LR (1) using bottom up translations scheme.
 • The semantic actions are evaluated during the reductions.
 • During the bottom up evaluation of S-attributed defi-

nitions, we have a parallel stack to hold synthesized
attributes.

Where are we going to hold inherited attributes?
We will convert our grammar to an equivalent grammar to
guarantee the following:

 • All embedding semantic actions in our translation scheme
will be moved to the end of the production rules.

 • All inherited attributes will be copied into the synthesized
attributes (may be new non-terminals).

Thus we will evaluate all semantic actions during reductions,
and we find a place to store an inherited attribute. The steps are

 1. Remove an embedding semantic action S
i
, put new

non-terminal M
i
 instead of that semantic action.

 2. Put S
i
 into the end of a new production rule M

i
→ ∈.

 3. Semantic action S
i
 will be evaluated when this new

production rule is reduced.
 4. Evaluation order of semantic rules is not changed. i.e., if

A → {S
1
} X

1
{S

2
}X

2
…{S

n
}X

n

After removing embedding semantic actions:

A → M
1
X

1
M

2
X

2
…M

n
X

n

M
1
→ ∈{S

1
}

M
2
→ ∈{S

2
}

. . .

M
n
→ ∈ {S

n
}

For example,

E → TR
R → +T {print (‘+’)} R

1

R → ∈
T → id {print (id.name)}
⇓ remove embedding semantic actions
E → TR
R → +TMR

1

R → ∈
T → id {print (id.name)}
M → ∈ {print (‘+’)}

Translation with inherited attributes
Let us assume that every non-terminal A has an inherited
attribute A.i and every symbol X has a synthesized attribute
X.s in our grammar.

For every production rule A → X1, X2 . . . Xn
, introduce

new marker non-terminals
M1, M2, . . . Mn

 and replace this production rule with A →
M1X1M2X2 . . . Mn

X
n

The synthesized attribute of X
i
 will not be changed.

The inherited attribute of X
i
 will be copied into the syn-

thesized attribute of M
i
 by the new semantic action added at

the end of the new production rule
M

i
 → ∈

Now, the inherited attribute of X
i
 can be found in the

synthesized attribute of M
i
.

A → {B.i = f
1
(. .) B { c.i = f

2
(. .)} c {A.s = f

3
(. .)}

⇓

A → {M
1
.i = f

1
(. .)} M

1
 {B.i = M

1
.s} B {M

2
.i = f

2
(. .)}M

2

{c.i = M
2
.S} c {A.s = f

3
 (. .)}

M
1
 → ∈ {M

1
.s = M

1
.i}

M
2
 → ∈ {M

2
.s = M

2
.i}

6.32 | Unit 6 • Compiler Design

exerciSeS

Practice Problems 1
Directions for questions 1 to 13: Select the correct alterna-
tive from the given choices.

1. The annotated tree for input ((a) + (b)), for the rules
given below is

Production Semantic Rule

E → E + T $ $ = mknode (‘+’, $1, $3)

E → E-T $ $ = mknode (‘-’, $1, $3)

E → T $ $ = $1;

T → (E) $ $ = $2;

T → id $ $ = mkleaf (id, $1)

T → num $ $ = mkleaf (num, $1)

 (A) E

E

T

T

T

T

T

+

id = a

id = b

(E)

(E)

(E)

 (B) E

E

T

T

T

id = a

id = b

(E)

(E)

+

 (C)

E T

T

id = a

id = b

+

E (D) None of these

 2. Let synthesized attribute val give the value of the binary
number generated by S in the following grammar.

 S → L L
 S → L
 L → LB
 L → B
 B → 0
 B → 1
 Input 101.101, S.val = 5.625
 use synthesized attributes to determine S.val
 Which of the following are true?
 (A) S → L

1
.L

2
{S.val = L

1
.val + L

2
.val/ (2**L

2
.bits)

 |L {S.val = L.val; S.bits = L.bits}
 (B) L → L

1
 B {L.val = L

1
.val*2 + B.val;

