CBSE Test Paper 03 Chapter 12 Area Related to Circle

- 1. If the radius of the circle is $\frac{7}{\sqrt{\pi}}$ cm, then its area is **(1)**
 - a. 98sq. cm
 - b. 45sq. cm
 - c. 22 sq. cm
 - d. 49 sq. cm
- 2. If the circumference of a circle and the perimeter of a square are equal, then (1)
 - a. Area of the circle = $\frac{1}{2}$ Area of the square
 - b. area of the circle > area of the square
 - c. area of the circle < area of the square
 - d. area of the circle = area of the square
- If a chord subtends an angle of 60^o at the centre, then the area of the corresponding segment is (1)

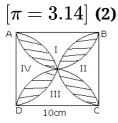
a.
$$\left(\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right) r^2 \ sq. \ units$$

b. $\left(\frac{\pi}{2} - \frac{\sqrt{3}}{2}\right) r^2 \ sq. \ units$
c. $\left(\frac{\pi}{6} + \frac{\sqrt{3}}{2}\right) r^2 \ sq. \ units$
d. $\left(\frac{\pi}{2} + \frac{\sqrt{3}}{2}\right) r^2 \ sq. \ units$

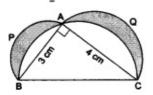
- 4. The length of the minute hand of a clock is 14cm. The area swept by the minute hand
 - in 1 hour is **(1)**
 - a. 616 sq. cm
 - b. 516 sq. cm
 - c. 628 sq. cm
 - d. 542 sq. cm
- 5. A horse is tied to a peg at one corner of a square-shaped gross field of side 25 m by means of a 14m long rope. The area of that part of the field in which the horse can graze is **(1)**
 - a. 156 sq. cm
 - b. 142 sq. cm
 - c. 102 sq. cm

d. 128 sq. cm

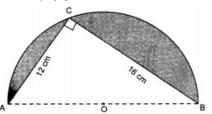
- 6. What is the perimeter of a sector of angle 45° of a circle with radius 7 cm? (1)
- 7. Radius of a circle is 1m. If diameter is increased by 100% then find the percentage increase in its area. **(1)**
- 8. If the perimeter of a semicircular protactor is 66 cm, find the radius of the protactor. **(1)**
- 9. If the circumference is numerically equal to 3 times the area of a circle, then find the radius of the circle. **(1)**
- 10. The area of two concentric circles forming a ring are 154 cm² and 616 cm². Find the breadth of the ring. **(1)**
- 11. The area of a sector of a circle of radius 2 cm is π cm². Find the angle contained by the sector. (2)
- 12. Find the area of the shaded region in the given figure where ABCD is a square of side 10cm and semi-circles are drawn with each side of the square as diameter.



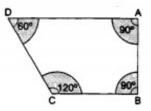
- 13. Find the area of a quadrant of a circle , whose circumference is 22 cm. (2)
- 14. In the given figure, $\triangle ABC$ is right-angled at A. Semicircles are drawn on AB, AC and BC as diameters. It is given that AB = 3 cm and AC = 4 cm. Find the area of the shaded region. (3)



15. In figure, O is the centre of a circular arc and AOB is a straight line. Find the perimeter and the area of the shaded region correct to one decimal place. (Take π = 3.142) (3)

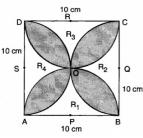


16. ABCD is a field in the shape of a trapezium, AD II BC, $\angle ABC = 90^{\circ}$ and $\angle ADC = 60^{\circ}$. Four sectors are formed with centres A, B, C and D, as shown in the figure. The radius of each sector is 14 m. Find the following: **(3)**

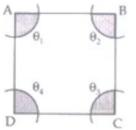


i. total area of the four sectors,

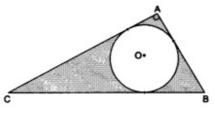
- ii. area of the remaining portion, given that AD = 55 m, BC = 45 m and AB = 30 m
- 17. In Fig. ABCD is a square of side 10 cm. Semi-circles are drawn with each side of square as diameter. Find the area of



- i. the unshaded region (R_1, R_2, R_3, R_4)
- ii. the shaded region (3)
- 18. In the given figure, arcs have been drawn of radius 21 cm each with vertices A, B, C and D of quadrilateral ABCD as centre. Find the area of shaded region. **(4)**



- A semicircular region and a square region have equal perimeters. The area of the square region exceeds that of the semicircular region by 4 cm². Find the perimeters and areas of the two regions. (4)
- 20. In the given figure, $\triangle ABC$ is right-angled at A. Find the area of the shaded region if AB = 6 cm, BC = 10 cm and O is the centre of the incircle of $\triangle ABC$. [Take π = 3.14.] (4)



CBSE Test Paper 03 Chapter 12 Area Related to Circle

Solution

1. d. 49 sq. cm

Explanation: Area of the circle = πr^2

$$\Rightarrow$$
 Area of the circle = $\pi \left(\frac{7}{\sqrt{\pi}}\right)^2$ = $\pi \times \frac{49}{\pi}$ = 49 sq. cm

2. b. area of the circle > area of the square

Explanation: Let the radius of the circle be r and side of the square be a.

