MAXIMA AND MINIMA

SYNOPSIS

- **INCREASING FUNCTION:** Let D denote the domain of a real valued function 'f'
- If $\forall x_1, x_2 \in D; x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$ then f is said to be an increasing function in D
- If $\forall x_1, x_2 \in D$; $x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$ then f is said to be strictly increasing in D.

DECREASING FUNCTION:

- If $\forall x_1, x_2 \in D$; $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$ Then f is said to be a decreasing function in D
- If $\forall x_1, x_2 \in D$; $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ Then f is said to be strictly decreasing in D.
- **MONOTONIC FUNCTION**: A function which is either increasing (or) decreasing in its domain is called a monotonic function.

TEST FOR MONOTONICITY:

- If $f^1(x) \ge 0 \quad \forall x \in (a,b)$ then f is increasing in (a, b)
- If $f^1(x) > 0 \quad \forall x \in (a,b)$ then f is strictly increasing in (a, b)
- If $f^1(x) \le 0 \quad \forall x \in (a,b)$ then f is decreasing in (a, b)
- If $f^1(x) < 0 \quad \forall x \in (a,b)$ then f is strictly decreasing in(a, b)
- **NOTE:** If $f^1(a) > 0$ then f is increasing at x = a and if $f^1(a)<0$ then f is decreasing at x = a.
- **STATIONARY POINT:** If $f^1(a)=0$ then y=f(x) is said to be stationary at x = a. f(a) is called the stationary value of f at x=a then (a, f(a)) is called a stationary point of 'f'.
- **CRITICAL POINT:** If $f^1(a)=0$ (or) $f^1(a)$ does not exist then f(x) is said to have a critical point at x = a.

FIRST DERIVATIVE TEST:

- If f¹(x) changes sign from -ve to +ve at 'a' then f has a local minimum (or) relative minimum at 'a'.
- If f¹(x) changes sign from +ve to -ve at 'a'. then f has a local maximum (or) relative maximum at 'a'
- Note I: maximum, minimum values of f are also called extreme values (or) turning values of f.
- **Note II:** A local minimum value may be greater than a local maximum value.

SECOND DERIVATIVE TEST:

- If f¹(a)=0, f¹¹(a)<0 then f has a local maximum at x=a.
- If $f^1(a)=0$; $f^{11}(a)>0$ then f has a local minimum at x=a.

nth Derivative Test

If f is a continuous function on (a, b), $\alpha \in (a,b)$ and

$$f'(\alpha) = f''(\alpha) = f'''(\alpha) = \dots = f^{(n-1)}(\alpha) = 0$$

and $f^{(n)}(\alpha) \neq 0$ then

- If 'n' is even and $f^{(n)}(\alpha) > 0$ then $f(\alpha)$ is relative minimum at ' α '
- If 'n' is odd and $f^{(n)}(\alpha) < 0$ then $f(\alpha)$ is relative maximum at ' α '
- If 'n' is odd and $f^{(n)}(\alpha) > 0$ then f is increasing at ' α '
- If 'n' is even and $f^{(n)}(\alpha) < 0$ then f is decreasing at ' α '

OTHER POINTS:

- If the sum of two positive numbers is a constant, then their product will be maximum when the two numbrs are equal.
- If the product of two positive numbers is a constant, then their sum will be least when the two numbers are equal.
- The minimum value of (x-a) (x-b) is $\frac{-(a-b)^2}{4}$.
- The least value of each of a²sin²x+b²cosec²x, a²sec²x+b²cos²x, a²tan²x+b²cot²x is 2ab.
- The least value of a²sec²x+b²cosec²x is (a+b)²

when $x = \tan^{-1} \sqrt{\frac{b}{a}}$.

 $sin^p \theta \ cos^q \theta$ attains a maximum value at

$$\theta = \tan^{-1} \sqrt{\frac{p}{q}}$$
 and that max. value is $\left(\frac{p^{p} \cdot q^{q}}{(p+q)^{p+q}}\right)^{1/2}$

The minimum value of a secx+bcosecx is

 $(a^{2/3}+b^{2/3})^{3/2}$ at x=tan⁻¹. $\left(\frac{b}{a}\right)^{1/3}$.

The minimum value of a cotx+btan x is $2\sqrt{ab}$ at x

$$= \tan^{-1} \sqrt{\frac{a}{b}}$$
.

The least value of the portion of tangent $to \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ intercepted between the co-ordinate axes is a+b. A normal is drawn at a variable point P of the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ then the maximum distance of the normal from the centre of the curve is a-b. The minimum distance from the origin to a point 1 on the curve $\frac{a^2}{x^2} + \frac{b^2}{v^2} = 1$ is (a+b). The area of greatest isosceles traingle that can be inscribed in a given ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ having its vertex coincident with one extremity of major axis is $\frac{3\sqrt{3}}{4}$ ab sq units. 2 The area of greatest rectangle that can be inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is 2ab sq units. The minimum value of $\left(1+\frac{1}{\sin^{n}\alpha}\right)\left(1+\frac{1}{\cos^{n}\alpha}\right)$ is $(1+2^{n/2})^2$ When perimeter is given, if sector area is maximum then $\theta = 2^{c}$. 3 From the four corners of a square sheet of metal of side 'a', four equal squares are cut off and the remaining edges are folded up to form a rectangular open box. If the volume of the box formed is to be maximum, the side of the square removed is $\frac{a}{c}$. 4 From the four corners of rectangular sheet of metal of sides a,b, four equal squares are cut off and the remaining edges are folded up to form an open box. If the volume of the box is to be maximum the side 5 of a square removed is $\frac{a+b-\sqrt{a^2+b^2-ab}}{a}$ A cone is drawn circumscribing a sphere of radius 'R'. If the volume of the cone is maximum, its 6 height is $\frac{4R}{3}$ and its semivertical angle is s i n⁻¹

 $\frac{1}{3}$ (If surface area is constant).

- In a right angled triangle, the sum of a side and hypotenuse is given. If the area of the triangle is maximum, then the angle between them is 60°.
- The least area of the triangle formed by any line through (p,q) and the co-ordinate axes is 2pq sq units
- The maximum area of rectangle inscribed in a circle of radius r is 2r² sq. units.

CONCEPTUAL QUESTIONS

Let I be an open interval contained in the domain of a real function 'f', then f(x) is called strictly increasing function in I if

1)
$$x_1 < x_2$$
 in $I \Rightarrow f(x_1) < f(x_2)$

2)
$$x_1 < x_2$$
 in $I \Rightarrow f(x_1) > f(x_2)$

3)
$$x_1 = x_2$$
 in $I \Longrightarrow f(x_1) = f(x_2)$

4) $x_1 = x_2$ in $I \Longrightarrow f(x_1) < f(x_2)$

Let I be an open interval contained in the domain of a real function 'f', then f(x) is called strictly decreasing function in I if

1)
$$x_1 < x_2$$
 in $I \Rightarrow f(x_1) < f(x_2)$
2) $x_1 < x_2$ in $I \Rightarrow f(x_1) > f(x_2)$
3) $x_1 = x_2$ in $I \Rightarrow f(x_1) = f(x_2)$
4) $x_1 = x_2$ in $I \Rightarrow f(x_1) < f(x_2)$
In $\left(0, \frac{\pi}{2}\right)$, $f(x) = x \sin x + \cos x + \frac{1}{2} \cos^2 x$ is
1. Increasing
2. Decreasing
3. Constant
4. Nothing can be determined
 $f(x) = \frac{\log x}{x}(x > 0)$ is increasing in
1. $(0, e)$ 2. (e, ∞)
3. $(0, \infty)$ 4. $(-\infty, \infty)$
 $f(x) = \frac{\log x}{x}(x > 0)$ is decreasing in
1. $(0, e)$ 2. (e, ∞)
3. $(0, \infty)$ 4. $(-\infty, \infty)$
 $f(x) = \frac{1}{2} \sin x \tan x - \log \sec x$ is increasing in
1. $\left(\frac{-\pi}{2}, 0\right) 2$. $\left(\frac{\pi, \frac{3\pi}{2}}{2}\right) 3$. $\left(0, \frac{\pi}{2}\right)$ 4. $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

JR. MATHEMATICS

Which of the following function is increasing in 18 $f(x) = \tan^{-1}(\sin x)$ is increasing in $\left(0,\frac{\pi}{2}\right)$ 1. $\left(2n\pi - \frac{\pi}{2}, 2n\pi + \frac{\pi}{2}\right)$ 2. $\left(2n\pi + \frac{\pi}{2}, 2n\pi + \frac{3\pi}{2}\right)$ 1. sin x 2. cos x 3. cot x 4. cosec x 4. $\left(\frac{\pi}{2},\frac{3\pi}{2}\right)$ 3. $\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$ 8 The condition that $f(x) = x^3 + ax^2 + bx + c$ is an increasing function for all real values of 'x' is 1. a²<12b 2. a²<3b 3. a²<4b 4. a²<16b 19 $f(x) = \tan^{-1} (\sin x)$ is decreasing in $f(x) = \frac{a \sin x + b \cos x}{c \sin x + d \cos x}$ is an increasing function if 1. $\left(2n\pi - \frac{\pi}{2}, 2n\pi + \frac{\pi}{2}\right)$ 2. $\left(2n\pi + \frac{\pi}{2}, 2n\pi + \frac{3\pi}{2}\right)$ 9 1. ad - bc = 02. ad -bc < 0 4. $\left(\frac{\pi}{2},\frac{3\pi}{2}\right)$ 3. $\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$ 3. ad - bc > 0 4. ab + cd = 010 $f(x) = \frac{a \sin x + b \cos x}{a \cos x - b \sin x} \left(\tan x \neq \frac{a}{b} \right)$ is 20 The set of values of 'x' for which $f(x) = \cos x - x$ is decreasing in 1. $(-\infty, 0)$ 2. $(0, \infty)$ 1. increasing in dom f 3. $(-\infty, \infty)$ **4**. Ø 2. Decreasing in dom f $f(x) = \log_a x (x > 0)$ is an increasing function if 21 3. Constant 1. a > 1 2. 0 < a < 1 4. Nothing can be determined 4. a _≠ 0 3. a ≠ 1 $f(x) = \cos \frac{\pi}{x}$ is increasing in 22 $f(x) = \log_a x (x > 0)$ is decreasing function if 11. 1. a > 1 2. 0 < a < 1 1. $\left(\frac{1}{2n+1}, \frac{1}{2n}\right)n \in \mathbb{Z}^+$ 3. a ≠ 1 4. a ≠ 0 23 If a < 0 the function $e^{ax}+e^{-ax}$ is a monotonically decreasing function for values of 'x' given by 2. $\left(\frac{1}{2n+2}, \frac{1}{2n+1}\right)n \in Z^+$ 3. x > 1 1. x > 02. x < 0 4. x < 1 24 $f(x) = tan^{-1}x$ is 3. R 1. Strictly increasing 4. R - {0} 2. Strictly decreasing 12 If $f(x) = kx - \sin x$ is monotonically increasing then 3. Neither increasing nor decreasing 4. Constant 13 1. k > 1 2. k > -1 3. k < 1 4. k < -1 $f(x) = \frac{\sin x}{x}$ is f(x) = sin x - ax is decreasing in R if 25 1. a > 1 2. a < 1 3. $a > \frac{1}{2}$ 4. $a < \frac{1}{2}$ 1. increasing in $\left(0,\frac{\pi}{2}\right)$ 14. $f(x) = x - e^x$ is decreasing in 1. $(-\infty, 0)$ 2. $(0, \infty)$ 3. $(-\infty, \infty)$ 4. \emptyset 2. decreasing in $\left(0,\frac{\pi}{2}\right)$ $f(x) = x - e^x$ is increasing in 15 1. $(-\infty, 0)$ 2. $(0, \infty)$ 3. $(-\infty, \infty)$ 4. \emptyset 16 f(x) = sin h (sin x) is increasing in3. Stationary at x = $\frac{\pi}{2}$ 1. $\left(2n\pi - \frac{\pi}{2}, 2n\pi + \frac{\pi}{2}\right)$ 2. $\left(2n\pi + \frac{\pi}{2}, 2n\pi + \frac{3\pi}{2}\right)$ 4. Stationary at x = 0 26 $f(x) = x^x$ is decreasing for 3. $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ 4. $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ 1. $X > \frac{1}{2}$ 2. x > e 17 f(x) = sin h (sin x) is descreasing in 4. $0 < x < \frac{1}{2}$ 3. 0 < x < e 1. $\left(2n\pi - \frac{\pi}{2}, 2n\pi + \frac{\pi}{2}\right)$ 2. $\left(2n\pi + \frac{\pi}{2}, 2n\pi + \frac{3\pi}{2}\right)$ $f(x) = \frac{1}{x-1}$ is decreasing in 27 3. $\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$ 4. $\left(\frac{\pi}{2},\frac{3\pi}{2}\right)$ 2. $(-\infty, 1)U(1, \infty)$ 4. $(-\infty, 1)$ 1. (-1, 1)3. $(-\infty, \infty)$

JR. MATHEMATICS

28	if $f(x) = \sin x - \cos x - ax + b$ decreases for all $x \in R$ then	38.	Let $h(x) = f(x) - [f(x)]^2 + [f(x)]^3$ for every real number 'x' then
	1. a < 1 2. a > 1		1) h is increasing whenever 'f' is increasing
	3. $a < \sqrt{2}$ 4. $a > \sqrt{2}$		2) h is increasing whenever 'f' is decreasing
	-		2) his decreasing whenever 'f' is increasing
29.	The function x + log $\left(\frac{1+x}{1+x}\right)$ is increasing when x		4) Nothing can be said in comparel
	belongs to the interval	20	4) Nothing can be said in general $L(C) = 0$ that the form
	1. $(1, \infty)$ 2. $(2, \infty)$ 3. $(3, \infty)$ 4. $(-\infty, -1) \cup (0, \infty)$	39.	If $f'(a) = 0$ and $f''(a) < 0$ then the function f(x) at $x = a$ is
30.	f(x) = tan ⁻¹ x - x is decreasing in		1) stationary 2) increasing
	1. $(-\infty, \infty)$ 2. $(0, \infty)$ only		3)minimum 4)maximum
31.	If $x > 0$ then which of the following is true	40.	If $f^{1}(a) = 0$ and $f^{11}(a) > 0$ then the function
			f(x) at $x = a$ is
	1. $\tan^{-1} x > \frac{x}{1+x^2}$ 2. $\tan^{-1} x = \frac{x}{1+x^2}$		1) stationary2) increasing3) minimum4) maximum
	3. $\tan^{-1}x < \frac{x}{1+x^2}$ 4. $\tan^{-1}x \neq \frac{x}{1+x^2}$	41.	Let 'f' be any differentiable function. A point 'p'
32.	The set of all x for which sin x \leq x is		which $f'(p) = 0$ is called a stationary point of f' Which of the following statement is true?
	1. $\left(0,\frac{\pi}{2}\right)$ 2. $\left(\frac{-\pi}{2},\pi\right)$		1) Each stationary point gives rise to a local max mum
	$3. \left(-\frac{\pi}{2},0\right)4. \left(\frac{-\pi}{2},\frac{\pi}{2}\right)$		2) Each stationary point need not give a local max mum or a local minimum
33.	Tan x > x when 'x' lies in		3) Each stationary point gives rise to a local min
	1. $\left(0,\frac{\pi}{2}\right)$ 2. $\left(\frac{\pi}{2},\pi\right)$		mum 4) Each stationary point gives both local
	(π, π) $(-\pi, \pi)$	40	maximum and local minimum The volume of w' at which $f(x)$ rain x is stationed
	3. $\left(-\frac{\pi}{2},0\right)$ 4. $\left(\frac{\pi}{2},\frac{\pi}{2}\right)$	42.	are given by
34.	Every invertible function is		1 p= $\forall x = 7$ 2 $(2n+1)^{\frac{\pi}{n}} \forall x = 7$
	1) Monotonic function		$1. 1n, \forall n \in \mathbb{Z} \qquad 2. (2.1.1.1)^2, \forall n \in \mathbb{Z}$
	2) Constant function		3. $\frac{n\pi}{4}$, $\forall n \in \mathbb{Z}$ 4. $\frac{n\pi}{2}$, $\forall n \in \mathbb{Z}$
	3) Identity function	43	4 Z The value of 'x' at which $f(x) = \cos x$ is stational
	4) not necessarily monotonic function	-0.	are given by
35.	Function $f(x) = a^x$ is increasing on 'R' if		π
	1) $a > 0$ 2) $a < 0$		1. $n\pi$, $\forall n \in Z$ 2. $(2n+1)\frac{\pi}{2}, \forall n \in Z$
26	$3) 0 < a < 1 \qquad 4) a > 1$		ηπ ηπ
50.	functions such that $g(f(x))$ exists ,then		3. $\frac{1}{4}$, $\forall n \in Z$ 4. $\frac{1}{2}$, $\forall n \in Z$
	1)g $(f(x))$ is an increasing function		logx (
	2) $g(f(x))$ is a decreasing function	44. \$	Stationary point of $y = \frac{1}{x}(x > 0)$ is
	3) nothing can be said		(1) (1) (11)
	4) $g(f(x))$ is a constant function		1. (1, 0) 2. $\begin{pmatrix} e, -e \\ e \end{pmatrix}$ 3. $\begin{pmatrix} -e \\ e \end{pmatrix}$ 4. $\begin{pmatrix} -e \\ e \end{pmatrix}$
37.	If f,g are increasing functions such that $g(f(x))$ exists , then	45.	The number of stationary points of $f(x) = \cos x$
	1) $g(f(x))$ is an increasing function		1. 1 2. 2 3. 3 4. 4
	2) $g(f(x))$ is a decreasing function	46.	The number of stationary points of $f(x) = \sin x$
	3) $g(f(x))$ is constant function		[0, 2 π] are
	4) nothing can be said		1. 1 2. 2 3. 3 4. 4
L	, U	I	