L.bits = L
1
.bits + 1}

 |B {L.val = B.val; L.bits = 1}

 (C) B → 0 {B.val = 0}
 |1 {B.val = 1}
 (D) All of these

3. Which of the following productions with transla-
tion rules converts binary number representation into
decimal.

 (A) Production Semantic Rule

B → 0 B.trans = 0

B → 1 B.trans = 1

B → B0 B1.trans = B2.trans*2

B → B1 B1.trans = B2.trans * 2 + 1

(B) Production Semantic Rule

B → 0 B.trans = 0

B → B0 B1.trans = B2.trans*4

(C) Production Semantic Rule

B → 1 B.trans = 1

B → B1 B1.trans = B2.trans*2

(D) None of these

 4. The grammar given below is

Production Semantic Rule

A → LM L.i := l(A. i)

M.i := m(L.s)

A.s := f(M.s)

A → QR R.i := r(A.i)

Q.i := q(R.s)

A.s := f(Q.s)

(A) A L-attributed grammar
 (B) Non-L-attributed grammar
 (C) Data insuffi cient
 (D) None of these

 5. Consider the following syntax directed translation:
S → aS {m := m + 3; print (m);}

 |bS {m: = m*2; print (m) ;}
 |∈ {m: = 0 ;}

 A shift reduce parser evaluate semantic action of a pro-
duction whenever the production is reduced.

 If the string is = a a b a b b then which of the following
is printed?

 (A) 0 0 3 6 9 12 (B) 0 0 0 3 6 9 12
 (C) 0 0 0 3 6 9 12 15 (D) 0 0 3 9 6 12

6. Which attribute can be evaluated by shift reduce parser
that execute semantic actions only at reduce moves but
never at shift moves?

 (A) Synthesized attribute (B) Inherited attribute
 (C) Both (a) and (b) (D) None of these

Chapter 2 • Syntax Directed Translation | 6.33

 7. Consider the following annotated parse tree:

A

BB⋅num = num

A⋅num = y⋅num + z⋅num

C⋅num = num C+

num num

 Which of the following is true for the given annotated
tree?

 (A) There is a specific order for evaluation of attribute
on the parse tree.

 (B) Any evaluation order that computes an attribute
‘A’ after all other attributes which ‘A’ depends on,
is acceptable.

 (C) Both (A) and (B)
 (D) None of these.

Common data for questions 8 and 9: Consider the fol-
lowing grammar and syntax directed translation.

E → E + T E
1
.val = E

2
.val + T.val

E → T E.val = T.val

T → T*P T
1
.val = T

2
.val * P.val *

P.num

T → P T.val = P.val * P.num

P → (E) P.val = E.val

P → 0 P.num = 1

P.val = 2

P → 1 P.num = 2

P.val = 1

 8. What is E.val for string 1*0?
 (A) 8 (B) 6
 (C) 4 (D) 12

 9. What is the E.val for string 0 * 0 + 1?
 (A) 8 (B) 6
 (C) 4 (D) 12

 10. Consider the following syntax directed definition:

Production Semantic Rule

S → b S.x = 0
S.y = 0

S → S1 I S.x = S1.x + I.dx
S.y = S1.y + I.dy

I → east I.dx = 1
I.dy = 0

I → north I.dx = 0
I.dy = 1

I → west I.dx = -1
I.dy = 0

I → south I.dx = 0
I.dy = -1

 If Input = begin east south west north, after evaluating
this sequence what will be the value of S.x and S.y?