Then, according to the question,

$$2\pi r = 4a$$

$$\Rightarrow a = \frac{2\pi r}{4} = \frac{\pi r}{2}$$
(i)
Now, the ratio of their areas,

$$\pi r^2 \text{ and } a^2$$

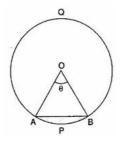
$$\Rightarrow \pi r^2 \text{ and } \left(\frac{\pi r}{2}\right)^2 \text{ [From eq. (i)]}$$

$$\Rightarrow \pi r^2 \text{ and } \frac{\pi^2 r^2}{4}$$

Therefore, Area of the circle > Area of the square

3. a.
$$\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right)r^2$$
 sq. units

Explanation:

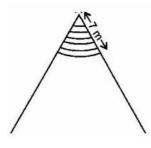


Area of segment = $\frac{\theta}{360^{\circ}} \times \pi r^2 - \frac{1}{2}r^2\sin\theta$ \Rightarrow Area of segment = $\frac{60^{\circ}}{360^{\circ}} \times \pi r^2 - \frac{1}{2}r^2\sin60^{\circ}$ \Rightarrow Area of segment = $\frac{\pi r^2}{6} - \frac{r^2}{2} \times \frac{\sqrt{3}}{2}$ \Rightarrow Area of segment = $\left(\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right)r^2$ sq. units

4. a. 616 sq. cm **Explanation:** \therefore Angle describe by minute hand in 1 hour = 360° $\therefore \theta = 360^{\circ}$

 \therefore Area of the sector = $rac{ heta}{360^\circ} imes\pi r^2$ = $rac{360^\circ}{360^\circ} imesrac{22}{7} imes14 imes14$ = 616 sq. cm

- 5. c. 102 sq. cm
 - **Explanation:**



Area of the shaded region = $\frac{\theta}{360^{\circ}} \times \pi r^2$ \Rightarrow Area of the shaded region = $\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 14 \times 14$ \Rightarrow Area of the shaded region = 102 sq. cm

6. Given radius r of circle = 7 cm.

l = length of the arc =
$$\frac{\theta \pi r}{180^{\circ}}$$

= $\frac{45^{\circ}}{180^{\circ}} \times \frac{22}{7} \times 7 = \frac{11}{2}$ cm
Hence, perimeter of sector = (r + r + l)
= $\left(7 + 7 + \frac{11}{2}\right)$ cm
= $\left(14 + \frac{11}{2}\right)$ cm = $\left(\frac{28+11}{2}\right)$ cm
= $\frac{39}{2}$ cm = 19.5 cm

- 7. Area of circle = π m² New diameter = 2 m + $\frac{100}{100}$ × 2m= 4 m New radius = 2 m New area = 4π m² Increase in area = $4\pi - \pi = 3\pi$ m² % increase in area = $\frac{3\pi}{\pi}$ × 100= 300%
- 8. Let radius of the protractor be r cm. Perimeter = $\left[\frac{1}{2} \times 2\pi r + 2r\right]$ 66 cm = $[\pi r + 2r]$ $\Rightarrow \quad 66 = (\pi + 2)r$

$$egin{array}{lll} \Rightarrow & 66 = \left(rac{22}{7}+2
ight)r = \left(rac{22+14}{7}
ight)r \ = \left(rac{36}{7}
ight)
m{r} \ \Rightarrow & rac{7 imes 66}{36} = r \Rightarrow r = rac{77}{6}
m{cm} \end{array}$$

- 9. Let radius = r units According to the question, $2\pi r = 3\pi r^2$ $\Rightarrow r = \frac{2}{3}$ units
- 10. Area of bigger circle = πR^2 = 616 $\Rightarrow R = 14 \text{ cm}$ and area of smaller circle = πr^2 = 154 $\Rightarrow r = 7 \text{ cm}$ Breadth of the ring = 14 - 7 = 7 cm
- 11. Radius of circle = 2cm

Area of sector
$$= \pi cm^2$$

 \therefore Area of sector $= \frac{\theta}{360^\circ} \times \pi r^2$
 $\Rightarrow \pi = \frac{\theta}{360^\circ} \times \pi \times 2 \times 2$
 $\Rightarrow \theta = \frac{\pi \times 360^\circ}{\pi \times 2 \times 2} = 90^\circ$