59. A(0, a), b(0, b) be fixed points. P(x, 0) a variable $f(\mathbf{x}) = \frac{\mathbf{a}\mathbf{x} + \mathbf{b}}{\mathbf{c}\mathbf{x} + \mathbf{d}} \left(ad - bc \neq 0\right)$ 47. point. The angle /APB is maximum if 1. $x^2 = ab$ 2. x = ba 1. Has a maximum 4. $2x^2 = ab$ 3. $x^2 = 2ab$ 2. Has a minimum When the area of a sector of fixed perimeter is 60. Neither max nor min is true maximum then the arc length 'l', radius 'r' are 4. Both max and min are true connected by the relation 1. l = r2. *l* = 2r 3. r = 2*l* 4. r = 4lThe maximum of $f(x) = \frac{\log x}{x^2}$ (x > 0) occurs at x= 48. 61. A window is in the shape of a rectangle surmounted by a semi circle. If the perimeter of the window is of fixed length 'l' then the maximum 1. e 2. \sqrt{e} 3. $\frac{1}{2}$ 4. $\frac{1}{\sqrt{e}}$ area of the window is 1. $\frac{l^2}{2\pi + 4}$ 2. $\frac{l^2}{\pi + 8}$ 3. $\frac{l^2}{2\pi + 8}$ 4. $\frac{l^2}{8\pi + 4}$ 49. $f(x) = \sin x (1 + \cos x)$ is maximum at x =1. $\frac{\pi}{4}$ 2. $\frac{\pi}{6}$ 3. $\frac{\pi}{3}$ 4. $\frac{\pi}{2}$ 62. The minimum distance from the origin to a point on the curve $\frac{a^2}{x^2} + \frac{b^2}{y^2} = 1$ is 50. $f(x) = \sin x + \cos 2x$ (x>0) has minima at x = 1. $(2n+1)\frac{\pi}{2}, \forall n \in \mathbb{Z}$ 2. $\frac{n\pi}{2}, \forall n \in \mathbb{Z}$ 1. 2ab 2. 2(a+b) 3. 2a+4b 4. a + b 63. A wire of length 'a' is cut into two parts which are bent in the form of a square and a circle. The least 4. $\frac{n\pi}{4}$, $\forall n \in \mathbb{Z}$ value of the sum of the areas then formed is 3. $n\pi$, $\forall n \in Z$ 1. $\frac{a^2}{\pi + 4}$ 2. $\frac{a^2}{2(\pi + 4)}$ 3. $\frac{a^2}{3(\pi + 4)}$ 4. $\frac{a^2}{4(\pi + 4)}$ 51. At x = 0, $f(x) = \cos x + \cos hx$ 1. Has a minimum 64. The sum of the hypotenuse and a side of a right 2. Has a maximum angled triangle is constant. If the area of the triangle 3. Does not have an extremum is maximum then the angle between the 4. Is not defined. hypotenuse and the given side is Let $f(x) = a_0 + a_1 x^2 + a_2 x^4 + ... + a_n x^{2n}$ when $0 < a_0 < a_1 < < a_n$ then f(x) has 52. 1. $\frac{\pi}{2}$ 2. $\frac{\pi}{4}$ 3. $\frac{\pi}{2}$ 4. 1. No extremum 2. Only one maximum Of all isosceles triangles inscribed in a given circle 65. 3. Only one minimum 4. Constant the triangle having maximum area is triangle 53. At x = 0 f(x) = sin x - x 1. Equilateral 2. Scalane 1. Has a minimum 2. Has a maximum 3. Right angled isosceles 3. Has no extremum 4. Is not defined 4. isosceles The height of the cylinder of maximum volume that 66. If $y = \sum_{i=1}^{n} (x - x_i)^2$, x_i are constants then y has 54. can be inscribed in a sphere of radius R is minimum value at x = 1. $\frac{2R}{3}$ 2. $\frac{R}{3}$ 3. $\frac{2R}{\sqrt{3}}$ 4. $\frac{1}{\sqrt{3}}$ 2. $\sum x_i$ 3. $\frac{\sum x_i}{n}$ 4. $n \sum x_i$ 1. n 67. The height of the cone of maximum volume inscribed in a sphere of radius R is 55. If a > b maximum value of a $sin^2x + b cos^2x$ is 1. $\frac{R}{3}$ 2. $\frac{2R}{3}$ 3. $\frac{4R}{3}$ 4. $\frac{4R}{\sqrt{3}}$ 3. a + b 4. $\sqrt{a^2 + b^2}$ 1. a 2. b If a > b, minimum value of a $sin^2x + b cos^2x$ is 56. 68. The height of the cylinder of maximum curved surface area that can be inscribed in a sphere of 3. a + b 4. $\sqrt{a^2 + b^2}$ 2. b 1. a radius 'R' is Minimum value of $\sqrt{e^{x^2} - 1}$ is 57. 1. $\frac{R}{2}$ 2. $\sqrt{2R}$ 3. $\sqrt{\frac{2}{3}R}$ 4. $\frac{3R}{4}$ 3. – 4. e^{e²} 1.0 2. e 69. An open cylinder of given surface will have maximum volume if radius = 58. Minimum value of (sin x)^{sin x} is 2. $\frac{1}{2}$ height 1. height 1. $(e)^{\frac{-1}{e}}$ 2. 1 3. $\frac{\pi}{2}$ 4. $\frac{1}{e}$ 3. 2 height 4. 3 height

JR. MATHEMATICS

495

77. The rectangular sheet of metal sides a, b has four If PQ is a double ordinate of the ellipse $\frac{x^2}{r^2} + \frac{y^2}{h^2} = 1$ equal square portions removed at the corners and 70. the sides are then turned up so as to form an open and A is one end of the major axis then the rectangular box. When the volume contained in the box is maximum, the depth of the box is maximum area of ΔAPO is 1. $\frac{1}{6}\left[(a+b)+(a^2-ab+b^2)^{1/2}\right]$ 1. $\frac{\sqrt{3}}{4}$ ab 2. $\frac{3\sqrt{3}}{4}$ ab 3. $\frac{\sqrt{3}}{2}$ ab 4. $\frac{3\sqrt{3}}{2}$ ab 71. If the petrol burnt per hour in driving a motor boat 2. $\frac{1}{6} \left[(a+b) - (a^2 - ab + b^2)^{1/2} \right]$ varies as the cube of its velocity when going against a current of 'C' KMPH, the most economical speed is 3. $\frac{1}{6} \left[(a-b) + (a^2 - ab + b^2)^{1/2} \right]$ 1. $\frac{c}{2}$ 2. $\frac{3c}{2}$ 3. $\frac{\sqrt{3c}}{2}$ 4. c 4. $\frac{1}{6}\left[(a-b)-(a^2-ab+b^2)^{1/2}\right]$ Three sides of a trapezium are equal, each being 72. 'a' cms long. Then its maximum area is 78. The sum of two positive numbers is equal to 'a' 1. $\frac{3\sqrt{3}}{4}a^2$ 2. $\frac{6\sqrt{3}}{4}a^2$ 3. $\frac{\sqrt{3}}{4}a^2$ 4. $\frac{\sqrt{3}}{2}a^2$ and if the sum of their cubes is least, the numbers are 2. a/2. a/2 1. a/3, a/3 73. AB is a diameter of a circle and C is any point on the circumference of the circle then 3. a/4, a/4 4. 3a/3, a/4 79. The volume of the greatest cylinder which can be 1. Area of the $\triangle ABC$ is maximum when it is inscribed in a cone of height h and semi vertical isosceles angle α is 2. Area of the $\triangle ABC$ is minimum when it is 1. $\frac{4\pi h^3}{27} \tan^2 \alpha$ 2. $4\pi h^2 \tan^2 \alpha$ 3 isosceles 3. The perimeter of $\triangle ABC$ is minimum when it is $\frac{4\pi h^3}{\Omega}$ tan² α 4. $\frac{4\pi h^3}{27}$ tan³ α isosceles 4. The perimeter of ΛABC is maximum when it is 80. A point P is given on the circumference of a circle isosceles of radius r. The chod QR is parallel to the tangent 74. The function which has neither maximum nor line at P. the maximum area of the triangle PQR is minimum at x = 0 is 1. $\frac{3\sqrt{2}}{4}r^2$ 2. $\frac{3\sqrt{3}}{4}r^2$ 3. $\frac{3}{8}r$ 4. $\frac{3\sqrt{2}}{4}r$ 1. $f(x) = x^2$ 2. $f(x) = \cos x$ 3. $f(x) = x^3 - 8$ 4. $f(x) = \cos hx$ 81. For 0 < a < x, the minimum value of the function 75. If f(x) is minimum at x = a then log, a + log, x is 1. There exists $\delta > 0$ such that 1. 1 2. 2 $a - \delta < x < a \implies f(x) < f(a)$ 3. -2 4. -1/2 82. The minimum value of a sec x + b cosecx is 2. There exists $\delta > 0$ such that 2. (a^{2/3}-b^{2/3})^{2/3} 1. ab $a < x < a + \delta \implies f(x) > f(a)$ 3. (a^{2/3}+b^{2/3})^{3/2} 4. a²b² 3. There exists $\delta > 0$ such that 83. The function a² sec²x + b² cosec²x attains minimum value when x = $a - \delta < x < a + \delta \Longrightarrow f(x) \ge f(a)$ 4. There exists $\delta > 0$ such that 2. $\tan^{-1}(\sqrt{a/b})$ 1. tan⁻¹(b/a) $a - \delta < x < a + \delta \Longrightarrow f(x) \le f(a)$ 3. $Tan^{-1}(\sqrt{b/a})$ 4. Tan⁻¹(a/b) 76. The hypotenuse of a right angled triangle is k cm, If a, b $\in Z^+$ then maximum value of log[(x-a)^a if the area is maximum then the sides of the 84. triangle are $(x-b)^{b}$] occurs at x = 2. $k\sqrt{2} k\sqrt{2}$ 1. k, k 1. $\frac{a+b}{2}$ 2. \sqrt{ab} 3. $\frac{2ab}{a+b}$ 4. a+b4. $k/\sqrt{2} k/\sqrt{2}$ 3. k/3, 2k/3

JR. MATHEMATICS

496

85	The maximum volume of the cone that can be inscribed in a sphere of radius r is		31. 1 32. 1 33. 1 34. 1 35. 4				
	32 , 32 ,		36. 2 37. 1 38. 1 39. 4 40. 3				
	1. $\frac{1}{27}\pi r^3$ 2. $\frac{1}{81}\pi r^3$		41. 2 42. 2 43. 1 44. 2 45. 3				
	32		46. 2 47. 3 48. 2 49. 3 50. 1				
	3. $85\pi r^3$ 4. $\frac{52}{9}\pi r^3$		51. 1 52. 3 53. 3 54. 3 55. 1				
86.	A triangle is inscribed in a semi circle of radius 'a'		56. 2 57. 1 58. 1 59. 1 60. 2				
	so that one side is the bounding diameter. Then		61. 3 62. 4 63. 4 64. 3 65. 1				
	$(-14)^{-2}$		66.3 67.3 68.2 69.1 70.2				
	1. $(\pi/4)a^2$ 2. $(1/2)a^2$		71. 2 72. 1 73. 1 74. 3 75. 3				
07	$3.(1/4)a^2$ $4.a^2$		76.4 77.2 78.2 79.1 80.2				
87.	Maximum value of 'r' where		81. 2 82. 3 83. 3 84. 3 85. 2				
	$\frac{c^2}{r^2} = \frac{a^2}{\sin^2 \theta} + \frac{b^2}{\cos^2 \theta}$ where c, a, b are constants		86. 4 87. 1 88. 2 89. 1 90. 1				
	is		NUMERICAL QUESTIONS				
			LEVEL-1				
	1) $\frac{1}{a+b}$ 2) $\frac{1}{a-b}$	1.	$f(x) = 2x^3 - 15x^2 + 36x + 5$ is decreasing in				
	$a^2 + b^2$		1. (1, 2) 2. (2, 3)				
	3) $\frac{a+b}{c^2}$ 4) $\frac{c}{a^2+b^2}$		3. $(-\infty, 2)$ 4. $(3, \infty)$				
88	The area of the quadrilateral in a circle is	2.	$f(x) = \frac{x}{x} + \frac{5}{x}(x \neq 0)$ is increasing in				
00.	minimum when the quadrilateral is		(5, 0)				
	1) Rectangle 2) square		1. $(-3, 0)$ 2. $(0, 3)$				
	3) Parallelogram 4) Rhombus	3. $(-\infty, -5) \cup (5, \infty)$ 4. (-5, 5)					
89.	If all the rectangles of a given perimeter 2P, the	3.	$f(x) = x + 2 \cos x$ is increasing in				
	one having the smallest diagonal is square whose side is		1. $\left(0,\frac{\pi}{2}\right)$ 2. $\left(\frac{-\pi}{2},\frac{\pi}{6}\right)$				
	P P						
	1) $\frac{1}{2}$ 2) P 3) 2P 4) $\frac{1}{3}$		3. $\left(\frac{\pi}{2}, \pi\right)$ 4. $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$				
90.	The maximum value of the area of the triangle with vertices $(a, 0)(a\cos\theta, b\sin\theta)$ and $(a\cos\theta, -b)$	4.	f(x) = 2 x-3 + x-4 is decreasing in				
	$\sin \theta$) is		1. $(3, 4)$ 2. $(4, \infty)$ 3. $(-\infty, 3)$ 4. $(-\infty, \infty)$				
		5.	The interval of x for which the function				
	1) $\frac{3\sqrt{3ab}}{4}$ 2) $3\sqrt{ab}$		$y = -x(x-2)^2$ increases is				
	$3) \frac{\sqrt{3ab}}{4} \qquad \qquad 4) \sqrt{3ab}$		$1)\left(\frac{2}{3},2\right) \qquad \qquad 2)\left[\frac{2}{3},2\right)$				
	KEY		$\begin{bmatrix} 2 \\ -2 \end{bmatrix}$ $\begin{pmatrix} 2 \\ -2 \end{bmatrix}$				
	1. 1 2. 2 3. 1 4. 1 5. 2		$3) \left\lfloor \overline{3}^{,2} \right\rfloor \qquad \qquad 4) \left\lfloor \overline{3}^{,2} \right\rfloor$				
	6.3 7.1 8.2 9.3 10.1	6.	In the interval $(7, \infty)$, $f(x) = x - 5 + 2 x - 7 $ is				
	11. 1 12. 1 13. 1 14. 2 15. 1		1. Increasing 2. Decreasing				
	16. 1 17. 2 18. 1 19. 2 20. 3		3. Constant4. Cannot be estimated				
	21 1 22 2 23 2 24 1 25 2	7.	$f(x) = x^2 (x-2)^2$ is increasing in				
	26.4 27.2 28.4 29.4 30.1		1. $(-\infty, 0)$ 2. $(2, \infty)$ 3. R 4. $(1, 2)$				

