Short Answer Type Questions – I

[2 marks]

Que 1. In Fig. 10.9, O is the centre of the circle. If $\angle ACB = 30^{\circ}$, then find $\angle ABC$.

Sol. $\angle CAB = 90^{\circ}$ (Angles in the semi-circle is 90°) In $\triangle ABC$ $\angle ABC + \angle BCA + \angle CAB = 180^{\circ}$

 $\angle ABC + 30^\circ + 90^\circ = 180^\circ$ $\angle ABC = 180^\circ - 120^\circ$ $\angle ABC = 60^\circ$

Que 2. In Fig. 10.10, if O is the centre of the circle then find $\angle AOB$.

⇒

Sol. OA = OC (radii of the same circle) $\therefore \quad \angle OCA = \angle OAC \implies \angle OCA = 20^{\circ}$ Also, OB = OC $\therefore \quad \angle OCB = \angle OBC \implies \angle OCB = 30^{\circ}$ Now, $\angle ACB = 20^{\circ} + 30^{\circ} = 50^{\circ}$ $\angle AOB = 2 \angle ACB = 2 \times 50^{\circ} = 100^{\circ}$ Que 3. In Fig. 10.11, find the value of x and y.

Sol. $y = 2 \angle ABC \Rightarrow y = 2 \times 65^{\circ} \Rightarrow y = 130^{\circ}$ OA = OB (radii of the same circle) $\therefore \angle OBA = \angle OAB \Rightarrow \angle OBA = x$ In $\triangle OAB$, $\angle OA + \angle OBA + y = 180^{\circ}$ $x + x + 130^{\circ} = 180^{\circ}$ or $2x = 50^{\circ}$ or $x = 25^{\circ}$

Que 4. In Fig. 10.12, ABCD is a cyclic quadrilateral in which AB ||CD. If $\angle B = 65^{\circ}$, then find other angles.

Sol. $\angle B + \angle D = 180^{\circ}$ (Opposite angles of cyclic quadrilateral) $\Rightarrow 65^{\circ} + \angle D = 180^{\circ} - 65^{\circ} = 115^{\circ}$ Since AB ||C and BC is the transversal $\therefore \angle B + \angle C = 180^{\circ} \Rightarrow 65^{\circ} + \angle C = 180^{\circ}$ $\Rightarrow \angle C = 180^{\circ} - 65^{\circ}$ $\Rightarrow \angle C = 115^{\circ}$ Now, $\angle A + 115^{\circ} = 180^{\circ}$ (Opposite angles of cyclin quadrilateral) $60^{\circ} + \angle AEC = 180^{\circ}$ $\Rightarrow \angle AEC = 180^{\circ} - 60^{\circ} = 120^{\circ}$ Que 5. In Fig. 10.15, $\angle ABC = 45^{\circ}$, prove that OA \perp OC.

Sol. As the angle subtended by an arc at the centre s twice the angle subtended by it at any point on the remaining part of the circle. Therefor,

 $\angle AOC = 2 \angle ABC$ $\Rightarrow \qquad \angle AOC = 2 \times 45^{\circ} = 90^{\circ}$ Hence, OA \perp OC

Que 6. In Fig. 10.16, $\angle AOC = 120^{\circ}$. Find $\angle BDC$.

Sol. $\angle AOC + \angle BOC = 180^{\circ}$ (Linear pair) $\Rightarrow 120^{\circ} + \angle BOC = 180^{\circ}$ $\angle BOC = 180^{\circ} - 120^{\circ} = 60^{\circ}$ Now, $\angle BOC = 2 \angle BDC$ $\Rightarrow 60^{\circ} = 2 \angle BDC$ $\Rightarrow \angle BDC = 30^{\circ}$ Que 7. In Fig. 10.17, O is the centre of a circle, find the value of x.

Sol. In ∆ APB,

 $\begin{array}{ll} \angle APB \ = \ 90^{\circ} & (\text{Angle in the semi-circle}) \\ \angle APB \ + \ \angle ABP \ + \ \angle BAP \ = \ 180^{\circ} \\ 90^{\circ} \ + \ 40^{\circ} \ + \ \angle BAP \ = \ 180^{\circ} \\ \Rightarrow & \ \angle BAP \ = \ 180^{\circ} \ - \ 130^{\circ} \\ \Rightarrow & \ \angle BAP \ = \ 50^{\circ} \\ \text{Now,} & \ \angle BQP \ = \ \angle BAP \ (\text{Angles in the same segment}) \\ \therefore & x \ = \ 50^{\circ} \end{array}$

Que 8. Find the length of a chord which is at a distance of 12 cm from the centre of a circle of radius 13 cm.

