

3. POLYNOMIALS

- 1. The graph of the polynomial f(x) = 3x 7 is a straight line which intersects the x- axis at exactly one point namely ____
- 2. In the given figure, the number of zeros of the polynomial f(x) are

3. The number of zeros lying between –2 and 2 of the polynomial f(x) whose graph in given figure is ____

- 4. The degree of the constant polynomial is _____
- 5. The zero of p(x) = ax-b is _____
- 6. If α and β are the zeroes of the polynomial $3x^2+5x+2$, then the value of $\alpha+\beta+\alpha\beta$ is _____
- 7. If the sum of the zeroes of the polynomial $p(x) = (k^2-14) x^2-2x-12$ is 1, then k takes the value (s) _____
- 8. If α and β are zeroes of $p(x) = x^2 5x + k$ and $\alpha \beta = 1$ then the value of k is ____
- 9. If α , β , γ are the zeros of the polynomial ax^3+bx^2+cx+d , then the value of $1/\alpha+1/\beta+1/\gamma$ is _____
- 10. If the product of the two zeros of the polynomial $x^3-6x^2+11x-6$ is 2 then the third zero is ____
- 11. The zeros of the polynomial of x^3-x^2 are _____
- 12. If the zeroes of the polynomial x^3-3x^2+x+1 are a/r, a and ar then the value of a is _____

13.	If α and β are the zeroes of the quadratic polynomial $9x^2-1$, the value of $\alpha^2+\beta^2$ is
14.	If α , β , γ are the zeroes of the polynomial $x^3 + px^2 + qx + r$ then $1/\alpha\beta + 1/\beta\gamma + 1/\alpha\gamma$ is
15.	The number to be added to the polynomial x^2-5x+4 , so that 3 is the zero of the polynomial is
16.	If α , β are zeroes of $p(x) = 2x^2 - x - 6$ then the value of $\alpha^{-1} + \beta^{-1}$ is
17.	is the coefficient of the first term of the quotient when $3x^3+x^2+2x+5$ is divided by $1+2x+x^2$.
18.	If the divisor is x^2 and quotient is x while the remainder is 1, then the dividend is
19.	The maximum number of zeroes that a polynomial of degree 3 can have is
20.	The number of zeroes that the polynomial $f(x) = (x-2)^2 + 4$ can have is
21.	The graph of the equation $y = ax^2 + bx + c$ is an upward parabola, if
22.	If the graph of a polynomial does not intersect the x – axis, then the number of zeroes of the polynomial is
23.	The degree of a biquadratic polynomial is
	The degree of the polynomial
	$7u^6 - \frac{3}{2}u^4 + 4u^2 + u - 8$ is
25.	The value of $p(x) = x^3 - 3x - 4$ at $x = -1$ is
	The polynomial whose zeroes are –5 and 4 is
	If -1 is a zero of the polynomial $f(x) = x^2-7x-8$ then other zero is
28.	If the product of the zeroes of the polynomial $ax^3-6x^2+11x-6$ is 6, then the value of a is
29.	A cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes are 2, –7 and –14

30. For the polynomial $2x^3-5x^2-14x+8$, the sum of the products of

respectively, is ____

- zeroes, taken two at a time is _____
- 31. If the zeroes of the quadratic polynomial ax²+bx+c are reciprocal to each other, then the value of c is _____
- 32. ____ can be the degree of the remainder at most when a biquadrate polynominal is divided by a quadratic polynomial.

ANSWERS

- 1) (7/3, 0); 2) 3; 3) 2; 4) 0; 5) b/a; 6) -1; 7) ±4; 8) 6; 9) -c/d; 10) 3;
- 11) 0, 0, 1;
- 12) -1; 13) 2/9; 14) p/r; 15) 2; 16) -1/6; 17) 3; 18) x^3+1 ; 19) 3;
- 20) 2; 21) a>0;
- 22) 0; 23) 4; 24) 6; 25) -2; 26) x^2+x-20 ; 27) 8; 28) 1;
- 29) $x^3-2x^2-7x+14$; 30) -7; 31) a; 32) 1.