8. If 15 < X < 30 then f(x) = |x - 15| + |x - 30| is $f(x) = \sqrt{x^2 - 4}$ is decreasing in 21. 1. Increasing 2. Decreasing 1. (-2, 2) 2. $(2, \infty)$ 3. $(-\infty, -2)$ 4. $(-\infty, \infty)$ 3. Constant 4. cannot be estimated 22 $f(x) = \sqrt{100 - x^2}$ is increasing in 9. The intervals of monotonicity of $f(x) = x^2 e^{-x}$ is 1. (0, 10) 2. (-10, 0) 3. $(-\infty, -10)$ 4. $(10, \infty)$ 2. $(-\infty, 0)U(2, \infty)$ 1.(2,4) $f(x) = 3x^2-6x+2$ is decreasing in 23. 3. (0, 4) 4. $(-\infty, 0)U(4, \infty)$ 10. The set of values of 'x' for which 1.(2,3)2. (1, 2) 3. (3, 4) 4. (-∞, 1) $f(x)=2x^3-9x^2+12x+10$ is increasing is $f(x) = x^9 + 3x^7 + 6$ is increasing in 24. 1. $(-\infty,\infty)$ 2. (1, 2) 1. $(-\infty, \infty)$ 2. $(-\infty, 0)$ 3. $(0, \infty)$ 4. Ø $f(x)=x^3 - 27x + 5$ is monotonically increasing for 25. 3. $(-\infty, 1) U(2, \infty)$ 4. [1, 2] 1. x < -3 2. |x| > 3 3. |x| < 3 4. x > 311. $f(x) = x^3 + 6x^2 + 24x - 17$ is increasing for f(x) = In (In x) (x > 1) is increasing in 26. 1. $(-\infty, \infty)$ 2. $R - \{0\}$ 3. (1, 2) 4. [1, 2] 1. (0, 1) 2. $(1, \infty)$ 3. (0, 2)4. $(-\infty, 1)$ 12. If x > 0 then the interval of monotonically increasing 27. $f(x) = x^3+4x+45$ is increasing in of $f(x)=2x^2-\log x$ is 1. $(0, \infty)$ 2. $(-\infty, 0)$ 3. $(-\infty, \infty)$ 4. \emptyset 1. $\left(-\infty, \frac{-1}{2}\right)$ 2. $\left(\frac{-1}{2}, 0\right)$ 3. $\left(0, \frac{1}{2}\right)$ 4. $\left[\frac{1}{2}, \infty\right]$ $f(x) = x^5 + 2x^3 + x$ is increasing in 28. 1. $(0, \infty)$ 2. $(-\infty, 0)$ 3. $(-\infty, \infty)$ 4. \emptyset 13. The set of values of 'a' for which 29. $f(x) = \log (1-x^2)$ is increasing in $f(x) = x^3 - ax^2 + 48x + 1$ is increasing for all real 1. (-1, 0) 2. (0, 1) 3. (-1, 1) 4. Ø values of 'x' is $f(x) = \log (1-x^2)$ is decreasing in 30. 2. (-∞,-12) 1. (-12, 12) 1. (-1, 0) 2. (0, 1) 3. (-1, 1) 4. Ø 3. $(12, \infty)$ 4. $(-\infty, \infty)$ $f(x) = 12 + x^{\frac{2}{3}}$ is increasing in 31. 1. $(0, \infty)$ 2. $(-\infty, 0)$ 3. 0 14. $f(x) = x + \frac{1}{x}$ is decreasing when $x \in$ 4. $(-\infty, \infty)$ $f(x) = 12 + x^{\frac{1}{3}}$ is decreasing in 32. 1. (-1, 1) 2. (-1, 0) U (0, 1) 3. $(-\infty, -1)$ 4. (1,∞) 1. $(0, \infty)$ 2. $(-\infty, 0)$ 3. 0 4. $(-\infty, \infty)$ 15. The set of values 'x' for which 33. f(x) = 25 + |x - 9| is increasing in $f(x) = x^3-6x^2+27x+10$ is increasisng is 1. $(-\infty, 9)$ 2. $(9, \infty)$ 3. $(-\infty, \infty)$ 4. \emptyset 1. (1, 2) 2. $(-\infty, 1) \cup (2, \infty)$ 4. (-∞, 1) 3. $(-\infty, \infty)$ f(x) = 25 + |x - 9| is decreasisng in 34. 16. $f(x) = x \ln x - x$ is an increasing function in the 1. $(-\infty, 9)$ 2. $(9, \infty)$ 3. $(-\infty, \infty)$ 4. \emptyset interval $f(x) = x - e^x$ is increasing in 35. 1. $(0, \infty)$ 2. (0, 1) U (1,2) 2. $(0, \infty)$ 3. $(-\infty, \infty)$ 4. \emptyset 3. $(1, \infty)$ 4. $(-\infty,\infty)$ $1.(-\infty, 0)$ 17. $f(x) = x^2 - 8x + 3$ is increasing in $f(x) = 1 - x^3$ is decreasing in 36. 1. $(0, \infty)$ 2. $(-\infty, 4)$ 3. $(4, \infty)$ 4. $(-\infty, \infty)$ 1. R 2. $(0, \infty)$ 3. $(-\infty, 0)$ 4. \emptyset 18. f(x) = |x| is increasing in $f(x) = \frac{x}{\log x} - \frac{\log 5}{5}$ is increasing in 37. 1. $(-\infty, \infty)$ 2. $(-\infty, 0)$ 3. $(0, \infty)$ 4. $(-\infty, -1)$ 2. (0, 1) U (1, e) 1. (e, ∞) 19. $v = \sqrt{x - x^2}$ increases in the interval 3. (0, 1) 4. (1, e) 1) $\left(0,\frac{1}{2}\right)$ 2) $\left(-\frac{1}{2},0\right)$ 3) $\left|0,\frac{1}{2}\right|$ 4) $\left|0,\frac{1}{2}\right|$ 38. $f(x) = \frac{x}{\log x} - \frac{\log 5}{5}$ is decreasing in 20. $f(x) = x.e^{-x}$ is decreasing in 1. (e, ∞) 2. (0, 1) U (1, e) 3. (0, 1) 4. (1, e) 1. $(-\infty, 1)$ 2. $(1, \infty)$ 3. $(-\infty, \infty)$ 4. $(0, \infty)$

JR. MATHEMATICS

 $f(x) = x^3 - 27x + 5$ is strictly increasing when in (0, 2π), f(x)= x + sin 2x is 39. 54. 1. x < -3 2. |x| >3 3. $\chi \le -3$ 4. |x| < 340. The function $2x^2$ - log x is a decreasing function if 'x' belongs to the interval 55. 1. $\left(-\frac{1}{2},\frac{1}{2}\right)$ 2. $\left(-\frac{1}{2},0\right)$ 3. $\left(0,\frac{1}{2}\right)$ 4. (-2, 2) 2.25 1.5 56. The set of all 'x' for which log (1+x) < x is 41. 1. $(-\infty, 1)$ 2. $(-1, \infty)$ 3. [-1, 1] 4. $(-\infty, \infty)$ 1. sin x 57. 42. $y = \frac{x^2}{2} - \log x$ decreases in the interval (0,1]1)(0,1)2) [0,1) 3)[0,1] 1. 5 A stationary point of $f(x) = \sqrt{16 - x^2}$ is 43. 58. 2. (-4, 0) 3. (0, 4) 4. (-4, 4)1. (4, 0)1. 15 2. 25 44. A stationary value of $f(x) = x(\ln x)^2$ is 1. 2e⁻² 2. 4e⁻² 3. 2e² 4. 4e² 59. The stationary point of $f(x) = x^2 - 10x + 43$ is 45. 1. 2 2. 1 1. (5, 18) 2. (18, 5) 3. (5, 5) 4. (5, 15) 60. The critical point of f(x) = |2x + 7| at x = 46. 1. 100 2. 7 3. $\frac{-7}{2}$ 4. -7 1. 0 61. 2. -2 1. 2 47. $f(x) = (\sin^{-1}x)^2 + (\cos^{-1}x)^2$ is stationary at 62. 1. $x = \frac{1}{\sqrt{2}}$ 2. $x = \frac{\pi}{4}$ 3. x = 1 4. x = 048. The stationary point of $f(x) = e^{x}+e^{-x}$ is 63. 2. (2, 3) 3. (1, 3) 4. (0, 2) 1. (1, 2) The minimum value of $f(x) = x + \frac{4}{x+2}$ is 49. 1. -1 2. -2 3.1 4. 2 64. 50. $f(x) = x^3 + 27x + 5$ 2. Has a minimum 1. Has a maximum 3. Neither max nor min is true 4. Both max and min are true 1. 1 2. -1 51. f(x) = |x| is minimum at x = 65. $0 \le x \le 2$ is 1. 1 2.0 3. -1 4.2 1. 4 2.6 The maximum of $f(x) = \frac{x^4}{4} - \frac{3}{2}x^2$ occurs at x = 52. 66. 1.3 2.0 3. -1 4. 2 53. The minimum value of 16 $\cot x + 9 \tan x$ is 1. e 1. 12 2.6 3. 24 4. 25

1. Minimum at $x = \frac{2\pi}{2}$ 2. Maximum at $x = \frac{2\pi}{2}$ 3. Maximum at $x = \frac{\pi}{4}$ 4.Minimum atr $x = \frac{\pi}{6}$ The minimum value of $f(x) = 4 \sec^2 x + 9 \csc^2 x$ is 3. 13 4. 13² $f(x) = \frac{x}{1 + x \tan x}$ is maximum when x = 2. cos x 3. tan x 4. cot x The maximum value of $5\cos\theta + 3\left(\cos\left(\theta + \frac{\pi}{3}\right)\right) + 3$ is 2.10 3. 11 4. -1 The minimum value of $f(x) = x^2 + \frac{250}{x}$ is 3.45 4.75 The minimum of $f(x) = (x-2)^{\frac{2}{3}}$ occurs at x = 3.0 4. -2 The maximum value of f(x) = 100 - |45 - x| is 2. 145 3.55 4.45 Minimum value of 2^{x^2+8x+6} occurs at x = 3.4 4. -4 f(x) = |3x - 4| has least value at x = 1. $\frac{3}{4}$ 2. $\frac{4}{3}$ 3. 3. 4. 4 The least, greatest values of $f(x) = xe^{-x}$ on $[0, \infty)$ 1. $0,\frac{1}{e}$ 2. $\frac{1}{e},\frac{2}{e^2}$ 3. $\frac{2}{e^2},\frac{3}{e^3}$ 4. $\frac{1}{e},\frac{2}{e}$ The value of 'a' for which $f(x) = a \sin x + \frac{1}{3} \sin 3x$ has an extremum at $x = \frac{\pi}{2}$ is 3.0 4. 2 The absolute maximum of $y = x^3 - 3x + 2$ in 3. 2 4.0 Greatest value of $\left(\frac{1}{x}\right)^{n}$ is 2. $(e)^{\frac{1}{e}}$ 3. $(\frac{1}{e})^{\frac{1}{e}}$ 4. $\frac{1}{e}$

JR. MATHEMATICS

67.	The profit P of a function of the selling price p is given by $P = 1 + 36000p - 6000p^2$. At what price is the profit maximum	80.	The greatest value of $f(x) = x - 2 \log x$ in [1, e] attained at x =				
	1. Rs.3 2. 1.15		1. 1 2. \sqrt{e} 3. 2 4. $\frac{e}{-}$				
	3. Rs.0.50 4. Rs. 1.50						
68.	The sum of two +ve numbers is 20. If the sum of their square is minimum then one of the number is	81.	The maximum possible area that can be enclosed by a wire of length 20 cms by bending it into the form of a sector in sq. cms is				
	1.6 2.4 3.10 4.8		1. 10 2. 25 3. 30 4. 15				
69.	If the sum of the +ve numbers is 18 then the maximum value of their product is	82.	The sum of two numbers is 6. The minimum value of the sum of their reciprocals is				
70	1. 01 2. 03 3. 72 4. 00		3 6 2 2				
/0.	least value of their sum is		1. $\frac{1}{4}$ 2. $\frac{1}{5}$ 3. $\frac{1}{3}$ 4. $\frac{1}{5}$				
71	Two sides of a triangle are given of the area of the	83.	The minimum value of $f(x) = 9x + \frac{25}{2}$ is				
1.	triangle is maximum then the angle between the		1 24 2 24 2 20 4 20				
	given sides is	01	1. 34 2. -34 3. 30 4. -30				
	1. 45° 2. 30° 3. 60° 4. 90°	04.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
72.	The sides of a rectangle are $(6 - x)$ cm and $(x - 3)$ cm. If its area is maximum then $x =$	85	On the interval [0, 1] the function $x^{25}(1-x)^{75}$ takes				
	1 4 2 4 5 3 4 8 4 4 6		its maximum value at the point $x =$				
73.	A triangle of maximum area is inscribed in a circle.		1 1 1				
	If a side of the trinagle is $20\sqrt{3}$ then the radius of		1. 0 2. $\frac{1}{4}$ 3. $\frac{1}{2}$ 4. $\frac{1}{3}$				
	the circle is		_				
	1. 20 2. 30 3. 40 4. 60	86.	If A > 0, B > 0, and A + B = $\frac{\pi}{3}$ then the maximum				
74.	x and y are two +ve numbers such that $xy = 1$. Then the minimum value of $x + y$ is		value of tan A tan B is				
	1. 4 2. $\frac{1}{4}$ 3. $\frac{1}{2}$ 4. 2		1. $\frac{1}{\sqrt{3}}$ 2. $\frac{1}{3}$ 3. 3 4. $\sqrt{3}$				
75.	The minimum value of $ x-3 + x-7 $ is	87.	The maximum value of $f(x) = \frac{1}{x}$ is				
	1. 3 2. 7 3. 4 4. 5		2e [*] + e ^{-*}				
76	The point on the surve $x^2 = 2x$, which is closest		$1 \frac{1}{2} 2 \sqrt{2} 3 \frac{1}{2} 4 \frac{e}{2}$				
70.	to the point (0, 5) is		1. $2\sqrt{2}$ 2. $2\sqrt{2}$ 3. 2 4. $2e^2 + 1$				
	1. $(2\sqrt{2}, 4)$ 2. $(4, 8)$ 3. $(\sqrt{2}, 1)$ 4. $(2, 2)$	88.	The perimeter of a sector is given. The area is maximum when the angle of the sector is				
	x ² x ³		1. Tradians 4. 4 radians				
77.	At x = 0, $f(x) = \cos x - 1 + \frac{x}{2} - \frac{x}{6}$	89.	The maximum area of a recetangle inscribed in a				
	1. Has a minimum 2. Has a maximum		circle of radius 5 cm is				
	3. Does not have an extremum		1. 25 sq. cm 2. 50 sq. cm				
	4. Is not defined		2 100				
78.	At x = 0, f(x) = sin x - x + $\frac{x^3}{2} - \frac{x^4}{24}$		3. 100 sq.cm 4. $\frac{1}{2}$ sq.cm				
	0 24 1 Has a minimum 2 Has a maximum	90.	The maximum height of the curve $y = 6 \cos x$, $8 \sin x$ above the X axis				
	3. Does not have an extremum		1. 6 2. 8 3. 14 4. 10				
	4. Is not defined	91.	N characters of information are held on a magnetic				
79.	The least and the greatest value of $f(x) = x^2 \log x$ in [1, e] are		tape in batches of x characters each, the batch processing time being $(4+9x^2)$ seconds. The optimal value of x for fast processing is				
			4 9 2 3				
	3. e^2 , e^4 4. $\frac{1}{e}$, e		1. $\frac{1}{9}$ 2. $\frac{1}{4}$ 3. $\frac{1}{3}$ 4. $\frac{1}{2}$				