Sol. Let AB be a chord of circle with centre O and radius 13 cm Draw OM \perp AB and join OA.

In the right triangle OMA, we have

	$OA^2 = OM^2 + AM^2$
⇒	$13^2 = 12^2 + AM^2$
⇒	$AM^2 = 169 - 144 = 25$

As the perpendicular from the centre of a chord bisects the chord. Therefore, $AB = 2AM = 2 \times 5 = 10$ cm.

Que 9. The radius of a circle is 13 cm and the length of one of its chords is 24 cm. Find the distance of the chord from the centre.

Sol. Let PQ be a chord of a circle with centre O and radius 13 cm such that PQ = 24 cm.

From O, draw OM \perp PQ and join OP.

As, the Perpendicular from the centre of a circle to a chord bisects the chord.

 $\therefore PM = MQ = \frac{1}{2}PQ = \frac{1}{2} \times 24$ \Rightarrow PM = 12 cm In ΔPMP , we have $OP^2 = OM^2 + PM^2$ $13^2 = OM^2 + 12^2$ $OM^2 = 169 - 144 = 25$ \Rightarrow OM = 5 cm⇒ Hence, the distance of the chord from the centre is 5 cm.

Que 10. In Fig. 10.20, two circles intersects at two points A and B. AD and AC are diameters to the circles. Prove that B lies on the line segment DC.

Fig. 10.20

Sol. Join AB \angle ABD = 90° (Angles in a semicircle $\angle ABC = 90^{\circ}$ Similarly, $\angle ABD + \angle ABC = 90^\circ + 90^\circ = 180^\circ$ So. Therefore, DBC is a line i.e., B lies on the light segment DC. Que 11. In Fig. 10.21, AOB is a diameter of the circle and C, D, E are any three points on the semi-circle. Find the value of $\angle ACD + \angle BED$.

Sol. Join BC, Then, $\angle ACB = 90^{\circ}$ (Angle in the semi-circle) Since DCBE is a cyclic quadrilateral. $\angle BCD + \angle BED = 180^{\circ}$ Adding $\angle ACB$ both the sides, we get $\angle BCD + \angle BED + \angle ACB = \angle ACB + 180^{\circ}$ $(\angle BCD + \angle ACB) + \angle BED = 90^{\circ} + 180^{\circ}$ $\angle ACD + \angle BED = 270^{\circ}$

Que 12. In Fig. 10.22, A, B, C and D are four points on a circle. AC and BD intersect at point E such that \angle BEC = 130° and \angle ECD = 20°. Find \angle BAC.

Sol. Since the exterior angle of a triangle is equal to the sum of the interior opposite angles,

. .	∠BEC = ∠ECD + ∠CDE	
\Rightarrow	130° = 20° + ∠CDE	
⇒	∠CDE = 130° - 20° = 110°	
	∠BDC = 110°	
Now,	∠BAC = ∠BDC	(Angles in the same segment)
.	∠BAC = 110°	

Que 13. In Fig. 10.23, $\angle ACB = 40^{\circ}$. Find $\angle OAB$.

Sol. Since OA = OB (Radii of the same circle) $\therefore \ \angle OAB = \angle OBA$

As the angle form by the act at the centre is twice the angle formed at any point in remaining part of the circle.

$$\begin{array}{ll} \therefore & \angle OAB = 2 \angle ACB = 2 \times 40^{\circ} \\ \Rightarrow & \angle AOB = 80^{\circ} \\ \ln \Delta \text{ AOB, we have} \\ & \angle AOB + \angle OAB + \angle OBA = 180^{\circ} \\ & 80^{\circ} + \angle OAB + \angle OAB = 180^{\circ} \quad (\because \angle OBA = \angle OAB) \\ \Rightarrow & 2 \angle OAB = 100^{\circ} \quad \Rightarrow \angle OAB = 50^{\circ} \end{array}$$

Que 14. In Fig. 10.24, \angle BAC = 30°. Show that BC is equal to the radius of the circumcircle of \triangle ABC whose centre is O.

Sol. $\angle BOC = 2 \angle BAC$ $\Rightarrow \angle BOC = 2 \times 30^{\circ} = 60^{\circ}$ Also, OC = OB (Radii of the same circle) $\therefore \quad \angle OCB = \angle OBC$ In $\triangle OBC$, we have $\angle OBC + \angle OCB + \angle BOC = 180^{\circ}$ $\angle OBC + \angle OBC + 60^{\circ} = 180^{\circ}$ $\Rightarrow \quad 2\angle OBC = 120^{\circ} \Rightarrow \angle OBC = 60^{\circ}$ So, $\angle OBC = \angle OCB = \angle BOC = 60^{\circ}$

 \therefore ΔBOC is an equilateral triangle.

