Short Answer Questions-II (PYQ)

Q.1. Write the main product(s) in each of the following reactions:

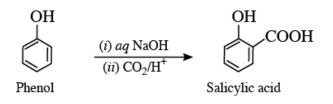
[CBSE Delhi 2016]

Q.

$$\mathrm{CH}_{3}$$
 $| \overset{\mathrm{CH}_{3}}{\underset{\mathrm{CH}_{3}}{\overset{\mathrm{CH}_{3}}{\longrightarrow}}} O$ CH_{3} $+$ $\mathrm{HI} \rightarrow$

Ans.

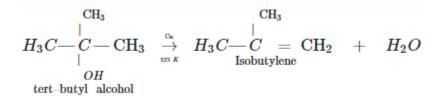
Q.


$$\mathrm{CH}_{3} - \mathrm{CH} = CH_{3} \xrightarrow[(\mathfrak{n})]{B_{3}H_{6}} \xrightarrow[(\mathfrak{n})]{B_{3}H_{6}}$$

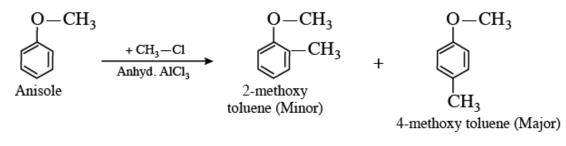
Ans.

$$\mathrm{CH}_3 - \mathrm{CH} = CH_3 \quad \xrightarrow{\scriptscriptstyle (1) \ 12 H_9} \quad \mathrm{CH}_3 - \underbrace{\mathrm{CH}_2 - \mathrm{CH}_2}_{\scriptstyle (1) \ 3 H_9 \mathcal{Q}_2 / 0 \mathrm{H}^-} \quad \mathrm{CH}_3 - \underbrace{\mathrm{CH}_2 - \mathrm{CH}_2}_{n - \mathrm{propyl} \ \mathrm{alcohol}} \mathrm{OH}$$

Q.


 $C_{6}H_{5} \longrightarrow \operatorname{OH} \quad \xrightarrow[(1)]{(1) \operatorname{CO}_{2}, H^{+}} GH \xrightarrow[(1)]{(2) \operatorname{CO}_{2}, H^{+}}$

Q.2. What happens when


Q. (CH₃)₃C—OH is treated with Cu at 573 K,

Ans.

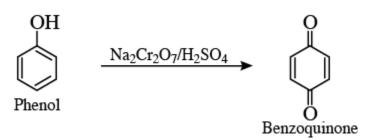
Q. Anisole is treated with CH₃Cl/anhydrous AlCl₃,

Ans.

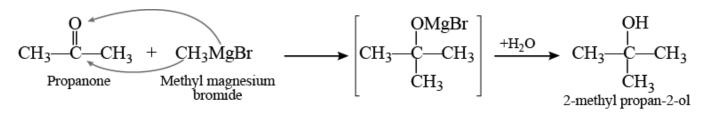
Q. Phenol is treated with Zn dust?

Write chemical equations in support of your answer.

[CBSE (F) 2017]


Ans.

Q.3. How would you obtain the following?


Q. Benzoquinone from phenol

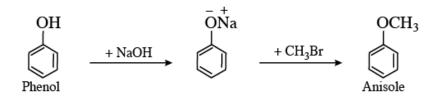
Ans.

Q. 2-Methylpropan-2-ol from methylmagnesium bromide

Ans.

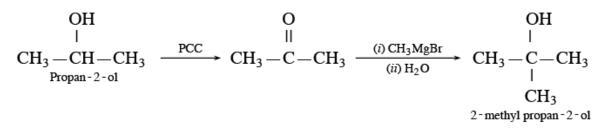
Q. Propan-2-ol from propene

[CBSE (AI) 2011, (F) 2011]


Ans.

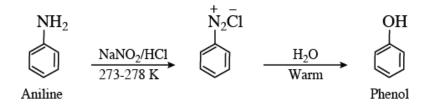
$$CH_{3} - CH = CH_{2} + H_{2}O \xrightarrow[Markovnikov's]{H^{+}} CH_{3} - CH_{3} - CH_{3} - CH_{3}$$
Propene CH₃ - CH

Propan-2-ol


Q.4. How do you convert the following:

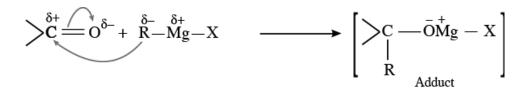
Q. Phenol to anisole

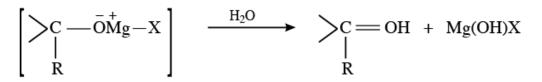
Q. Propan-2-ol to 2-methylpropan-2-ol


Ans.

Q. Aniline to phenol

[CBSE Delhi 2015]

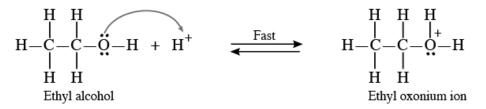

Ans.