92. The greatest value of the function $f(x) = sin^2x$ -10 20 cos x+1 is 1. 20 2. 11 3. 21 4. 0 Minimum value of $\frac{(6+x)(11+x)}{2+x}$ is 93. 1. 5 2.15 4. 25 3. 45 1094. The minimum value of 4ex+9e-x is 1.5 2. 25 3. 12 4. 13 The least value of $f(x) = (\sin^{-1}x)^3 + (\cos^{-1}x)^3$ 95. 1. $\frac{\pi}{2}$ 2. $\frac{\pi^3}{8}$ 3. $\frac{\pi^3}{32}$ 4. $\frac{7\pi^3}{8}$ The least value of $f(x) = \frac{x^3}{3} - abx$ occurs at x =10 96. 2) A.M. of a and b 1) G.M of a and b 3) H.M. of a and b 4) sum of a and b 10 The points on the hyperbola $x^2 - y^2 = 2$ closest 97. the point (0, 1) are 1) $\left(\pm\frac{3}{2},\frac{1}{2}\right)$ 2) $\left(\frac{1}{2},\pm\frac{3}{2}\right)$ $3)\left(\frac{1}{2},\frac{1}{2}\right) \qquad \qquad 4)\left(\pm\frac{3}{4},\pm\frac{3}{2}\right)$ 10 Which fraction exceeds its Pth power by the great-98. est number possible is? 1) P^{P} 2) $\left(\frac{1}{P}\right)^{P-1}$ 3) $P^{\frac{1}{1-P}}$ 4) $P^{\frac{1}{P}}$ 10 The least value of $5^{\sin x+1} + 5^{-\sin x+1}$ is 99. 2) 10 1) 5 3) 15 4) 11 100. If x, y are two real numbers such that $x^{2} + y^{2} = 1$, then the maximum value of x + y is 10 1) $\sqrt{2}$ 2) $\sqrt{5}$ 3) 2 4)6 101. If a, b, c are the lengths of sides of a trangle, then the minimum value of $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$ 1)1 2)2 3) 5 4) 3 102. If a, b, c are the sides of a triangle such that $a^2 + b^2 + c^2 = 1$, then the maximum value of ab + bc + ca is 2) $\frac{1}{2}$ 3) $\frac{2}{3}$ 4) $\frac{5}{6}$ 1)1 36.1

3.	The gre	atest va	lue of t	he func	tion f(x)	=				
	$\sin\bigg\{x\big[x\big]$	$+]+e^{[x]}+$	$\left(\frac{\pi}{2}-1\right)$ fo	rall $x \in [$	(0,∞) is					
	1) -1	2) 0	3)) 1	4) 2					
4.	A particle	e is movir	ng in a stra	aight line	such that	its				
	distance	at any tin	ne 't' is g	iven by S	S =					
	$\frac{t^4}{4} - 2t^3 + 4t^2 + 7$ then its acceleration is minimum									
	at t =									
	1) 1	2) 2	3)	1/2	4) 3 / 2					
5.	If $-4 \leq$	$x \le 4$ th	nen the	critical	points	of				
	f(x) = x	$x^2 - 6 x +$	+4 are							
	1) 3, -2	2) 6,	-6 3)	0, 1	4) 3, -3					
6.	The dista	nce 'S' d	escribed i	n time 't'	by a partic	ele				
	moving	in a str	aight lir	ne is giv	en by S	=				
	$t^5 - 40t^3$	$+30t^{2}+$	80t - 25	0 then the	e maximu	m				
	acceleration is									
	1) 260 units/sec^2 2) -260 units/sec^2									
7	5) 150 ur	tiolo mon	4) vincense	otroicht	ls/sec ²	L				
/.	served th	at the dis	tance 'S'	at time '1	ine it is o is given	บ- า				
		3			given					
	by $S = 6t$	$-\frac{t^{3}}{2}$, the	e maximı	um veloc	ity during t	he				
	motion is									
	1) 3	2) 6	3)	9	4) 12					
8.	The num	ber of cri	tical poin	ts of f(x)	=					
	$\frac{ x-1 }{x^2}$ is	5								
	1) 1	2) 2	3)	3	4) 0					
9.	The abso	lute mini	mum of y	$v = c \cosh \theta$	x/c is					
	1) 1/c	2) c/2	2 3)	c	4) 2c					
			KEV							
	1 0	0.0	2 2	1 2	5 1					
	1. Z	2.3	J.∠	4.3	0. T					
	0.1	1.2	0. 0	9.2	10. 3					
	16.2	12.4	10.1	14. Z	10.0					
	10. J	11.3	10. J	19.1 04 4	20. Z					
	∠1.0 26 2	22. Z	20.4 20.2	∠4. I 20. 4	20. Z					
	20. Z	21.3	20. J	∠9. I 24 4	30. Z					
	31. T	32. Z	<u>ა</u> ა. 2	34. 1	30. T					

JR. MATHEMATICS

37.1

38.2

40.3

39.2

41. 2	42. 1	43. 3	44. 2	45. 1	22.
46.3	47. 1	48.4	49.4	50.3	23.
51.2	52. 2	53.3	54.1	55.2	24.
56. 2	57.2	58.4	59. 1	60. 1	25.
61.4	62.2	63.1	64.4	65. 1	26.
66. 2	67.1	68.3	69. 1	70. 1	27.
71.4	72. 2	73. 1	74.4	75.3	28.
76. 1	77.3	78.2	79.2	80. 1	29.
81. 2	82.3	83. 3	84.2	85. 2	30.
86. 2	87.1	88. 2	89. 2	90.4	31.
91. 3	92.3	93.4	94.3	95.3	32.
96.1	97.1	98.3	99.2	100.1	33.
101.4	102.1	103.3	104.2	105.4	34.
106.2	107.2	108.3	109.3		35.
					36.
	I	HINTS			37.
On verif	ication f ¹ (x) < 0, 🛶	< ∈ (2, 3)		38.
On verifi	cation f ¹ ()	()>0 v →	⊬X ∈ (−∞, -	-5)∪(5,∞)	40.
			(-π π)		41.
On verif	ication f ¹ ($(x) > 0, \forall x$	$\in \left(\frac{\pi}{2}, \frac{\pi}{6}\right)$		43.
→X ₁ ,X ₂	∈ (-∞,3)x ₁	$< X_2 \Longrightarrow f($	\mathbf{x}_1) > f(\mathbf{x}_2))	
$- \times X_1, X_2$	∈(7,∞);x ₁	$< \mathbf{X}_2 \Rightarrow \mathbf{f}(\mathbf{X}_2)$	$(x_1) < f(x_2)$		
On verif	ication f ¹ (- x)>0. →>	(∈(2.∞)		
	- (15 30).1	$f(\mathbf{x}) = f(\mathbf{x})$)		45.
$\neg \neg \uparrow_1, \land_2$	=(10,00),1	$(\Lambda_1) = I(\Lambda_2)$	$f^{1}(\mathbf{x}) < 0$		46
→-X ∈ (ი 0) പ(2 ო	x) > 0 (01)	Γ(X) < 0,		
	$(z, 0) \subset (z, \infty)$	γ	(- (1))	(2)	47.
Onvenin	ication r(x) > 0, →)	$c \in (-\infty, 1)^{\mathbb{C}}$)(∠,∞)	48.
On verif	ication f ¹ (x)>0, ↔	$x \in (-\infty, \infty)$		49.
Y > 0 or	verificat	ion $f^{1}(v) >$	o ≁x∈	$\left[\frac{1}{\infty}\right]$	
51. 2 52. 2 53. 3 54. 1 55.2 56. 2 57. 2 58. 4 59. 1 60. 1 61. 4 62. 2 63. 1 64. 4 65. 1 66. 2 67. 1 68. 3 69. 1 70. 1 71. 4 72. 2 73. 1 74. 4 75. 3 76. 1 77. 3 78. 2 79. 2 80. 1 81. 2 82. 3 83. 3 84. 2 85. 2 86. 2 87. 1 88. 2 89. 2 90. 4 91. 3 92. 3 93.4 94.3 95.3 96. 1 97. 1 98.3 99.2 100. 1 101.4 102.1 103.3 104.2 105.4 106.2 107.2 108.3 109.3 HINTS 1. On verification f ¹ (x) < 0, $\forall x \in (-\infty, -5) \cup (5, \infty)$ 3. On verification f ¹ (x) > 0, $\forall x \in (-\infty, -5) \cup (5, \infty)$ 3. On verification f ¹ (x) > 0, $\forall x \in (2, 3)$ 4. $\forall x_1, x_2 \in (-\infty, 3)x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ 5. $\forall x_1, x_2 \in (15, 30); f(x_1) = f(x_2)$ 5. $\forall x_1, x_2 \in (15, 30); f(x_1) = f(x_2)$ 6. $(\neg x_1, x_2 \in (-\infty, 0) \cup (2, \infty)$ 10. On verification f ¹ (x) > 0, $\forall x \in (-\infty, 0) \cup (2, \infty)$ 11. On verification f ¹ (x) > 0, $\forall x \in (-\infty, 0)$ 2. $x > 0$, on verification f ¹ (x) > 0, $\forall x \in (-\infty, 0)$ 2. $x > 0$, on verification f ¹ (x) > 0, $\forall x \in (-\infty, 0) \cup (2, \infty)$ 3. $f^1(x) > 0$ in that $\Delta < 0$ then $a \in (-12, 12)$ 4. On verification f ¹ (x) < 0, $\forall x \in (-1, 0) \cup (0, 1)$					
$f^{1}(x) > 0$	in that Δ	< 0 then	a ∈ (-12,	12)	51.
On verif	ication f ¹ (x) < 0, →	x ∈ (-1, 0)	U(0, 1)	52.
	41. 2 46. 3 51. 2 56. 2 61. 4 66. 2 71. 4 76. 1 81. 2 86. 2 91. 3 96. 1 101.4 106.2 On verifi On verifi $\neg x_1, x_2 \in$ On verifi	41. 2 42. 1 46. 3 47. 1 51. 2 52. 2 56. 2 57. 2 61. 4 62. 2 66. 2 67. 1 71. 4 72. 2 76. 1 77. 3 81. 2 82. 3 86. 2 87. 1 91. 3 92. 3 96.1 97.1 101.4 102.1 106.2 107.2 On verification f ¹ (On verification f ¹ ($\forall x_1, x_2 \in (-\infty, 3)x_1$ $\forall x_1, x_2 \in (15, 30);1$ On verification f ¹ ($\forall x_1, x_2 \in (15, 30);1$ On verification f ¹ ($\forall x \in (-\infty, 0) \cup (2, \infty)$ On verification f ¹ (x > 0, on	41. 2 42. 1 43. 3 46. 3 47. 1 48. 4 51. 2 52. 2 53. 3 56. 2 57. 2 58. 4 61. 4 62. 2 63.1 66. 2 67. 1 68. 3 71. 4 72. 2 73. 1 76. 1 77. 3 78. 2 81. 2 82. 3 83. 3 86. 2 87. 1 88. 2 91. 3 92. 3 93.4 96.1 97.1 98.3 101.4 102.1 103.3 106.2 107.2 108.3 HINTS On verification f ¹ (x) < 0, \checkmark On verification f ¹ (x) < 0, \checkmark On verification f ¹ (x) > 0 v \checkmark On verification f ¹ (x) > 0, \checkmark $\checkmark x_1, x_2 \in (-\infty, 3)x_1 < x_2 \Rightarrow f(x_1, x_2) < f(x_1) = f(x_2)$ On verification f ¹ (x) > 0, \checkmark $\checkmark x_{1,1}, x_2 \in (15, 30); f(x_1) = f(x_2)$ On verification f ¹ (x) > 0, \checkmark $x < 0$, on verification f ¹ (x) > 0, \checkmark $x < 0$, on verification f ¹ (x) > 0, \checkmark	41. 2 42. 1 43. 3 44. 2 46. 3 47. 1 48. 4 49. 4 51. 2 52. 2 53. 3 54. 1 56. 2 57. 2 58. 4 59. 1 61. 4 62. 2 63. 1 64. 4 66. 2 67. 1 68. 3 69. 1 71. 4 72. 2 73. 1 74. 4 76. 1 77. 3 78. 2 79. 2 81. 2 82. 3 83. 3 84. 2 86. 2 87. 1 88. 2 89. 2 91. 3 92. 3 93.4 94.3 96. 1 97. 1 98.3 99.2 101.4 102.1 103.3 104.2 106.2 107.2 108.3 109.3 HINTS On verification f ¹ (x) < 0, $\forall x \in (2, 3)$ On verification f ¹ (x) > 0, $\forall x \in (-\infty, -1)$ On verification f ¹ (x) > 0, $\forall x \in (-\infty, -1)$ On verification f ¹ (x) > 0, $\forall x \in (2, 0)$ $\forall x_1, x_2 \in (-\infty, 3)x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ $\forall x_1, x_2 \in (15, 30); f(x_1) = f(x_2)$ On verification f ¹ (x) > 0, $\forall x \in (2, \infty)$ $\forall x \in (-\infty, 0) \cup (2, \infty)$ On verification f ¹ (x) > 0, $\forall x \in (-\infty, -1)$ On verification f ¹ (x) > 0, $\forall x \in (-\infty, -1)$ On verification f ¹ (x) > 0, $\forall x \in (-\infty, -1)$ On verification f ¹ (x) > 0, $\forall x \in (2, \infty)$ $\forall x_1, x_2 \in (15, 30); f(x_1) = f(x_2)$ On verification f ¹ (x) > 0, $\forall x \in (-\infty, -1)$ On verification f ¹ (x) > 0, $\forall x \in (-\infty, -1)$ On verification f ¹ (x) > 0, $\forall x \in (-\infty, -1)$ On verification f ¹ (x) > 0, $\forall x \in (-\infty, -1)$ On verification f ¹ (x) > 0, $\forall x \in (-\infty, -1)$ On verification f ¹ (x) > 0, $\forall x \in (-\infty, -1)$ On verification f ¹ (x) > 0, $\forall x \in (-\infty, -1)$ On verification f ¹ (x) > 0, $\forall x \in (-\infty, -1)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

On verification $f^1(x) > 0$, $\forall x \in (-\infty, \infty)$ On verification $f^{+}(x) > 0$ for |x| > 3 $f^{+}(x) > 0$ at x > 1On verification $f^{+}(x) > 0$, $\forall x \in (-\infty, \infty)$ On verification $f^{\dagger}(x) > 0$, $\forall x \in (-\infty, \infty)$ On verification $f^{+}(x) > 0$, $\forall x \in (-1, 0)$ On verification $f^{+}(x) < 0, \forall x \in (0, 1)$ On verification $f^{+}(x) > 0 \quad \forall x \in (0, \infty)$ On verification $f^{(x)} < 0 \quad \forall x \in (-\infty, 0)$ On verification On verification $f^{+}(x) > 0$ 1 - $e^x > 0$; $e^x < 1$ at $(-\infty, 0)$ it is increasing On verification $f^{\dagger}(x) < 0$ in R. On verification $f^1(x) > 0$, $\forall x \in (e, \infty)$ On verification $f^1(x) < 0$, $\forall x \in (0,1) \cup (1,e)$ $f^{1}(x) < 0$ Verification. Clearly $f^{1}(x) = 0$ at x = 0, and $f(0) = \sqrt{16 - 0} = \sqrt{16} = 4$ stationary point = (0, f(0) = (0, 4)Clearly $f^1(x) = 0$ at $x = e^{-2}$ Therefore stationary value $= f(e^{-2}).$ Clearly $f^{1}(x) = 0$ at x = 5, Therefore Stationary point = (5, f(5))at x = -7/2Sin⁻¹x = Cos⁻¹x Then $x = \frac{1}{\sqrt{2}}$ $f^{1}(x) = 0 \implies x = 0$; Stationary point (0, f(0)) Clearly at x = 0, $f^{+}(x) = 0$ and $f^{+}(x) > 0$ \therefore Minimum value = f(0) For any value of x, $f^{\dagger}(x) \neq 0$ On verification On verification at x = 0, $f^{\parallel}(x) = 0$ and $f^{\parallel}(x) < 0$ Minimum value of a cot x + b tan x is $2\sqrt{ab}$ 53. On verification at $x = 2\pi / 3$, $f^{\dagger}(x) = 0$ 54. f^{||} (x)>0 \therefore Minimum at x = $2\pi / 3$ Minimum value of a²sec²x + b² cosec² x is (a+b)² 55. Clearly at x = cosx $f^{\parallel}(x) = 0$ and $f^{\parallel}(x) < 0$ 56. \therefore f(x) has maximum at x = cos x

On verification $f^1(x) > 0$, $\forall x \in (-10,0)$

On verification $f^1(x) < 0$, $\forall x \in (-\infty, 1)$

On verification $f^1(x) > 0$, $\forall x \in (-\infty, \infty)$

On verification $f^1(x) > 0$, $\forall x \in (4, \infty)$

 $\forall x_1, x_2 \in (0, \infty), x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)$

On verification $f^1(x) < 0$, $\forall x \in (-\infty, -2)$

On verification $f^1(x) < 0$, $\forall x \in (1,\infty)$

 $f^1(x) > 0$ then $x \in (1,\infty)$

15.