 \therefore OB = BC = OC

Hence, BC is equal to the radius of the circumcircle.

Que 15. In Fig. 10.25, a line intersect two concentric circles with O at A, B, C and D, Prove that AB = CD.

Sol. Let OP be perpendicular from O on line I.

Since the perpendicular from the centre of a circle to a chord, bisects the chord. Therefore,

Que 16. In Fig. 10.27, RS is diameter of the circle, NM is parallel to RS and \angle MRS = 29°, find \angle RNM.

Sol. In the Given figure $\angle RMS = 90^{\circ}$

(Angle in the semi-circle as RS is diameter)

$$\therefore$$
 $\angle RSM = 180^{\circ} - (29^{\circ} + 90^{\circ}) = 61^{\circ}$

∠RNM + ∠ ∠RSM = 180°

(Opposite angles if cyclin quadrilateral are supplementary)

 $\angle RNM + 61^\circ = 180^\circ$

 \Rightarrow $\angle RNM = 119^{\circ}$

Que 17. On a common hypotenuse AB, two right triangle ACB and ADB are situated on opposite sides. Prove that $\angle BAC = \angle BDC$.

We have $\angle ACB = \angle ADB$ (Each 90°) $\Rightarrow \angle ACB + \angle ADB = 90^{\circ} + 90^{\circ} 180^{\circ}$ $\Rightarrow ACBD$ is a cyclic quadrilateral

 $\Rightarrow \angle BAC = \angle BDC$ (Angles in the same segment)

Que 18. If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, then prove that arc PXA \cong arc PYB.

Sol. Let AB be a chord of a circle having centre at O. Let PQ be the \perp bisector of the chord AB intersects it say at M.

 \bot Bisectors of the chord passes through the centre of the circle, i.e., O. Join AP and BP.

In $\triangle APM$ and $\triangle BPM$

	AM= MB	(Given)
	∠PMA = ∠PMB	(90° each)
	PM = PM	(Common)
:	$\Delta APM \cong \Delta BPM$	(SAS)
	PA = PB	(CPCT)
Hence.	Arc PXA \cong arc PYB	

Que 19. In Fig. 10.30, P is the centre of the circle. Prove that $\angle XPZ = 2(\angle XYZ + \angle YXZ)$

Sol. Since arc XY subtends \angle XPY at the centre and \angle XZY at a point Z in the remaining part of the circle.

 $\therefore \quad \angle YPZ = 2 \angle YXZ \qquad \dots \dots (ii) \\ Adding (i) and (ii),$

$$\angle XPY + \angle YPZ = 2 \angle XYZ + 2 \angle YXZ$$

 $\angle XPZ = 2(\angle XZY + \angle YXZ)$

Hence Prove.

Que 20. If BM and CN are the perpendiculars, drawn on the sides AB and AC of the \triangle ABC, then prove that the points B, C, M and N are cyclic.

Sol. Let us consider BC as a diameter of the circle. Angles subtended by the diameter in a semicircle is 90°. Given, $\angle BNC = \angle BMC = 90^{\circ}$ So, the points M and N should be on the same circle. Hence, BCMN form a cyclin quadrilateral.

Sol. Consider the points A, B, C and D. They formed a cyclin quadrilateral.

 \therefore $\angle ADC + \angle ABC = 180^{\circ}$ (Opposite angles of cyclin quadrilateral)

 $130^{\circ} + ∠ABC = 180^{\circ}$ ∠ABC = 50° In ΔBOC and ΔBOE, BC = BE (Equal chords) OC = OE (Radii) OB = OB (Common) ΔBOC ≅ ΔBOE (SSS rule) ∴ ∠OBC = ∠OBE = 50° (CPCT)

$$\angle CBE = \angle CBO + \angle EBO$$

= 50° + 50° = 100°

Que 22. In Fig. 10.33, if OA = 10 cm, AB = 16 cm and OD \perp to AB. Find the value of CD.

10 B 8 C D Fig. 10.33 **Sol.** As OD is \perp to AB AC = CB⇒ (⊥ from the centre to the chord bisects the chord) $AC = \frac{AB}{2} = 8cm$:. In right ∆OCA, $OA^2 = AC^2 + OC^2$ $(10)^2 = 8^2 + OC^2$ $OC^2 = 100 - 64$ $OC^2 = 36$ $OC = \sqrt{36}$:. OC = 6 cmCD = OD - OC= 10 - 6 = 4 cm. [:: OA = OD = 10 cm (radii)]

:.