CHAPTER 15

Trigonometric Functions

15-1. Trigonometric Ratios of Acute Angles

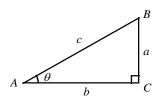
A ratio of the lengths of sides of a right triangle is called a **trigonometric ratio**. The six trigonometric ratios are **sine**, **cosine**, **tangent**, **cosecant**, **secant**, and **cotangent**.

Their abbreviations are sin, cos, tan, csc, sec, and cot, respectively. The six trigonometric ratios of any angle $0^{\circ} < \theta < 90^{\circ}$, sine, cosine, tangent, cosecant, secant, and cotangent, are defined as follows.

$$\sin \theta = \frac{\text{length of side opposite to } \theta}{\text{length of hypotenuse}} = \frac{a}{c} \qquad \csc \theta = \frac{1}{\sin \theta} = \frac{c}{a}$$

$$\cos \theta = \frac{\text{length of side adjacent to } \theta}{\text{length of hypotenuse}} = \frac{b}{c} \qquad \sec \theta = \frac{1}{\cos \theta} = \frac{c}{b}$$

$$\tan \theta = \frac{\text{length of side opposite to } \theta}{\text{length of side adjacent to } \theta} = \frac{a}{b} \qquad \cot \theta = \frac{1}{\tan \theta} = \frac{b}{a}$$



The sine and cosine are called **cofunctions**. In a right triangle ABC, $\angle A$ and $\angle B$ are complementary, that is, $m\angle A + m\angle B = 90$. Thus any trigonometric function of an acute angle is equal to the cofunction of the complement of the angle.

Complementary Angle Theorem

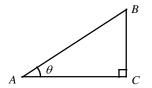
$$\sin \theta = \cos(90^{\circ} - \theta)$$
 $\cos \theta = \sin(90^{\circ} - \theta)$

If
$$\sin \angle A = \cos \angle B$$
, then $m\angle A + m\angle B = 90^{\circ}$.

Trigonometric Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \qquad \sin^2 \theta + \cos^2 \theta = 1$$

Example 1 \Box In the right triangle shown at the right, find $\cos \theta$ and $\tan \theta$ if $\sin \theta = \frac{2}{3}$.

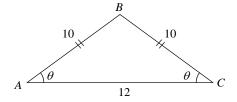


Example 2 \Box In a right triangle, θ is an acute angle. If $\sin \theta = \frac{4}{9}$, what is $\cos(90^{\circ} - \theta)$?

Solution \Box By the complementary angle property of sine and cosine, $\cos(90^\circ - \theta) = \sin \theta = \frac{4}{9}$.

Questions 1- 3 refer to the following information.

In the triangle shown below AB = BC = 10 and AC = 12.



1

What is the value of $\cos \theta$?

- A) 0.4
- B) 0.6
- C) 0.8
- D) 1.2

2

What is the value of $\sin \theta$?

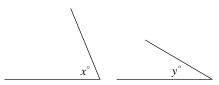
- A) 0.4
- B) 0.6
- C) 0.8
- D) 1.2

3

What is the value of $\tan \theta$?

- A) $\frac{3}{4}$
- B) $\frac{4}{3}$
- C) $\frac{5}{4}$
- D) $\frac{5}{3}$

4

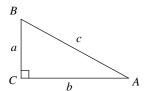


Note: Figures not drawn to scale.

In the figures above y < x < 90 and $\cos x^{\circ} = \sin y^{\circ}$. If x = 3a - 14 and y = 50 - a, what is the value of a?

- A) 16
- B) 21
- C) 24
- D) 27

5



Given the right triangle *ABC* above, which of the following is equal to $\frac{a}{c}$?

- I. $\sin A$
- II. $\cos B$
- III. tan A
- A) I only
- B) II only
- C) I and II only
- D) II and III only

15-2. The Radian Measure of an Angle

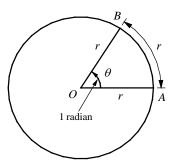
One **radian** is the measure of a central angle θ whose intercepted arc has a length equal to the circle's radius. In the figure at the right, if length of the arc AB = OA, then $m\angle AOB = 1$ radian.

Since the circumference of the circle is $2\pi r$ and a complete revolution has degree measure 360° ,

$$2\pi$$
 radians = 360° , or π radians = 180° .

