If a man sells two similar objects, one at a loss of x% and another at a gain of x%, then he always incurs loss in this transaction and loss% is x^2

- $\frac{x^2}{100}\%$
- Cost Price (C.P)
- Selling Price (S.P)
- Marked Price (M.P)
- Profit-Loss (P-L)

• Profit
$$= S.P - C.P$$

• Loss = C.P - S.P
• Profit % =
$$\frac{P}{C.P} \times 100\%$$

• Loss % =
$$\frac{C.P}{C.P} \times 100\%$$

• Gain/Loss% =
$$\left[\frac{x-y}{y}\right] \times 100$$

• S.P
$$= \left[\frac{100 \pm \left(\frac{\text{gain}}{\text{loss}} \right)}{100} \right] \times \text{C.P}$$

Where
$$x = S.P$$
, $y = C.P$

• If an object is sold on r% loss,

then, S.P =
$$\frac{[100 - \text{Loss}\%]}{100} \times \text{C.P}$$

or C.P = $\frac{100}{[100 - \text{Loss}\%]} \times \text{S.P}$

- If x is reduced to x_0 , then Reduction $\% = \frac{x - x_0}{x} \times 100$
- If x is increased to x_1 , then, Increment $x_1 \% = \frac{x_1 - x}{x} \times 100$

Value after n years = $P\left(1 - \frac{R}{100}\right)^n$

Depreciation Fraction to %

Discount

'Per' hundred denoted by % $\frac{3}{4} \times 100 = 75\%$

Population after n years $= P \left(1 + \frac{R}{100} \right)^n$

% to fraction

 $50\% = \frac{50}{100}$

Profit / Loss

Percentage

Discount = Marked Price – Selling Price Discount $\% = \frac{\text{discount}}{\text{Marked price}} \times 100$

If an article is sold at D% discount, then $S.P = MP\left(\frac{100 - D}{100}\right) \text{ or } MP = \frac{S.P \times 100}{100 - D}$

- More/less Percentage
 - A is R % more than B, then B is less than A by

$$\left(\frac{\mathring{R}}{R+100}\times100\right)\%$$

• A is R% less than B, then B is more than A by

$$\left(\frac{R}{100-R} \times 100\right)\%$$

- If a% and b% are two succeissive losses then (negative sign shown loss and positive sign shows profit). Total loss % = $[-a b + \frac{ab}{100}]$
- If a% profit and b% loss occur, simultaneously then overall loss or profit % is $[a-b-\frac{ab}{100}]\%$
- If a% loss and b% profit occur then, total $\frac{\text{loss}}{\text{profit}}$ is $\left[-a+b-\frac{ab}{100}\right]\%$ (-ve sign for loss, +ve sign for profit)

%

Single discount = $\left(x + y - \frac{xy}{100}\right)\%$

where *x* and *y* are two successive discounts.

Trace the Mind Map 🙀

► First Level ► Second Level ► Third Level