16.

17.

18.

20.

21.

57.
$$5 \cos \theta + 3\left(\cos\left(\theta + \frac{\pi}{3}\right)\right) + 3$$

 $= \frac{13}{2}\cos\theta - \frac{3\sqrt{3}}{2}\sin\theta + 3$
Maximum value of a $\cos\theta + b\sin\theta + c$ is
 $c + \sqrt{a^2 + b^2}$
58. Clearly at $x = 5$, $f^1(x) = 0$ and $f^{11} > 0$
Minimum value f(5).
59. $f(x)$ is minimum at $x = \frac{-b}{2a} = 2$
60. at $x = 45$ f takes maximum value
61. Clearly at $x = -4$, $f^1(x) = 0$ and $f^{11}(x) > 0$
62. $f(x) = 0$ at $x = 4/3$
63. at $x = 0$ min
at $x = 1$ max
64. $f(x)$ has an extremum at $x = \pi/3$
 $\Rightarrow f^1(x) = 0$ at $x = \pi/3$
65. \therefore absolute maximum = f(2) = 4
66. $f^1(x) = 0$ at $x = 1/e$
67. Derivative = 0 and find P value
68. Half of the sum of numbers (It is minimum)
69. $x = y = 18/2 = 9$ then product = 81.
70. $x = y = \sqrt{256} = 16$ Then sum = 2(16) = 32.
71. $\Delta = \frac{1}{2}$ ab Sin C. Then derivative is Zero;
 $\cos C = 0$; $C = 90^{\circ}$
72. $6 \cdot x = x - 3 \Rightarrow x = \frac{9}{2}$
73. Equilateral Triangle A = B = C = 60°.
Then 2R sin60 = $20\sqrt{3} \Rightarrow R = 20$
74. $x = y = 1$ Then $x + y = 2$
75. The min value of $|x - a| + |x - b|$ is $|a - b|$
76. Calculate distance and Verify
77. At $x = 0$, $f^{11}(x) = 0$, $f^{11}(x) = 0$ and $f^{111}(x) = -1 \neq 0$
78. $f'(x) = f''(x) = f'''(x) = f'''(x) = 0$, $f^{11}(x) = -1 < 0$
79. Put $x = 1$ and $x = e$
80. Verification
81. $|+2r = 20 \Rightarrow 1 = 10$ and $r = 5$;
Area = $(1/2)|r = 25$
82. $x = y = 6/2 = 3$, $1/x + 1/y = 2/3$
83. For ax+b/x, The min value is $2\sqrt{ab}$
84. For a² sec²x+b² Cosec²x;
The min value is $(a+b)^2$

85.
$$f'(x) = 0 \Rightarrow x = 1/4$$

86. $A = B = \frac{\pi}{6}$. Then TanA .TanB = 1/3
87. $f'(x) = 0 \Rightarrow e^x = \frac{1}{\sqrt{2}}$. Then max value $= \frac{1}{2\sqrt{2}}$
88. $r\theta + 2r = k \Rightarrow r = \frac{k}{\theta + 2}$; $A = \frac{1}{2}r^2\theta = \frac{1}{2}\frac{k^2\theta}{(\theta + 2)^2}$
 $\frac{dA}{d\theta} = 0 \Rightarrow \theta = 2$ Radians
89. $2r^2 = 2(5)^2 = 50$ Sq.cm
90. $\sqrt{a^2 + b^2} = \sqrt{36 + 64} = 10$
91. $\sqrt{\frac{a}{b}} = \sqrt{\frac{4}{9}} = \frac{2}{3}$
92. $f'(x) = 0$; $x = \pi$ substitute
93. $f'(x) = 0$ Then put $x = 4$
94. $f'(x) = 0 \Rightarrow e^x = 3/2$
95. $Sin^{-1}x = Cos^{-1}x \Rightarrow x = \frac{1}{\sqrt{2}}$, $f'(x) = \frac{\pi^3}{64} + \frac{\pi^3}{64} = \frac{\pi^3}{32}$
LEVEL-2
1. $f(x) = x - log(\frac{x+1}{x})$ ($x > 0$) is increasing in
1. $(0, \infty)$ 2. $(1, 2)$
3. $(1, 2) \cup (2, \infty)$ 4. $(-\infty, \infty)$
2. $f(x) = log(1+x) - \frac{2x}{x+2}(x > 0)$ is increasing in
interval
1. $(1, 3)$ 2. $(0, \infty)$ 3. $(0, 1)$ 4. $(1, \infty)$
3. The least integral value of 'a' such that the func-
tion $x^2 + ax + 1$ is strictly increasing on $[1, 2]$ is
1) -1 2) -3 3) -4 4) -2
4. $f(x) = 2x - tan^{-1}x - log(x + \sqrt{1 + x^2})(x > 0)$ is
increasing in
1. $(1, 2)$ 2. $(0, 1) \cup (2, \infty)$
3. $(0, \infty)$ 4. $(-\infty, \infty)$
5. The function $f(x) = \cos x - 2\lambda x$ is
monotonically decreasing when
1) $\lambda > \frac{1}{2}$ 2) $\lambda < \frac{1}{2}$
3) $\lambda < 2$ 4) $\lambda > 2$
6. The function $f(x) = 2 \log(x-2) - x^2 + 4x + 1$ increases
in the interval
1. $(1, 2)$ 2. $(2, 3)$ 3. $(2, 4)$ 4. $(0, \infty)$

21. The maximum value of $f(x) = 1 + 2 \sin x + 2 \cos^2 x$ $f(x) = \frac{x}{x^2 + 5x + 4}$ is maximum at x = 7. in $\left| 0, \frac{\pi}{2} \right|$ is 1. 2 3. 6 2. -2 The minimum of $f(x) = \frac{1 + x + x^2}{1 - x + x^2}$ occurs at x= 1. $\frac{7}{2}$ 2. $\frac{5}{2}$ 3. $\frac{3}{2}$ 4. 8. 1. -1 2.1 3. 2 4. -2 The function $f(x) = 4x^5 - 25x^4 + 40x^3 - 10$ has 22. 1. One maximum and one minimum The minimum ordinate of the curve $y = \frac{x^2 + 1}{4x - 3}$ is 9. One maximum and two minimum 3. Two maximum, one minimum 1. 1 2. -1 3. 2 4.4 At $x = \dots f(x) = 12x^5 - 45x^4 + 40x^3 + 7$ is maximum 4. Two maximum, two minimum 10. The sum of two +ve numbers is 100. If the product 23. 1. 1 2.0 3. 2 4. -2 of the square of one number and the cube of the 11. The maximum value of $f(x) = (x-2)^2(x-3)$ is other is maximum then the numbers are 2.4 3. -4 1. 2 4.0 1. 60, 40 2. 20, 80 3. 80, 20 4. 40, 60 12. If x+y = 28 then the maximum value of x^3y^4 is A straight line segment through the point (3, 4) in 24. 1. $4^3 \cdot 24^4$ 2. $12^3 \cdot 16^4$ 3. 4321 4. 1234 the first quadrant meets the coordinate axes in A and B. The minimum area of AOB is The minimum value of $f(x) = \frac{x}{1+y^2}$ is 13. 2.64 1.42 3. 48 4.24 The slope of the curve represented by 25. 1. $\frac{1}{2}$ 2. $\frac{2}{5}$ 3. $\frac{-1}{2}$ 4. $\frac{-2}{5}$ $v = 3x^3+5x^2+4x+9$ is minimum at x = 14. If 2x+y = 5 then the maximum value of $x^2+3xy+y^2$ 1. $\frac{-5}{9}$ 2. $\frac{5}{9}$ 3. $\frac{-5}{3}$ 4. $\frac{-5}{8}$ The least intercept made by the cordinate axes 26. 1. $\frac{125}{4}$ 2. $\frac{4}{125}$ 3. $\frac{625}{4}$ 4. $\frac{4}{622}$ on a tangent to the ellipse $\frac{x^2}{64} + \frac{y^2}{40} = 1$ is If $f(x) = a \log x + bx^2 + x$ has extreme values at 15. x = -1, x = 2 then a =, b = 1.40 2.30 3. 15 4. 100 1. $2, \frac{-1}{2}$ 2. $\frac{-1}{2}, 2$ 3. $\frac{1}{2}, 2$ 4. $2, \frac{1}{2}, 2$ 27. A rod AB of length 10 cms slides between two perpendicular lines OX, OY. The maximum area of the **AOAB** $f(x) = \sin x \cdot \cos^3 x$ has a maximum at x =16. 1. 50 2.20 3. 25 4 60 1. $\frac{\pi}{4}$ 2. $\frac{\pi}{3}$ 3. $\frac{\pi}{6}$ 4. $\frac{\pi}{2}$ 28. The point on the curve $xy^2 = 1$ which is nearest to the origin is The maximum value of 12 sin θ - 9 sin² θ in $\left[0, \frac{\pi}{2}\right]$ 17. 1. (1, 1) 2. (1, -1) 3. $\left(4, \frac{1}{2}\right)$ 4. $\left(\frac{1}{2^{\frac{1}{2}}}, 2^{\frac{1}{6}}\right)$ is 1. 2 2.4 3.6 4.0 29. Through the point A(2, 3) a straight line is drawn At x = 0, $f(x) = (3 - x)e^{2x} - 4xe^{x} - x$ 18. making +ve intercepts on the coordinates axes. If 1. Has a minimum 2. Has a maximum the area of the triangle so formed is least then the 3. Has no extremum 4. Is not defined ratio of the x, y intercepts is 3.4:9 1.2:3 2.3:2 4.9:4 The minimum values of $f(x) = 2^{(x^2-3)^3+27}$ 19. 30. The maximum distance of the normal to the ellipse 1. 2²⁷ 2.1 3.4 4. 16 $\frac{x^2}{2} + \frac{y^2}{4} = 1$ from its centre is 20. The least and the greatest values of $f(x) = 2 \sin x + \sin 2x$ on $\left| 0, \frac{3\pi}{2} \right|$ are 2. 2 3. 1 31. The area of the rectangle of maximum area inscribed 1. $\frac{-3\sqrt{3}}{2}$,2 2. -2, $\frac{3\sqrt{3}}{2}$ in the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is 3. $\frac{-3\sqrt{3}}{2}, \frac{3\sqrt{3}}{2}$ 1.48 2.41 3.40 4. 50 4. -2, 2

JR. MATHEMATICS

32.	The diagonal of the rectangle of maximum area having perimeter 100 cm is $1 10\sqrt{2} 2 10 3 25\sqrt{2} 4 15$	44.	A running track 440 ft. is to be laid out enclosing foot ball field the shape of which a rectangle with a semi circle at each end. If the area of the
33	A hox is made from a niece of metal sheet 21		dimensions of the rectangle are
55.	cms square by cutting equal small squares from		1. 100, 70 2. 110, 70
	each corner and turning up the edges. If the volume		3.100, 80 4. 110, 60
	of the box is maximum then the	45.	if $xy(y-x) = 16$ then y has a minimum value when
	1. 16.16.4 2. 9. 9. 6 3. 8. 8. 8 4. 9. 9. 8		x=
34.	From a given metal sheet a cylindrical vessel	16	1. 1 2. 3 3. 2 4. 4 ABCD is a rectangle in which $AB = 10$ cms
	without lid having maximum capacity is made then	40.	BC = 8 cms A point P is taken on AB such that
	the ratio of the height and the base radius is		$PA = x$. Then the minimum value of PC^2+PD^2 is
25	1. 1:2 2. 2:1 3. 1:3 4. 1:1		obtained when x =
35.	base and vertical sides to hold a given capacity of		1. 10 2. 5 3. 8 4. 4
	water. The expense of lining the tank with lead is least when the ratio of the depth and the width is	47.	AB is a line segment of length 24 cm. P is a point on AB such that $AP^2 + PB^2$ is minimum then $AP=$
	1.1:1 2.1:2 3.2:1 4.1:3		1. 12 2. 6 3. 18 4. 24
36.	If 40 sq.meters of sheet is used in the construction of an open tank with a sq.base having maximum capacity then the area of the base in sq.meters is	48.	The difference between two +ve numbers is 10. If the difference between the square of the greater and twice the square of the smaller is maximum then the numbers are
	$1 \frac{30}{2} 2 \frac{20}{3} 3 \frac{40}{4} 4 \frac{40}{3}$		1. 20,10 2. 10, 20 3. 30, 20 4. 20, 30
		49.	The total cost of producing x pocket radio sets per
37.	The vertical angle of a cone of maximum volume and given slant height is		day is Rs. $\left(\frac{1}{4}x^2 + 35x + 25\right)$ and the price per set
	1. $\tan^{-1}\sqrt{2}$ 2. $2\tan^{-1}\sqrt{2}$		
	3. $\tan^{-1}\sqrt{3}$ 4. $2\tan^{-1}\sqrt{3}$		at which they may be sold is Rs. $\left(\frac{50 - \frac{x}{2}}{2} \right)$ to
38.	A closed cylinder of given volume will have least surface area when the ratio of its height and base		obtain maximum profit the daily out put should be radio sets
	$12 \cdot 1$ $21 \cdot 2$ $32 \cdot 3$ $43 \cdot 2$	50	1. 10 2. 5 3. 15 4. 20
39.	Maximum area of the rectangle inscribed in a circle of radius 10 cms is	50.	from the first quadrant a triangle of minimum area is
	1. 100 2. 200 3. 400 4. 1600		1. 4x + 3y - 24 = 0 2. 3x + 4y - 12 = 0
40.	The dimensions of a rectangle of maximum area		3. 2x + 3y - 12 = 0 4. 3x + 2y - 24 = 0
	inscribed in a semi circle of radius 8 cms is	51.	The value of a for which the difference of the roots
	1. $8\sqrt{2}, 4\sqrt{2}$ 2. $8\sqrt{2}, 8\sqrt{2}$		of the equation $ax^2 + (a - 1)x + 2 = 0$ is minimum is given by
	3. $4\sqrt{2}, 4\sqrt{2}$ 4. $4\sqrt{2}, \sqrt{2}$		$1 \frac{1}{2} 25 3 - 45$
41.	The in-radius of the triangle of maximum area inscribed in a circle of radius 46 cm is		$1. \frac{1}{5}$ 2. 3 3. $\frac{1}{5}$ 45
	1. 46 2. 23 3. 92 4. 45	52.	$y = (x(x-3))^2$ increases for all values of 'x' lying in
42.	A box without lid having maximum volume is made		เก่ย เกเียาขอเ
	equal square metal sheet of edge 60 cms by cutting		1. $0 < x < \frac{3}{2}$ 2. $0 < x < \infty$
	turning up the projecting pieces to make the sides		
	of the box. The height of the box is	50	3. $-\infty < \chi < 0$ 4. $1 < \chi < 3$
43.	A guadrate function in 'x' has the value 10 when	53.	i ne image of the interval [-1, 3] under the mapping $f(x) = 4x^3 - 12x$ is
	x = 1 and has minimum value '1' when $x = -2$ the		1. [-2, 0] 2. [-8, 72] 3. [-8, 0] 4. [-8, -2]
	tunction is $1 - 2x^2 + 3x + 5$ $2 - 3x^2 + 3x + 5$	54.	The maximum of $f(x) = 2x^3 - 9x^2 + 12x + 4$ occurs
	1. $2x^{-} + 3x + 5$ 2. $3x^{2} + 2x + 5$ 3. $x^{2} + 3x + 6$ 4. $x^{2} + 4x + 5$		at x =
			I. I Z. Z 31 42
JR	MATHEMATICS 50)5	ΜΑΧΙΜΑ & ΜΙΝΙΜΑ