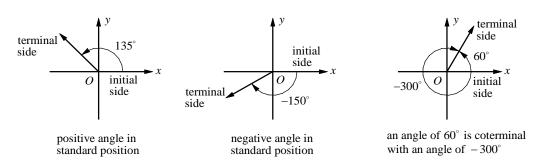
The conversion formula π radians = 180° can be used to convert radians to degrees and vice versa.

1 radian =
$$\frac{180^{\circ}}{\pi} \approx 57.3^{\circ}$$
 and $1^{\circ} = \frac{\pi}{180}$ radians



The measure of a central angle θ is 1 radian, if the length of the arc AB is equal to the radius of the circle.

On a coordinate plane, an angle may be drawn by two rays that share a fixed endpoint at the origin. The beginning ray, called the **initial side** of the angle and the final position, is called the **terminal side** of the angle. An angle is in **standard position** if the vertex is located at the origin and the initial side lies along the positive *x*-axis. Counterclockwise rotations produce **positive angles** and clockwise rotations produce **negative angles**. When two angles have the same initial side and the same terminal side, they are called **coterminal angles**.



You can find an angle that is coterminal to a given angle by adding or subtracting integer multiples of 360° or 2π radians. In fact, the sine and cosine functions repeat their values every 360° or 2π radians, and tangent functions repeat their values every 180° or π radians.

Periodic Properties of the Trigonometric Functions

$$\sin(\theta \pm 360^{\circ}) = \sin \theta$$
 $\cos(\theta \pm 360^{\circ}) = \cos \theta$ $\tan(\theta \pm 180^{\circ}) = \tan \theta$

Example $1 \ \Box$ Change the degree measure to radian measure and change the radian measure to degree measure.

a.
$$45^{\circ}$$
 b. $\frac{2\pi}{3}$ radians

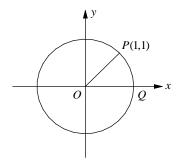
Solution

a. $45^{\circ} = 45 \cdot \frac{\pi}{180}$ radians $= \frac{\pi}{4}$ radians

b. $\frac{2\pi}{3}$ radians $= \frac{2\pi}{3}$ radians $= \frac{180^{\circ}}{\pi}$ radians

Exercises - The Radian Measure of an Angle

1



In the *xy*-plane above, *O* is the center of the circle, and the measure of $\angle POQ$ is $k\pi$ radians. What is the value of k?

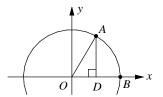
- A) $\frac{1}{6}$
- B) $\frac{1}{4}$
- C) $\frac{1}{3}$
- D) $\frac{1}{2}$

2

Which of the following is equal to $\cos(\frac{\pi}{8})$?

- A) $\cos(\frac{3\pi}{8})$
- B) $\cos(\frac{7\pi}{8})$
- C) $\sin(\frac{3\pi}{8})$
- D) $\sin(\frac{7\pi}{8})$

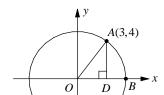
3



In the *xy*-plane above, *O* is the center of the circle and the measure of $\angle AOD$ is $\frac{\pi}{3}$. If the radius of circle *O* is 6 what is the length of *AD*?

- A) 3
- B) $3\sqrt{2}$
- C) 4.5
- D) $3\sqrt{3}$

4



In the figure above, what is the value of $\cos \angle AOD$?

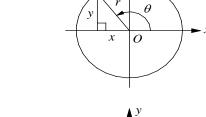
- A) $\frac{3}{5}$
- B) $\frac{3}{4}$
- C) $\frac{4}{5}$
- D) $\frac{4}{3}$

15-3. Trigonometric Functions and the Unit Circle

Suppose P(x, y) is a point on the circle $x^2 + y^2 = r^2$ and θ is an angle in standard position with terminal side *OP*, as shown at the right. We define sine of θ and cosine of θ as

$$\sin \theta = \frac{y}{r}$$

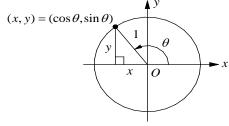
$$\cos\theta = \frac{x}{r}.$$



The circle $x^2 + y^2 = 1$ is called the **unit circle**. This circle is the easiest one to work with because $\sin \theta$ and $\cos \theta$ are simply the y-coordinates and the x-coordinates of the points where the terminal side of θ intersects the circle.

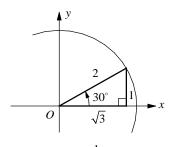
$$\sin \theta = \frac{y}{r} = \frac{y}{1} = y$$

$$\sin \theta = \frac{y}{r} = \frac{y}{1} = y$$
 $\cos \theta = \frac{x}{r} = \frac{x}{1} = x$.