 (A) (1, 0) (B) (2, 0)
 (C) (-1, -1) (D) (0, 0)

 11. What will be the values s.x, s.y if input is ‘begin west
south west’?

 (A) (–2, –1)
 (B) (2, 1)
 (C) (2, 2)
 (D) (3, 1)

 12. Consider the following grammar:

 S → E S.val = E.val

 E.num = 1

E → E*T E
1
.val = 2 * E

2
.val + 2 * T.val

 E
2
.num = E

1
.num + 1

 T.num = E
1
.num + 1

E → T E.val = T.val

 T.num = E.num + 1

 T → T + P T
1
.val = T

2
.val + P.val

 T
2
.num = T

1
.num + 1

 P.num = T
1
.num + 1

T → P T.val = P.val

 P.num = T.num + 1

P → (E) P.val = E.val

P → i
E P

P I P

. .

. | .

num num

val num

=
=

 Which attributes are inherited and which are synthe-
sized in the above grammar?

 (A) Num attribute is inherited attribute. Val attribute is
synthesized attribute.

 (B) Num is synthesized attribute. Val is inherited at-
tribute.

 (C) Num and val are inherited attributes.

 (D) Num and value are synthesized attributes.

 13. Consider the grammar with the following translation
rules and E as the start symbol.

 E → E
1
@T {E.value = E

1
.value*T.value}

 |T {E.value = T.value}

 T → T
1
 and F {T.value = T

1
.value + F.value}

 |F {T.value = F.value}

 F → num {F.value = num.value}

 Compute E.value for the root of the parse tree for the
expression: 2 @ 3 and 5 @ 6 and 4

 (A) 200 (B) 180
 (C) 160 (D) 40

6.34 | Unit 6 • Compiler Design

Practice Problems 2
Directions for questions 1 to 10: select the correct alterna-
tive from the given choices.
 1. Consider the following Tree:

Production Meaning

E → E1 + T E.t = E1.t*T.t

E → E1 – T E.t = E1.t + T.t

E → T E.t = T.t

t → 0 T.t = ‘0’

t → 5 T.t = ‘5’

t → 2 T.t = ‘2’

t → 4 T.t = ‘4’

E

E

E -

+

T 2
4

5

T

T

 After evaluation of the tree the value at the root will be:
 (A) 28 (B) 32
 (C) 14 (D) 7

 2. The value of an inherited attribute is computed from the
values of attributes at the _______

 (A) Sibling nodes (B) Parent of the node
 (C) Children node (D) Both (A) and (B)

 3. Consider an action translating expression:

 expr → expr + term {print (‘+’)}
 expr → expr - term {print (‘-’)}
 expr → → term
 term → 1 {print (‘1’)}
 term → 2 {print (‘2’)}
 term → 3 {print (‘3’)}

 Which of the following is true regarding the above
translation expression?

 (A) Action translating expression represents infix
notation.

 (B) Action translating expression represents prefix
notation.

 (C) Action translating expression represents postfix
notation.

 (D) None of these

 4. In the given problem, what will be the result after eval-
uating 9 – 5 + 2?

 (A) + - 9 5 2 (B) 9 – 5 + 2
 (C) 9 5 – 2+ (D) None of these

 5. In a syntax directed translation, if the value of an attrib-
ute node is a function of the values of attributes of chil-
dren, then it is called:

 (A) Synthesized attribute (B) Inherited attribute
 (C) Canonical attributes (D) None of these

 6. Inherited attribute is a natural choice in:
 (A) Keeping track of variable declaration
 (B) Checking for the correct use of L-values and R-

values.
 (C) Both (A) and (B)
 (D) None of these

 7. Syntax directed translation scheme is desirable because
 (A) It is based on the syntax
 (B) Its description is independent of any implementa-

tion.
 (C) It is easy to modify
 (D) All of these

 8. A context free grammar in which program fragments,
called semantic actions are embedded within right side
of the production is called,

 (A) Syntax directed translation
 (B) Translation schema
 (C) Annotated parse tree
 (D) None of these

 9. A syntax directed definition specifies translation of
construct in terms of:

 (A) Memory associated with its syntactic component
 (B) Execution time associated with its syntactic com-

ponent
 (C) Attributes associated with its syntactic component
 (D) None of these