55. $f(x) = 4 + 5x^2 + 6x^4$ has 68. A cubic function of x has maximum value 10 and 1. Only one minimum minimum $\frac{-5}{2}$ when x = -3, x= 2 then the function 2. Neither maximum nor minimum 3. Only one maximum is 4. Can not be determined 1. $\frac{1}{5}x^3 + \frac{3}{10}x^2 - \frac{18}{5}x + \frac{19}{10}x^2$ 56. f(x) = (x - 1)(x - 2)(x - 3) is minimum at x = 1. $3 + \frac{1}{\sqrt{2}}$ 2. $3 - \frac{1}{\sqrt{2}}$ 2. $x^3 + 3x^2 - 18x + 19$ 3. $2x^3 + 3x^2 - 36x + 10$ 3. $2 + \frac{1}{\sqrt{2}}$ 4. $2 - \frac{1}{\sqrt{2}}$ 4. $x^3 + x^2 + x + 1$ 69. The maximum value of $y = 2x^3 - 3x^2 - 36x + 10$ is $f(x) = (x - 2)^2 (11 - x)$ is maximum at x = 57. 1.51 2.52 3. 53 4.54 1.5 2.6 3.7 4.8 70. The rectangle of perimeter 36 cm is revolved about 58. Maximum value of (x+5)⁴ (13-x)⁵ is one side to form a cylinder of maximum volume. The length and breath of the rectangle are in the 2.64 .145 1.74.115 3.8⁴.10⁵ 4.7⁵.10⁵ ratio. Minimum value of $f(x) = (x - 1)^2 + (x - 2)^2 + ... +$ 59. 1.1:1 2.1:3 3. 2:3 4.2:1 $(x - 10)^2$ occurs at x= A box is made with square base and open top. 71. 1.7 2.6 3.4 4.5.5 The area of the material used is 192 sq. cms. If 60. The point on the parabola $x^2=4y$ which is nearest the volume of the box is maximum, the dimensions to the point (8, 2) is of the box are 1. (4, 4) 2. (2, 1) 3. (8, 16) 4. (8, 8) 1. 4,4,8 2. 2, 2, 4 3. 8, 8, 4 4. 2, 2, 2 61. P(3, 4), Q(-7, 6). The point A on x-axis for which 72. The height of the maximum cone that can be PA + AQ is least is obtained by revolving a right angled triangle of 1. (-2, 0) 2. (-1, 0) 3. (3, 0) 4. (2, 0) hypotenuse 1 units about a side is 62. The least length of the thread required to construct 2. $1/\sqrt{2}$ 3. $1/\sqrt{3}$ 1. 1/3 4. 1/2 a rectangle of area 256 cm² is 1. 32 2.64 3.40 4. 58 Point of extremum of $f(x) = \int (t-2)^2 (t-1) dt$ is 73. 63. Maximum value of (sin x)^{sin x} is 1. maximum at x = 12. minimum at x = 11. $\frac{7}{3}$ 3. $\frac{\pi}{2}$ 2.7 4. 1 3. maximum at x = 24. minimum at x = 264. The maximum slope of the curve The maximum value of sin² x cos³x is 74. $y = -x^3 + 3x^2 + 9x - 27$ is 1. $\frac{6\sqrt{3}}{25\sqrt{5}}$ 2. $\frac{9\sqrt{3}}{25\sqrt{5}}$ 3. $\frac{9\sqrt{2}}{6\sqrt{5}}$ 4. $\frac{\sqrt{2}}{\sqrt{5}}$ 1. 1 2.12 3.6 4.9 65. $f(x) = \sqrt{3} \sin x + \cos x$ has a greatest when x= 75. The minimum value of (px+qy) when $xy=n^2$ 1. $\frac{\pi}{6}$ 2. $\frac{\pi}{3}$ is equal to 1) $2n\sqrt{pq}$ 2) $2pq\sqrt{n}$ 3. $\frac{\pi}{4}$ 4. $\frac{\pi}{2}$ 3) $2\sqrt{npq}$ 4) 2 panThe minimum value of $\frac{7}{4\sin x + 3\cos x + 2}$ is 66. 76. The area of the triangle formed by the tangent at any point of the ellipse 2. $\frac{7}{9}$ 1. 1 $\frac{x^2}{L^2} + \frac{y^2}{L^2} = 1$ with the axes is minimum at the point 4. $\frac{7}{3}$ 3. $\frac{7}{5}$ 1) $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ 2) $\left(\frac{a}{2}, \frac{b}{2}\right)$ 67. The volume of the largest cone that can be inscribed in a sphere of radius 9 cm is 4) $\left(\frac{\sqrt{a}}{2}, \frac{\sqrt{b}}{2}\right)$ 1. $\frac{32}{3}\pi$ c.c 2. 72 π c.c 3. 288 π c.c 4. $\frac{288}{3}\pi$ c.c 3)(a, b)**JR. MATHEMATICS** 506 **MAXIMA & MINIMA**

77.	The coordinates of a point $P(x, y)$ lying in the first	84.	The maximum value of $4\sin^2x + 3\cos^2x +$				
	quadrant of the ellipse $\frac{x^2}{8} + \frac{y^2}{18} = 1$ so that the area		$\sin\frac{x}{2} + c$	$\cos \frac{x}{2}$ is			
	of the triangle formed by the tangent at 'P' and the		1) 4 + 🗸	2	2	2) 2 + $\sqrt{2}$	
	(2, 2) $(2, 3)$ $(2, 3)$ $(2, 3)$ $(3, 2)$ $(3, 2)$		3) 6 + 🗸	2	4	4) 7 + $\sqrt{2}$	
78	The sum of the positive intercepts a h made by a	85.	The mini	mum dis	tance fro	m origin to	any point
70.	line on the axes is constant. If the area of the triangle formed by the line and the axes is		on $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is				
	least, then a : b =		1) a		2	2) a/2	
	1) 2 : 1 2) 1 : 2 3) 1 : 1 4) 1 : 3		3) 2a		4	4) $a^{2/3}$	
79.	The positive number x that exceeds its square by largest amount is	86.	The grea $r^2 v^2$	test dista	nce of a	normal to	an ellipse
	1) $\frac{1}{2}$ 2) $\frac{1}{3}$ 3) $\frac{1}{4}$ 4) 1		$\frac{x}{a^2} + \frac{y}{b^2}$	=1 from	its centr	reis	
80.	The sides of a rectangle of greatest area which		1) a - b	2) a -	+b 3	$3) \frac{a-b}{2}$	4) $\frac{a+b}{2}$
	can be inscribed in an ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$	87	An open 32c.c. of	rectangu capacity	ılar tank 7 has leas	with a squ st surface	are base and area in sq.
	1) 5, 3 2) 2, $\sqrt{2}$		cms. is				
			1) 48		2	2) 16	
	3) $5\sqrt{2}, 3\sqrt{2}$ 4) $3, \sqrt{2}$		3) 32		4	4) 12	
81.	Let 'P' be a variable point on the ellipse						
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with foci $S(ae, 0)$ and $S'(-ae, 0)$. If		01. 1	02.2	NE 1 03. 1	04.3	05.2
	u = v A is the area of the triangle PSS ¹ then the maxim		06.2	07.1	08.1	09. 1	10.1
	mum value of A (where e is eccentricity		11.4	12. 2	13. 3	14. 1	15.1
	and $b^2 = a^2(1-e^2)$ is		16. 3	17.2	18. 3	19. 2	20.2
	ab		21. 1	22. 1	23.4	24.4	25.1
	1) $\frac{db}{2}$ 2) 2 abe 3) abe 4) 4abe		26.3	27.3	28.4	29. 1	30.3
82	The difference between the greatest and the least		31.3	32. 3	33. 1	34.4	35.2
			36. 3	37.2	38. 1	39. 2	40.1
	values of the function $f(x) = \int (t^2 + t + 1) dt$ on		41.2	42.2	43.4	44.2	45.3
	0		46.2	47.1	48. 1	49. 1	50.1
	[2, 3] is		51. 1	52. 1	53. 2	54. 1	55.1
	1) $\frac{6}{2}$ 2) $\frac{49}{3}$ 3) $\frac{6}{4}$ 4) $\frac{59}{59}$		56.3	57.4	58.3	59.4	60.1
	49 6 59 6		61.2	62.2	63.4	64.2	65.2
83.	If $a^2x^4 + b^2y^4 = c^6$ then the maximum value of xy is		66. 1	67.3	68. 1	69.4	70.4
	c^3 c^3		71.3	72.3	73.2	74.1	75.1
	1) $\frac{1}{2ab}$ 2) $\frac{1}{\sqrt{2ab}}$		76.1	77.4	78.3	79.1	80.3
	3 3		81.3	82.4	83.2	84.1	85.1
	3) $\frac{c^2}{\sqrt{L}}$ 4) $\frac{c^2}{\sqrt{L}}$		86.1	87.1			
	ab \sqrt{ab}						

HINTS33.a = 24. K = 24/6 = 4; measurements a-2k, a-2k, k1.On verification f'(x) > 035.2.On verification f'(x) > 036.3.0 noverification f'(x) > 037.3.Standard result38.4.On verification f'(x) > 037.5.Standard result38.6.On verification f'(x) > 037.7.Standard result38.8.f(x) = 0 and substitute39.9.f(x) = 0 and substitute39.2.x = 3 (257) = 12. y = 16.40.13.f(x) = 0 and substitute41.14.y = 5-2x and substitute42.15.f(-1) = 0 and f(2) = 043.16.x = tan 1
$$\sqrt{\frac{p}{Q}}$$
 for sin%x. cos%x47.17.a = -9; b = 12; c = 0 Then max value $\frac{4ac - b^2}{4a}$ 18.at x = 0; f(x) = f''(x), = 050.19.f(x) = 0 $\Rightarrow x = 0$, $\sqrt{3}$ at x = 051.19.f(x) = 0 and f(\frac{2}{2}); max value $-f(\frac{\pi}{3})$ 52.21.max value $f(\frac{\pi}{6})$ 54.22.f(x) = 0 and f''(x) 55.23.x = 2 (\frac{100}{2x}) = 14.24.in a = 1/525.f(x) = 0 and f''(x) 26.r(x) = 0 and f''(x) 27.a = -9; b = 12; c = 0 Then max value48.x = 0; f'(x) = 0 in an x value47.AP = BP = $\frac{24}{2}$ = 12.27.a = -9; b = 12; c = 0 Then max value47.f(x) = 0 in f'(x) 28.r(x)

66. min =
$$\frac{7}{\max} = \frac{7}{2+5} = 1$$

67. R = 9; $\frac{32}{81}\pi R^3$
68. f¹(-3) = 0, f¹(2) = 0
f(-3) = 10 f(2) = $-\frac{5}{2}$ verify
69. f¹(x) = 0 and f¹¹(x) < 0, and substitute
71. Verify the formula x²+4xy
72. Standard
73. f¹(x) = 0; f¹¹(x) > 0 at x = 1

74. For sin^px cos^qx. The max value is $\left(\frac{p^{p}.q^{q}}{(p+q)^{p+q}}\right)^{1/2}$

LEVEL-3

1. Given the total surface area of a cone its volume is maximum when the semi vertical angle is

1.
$$\sin^{-1}\frac{1}{3}$$

2. $\sin^{-1}\frac{1}{\sqrt{3}}$
3. $\tan^{-1}\frac{1}{3}$
4. $\tan^{-1}\frac{1}{\sqrt{3}}$

2. A conical tent of given capacity will require the least amount of canvas when the height is times the base radius

1.
$$\sqrt{3}$$
 2. 3 3. 2 4. $\sqrt{2}$

- 3. The sum of the surface areas of a sphere and a cube is given. When sum of their volumes is least, the ratio of the radius of the sphere and the edge of the cube is
- 1.1:2
 2.2:1
 3.2:3
 4.3:2
 4. Height of the cylinder of maximum volume that can be inscribed in a sphere of radius 12 cm is

$$1.8\sqrt{3}$$
 cm 2.8 cm $3.12\sqrt{3}$ cm 4.24 cm

- 5. The base radius of a cone of maximum volume, inscribed ina sphere of radius 6 cms is
 - 1. $8\sqrt{2}$ cms 2. $7\sqrt{2}$ cms

3.
$$4\sqrt{2}$$
 cms 4. $6\sqrt{2}$ cm

6. A closed pan with a square base and vertical sides can hold 64 cubic metres of water. For the total surface area to be minimum, The dimensions of the pan in metres are

7. The radius of a right circular cylinder of maximum volume which can be inscribed in a sphere of radius R, is

1) R 2) $\frac{R}{2}$ 3) $\sqrt{\frac{2}{3}}R$ 4) $\sqrt{\frac{3}{2}}R$

8. P(x, y) is a point on a straight line which makes intercepts a and b on the x,y axes respectively, then the minimum value of $x^2 + y^2 =$

1)
$$\frac{a^2 + b^2}{a^2 b^2}$$

2) $\frac{a^2 - b^2}{a^2 + b^2}$
3) $\frac{a^2 - b^2}{2(a^2 + b^2)}$
4) $\frac{a^2 b^2}{a^2 + b^2}$

 20π sq.ft. of metal sheet is used to construct an open top cylinder. Relation between height and radius 'r' when it has maximum volume is

1)
$$h = 2r$$

3) $h = \sqrt{2}r$
2) $h = r$
4) $r = \sqrt{2}h$

10. The least value of $(x + 100)^2 + (x + 99)^2 + \dots + (x + 1)^2 + x^2 + (x - 1)^2 + (x - 2)^2 + \dots + (x - 100)^2$ is 1) 67 67 2) 67 670

KEY

1.1	2.4	3.1	4.1	5.3
6.1	7.2	8.4	9.2	10.3

LEVEL - IV

MATCHING TYPE QUESTIONS

1. Let $f: I \rightarrow R$ be a function, where I is an intervel subsect of domain of f, then match the following lists.

<u>List - I</u>

A) If $x_1, x_2 \in I$ and 1) Strictly increasing $x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$

List - II

then f is

9.