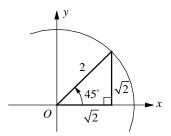
Angles in standard position whose measures are multiples of $30^{\circ} (\frac{\pi}{6})$ radians or multiples

of $45^{\circ}(\frac{\pi}{4})$ radians are called **familiar angles**. To obtain the trigonometric values of sine, cosine, and tangent of the familiar angles, use 30° - 60° - 90° triangle ratio or the 45° - 45° - 90° triangle ratio.

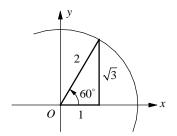


$$\sin 30^{\circ} = \frac{y}{r} = \frac{1}{2}$$

 $\cos 30^{\circ} = \frac{x}{r} = \frac{\sqrt{3}}{2}$

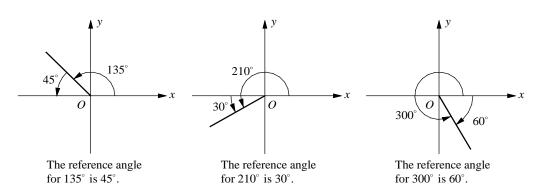


$$\sin 45^\circ = \frac{y}{r} = \frac{\sqrt{2}}{2}$$
$$\cos 45^\circ = \frac{x}{r} = \frac{\sqrt{2}}{2}$$



$$\sin 60^\circ = \frac{y}{r} = \frac{\sqrt{3}}{2}$$
$$\cos 30^\circ = \frac{x}{r} = \frac{1}{2}$$

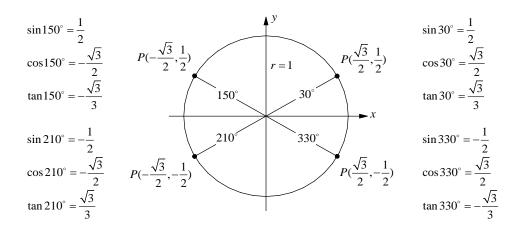
The **reference angle** associated with θ is the acute angle formed by the x-axis and the terminal side of the angle θ . A reference angle can be used to evaluate trigonometric functions for angles greater than 90° .



Familiar Angles in a Coordinate Plane

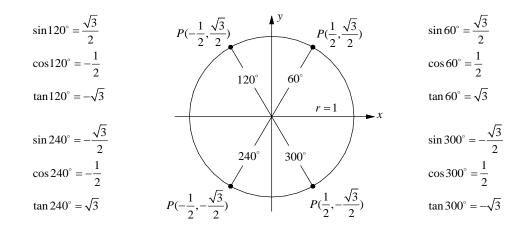
Angles with a reference angle of $30^{\circ} (=\frac{\pi}{6})$ are $150^{\circ} (=\frac{5\pi}{6})$, $210^{\circ} (=\frac{7\pi}{6})$, and $330^{\circ} (=\frac{11\pi}{6})$.

Use the 30°-60°-90° triangle ratio to find the trigonometric values of these angles and put the appropriate signs. On the unit circle, $\sin \theta = y$ is positive in quadrant I and II and $\cos \theta = x$ is positive in quadrant I and IV.



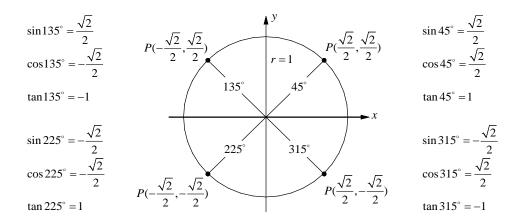
Angles with a reference angle of $60^{\circ} (=\frac{\pi}{3})$ are $120^{\circ} (=\frac{2\pi}{3})$, $240^{\circ} (=\frac{4\pi}{3})$, and $300^{\circ} (=\frac{5\pi}{3})$.

Use the 30° - 60° - 90° triangle ratio to find the trigonometric values of these angles and put the appropriate signs. On the unit circle, $\sin \theta = y$ is positive in quadrant I and II and $\cos \theta = x$ is positive in quadrant I and IV.