- 12. Area of region I + II = area of ABCD area of 2 semicircles of each radius 5cm $= 10 \times 10 - 2 \times \frac{1}{2} \times \pi \times 5^{2}$ $= 100 - 25\pi = 100 - 25 \times 3.14$ $= 21.5 \text{ cm}^{2}$ Similarly, the area of III + area of IV = 21.5 cm^{2} Area of the region I, II, III, and IV = $2 \times 21.5 = 43 \text{ cm}^{2}$ Thus, the area of shaded region = Area ABCD - Area of (I, II, III, IV) $= 100 - 43 = 57 \text{ cm}^{2}$
- 13. Given , Circumference = 22 cm

$$\Rightarrow 2\pi r = 22$$

 $\Rightarrow r = rac{7}{2} = 3.5cm$
Area of Circle = πr^2 = $rac{22}{7} imes (3.5)^2 = 38.5cm^2$

Area of quadrant of circle = $\frac{Area \ of \ circle}{4}$ = $\frac{38.5}{4}$ = 9.625 cm^2

 \therefore Area of the quadrant of cicle = 9.625 cm²

14. In triangle ABC, by pythagoras theorm, we have,

$$BC = \sqrt{AB^{2} + AC^{2}}$$

$$BC = \sqrt{9 + 16}$$

$$BC = \sqrt{25}$$

= 5 cm
Ar(shaded part) = Ar($\triangle ABC$) + Ar(semicircle APB) + Ar.(semicircle AQC) - Ar
(semicircle BAC)
= $(\frac{1}{2} \times 3 \times 4) + (\frac{1}{2}\pi \times 1.5 \times 1.5) + (\frac{1}{2}\pi \times 2 \times 2) - (\frac{1}{2}\pi \times 2.5 \times 2.5)$
= $6 + \frac{1}{2}\pi (4 + \frac{9}{4} - \frac{25}{4})$
= $6 + 0$
= 6 cm^{2}

15. AC = 12 cm, BC = 16 cm In \triangle ACB, by ythagoras theorem $AB^2 = AC^2 + BC^2$ $\Rightarrow AB^2 = 12^2 + 16^2$ $\Rightarrow AB^2 = 144 + 256 = 400$ $AB = \sqrt{400} = 20 {
m cm}$ \Rightarrow \therefore radius of semi-circle $=\frac{20}{2}=10$ cm \therefore Area of shaded region = Area of semi-circle - Area of riangle ACB $=rac{1}{2}\pi(10)^2-rac{1}{2}AC imes BC$ $=rac{1}{2} imes 3.142 imes 100-rac{1}{2} imes 12 imes 16$ = 157.1 - 96 $= 61.1 \text{ cm}^2$ Perimeter of shaded region = AC + BC + circumference of semi-circle $= 12 + 16 + \pi(10)$ =28+3.142 imes10= 28 + 31.42

= 59.42 cm

16. i. Total area of 4 sectors =
$$\left\{\frac{22}{7} \times (14)^2 \times \left(\frac{90}{360} + \frac{90}{360} + \frac{120}{360} + \frac{60}{360}\right)\right\} m^2$$

= $\left\{22 \times 2 \times 14 \times \left(\frac{1}{4} + \frac{1}{4} + \frac{1}{3} + \frac{1}{6}\right)\right\} m^2$
= $\left\{616 \times \frac{3+3+4+2}{12}\right\} m^2$
= $\left\{616 \times \frac{12}{12}\right\} m^2$
= $616 m^2$
ii. Area of trapezium ABCD = $\frac{1}{2} \times (AD + BC) \times AB$

$$=rac{1}{2} imes(55+45) imes 30 \ = 100 imes 15$$

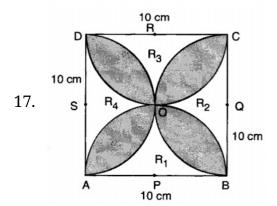
= 1500 m²

Therefore, required area

= Ar (trapezium ABCD) - Total area of 4 sectors

$$= (1500-616) \text{ m}^2$$

= 884 m²



Clearly,

Area of R_1 + Area of R_3

= Area of square ABCD - Area of two semi-circles having centres at Q and S = $(10 \times 10 - 2 \times \frac{1}{2} \times 3.14 \times 5^2) \text{ cm}^2$ [:: Radius = AP = 5 cm] = $(100 - 3.14 \times 25) \text{ cm}^2$ = $(100 - 78.5) \text{ cm}^2$ = 21.5 cm² Similarly, we have

Area of R_2 + Area of R_4 = 21.5 cm²

i. Area of the unshaded region = Area R_1 + Area R_2 + Area R_3 + Area R_4

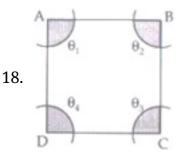
= (Area R_1 + Area R_3) + (Area R_2 + Area R_4)

= 2 (21.5) cm^2 = 43 cm^2

ii. Area of the shaded region

= Area of square ABCD - (Area of R_1 + Area of R_2 + Area of R_3 + Area of R_4)

= (100 - 2
$$\times$$
 21.5) cm² = 57 cm²



Specification of quadrilateral are not given, so quadrilateral may be of any shape.