B) If $x_1, x_2 \in I$ and 2) Strictly decreasing

$$x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)$$

then f is

C) If
$$x_1, x_2 \in I$$
 and 3) decreasing

then f is

D) If $x_1, x_2 \in I$ and

$$x_1 < x_2 \Longrightarrow f(x_1) \ge f(x_2)$$

then f is

JR. MATHEMATICS

4) increasing

1	The correct matching for list - I from list - II					The correct matching for list - I from list - II					
		А	В	С	D			А	В	С	D
	1	4	3	2	1		1.	4	2	3	5
	2	4	1	2	3		2.	2	4	3	1
	3	2	3	1	4		3.	2	4	3	5
	4	2	3	4	1		4.	2	4	5	1
2. Observe the following lists						4.					
$\frac{1}{2} \frac{1}{2} \frac{1}$					List - I		L	ist - II			
A) if $f(a) < 0$				< 0	A)n	ninimum va	alueof	1)) $2\sqrt{ab}$		
at $x = a$ then				a^2	$in^2 + h^2$	aaa^2					
B) If $f(x)$ is decreasing 2) $f^{1}(a) = 0$					x+0	$\cos ec x$					
at $x = a$ then				B)n	ninimum va	alueof	2)	(a+b)	2		
C) If $f(x)$ is monotonic 3) $f^{1}(a) > 0$ or				acot	$x + b \tan x$						
at x =	= a then		Ū	$f^{1}(a) < 0$)	C)n	ninimum va	alueof	3)	$-\sqrt{a^2}$	$+b^2$
D) If	f(x) is stati	ionary	4) $f^{1}(a)$	>0	a^2 s	$ec^2 x + b^2 c$	$\cos ec^2 x$			
at x =	= a then					D)n	ninimum va	alueof	4) ab	
	5) $f^{1}(a) > 0$ and				$a\cos x + b\sin x$						
	$f^{1}(a) < 0$					5x + 0 5m	л	5) 2ab		
	The corre	ect match	ning for	list - I f	rom list - II					/	
		А	B	C	D		The corre	ct match	ing for l	ist - I fr	om list - II
	1.	4	1	2	3			А	В	C	D
	2.	4	1	3	2		1)	5	1	2	3
	3.	1	4	3	2		2)	5	4	1	2
	4.	4	1	2	3		3)	4	1	2	3
3.	Observe 1	the follow	'ing lists	• 4 11			4)	4	5	1	3
Lotf	$\frac{\text{List - I}}{(\mathbf{x}) \text{ be any f}}$	function		<u> 18t - 11</u>		5.	Observe	the follow	wing lists		
	(x) = 0	nd	1`	(v) is ir	araasina		List - I				List - II
	(u) = 0 at	IIU	1	(X) 15 II.	leteasing	A)n	ninimum va	alue of $ x $	-5 is		1) -1
$\int f$	(a) < 0 th	ien		at $x = a$		B)n	ninimum va	alue of $ x $	-3 + x	-7 is	2) 0
B) f	$f^{(1)}(a) = 0$ a	und	2)) f(x) has	maximum	C) n	naximum v	alue of s	$\sin 5x$		3) $\sqrt{2}$
$\int f$	$r^{11}(a) > 0$ t	hen		value a	t x = a	D)n	naximum v	value of s	in x + cos	x	4) 1
C) f	$f^{1}(a) \neq 0$ th	nen	3)) f(x) has	neither						5) 4
			n	naximum	norminimum			٨	D	C	5)4 D
D) <i>f</i>	$f^{(1)}(a) > 0$		4)	f(x) has	minimum		1)	л 2	5	3	D 2
				value at	$\mathbf{x} = \mathbf{a}$		1) 2)	2	5	5 Л	2
			5)	f(x) is d	ecreasing at		2) 3)	∠ 2	3	- 1	Л
				$\mathbf{x} = \mathbf{a}$			3) (1)	∠ 2	2 2	5	+ 1
							4)	۷	3	5	1

6. Observet		8. Observe the following lists							
List-I				List-II	List -I		L	ist -II	
(A) Maximum v	value of			1) 72		1.			
xy subject to x	+y = 7	is			(A) $f(x) = x$ -	$+\frac{1}{x}$ 1S	1) R	
(B) If $l^2 + m^2 =$	2) 1	decreasing	g in						
themaximumv			3.	2	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$				
(C) If $x + y = 12$	3) $\sqrt{2}$	(B) $f(x) = 1 - 1$	$-x^{3}$ 1S	2	$\left(\begin{array}{c} 0,-\\ e \end{array} \right)$				
minimum Value		decreasing	g in						
	49	$\Big (\mathbf{C}) f(\mathbf{x}) = \mathbf{x}\mathbf{e}$	e^{-x} is	3)(-1,0)1	U(0,1)			
(D) Minimum va	alue			$4)\frac{49}{4}$	decreasing	g in			
$x^2 - 8x + 17$ is					$\left \text{ (D) } f\left(x\right) = x^{x}$	is	4) (1,∞)	
				5)0	decreasing in				
	А	В	С	D			5	$)(0,\infty)$	
1)	4	3	1	2	The corr	ect matc	hing for	list - I fr	om list - II
2)	4	3	2	1		А	В	С	D
3)	2	3	5	4	1)	3	4	2	5
4)	2	3	1	4	2)	2	3	5	4
7. Observe t	the follow	ving list			3)	3	1	4	2
List -I		L	ist - II		4)	2	3	5	4
(A) $f(x) = x^2$	-2x+5	is 1	$)\phi$		9. Observe the following Lists				
increasing in					List - I List - II				
(D) $f(x) = x$ is		ain o	$(-\infty 1)$	$U(2 \infty)$	(A) The number of stationary 1) 1				
(D) $f(x) = e^{-1S}$	mereasii	ig in Z) (-∞,1)	$O(2,\infty)$	points of $f(x) = \cos 2x$ in $(0, 2\pi)$				
$(C) f(x) = \log_{e}$	x is	3) R		(B) The number of stationary 2) 3				
increasing in					points of $f(x) = \sin x$ in $(0, 2\pi)$				
(D) $f(x) = \frac{x^3}{x^3}$	$-\frac{3x^2}{4}$	2x + 5 = 4	(0∞)		(C) The number	er of stati	onary		3) 2
3	2		.) (0, 1)		points of $f(x)$	$)=e^{-x}$			
is increasing in					(D) The number	er of stati	onary		4) 5
		5)	$)$ $(1,\infty)$		points of $f(x)$	$= e^x + e^-$	- <i>x</i>		
The correct	t matchi	ing for li	st - I fro	om list - II					5) 0
	А	В	С	D	The corre	ect matc	hing for	list - I fi	om list - II
1) 5 1 4 2			2	1)	A 2	B 2	C 1	D	
2) 5 1 2 3			3	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	لے ا	2 2	ו ר	з 1	
3) 4 1 5 2				2	$\begin{pmatrix} 2 \end{pmatrix}$	4 1	5 1	2 5	1
4)	4	1	3	5		4 2	1	5	ے 1
		4)	2	3	5	1			

	KEY						Assertion(A): The minimum value of $16\cot x + 9$ tan x is 3				
	1.2 6.1	2.2 7.1	3.2 8.3	4.1 9.4	5.2		Reason (R): For two positve real numbers a and $b, A.M \ge G.M$				
1	ASSERTION AND REASON TYPE Assertion (A): The maximum area of the triangle						1) Both A and R are true and R is the correct explanation of A				
1.	inscribe	ed in a circl	e of radius	'2' units is	$3\sqrt{3}$ square		2) Both A and R are true and R is not the correct explanation of A				
	Reason	(R) The	maximur	n triangle y	which is in-		3) A is true and R is false				
	scribed	in a circle	of given r	adius is eq	uilateral		4) A is false and R is true				
	1) Both planatio	A and R on of A	are true ar	nd R is the	correct ex-	6.	Assertion (A): If x+y=12 then the minimum value of $x^2 + y^2$ is 72				
	2) Both explana	A and R ation of A	are true ar	nd R is not	the correct		Reason (R): If $x+y=k$, then the maximum value				
	3) A is t	rue and R	is false				of xy is k^2				
2.	4) A is f Assertio	false and l on (A): Th	R is true e maximu	m area of t	he rectangle		1) Both A and R are true and R is the correct explanation of A				
	inscribe units	ed in a circ	ele of radiu	s '5' units	is 50 square		2) Both A and R are true and R is not the correc explanation of A				
	Reason	(R): The	maxium a	rea of the r	ectangle in-		3) A is true and R is false				
	1) Roth	Δ and R	e is a squa are true ar	re nd R is the	correct ex-		4) A is false and R is true				
	planatio	on of A				7.	Assertion (A): The minimum value of				
	2) Both	A and R	are true ar	nd R is not	the correct		$f(x) = a^2 \sec^2 x + b^2 \csc^2 x \text{ is } (a+b)^2$				
	explana	tion of A					Reason (R): For positive real numbers a and b,				
	3) A is t	rue and R	is false				A.M. \geq G.M.				
3.	4) A 1s 1 Assertion at $x = 0$	taise and I on (A): If f()	(x) = x , the	en fhas min	imum value		1) Both A and R are true and R is the correct ex- planation of A				
	Reason = a if f^1	(R): A fun (a) = 0 an	$\begin{array}{l} \text{ction } f(x) \\ \text{id } f^{11}(a) > 0 \end{array}$	nas minimu	ım value at x		2) Both A and R are true and R is not the correct explanation of A				
	1) Both	A and R	are true ai	nd R is the	correct ex-		3) A is true and R is false				
	planatic 2) Both	on of A	oro truo or	d P is not	the correct		4) A is false and R is true				
	explana 2) A is t	ation of A		iu ix is not		8.	Assertion(A): The minimum radius vector of the				
	4) A is t	false and I	R is true				curve $\frac{a^2}{2} + \frac{b^2}{2} = 1$ is of length $a + b$				
4.	Assertie	on (A): Th	te function	$\inf_{\mathbf{x}=2} \mathbf{f}(\mathbf{x}) = 2\mathbf{x}^3$	$-3x^2-12x+8$		x^2 y^2 Reason (R): The minimum value of				
	Reason	(R): For t	he fuction	n - 2							
	f(x) = 2	$2x^{3}-3x^{2}-12$	$2x+8, f^{1}(2)$)=0 and f ¹¹	(2)>0		$a^2 \sec^2 \theta + b^2 \cos ec^2 \theta$ is $(a+b)^2$				
	 Both A and R are true and R is the correct explanation of A Both A and R are true and R is not the correct explanation of A 						1) Both A and R are true and R is the correct explanation of A				
							2) Both A and R are true and R is not the correct explanation of A				
	3) A is t	rue and R	is false				3) A is true and R is false				
	4)Aist	false and I	R is true				4) A is false and R is true				

9.	Assertion (A): The maximum value of quadratic				KEY			
	function $-x^2 + 3x + 1$ is $\frac{11}{4}$		1.1 6.3 11.1	2.1 7.1 12.1	3.2 8.1	4.1 9.4	5.4 10.1	
	Reason (R): The maximum value of $ax^2 + bx + c$ is		11.1	12,1				
	$\frac{4ac-b^2}{4a}$ if a < 0	<u>Link</u>	<u>ked Type</u>	Question	<u>ns</u>			
	1) Both A and R are true and R is the correct expla- nation of A	1. I: $f(x) = \log_a x$ (x>0) is an increasing function a>1						
	2) Both A and R are true and R is not the correct explanation of A		II: f(x) = 0 <a<1< th=""><th>$= \log_a x$</th><td>(x>0) is a</td><td>decreasi</td><th>ng function if</th></a<1<>	$= \log_a x$	(x>0) is a	decreasi	ng function if	
	3) A is true and R is false		Which	of the abo	ove staten	nents are	true	
	4) A is false and R is true		1) only	I	2) only II		
10.	Assertion (A): $\sin 1^0 < \sin 1$		3) both	I and II	4) neither	I nor II	
	Reason (R): $f(x) = sinx$ is increasing function in	2.	I: If f ¹ (a) < 0 then	the funct	tion f is d	ecreasing at	
	$(0,\frac{\pi}{2})$		$\mathbf{x} = \mathbf{a}$	-			c	
	(0, 2)		II: If f is	decreasi	ng at $x = a$	a then f ¹ (a)<0	
	1) Both A and R are true and R is the correct ex-		Which o	of the abo	ve statem	ents are	true	
	2) Both A and R are true and R is not the correct		1) onlyI		2)) only II		
	explanation of A		3) both	I and II	4)) neither	I nor II	
	3) A is true and R is false	3.	I: If f^1	(a) > 0 th	nen f is in	creasing	at x = a	
	4) A is false and R is true		П.ІҒГ:	a in aroosi	$n \alpha ot y = c$	than (() nood not	
11.	Assertion (A): $\cos 1^0 > \cos 1$		tobeno	s increasi	ng at x– a	a then f	(a) need not	
	Reason (R): $f(x) = \cos x$ is decreasing function in		which	of the abo	ve statem	ents are i	true	
	$(0, \frac{\pi}{2})$		1) only	I lie abo	2 [°])only II	liuc	
	$\sum_{i=1}^{n} \frac{1}{2}$		3) both	I and II	2) 4))neither]	[nor]]	
	1) Both A and K are true and K is the correct ex- planation of A	4.	I: A rod	ABofle	ngth 10cr	ns. slides	s between the	
	2) Both A and R are true and R is not the correct		perpend	licular lin	es OX, O	Y.The m	aximum area	
	explanation of A		of the	Δ OAB is	s 50 sq. ci	ns.		
	3) A is true and R is false		II: Thro	ugh a poi	nt A(2,3)	a straig	ht line drawn	
	4) A is false and R is true		making	positive i	then the	on the co	o-ordinate	
12.	Assertion (A): The values of x at which $f(x) = \sin x$		angle w	ith the axe	es is 12	шалтт		
	is stationary are $(2n+1)\frac{\pi}{2}$ where $n \in z$		which o	of the abo	ve statem	ents are	true	
	Reason (R): If $f(x) = sinx$ then $f^{1}(x) = 0$ at $x =$		1) only (2) h oth	l Land II	2)only II	[
	$(2m+1)^{\pi}$		3) both	I and II	4)neitner I	I nor II	
	$(2n+1)\frac{1}{2}$	5.	I: Minin	num of va	lue of $ x - x $	-3 + x-	7 is 4	
	1) Both A and R are true and R is the correct explanation of A		II: Mini	mum valu	e of x-3	x-7 + x-7	is 10	
	2) Both A and R are true and R is not the correct		which o	of the abo	ve statem	ents are	true	
	explanation of A		1) only	I	2))only II		
	3) A is true and R is false		3) both	I and II	4))neither]	l nor II	
	4) A is false and R is true							

6.	I: $f(x) = \sin x$ is neither	er increasing nor decreas-	11.	I: The si	ides of a	rectangl	e are (6-x) ci	m and $(x-3)$
	ing in the interval $(0,\pi)$		cm. If its area is maximum, then x =4.5					inscribed in	
		$\left(\right)$		a circle	of radius	55 cm is 5	50sq.ci	m.	Inserioed in
	II: $f(x) = \tan x$ is increased.	asing in $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$	$\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$ which of			of the above statements are true			
	which of the above sta	tements are true		1) only 3) both	l Land II		2)only	/ II her I n	or II
	1) only I		12	$1 \cdot \text{The re}$	eal num	her x wł	en ado	ded to	its inverse
	2)only II		12.	gives the	e minim	um value	of the	sum a	tx = 1
	3) both I and II			II: If pro	oduct of 1	the two p	ositiv	e num	bers is 400,
	4) neither I nor II			then the	minimu	m value o	oftheir	sum i	s 20
7.	I: The greatest va	lue of the function		which o	of the abo	ove state	ements	are tr	ue
	$f(x) = \sin^2 x - 20\cos x$	x + 1 is 25		1) only 1	l 1s true		2) only	y II 1S	true
	<i>j</i> (<i>n</i>) <i>in n</i> 20000	_		3) both	I and II a	are true	4 <i>)</i> nieti	ner I n	or II are true
	II: The minimum value of	$f\frac{7}{4\sin x + 3\cos x + 2} \text{ is } 1$				KEY			
	which of the above stat	tements are true		1) 3	2) 1	3) 3	4)	2	5) 1
	1) only I	2)only II		6) 3	7)2	8)1	9)	3	10) 1
	3) both I and II			11)5 1	[2] [
	4)neither I nor II		SEO	UENCE	E TYPF	OUES	ΓΙΟΝ	S	
8.	I: The function $f(x) = 2$	$x^{3} - 3x^{2} - 12x + 8$ attains	1	IfA, B, O	C are res	pectively	the m	inimu	m values of
	minimum value at $x=2$,	$x \rightarrow 16 x$					
	II: The function of $f(x) = x^4 - 6x^2 + 8x + 11$ at- tains minimum value at x=2		the functions $\frac{1}{1+x^2}$, $x^2 + \frac{1}{x}$, $\frac{1}{\log x}$, then the ascending order of A,B,C is					then the	
								Cis	
	which of the above stat	tements are true		1) A, B,	, C	0	2)A, C	C, B	
	1) only I	2)only II		3) B, A,	, C		4)B, C	C, A	
	3) both I and II	4)neither I nor II	2)	The fun	ictions	$y = xe^{x}h$	nas mi	nimur	m at $x = A$,
9.	I: If $f^{I}(a) = f^{II}(a) =$	$f^{III}(a) = 0$ and		$y = x^3 -$	-3x has	minimu	m at x	=B ar	nd
	$f^{IV}(a) \neq 0$ then $f(r)$	attains maximum if		$y = 2x^3$	$-3x^{2}-$	12x + 5	has m	inimu	m at x = C,
	$j = (u) \neq 0$ when $j(x)$ when b intermediate in		then the ascending order of A, B, C is						
	$f^{\prime\prime}(a)$ is negative			1) A, B,	, C		2)B, C	С, А	
	II: Every maximum or mi	nimum value must be sta-		3)A, C,	В		4) B, <i>I</i>	A, C	
	tionary value which of the above statements are true		3)	Arrange	e A, B, C	, D in ase	cendin 5	g orde	er
V				A) Maxi	imum va	lue of sin	ЗX		
	1) only I 3) both I and II	2)only II 4)neither I nor II		B) Minii	mum val	ue of x +	$-\frac{1}{x}(x)$	> 0)	
10.	I: The function $f(x) = 9x^2 - 15x - x^3 + 10$ is increasing in (1.5)			C) Minimum value of $2^{(x^2-3)^3+27}$					
	II: The function $f(x) = 9x^2 - 15x - x^3 + 10$ is decreasing in (1.5)			D) Mini	mum val	lue of $5s$	$in^2 x +$	-3cos	$x^{2} x$
				1) A, B,	D,C		2) A, O	C, B, 1	D
	which of the above statements are true			3) A, D, B, C 4) B, D, A, C			C		
	1) only I	2)only II			.	KEY	_		
	3) both I and II	4)neither I nor II			1)2	2)1	3))1	