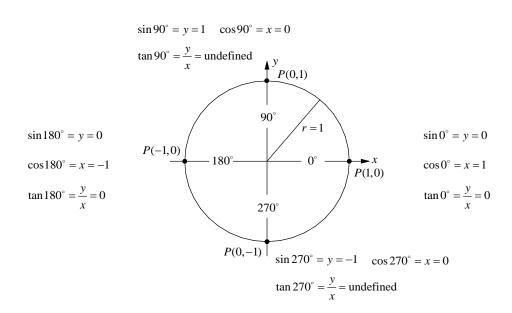


Angles with a reference angle of $45^{\circ} (=\frac{\pi}{4})$ are $135^{\circ} (=\frac{3\pi}{4})$, $225^{\circ} (=\frac{5\pi}{4})$, and $315^{\circ} (=\frac{7\pi}{4})$,

Use the 45° - 45° - 90° triangle ratio to find the trigonometric values of these angles and put the appropriate signs. On the unit circle, $\sin \theta = y$ is positive in quadrant I and II and $\cos \theta = x$ is positive in quadrant I and IV.

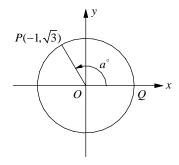


For the angles 0° , $90^{\circ} = \frac{\pi}{2}$, $180^{\circ} = \pi$, and $270^{\circ} = \frac{3\pi}{2}$, $\sin \theta$ is equal to the y value of the point P(x,y) and $\cos \theta$ is equal to the x value of the point P(x,y). The points P(1,0), P(0,1), P(-1,0), and P(0,-1) on the unit circle corresponds to $\theta = 0^{\circ} = 0$, $\theta = 90^{\circ} = \frac{\pi}{2}$, $\theta = 180^{\circ} = \pi$, and $\theta = 270^{\circ} = \frac{3\pi}{2}$ respectively.



Exercises - The Trigonometric Functions and the Unit Circle

Questions 1 and 2 refer to the following information.



In the *xy*-plane above, *O* is the center of the circle, and the measure of $\angle POQ$ is a° .

1

What is the cosine of a° ?

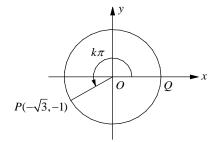
- A) $-\frac{1}{2}$
- B) $\sqrt{3}$
- C) $-\frac{1}{\sqrt{3}}$
- $D) \quad \frac{\sqrt{3}}{2}$

2

What is the cosine of $(a+180)^{\circ}$?

- A) $-\sqrt{3}$
- B) $-\frac{\sqrt{3}}{2}$
- C) $\frac{1}{2}$
- D) $\frac{1}{\sqrt{3}}$

Questions 3 and 4 refer to the following information.



In the xy- plane above, O is the center of the circle, and the measure of the angle shown is $k\pi$ radians.

3

What is the value of k?

- A) $\frac{5}{6}$
- B) $\frac{7}{6}$
- C) $\frac{4}{3}$
- D) $\frac{5}{3}$

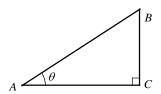
4

What is the value of $tan(k\pi)$?

- A) $-\sqrt{3}$
- B) -1
- C) $-\frac{1}{\sqrt{3}}$
- D) $\frac{1}{\sqrt{3}}$

Chapter 15 Practice Test

1

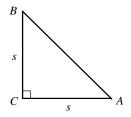


Note: Figure not drawn to scale.

In the right triangle shown above, if $\tan \theta = \frac{3}{4}$, what is $\sin \theta$?

- A) $\frac{1}{3}$
- B) $\frac{1}{2}$
- C) $\frac{4}{5}$
- D) $\frac{3}{5}$

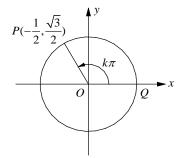
2



In the isosceles right triangle shown above, what is $\tan \angle A$?

- A) *s*
- B) $\frac{1}{s}$
- **C**) 1
- D) $\frac{s}{\sqrt{2}}$

Questions 1 and 2 refer to the following information.



In the xy-plane above, O is the center of the circle, and the measure of $\angle POQ$ is $k\pi$ radians.

3

What is the value of k?

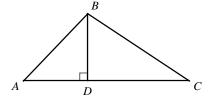
- A) $\frac{1}{3}$
- B) $\frac{1}{2}$
- C) $\frac{2}{3}$
- D) $\frac{3}{4}$

4

What is $cos(k+1)\pi$?