 10. If an error is detected within a statement, the type
assigned to the Statement is:

 (A) Error type (B) Type expression
 (C) Type error (D) Type constructor

previouS yeArS’ QueStionS

Common data for questions 1 (A) and 1 (B): Consider
the following expression grammar. The semantic rules for
expression evaluation are stated next to each grammar pro-
duction: [2005]

 E → number E.val = number.val

 |E ‘+’ E E (1).val = E (2).val + E (3).val

 |E → E E (1).val = E (2).val × E (3).val

 1. (A) The above grammar and the semantic rules are fed
to a yacc tool (which is an LALR (1) parser gener-
ator) for parsing and evaluating arithmetic expres-
sions. Which one of the following is true about the
action of yacc for the given grammar?

 (A) It detects recursion and eliminates recursion
 (B) It detects reduce-reduce conflict, and resolves

Chapter 2 • Syntax Directed Translation | 6.35

 (C) It detects shift-reduce conflict, and resolves the
conflict in favor of a shift over a reduce action.

 (D) It detects shift-reduce conflict, and resolves the
conflict in favor of a reduce over a shift action.

 (B) Assume the conflicts in Part (A) of this question
are resolved and an LALR (1) parser is gener-
ated for parsing arithmetic expressions as per the
given grammar. Consider an expression 3 × 2
+ 1. What precedence and associativity proper-
ties does the generated parser realize?

 (A) Equal precedence and left associativity; expres-
sion is evaluated to 7

 (B) Equal precedence and right associativity; expres-
sion is evaluated to 9

 (C) Precedence of ‘×’ is higher than that of ‘+’, and
both operators are left associative; expression is
evaluated to 7

 (D) Precedence of ‘+’ is higher than that of ‘×’, and
both operators are left associative; expression is
evaluated to 9

 2. In the context of abstract-syntax-tree (AST) and
control-flow-graph (CFG), which one of the follow-
ing is TRUE? [2015]

 (A) In both AST and CFG, let node N
2
 be the suc-

cessor of node N
1
. In the input program, the code

corresponding to N
2
 is present after the code cor-

responding to N
1
.

 (B) For any input program, neither AST nor CFG
will contain a cycle.

 (C) The maximum number of successors of a node
in an AST and a CFG depends on the input pro-
gram.

 (D) Each node in AST and CFG corresponds to at
most one statement in the input program.

 3. Consider the following Syntax Directed Translation
Scheme (SDTS), with non-terminals {S, A} and ter-
minals {a, b}. [2016]

 S → aA { print 1 }

 S → a { print 2 }

 A → Sb { print 3 }

 Using the above SDTS, the output printed by a bot-
tom-up parser, for the input aab is:

 (A) 1 3 2 (B) 2 2 3
 (C) 2 3 1 (D) syntax error

 4. Which one of the following grammars is free from left
recursion? [2016]

 (A) S → AB
 A → Aa|b
 B → c
 (B) S → Ab|Bb|c
 A → Bd|ε
 B → e
 (C) S → Aa|B
 A → Bb|Sc|ε
 B → d
 (D) S → Aa|Bb|c
 A → Bd|ε
 B → Ae|ε

AnSwer KeyS

exerciSeS

Practice Problems 1
 1. A 2. D 3. A 4. B 5. A 6. A 7. B 8. C 9. B 10. D
 11. A 12. A 13. C

Practice Problems 2
 1. A 2. D 3. C 4. C 5. A 6. C 7. D 8. B 9. C 10. C

Previous Years’ Questions
 1. (a) C (b) B 2. C 3. C 4. A

	Unit 6: Compiler Design
	Chapter 2: Syntax Directed Translation
	Syntax Directed Translation
	Syntax Directed Definitions
	Synthesized Attribute
	Dependency Graph
	Constructing Syntax Trees for Expressions
	Types of SDD’S
	Syntax Directed Translation Schemes
	Bottom-up Evaluation of Inherited Attributes
	exerciSeS
	Previous Years’ Questions
	Answer Keys