LEVEL - V

		LEVE	L-V		4.	
Ι	Let 'f' be sign from maximut then f(a) not chan	e a continuous m +ve to -ve m.If 'f' chang is relative mir ge at 'a' then	function at 'a' at 'a' then f(es sign from -v imum. If the s f(a) is neither f	.If 'f' changes (a) is relative ve to +ve at 'a' ign of 'f' does relative maxi-		
	mum nor stationar	r minimum. If v value of 'f'.	$f^{1}(a) = 0$ the If 'f' is define	n f(a) is called d on [a,b] and		
	$f(x_1), f$ minima	$f(x_2)f(x_n)$ of 'f' in [a	are local max a,b], then m	xima or local aximum of		
	${f(a), j}$ maximum	$f(x_1), f(x_2)$ m of 'f' in [a,b	$(f(x_n), f(b))$], minimum of	is absolute	1)	
	${f(a), j}$ solute m	$f(x_1), f(x_2)$ inimum of 'f	$f(x_n), f(b)$ in [a,b]	is called ab-		
1.	The abso	olute minimur	n of $f(x) = 4$	$x^3 - 8x^2$ on		
	[-1,1] is				2)	
	1.1	211	$3.\frac{-128}{27}$	4.10		
2.	The stati	onary values	of $f(x) = \frac{x}{x+1}$	$\frac{2}{2}$ are		
	1.0,8	2.0,-8	3.0,4	4.0,-4		
3.	The func	tion $f(x) = 3$	$3x^4 - 4x^3 + 11$	nas		
	 relativ relativ Both peither 	e minimum o e maximum o 1 and 2	nly nly	vemavimum	3)	
п	If $f^{1}(a)$	> 0 then $f(x)$	is an increasi	ng function at		
	'a' and tion at 'a	$f^{1}(a) \le 0$ the the convers	en f(xd) is dec e is not true	reasing func-	4)	
1.	$f(x) = x^3(x-2)^2$ is decreasing at x=					
	1.1	$2.\frac{3}{2}$	$3.\frac{2}{3}$	4.4		
2.	$f(x) = \log(\log x)$ is increasing at x=					
	1.2	2.1	3.3	4. $x = \frac{1}{2}$	EAN	
3.	$f(x) = x $ is decreasing for all $x \in$					
	$1 \cdot R^+$		2. <i>R</i> ⁻			
	3.R		4. $R^{-} \cup \{0$	}		

						_	
4.	f(x) =	x^x is increa	ising for	all			
	$1. x > \frac{1}{e}$		2	. 0 < <i>x</i> <	$\frac{1}{e}$		
	3. $x \in R$		4	$x < \frac{1}{e}$			
]	KEY				
	Ι	1.1	2.2	3.1			
	II	1.2	2.3	3.2	4.1		
1)	PREVI Area of t	OUS AI	EEE t rectang	QUES' jle that ca	TIONS an be inscribed	ł	
	in the el	lipse $\frac{x^2}{a^2}$	$+\frac{y^2}{b^2}=1$	is	(2005))	
	1.ab	2.2ab	3	. a/b	4) √ <i>ab</i>		
2)	If $U = \sqrt{1}$	$a^2 \cos^2 \theta$	$+b^2 \sin b$	$\frac{2}{\theta}$			
	+ $\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$, then the difference be- tween the maximum and minimum values of U ² is given by (2004)						
	1) $2(a^2)$	$+b^2$)	2	$2\sqrt{a^{2}+a^{2}}$	$\overline{b^2}$		
	3) (<i>a</i> + <i>a</i>	$b)^2$	4	$\left(a-b\right)$)2		
3)	If the fu where a p and q t	inction <i>j</i> >0 attains i respective	f(x) = 2 its maximits maximity such the second se	$2x^3 - 9ax$ mum and that, p^2	$x^{2} + 12a^{2}x + 1$ minimum at = q then a = (2003))	
	1) 1	2)2	3) 1/2	4)3		
4)	The great [0, 1] is	atest value	e of f(x)	$=(x+1)^{2}$	$(x-1)^{1/3}$ or (2002)	1	
	1) 1	2) 2	3) 3	4) 1/3		
			KEY				
	1) 2	2) 4	3) 2	4) 2			
QUESTIONS FROM PREVIOUS EAMCET EXAMINATIONS EAMCET - 2005 1. The extreme values of							
	$4(\cos x)$	$\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{3}\right)$	$+x^2$ co	$\cos\left(\frac{\pi}{3}-x\right)$	$\left(x^2\right)$ on R are		

JR. MATHEMATICS

1. -1, 1 2. -2, 2

MAXIMA & MINIMA

4. -4, 4

3. -3, 3

EAM	CET - 2003	15.	The point on the curve $y^2 = 4x$ which is nearest to the point (2, 1) is
2.	Minimum value of $\int_{a}^{b} t(e^{-t^2}) dt$		1. (4, 4) 2. (1, 2) 3. (9, 6) 4. (4, 6)
	1.1 0.0 0.0 1.0		ICET - 1997
EAM	1.1 2.2 3.3 4.0 CET - 2002	16.	The minimum value of $x^2 + 2bx + c$ is 1 cb^2 2 c^2b 3 $c + b^2$ 4 $c - b^2$
	0v	-	
3.	If log (1+x) - $\frac{2x}{2+x}$ is increasing then		ICET - 1995
	2 + x	17.	The minimum value of $a^2 \sec^2 \theta + b^2 \cos ec^2 \theta$ is
	$1. 0 \times 0$ 20×0		1. $a^2 - b^2$ 2. $2(a^2+b^2)$ 3. $(a - b)^2$ 4. $(a + b)^2$
	$3\infty < x < \infty$ 4. $1 < x < 2$	EAM	ICET - 1996
4.	The function $f(x) = x e^{-x}$ ($x \in R$) attains a maximum value at x =	18.	The function $x(x-1)(x-2)$ attains its maximum value when x is
	1. 2 2. $\frac{1}{8}$ 3. 1 4. 3		1 1 2 $1+\frac{1}{2}$ 3 $1-\frac{1}{2}$ 4 $1+\sqrt{3}$
	CET 2004		$\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$
	ICE1 - 2001	19.	The point on the curve $y = x^2$ which is nearest to
5.	The minimum value of (x- $lpha$)(x- eta) is		(3, 0) is
	1 0 2 aß		1. $(1, -1)$ 2. $(-1, 1)$ 3. $(-1, -1)$ 4. $(1, 1)$
	1. 0 2. αρ	EAM	ICET - 1994
	3. $\frac{1}{4}(\alpha - \beta)^2$ 4. $\frac{-1}{4}(\alpha - \beta)^2$	20.	maximum area of the rectangle that can be inscribed in a circle of radius 'r' is
6.	The maximum value of xy subject to x + y = 7 is		1. $\frac{\pi r^2}{2}$ 2. r^2 3. $\frac{\pi r^2}{4}$ 4. $2r^2$
	1. 12 2. 10 3. $\frac{49}{4}$ 4. $\frac{55}{4}$	21	The maximum value of x^3 - 3x in the interval [0, 2] is
EAM	CET - 2000		12 2. 0 3. 2 4. 1
7.	If $I^2 + m^2 = 1$, then the max values of I + m is	22.	The function $\frac{\log x}{x}$ is increasing in the interval
	1. 1 2. $\sqrt{2}$ 3. $\frac{1}{\sqrt{2}}$ 4. 2		1. (1, 2e) 2. (0, e) 3. (e, 2e) 4. $\left(\frac{1}{e}, 2e\right)$
	$\sqrt{2}$ $\sqrt{2}$	EAM	ICET - 1993
EAM	ICET - 1999		
8.	Maximum value of 1+8 sin ² (x ²) cos ² (x ²) is	23.	x^2 -x(a-2)-(a+1)=0 when 'a' is a virable then the
0	If $y + y = 12$, then minimum value of $y^2 + y^2$ is		least value of α^2 + β^2
9.	$11 \times 19 = 12$, then minimum value of $\times 19$ is		1. 5 2. 3 3. 4 4. 1
	1. 72 2. 144 3. 48 4. 36	EAM	ICET - 1992
10.	The minimum distance from the point $(4, 2)$ to the parabola $y^2 = 8x$ is	24.	The greatest value of $\sin^3 x + \cos^3 x$ in $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ is
1	1. $\sqrt{2}$ 2. $2\sqrt{2}$ 3. $3\sqrt{2}$ 4. $4\sqrt{2}$		
FAM	CFT-1998		1. 1 2. 2 3. 3 4. 4
	Maximum and Minimum value of	25.	The minimum value of 64 sec θ + 27 cos ec θ
	$\sin^2(120 + \theta) + \sin^2(120 - \theta)$ are		when θ lies in $\left(0, \frac{\pi}{2}\right)$ is
	1. $\frac{3}{2}, \frac{1}{2}$ 2. $\frac{1}{2}, 0$ 3. $\frac{3}{2}, 0$ 4. $\frac{3}{2}, \frac{1}{3}$	26.	1. 125 2. 625 3. 25 4. 1025 P(-2, 3), Q(3, 7). The point A on the x-axis for
12.	If x and y ae +ve and x + y = 1 then the minimum value of x log_x + y log y is		which PA + AQ is least is
1	1. log 2 2log 2 3. 2 log 2 4. 0		1. $\left(\frac{1}{2}, 0\right)$ 2. $\left(\frac{1}{2}, 0\right)$ 3. $\left(\frac{1}{2}, 0\right)$ 4. $\left(\frac{1}{2}, \frac{1}{2}\right)$
13.	The minimum value of $x^2 - 8x + 17$ is	70	$ \begin{array}{c} - \end{array} $
1	1. 17 21 3. 1 4. 2	21.	then the maximum value of I m n is
14	The maximum value of $f(x) = 2x^3 - 21x^2 + 36x + 20$		
 ^{14.}	in $0 < x < 2$ is		$1 \frac{1}{1} 2 \frac{1}{1} 2 \frac{1}{1} 4 \frac{1}{1}$
1			1. $\sqrt{3}$ 2. $\sqrt{3}$ 3. $\frac{1}{3}$ 4. 1/4
1	1. 3 <i>1</i> Z. 44 3. 3Z 4. 3U		

MAXIMA & MINIMA

EAMCET - 1991 38. The maximum value of $\frac{\log x}{x}$ is 28. 2. 1/e 3. e² 1. e 4. 2e The smallest value of $x^2 - 3x + 3$ in the interval 29. $\left(-3,\frac{3}{2}\right)$ is 39. 1. $\frac{3}{4}$ 2. 5 3. -15 4. -20 **EAMCET - 1990** The minimum of $2x^3 - 3x^2 - 12x + 8$ occurs at x= 30. 40. 2. 2 3. $\sqrt{6}$ 4. $-\sqrt{6}$ 1. -1 31. The maximum value of (x - 1)(x - 2)(x - 3) is 1. $\frac{2}{3\sqrt{3}}$ 2. 2/3 3. $\frac{1}{\sqrt{3}}$ 4. $\frac{1}{3\sqrt{3}}$ 41. **EAMCET - 1989** 32. The values for which $x^3 - 6x^2 - 36x + 7$ increase with x are..... 42. 2. x > -2 (or) x < 61. x < -2 (or) x > 63. x = -2 (or) x = 6 4. x = 0**EAMCET - 1988** 33. The maximum value of x^{-x} is 2. e^{1/e} 1. e^e 3. e^{-e} 4. 1/e 34. Which of the following function is increasing in $\left(0,\frac{\pi}{2}\right)$ 2. $\cos x + \sin x3$ 1. $\cos x - \sin x$ sinx 4. $\frac{x}{\sin x}$ х **EAMCET - 1987** 35. If x > 0 then the minimum value of x^x is 1. e^{-1/e} 2. e^{1/e} 3. e^e 4. e 36. The cordinates of the point on the parabola $y = x^2 + 4x + 3$ which is closest to the straight line y = 3x + 2 is 1. $\left(\frac{-1}{2}, \frac{5}{4}\right)$ 2. $\left(\frac{1}{2}, \frac{5}{4}\right)$ 3. $\left(\frac{1}{2}, \frac{-5}{4}\right)$ 4. $\left(\frac{-1}{2}, \frac{-5}{4}\right)$ 37. The strength of a beam varies as the product of its breadth 'b' and square of its depth 'd' A beam cut out of a circular log of radius 'r' would be stiffest when 1. $b = d = \frac{r}{\sqrt{2}}$ 2. $b^2 = \frac{r}{\sqrt{2}} = d_3$

$$d = \sqrt{2}b = 2\sqrt{\frac{2}{3}}r$$
 4. $d = \sqrt{3}b = 2\sqrt{\frac{2}{3}}r$

EAMCET - 1986

38. The sum of two positive numbers is 20. If the product of the square of one and the cube of the other is maximum then they are......

1. 8, 12 2. 12, 9 3. 4, 16 4. 7, 13

EAMCET - 1984

39. When x lies between -6 and 8. The maximum value of $(x + 6)^4 (8 - x)^3$ is

 $1. \ 6^4 \ . \ 8^3 \qquad 2. \ 8^4 \ . \ 7^3 \qquad 3. \ 8^4 \ . \ 6^3 \qquad 4. \ \ 7^4 \ . \ 5^3$

EAMCET - 1983

40. The point on the curve $y = x^2 + 7x + 2$ closest to the line y = 3x - 3 is.....

1. (-2, -8) 2. (-8, -2) 3. (2, 8) 4. (8, 2)

- 41. The maximum possible area that can be enclosed by a wire of length 20 cm by bending it into the form of a sector in sq. cms. is
 - 1. 20 2. 25 3. 30 4. 15
 - 2. A box without lid having maximum possible volume is to be made from a rectangular piece of tin 32 cm x 20 cms by cutting of equal square pieces from the four corners and turning up the projecting pieces to make the sides of the box. The height of the box is equal to

1.4 2.2 3.1 4.8	1.4	2. 2	3. 1	4.8
-----------------	-----	------	------	-----

KEY

01. 1	02.4	03. 1	04.3	05.4
06.3	07.2	08. 1	09. 1	10. 2
11. 1	12.2	13. 3	14. 1	15. 2
16.4	17.4	18.3	19.4	20.4
21.3	22.2	23. 1	24. 1	25. 1
26. 1	27.2	28.2	29. 1	30. 2
31. 1	32. 1	33. 2	34.4	35. 1
36. 1	37.3	38. 1	39. 3	40. 1
41.2	42. 1			