- A) $\frac{1}{\sqrt{3}}$
- B) $\frac{1}{2}$
- C) $\frac{\sqrt{3}}{2}$
- D) $\sqrt{3}$

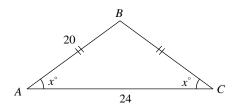
5



In triangle ABC above, $\overline{AC} \perp \overline{BD}$. Which of the following does not represent the area of triangle ABC?

- A) $\frac{1}{2}(AB\cos\angle A + BC\cos\angle C)(AB\cos\angle ABD)$
- B) $\frac{1}{2}(AB\cos\angle A + BC\cos\angle C)(BC\sin\angle C)$
- C) $\frac{1}{2}(AB\sin\angle ABD + BC\sin\angle CBD)(AB\sin\angle A)$
- D) $\frac{1}{2}(AB\sin\angle ABD + BC\sin\angle CBD)(BC\cos\angle C)$

6



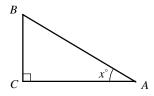
In the isosceles triangle above, what is the value of $\sin x^{\circ}$?

- A) $\frac{1}{2}$
- B) $\frac{3}{5}$
- C) $\frac{2}{3}$
- D) $\frac{4}{5}$

7

In triangle ABC, the measure of $\angle C$ is 90°, AC = 24, and BC = 10. What is the value of $\sin A$?

8



In the right triangle *ABC* above, the cosine of x° is $\frac{3}{5}$. If BC = 12, what is the length of AC?

9

If $\sin(5x-10)^{\circ} = \cos(3x+16)^{\circ}$, what is the value of x?

Answer Key

Section 15-1

Section 15-2

Section 15-3

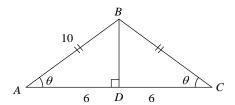
Chapter 15 Practice Test

7.
$$\frac{5}{13}$$

Answers and Explanations

Section 15-1

1. B



Draw a perpendicular segment from B to the opposite side AC. Let the perpendicular segment intersect side AC at D. Because the triangle is isosceles, a perpendicular segment from the vertex to the opposite side bisects the base and creates two congruent right triangles.

Therefore,
$$AD = \frac{1}{2}AC = \frac{1}{2}(12) = 6$$
.

In right $\triangle ABD$,

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{AD}{AB} = \frac{6}{10} = 0.6$$
.

2. C

$$AB^2 = BD^2 + AD^2$$

Pythagorean Theorem

$$10^2 = BD^2 + 6^2$$

$$100 = BD^2 + 36$$

$$64 = BD^2$$

$$8 = BD$$

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{BD}{AB} = \frac{8}{10} = 0.8$$

3. B

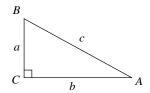
$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{BD}{AD} = \frac{8}{6} = \frac{4}{3}$$

4. D

If x and y are acute angles and $\cos x^{\circ} = \sin y^{\circ}$, x + y = 90 by the complementary angle theorem.

$$(3a-14)+(50-a)=90$$
 $x=3a-14$, $y=50-a$
 $2a+36=90$ Simplify.
 $2a=54$
 $a=27$

5. C



I.
$$\sin A = \frac{\text{opposite of } \angle A}{\text{hypotenuse}} = \frac{a}{c}$$

Roman numeral I is true.

II.
$$\cos B = \frac{\text{adjacent of } \angle B}{\text{hypotenuse}} = \frac{a}{c}$$

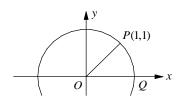
Roman numeral II is true.

III.
$$\tan A = \frac{\text{opposite of } \angle A}{\text{adjacent of } \angle A} = \frac{a}{b}$$

Roman numeral III is false.

Section 15-2

1. B



The graph shows P(x, y) = P(1,1). Thus, x = 1 and y = 1. Use the distance formula to find the length of radius OA.

$$OA = \sqrt{x^2 + y^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} \text{ or } \sin \theta = \frac{\sqrt{2}}{2}$$

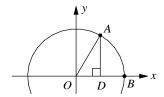
Therefore, the measure of $\angle POQ$ is 45° , which is equal to $45(\frac{\pi}{180}) = \frac{\pi}{4}$ radians.

Thus, $k = \frac{1}{4}$.

