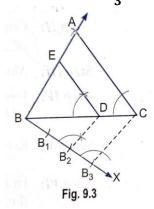
Short Answer Type Questions – I & II [2 and 3 marks]

Que 1. Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.



Sol. Steps of construction:

Step I: Draw a line segment BC = 6 cm.

Step II: Draw an arc with B as centre and radius equal to 5 cm.

Step III: Draw an arc, with C as centre and radius equal to 4 cm intersecting the previous drawn arc at A.

Step IV: Join AB and AC, then $\triangle ABC$ is the required triangle.

Step V: Below BC, make an acute angle CBX.

Step VI: Along BX, mark off three points at equal distance:

 B_1, B_2, B_3 , such that $BB_1 = B_1B_2 = B_2B_3$.

Step VII: Join B₃ C.

Step VIII: From B_2 , draw $B_2D \parallel B_3C$, meeting BC at D.

Step IX: From D, draw ED || AC, meeting BA at E. Then we have ΔEDB which is the required triangle.

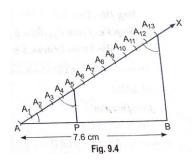
Justification:

Since DE || CA

$$\therefore \qquad \Delta ABC \sim \Delta EBD \qquad and \qquad \frac{EB}{AB} = \frac{BD}{BC} = \frac{DW}{CA} = \frac{2}{3}$$

Hence, we have the new ΔEBD similar to the given ΔABC , whose sides are equal to $\frac{2}{3}$ rd of the corresponding sides of ΔABC .

Que 2. Draw a line segment of length 7.6 cm and divides it in the ratio 5: 8. Measure the two parts.



Sol. Steps of construction: Step I: Draw a line segment AB = 7.6 cm step II: Draw any ray AX making an acute angle $\angle BAX$ with AB. Step III: On ray AX, starting from A, mark 5 + 8 = 13 equal arcs. $AA_1, A_1A_2, A_2A_3, A_3A_4, \dots A_{11}A_{12}$ and $A_{12}A_{13}$. Step IV: Join A₁₃ B.

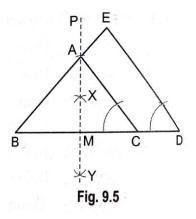
Step V: From A₅, draw A₅ P \parallel A₁₃ B, meeting B at P. Thus, P divides AB in the ratio 5: 8. On measuring the two parts. We find AP = 2.9 cm and PB = 4.7 (approx.).

Justification:

In $\triangle ABA_{13}$, PA || BA₁₃ \therefore By Basic proportionality theorem

$$\frac{AP}{PB} = \frac{AA_5}{A_5A_{13}} = \frac{5}{8}$$
$$\Rightarrow \quad \frac{AP}{PB} = \frac{5}{8} \qquad \therefore \quad AP: PB = 5:8$$

Que 3. Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then draw another triangle whose sides are $1\frac{1}{2}$ times the corresponding sides of the isosceles triangle.



Sol. Steps of construction: Step I: Draw BC = 8 cm. Step II: Construct XY, the perpendicular bisector of line segment BC, meeting BC at M.

Step III: Along MP, cut-off MA = 4 cm.

Step IV: Join BA and CA, Then $\triangle ABC$ so obtained is the required $\triangle ABC$.

Step V: Extend BC to D, such that BD = 12 cm $\left(=\frac{3}{2} \times 8 \ cm\right)$.

Step VI: Draw DE || CA, meeting BA produced at E. Then $\triangle EBD$ is the required triangle.

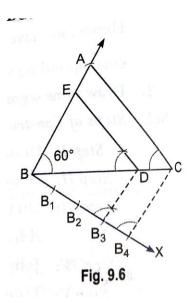
Justification:

Since, DE || CA

 $\therefore \qquad \Delta ABC \sim \Delta EBD \quad and \quad \frac{EB}{AB} = \frac{DE}{CA} = \frac{BD}{BC} = \frac{12}{8} = \frac{3}{2}$

Hence, we have the new triangle similar to the given triangle whose are $1\frac{1}{2}i.e.,\frac{3}{2}$ times the corresponding sides of the isosceles $\triangle ABC$.

Que 4. Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and $\angle ABC = 60^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4}$ th of the corresponding sides of the triangle ABC.



Sol. Steps of construction: Step I: Construct a $\triangle ABC$ in which BC = 6 cm, AB = 5 cm and $\angle ABC$ = 60°. Step II: Below BC, make an acute $\angle CBX$. Step III: Along BX, mark off four arcs: B_1, B_2, B_3 and B_4 such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$. Step IV: Join B₄ C. Step V: From B₃, draw B₃ D || B₄ C, meeting BC at D. **Step VI:** From D, draw ED || AC. Meeting BA at E.

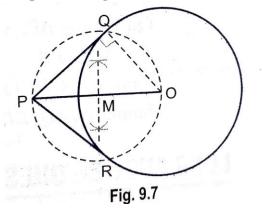
Now, we have ΔEBD which is the required triangle whose sides are $\frac{3}{4}th$ of the corresponding sides of ΔABC .

Justification:

Here, DE || CA $\therefore \quad \Delta ABC \sim \Delta EBD$ And $\frac{EB}{AB} = \frac{BD}{BC} = \frac{DE}{CA} = \frac{3}{4}$

Hence, we get the new triangle similar to the given triangle whose sides are equal to $\frac{3}{4}th$ of the corresponding sides of $\triangle ABC$.

Que 5. Draw a circle of radius 6 cm. From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.



Sol. Steps of construction:

Step I: Take a point O and draw a circle of radius 6 cm.Step II: Take a point P at a distance of 10 cm from the centre O.Step III: Join OP and bisect it. Let M be the mid-point.Step IV: With M as centre and MP as radius, draw a circle to intersect the circle at Q and R.

Step V: Join PQ and PR. Then, PQ and PR are the required tangents. On measuring, we find, PQ = PR = 8 cm.

Justification:

On joining OQ, we find that $\angle PQO = 90^\circ$, as $\angle PQO$ is the angle in the semicircle. $\therefore PQ \perp OQ$ Since OQ is the radius of the given circle, so PQ has to be a tangent to the circle. Similarly, PR is also a tangent to the circle.