As the radius of all 4 arcs are same equal to r = 21 cm

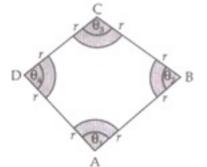
but not different angles $\angle A$, $\angle B$, $\angle C$ and $\angle D$.

Therefore, there are four sectors of $\angle A$, $\angle B$, $\angle C$ and $\angle D$ with r = 21 cm.

Therefore, Area of shaded region

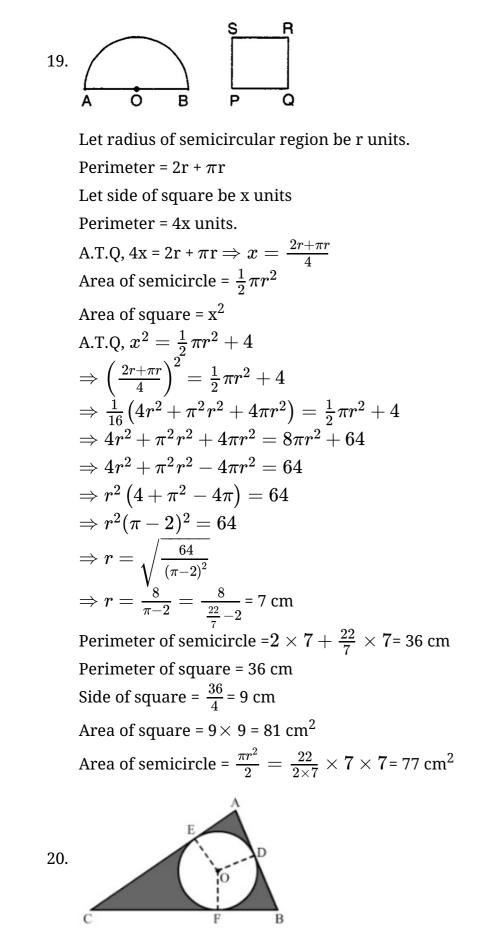
 $= \frac{\pi r_1^2(\theta_1)}{360^\circ} + \frac{\pi r_2^2(\theta_2)}{360^\circ} + \frac{\pi r_3^2(\theta_3)}{360^\circ} + \frac{\pi r_4^2(\theta_4)}{360^\circ}$ because $r_1 = r_2 = r_3 = r_4 = r$ and

$$\angle \theta_1 + \angle \theta_2 + \angle \theta_3 + \angle \theta_4 = 360^\circ$$
 [Interior \angle s of a quad.]



Therefore, Area of shaded region $= \frac{\pi r^2(\theta_1)}{360^\circ} + \frac{\pi r^2(\theta_2)}{360^\circ} + \frac{\pi r^2(\theta_3)}{360^\circ} + \frac{\pi r^2(\theta_4)}{360^\circ}$ = $\frac{\pi r^2}{360^\circ}(\theta_1 + \theta_2 + \theta_3 + \theta_4)$ = $\frac{\pi r^2}{360^\circ}(360^\circ)$ = $\pi r^2 = \frac{22}{7} \times 21 \times 21 = 22 \times 63 = 1386 \text{ cm}^2$

Therefore, the area of shaded region = 1386 cm^2 .



Using Pythagoras theorem for triangle ABC, we have:

$$CA2 + AB2 = BC2$$

$$CA2 = BC2 - AB2$$

$$CA = \sqrt{BC^{2} - AB^{2}}$$

$$CA = \sqrt{100 - 36}$$

$$CA = \sqrt{64}$$

$$= 8 \text{ cm}$$

Now, we must find the radius of the incircle. Draw OE, OD and OF Perpendicular to AC, AB and BC respectively.

Here,

EO = OD (Both are radii)

Because the circle is an incircle. AE and AD are tangents to the circle

 $\angle AEO = \angle ADO = 90^{\circ}$ Also, $\angle A = 90^{\circ}$ Therefore, AEOD is a square. Thus, we can say that AE = EO = OD = AD = rCE = CF= 8 - r BD = DB= 6 - r CF + BF = 10 $\Rightarrow (8-r)+(6-r)=10$ \Rightarrow 14 - 2r = 10 \Rightarrow r = 2 cm Area of the shaded portion = Area of the triangle - Area of the circle $= \left(rac{1}{2} imes 6 imes 8
ight) - (\pi imes 2 imes 2)$ = 24 - 12.56 $= 11.44 \text{ cm}^2$