2. C

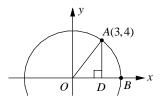
Use the complementary angle theorem. $\cos(\theta) = \sin(90^\circ - \theta) \text{ , or } \cos(\theta) = \sin(\frac{\pi}{2} - \theta)$ Therefore, $\cos(\frac{\pi}{8}) = \sin(\frac{\pi}{2} - \frac{\pi}{8}) = \sin(\frac{3\pi}{8}) \text{ .}$ All the other answer choices have values different from $\cos(\frac{\pi}{8}) \text{ .}$

3. D



In $\triangle OAD$, $\sin \frac{\pi}{3} = \sin 60^\circ = \frac{AD}{OA} = \frac{AD}{6}$. Since $\sin 60^\circ = \frac{\sqrt{3}}{2}$, you get $\frac{AD}{6} = \frac{\sqrt{3}}{2}$. Therefore, $2AD = 6\sqrt{3}$ and $AD = 3\sqrt{3}$.

4. A



Use the distance formula to find the length of OA. $OA = \sqrt{x^2 + y^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$ $\cos \angle AOD = \frac{OD}{OA} = \frac{3}{5}$

Section 15-3

1. A

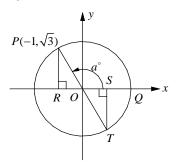
Draw segment PR, which is perpendicular to the x-axis. In right triangle POR, x = -1

and $y = \sqrt{3}$. To find the length of *OP*, use the Pythagorean theorem.

$$OP^2 = PR^2 + OR^2 = (\sqrt{3})^2 + (-1)^2 = 4$$

Which gives $OP = 2$.

$$\cos a^{\circ} = \frac{x}{OP} = \frac{-1}{2}$$

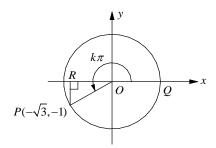


2. C

Since the terminal side of $(a+180)^{\circ}$ is OT, the value of $\cos(a+180)^{\circ}$ is equal to $\frac{OS}{OT}$.

$$\frac{OS}{OT} = \frac{1}{2}$$

3. B



Draw segment PR, which is perpendicular to the x-axis. In right triangle POR, $x = -\sqrt{3}$ and y = -1. To find the length of OP, use the Pythagorean theorem.

$$OP^2 = PR^2 + OR^2 = (-1)^2 + (\sqrt{3})^2 = 4$$

Which gives OP = 2.

Since $\sin \angle POR = \frac{y}{OP} = \frac{-1}{2}$, the measure of

 $\angle POR$ is equal to 30°, or $\frac{\pi}{6}$ radian.

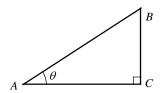
$$k\pi = \pi + \frac{\pi}{6} = \frac{7}{6}\pi$$

Therefore, $k = \frac{7}{6}$

$$\tan(k\pi) = \tan(\frac{7}{6}\pi) = \frac{y}{x} = \frac{-1}{-\sqrt{3}} = \frac{1}{\sqrt{3}}$$

Chapter 15 practice Test

1. D



Note: Figure not drawn to scale.

In
$$\triangle ABC$$
, $\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{BC}{AC}$.

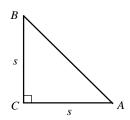
If
$$\tan \theta = \frac{3}{4}$$
, then $BC = 3$ and $AC = 4$.

By the Pythagorean theorem,

$$AB^2 = AC^2 + BC^2 = 4^2 + 3^2 = 25$$
, thus $AB = \sqrt{25} = 5$.

$$\sin\theta = \frac{BC}{AB} = \frac{3}{5}$$

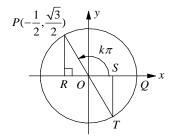
2. C



$$\tan \angle A = \frac{\text{opposite side of } \angle A}{\text{adjacent side of } \angle A} = \frac{s}{s} = 1$$

$$= \frac{s}{s} = 1$$

3. C



Draw segment PR, which is perpendicular to the x-axis. In right triangle POR, $x = -\frac{1}{2}$ and $y = \frac{\sqrt{3}}{2}$. To find the length of OP, use the Pythagorean theorem.

$$OP^2 = PR^2 + OR^2 = (\frac{\sqrt{3}}{2})^2 + (\frac{-1}{2})^2 = \frac{3}{4} + \frac{1}{4} = 1$$

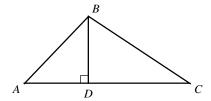
Which gives $OP = 1$. Thus, triangle OPR is $30^\circ - 60^\circ - 90^\circ$ triangle and the measure of $\angle POR$ is 60° , which is $\frac{\pi}{3}$ radian. Therefore, the measure of $\angle POQ$ is $\pi - \frac{\pi}{3}$, or $\frac{2\pi}{3}$ radian. If $\angle POQ$ is $k\pi$ radians then k is equal to $\frac{2}{3}$.

4. B

Since the terminal side of $(k+1)\pi$ is OT, the value of $\cos(k+1)\pi$ is equal to $\frac{OS}{OT}$.

$$\frac{OS}{OT} = \frac{1}{2}$$

5. D



Area of triangle $ABC = \frac{1}{2}(AC)(BD)$

Check each answer choice.

A)
$$\frac{1}{2}(AB\cos\angle A + BC\cos\angle C)(AB\cos\angle ABD)$$
$$= \frac{1}{2}(AB \cdot \frac{AD}{AB} + BC \cdot \frac{CD}{BC})(AB \cdot \frac{BD}{AB})$$
$$= \frac{1}{2}(AD + CD)(BD) = \frac{1}{2}(AC)(BD)$$

B)
$$\frac{1}{2}(AB\cos\angle A + BC\cos\angle C)(BC\sin\angle C)$$
$$= \frac{1}{2}(AB\cdot\frac{AD}{AB} + BC\cdot\frac{CD}{BC})(BC\cdot\frac{BD}{BC})$$
$$= \frac{1}{2}(AD + CD)(BD) = \frac{1}{2}(AC)(BD)$$

C)
$$\frac{1}{2}(AB\sin\angle ABD + BC\sin\angle CBD)(AB\sin\angle A)$$

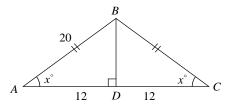
$$= \frac{1}{2} (AB \cdot \frac{AD}{AB} + BC \cdot \frac{CD}{BC}) (AB \cdot \frac{BD}{AB})$$
$$= \frac{1}{2} (AD + CD)(BD) = \frac{1}{2} (AC)(BD)$$

D)
$$\frac{1}{2}(AB\sin\angle ABD + BC\sin\angle CBD)(BC\cos\angle C)$$
$$= \frac{1}{2}(AB\cdot\frac{AD}{AB} + BC\frac{CD}{BC})(BC\cdot\frac{CD}{BC})$$
$$= \frac{1}{2}(AD + CD)(CD) = \frac{1}{2}(AC)(CD)$$

Which does not represent the area of triangle *ABC*.

Choice D is correct.

6. D



Draw segment *BD*, which is perpendicular to side *AC*. Because the triangle is isosceles, a perpendicular segment from the vertex to the opposite side bisects the base and creates two congruent right triangles.

Therefore,
$$AD = \frac{1}{2}AC = \frac{1}{2}(24) = 12$$
.

By the Pythagorean theorem, $AB^2 = BD^2 + AD^2$ Thus, $20^2 = BD^2 + 12^2$.

$$BD^2 = 20^2 - 12^2 = 256$$

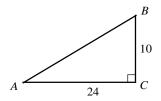
$$BD = \sqrt{256} = 16$$

In right $\triangle ABD$,

$$\sin x^{\circ} = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{BD}{AB} = \frac{16}{20} = \frac{4}{5}$$
.

7. $\frac{5}{13}$

Sketch triangle ABC.



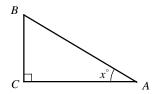
$$AB^{2} = BC^{2} + AC^{2}$$

$$AB^{2} = 10^{2} + 24^{2} = 676$$

$$AB = \sqrt{676} = 26$$

$$\sin A = \frac{10}{26} = \frac{5}{13}$$

8. 9



$$\cos x^{\circ} = \frac{AC}{AB} = \frac{3}{5}$$

Let AC = 3x and AB = 5x.

$$AB^2 = BC^2 + AC^2$$

Pythagorean Theorem

$$(5x)^2 = 12^2 + (3x)^2$$

BC = 12

$$25x^2 = 144 + 9x^2$$

$$16x^2 = 144$$

$$x^2 = 9$$

$$x = \sqrt{9} = 3$$

Therefore, AC = 3x = 3(3) = 9

9. 10.5

According to the complementary angle theorem, $\sin \theta = \cos(90 - \theta)$.

If
$$\sin(5x-10)^{\circ} = \cos(3x+16)^{\circ}$$
,

$$3x+16=90-(5x-10)$$
.

$$3x+16=90-5x+10$$

$$3x + 16 = 100 - 5x$$

$$8x = 84$$

$$x = 10.5$$