Q.5. Explain the mechanism of the following reactions:

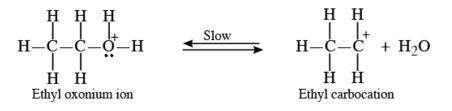
Q. Addition of Grignard's reagent to the carbonyl group of a compound forming an adduct followed by hydrolysis.

Ans. Step I: Nucleophilic addition of Grignard reagent to carbonyl group.

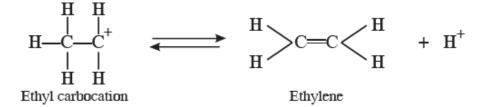
Step II: Hydrolysis


Q. Acid catalysed dehydration of an alcohol forming an alkene.

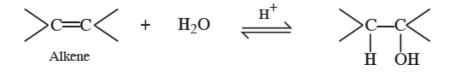
Ans.


$$\mathrm{CH}_3-\mathrm{CH}_2-\mathrm{OH} \stackrel{^{_{H^+}}}{
ightarrow} \mathrm{CH}_2==\mathrm{CH}_2 + H_2O$$

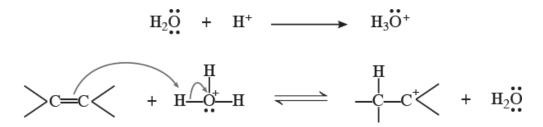
Mechanism:


Step I: Formation of protonated alcohol

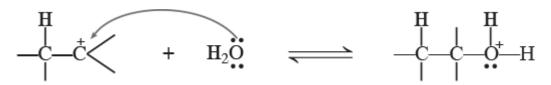
Step II: Formation of carbocation: It is the slowest step and hence, the rate determining step.


Step III: Formation of ethylene by elimination of a proton

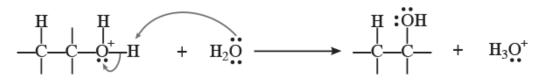
To drive the equilibrium to the right, ethylene is removed as it is formed.


Q. Acid catalysed hydration of an alkene forming an alcohol.

[CBSE Delhi 2009; (AI) 2012] [HOTS]



Mechanism:


Step I: Protonation of alkene to form carbocation by electrophilic attack of H₃O⁺.

Step II: Nucleophilic attack of water on carbocation.

Step III: Deprotonation to form an alcohol

Q.6. Give reasons for the following:

Q. Phenol is more acidic than methanol.

Ans. In phenol, the phenoxide ion obtained after the removal of a proton is stabilised by resonance whereas there is no resonance in the alkoxide ion of methanol.

Moreover, due to +I effect of CH₃ group the electron density in O—H bond increases which makes release of H+ difficult.

Q. The C—O—H bond angle in alcohols is slightly less than the tetrahedral angle (109°28').

Ans. It is due to the repulsion between the lone pair of electrons on oxygen atoms,

~<u>0</u>~H

Q. $(CH_3)_3C$ —O—CH₃ on reaction with HI gives $(CH_3)_3C$ —I and CH₃—OH as the main products and not $(CH_3)_3C$ —OH and CH₃—I.

[CBSE Allahabad 2015] [HOTS]

Ans.

The reaction between (CH₃)₃COCH₃ and HI follows SN₁ mechanism. For an SN₁ reaction, the formation of product is controlled by stability of the carbocation formed in the slowest step. Since tert.butyl carbonium ion (CH_3)₃ $\overset{\oplus}{C}$) formed after the cleavage of C-O bond in the slowest step is more stable than methyl carbonium ion $(\stackrel{\oplus}{C}H_3)$ therefore $(CH_3)_3C-I$ and CH_3OH are the main products.

Short Answer Questions-II (OIQ)

Q.1. Give the major products that are formed by heating each of the following ethers with HI.

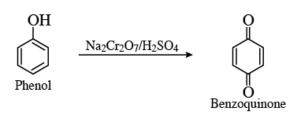
i. СН₃ CH3-CH2-CH-CH2-O-CH2-CH3 ii. CH_{3} $CH_{3}-CH_{2}-CH_{2}-O-C-CH_{2}-CH_{3}$ CH_{3} iii. **)**-СН₂-О-

[HOTS]

Ans.

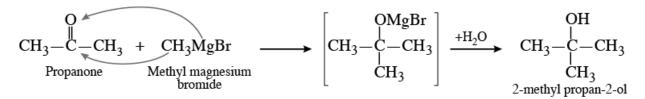
i.
$$CH_3$$
— CH_2 — CH_2 — CH_2 $OH + CH_3 CH_2 I$
 CH_3

ii.
$$CH_3 CH_2 CH_2 OH + CH_3 CH_2 - CH_3 CH_2 - I$$


iii.

$$-CH_2I + -OH$$

Q.2. Carry out the following conversions:


Q. Phenol to benzoquinone

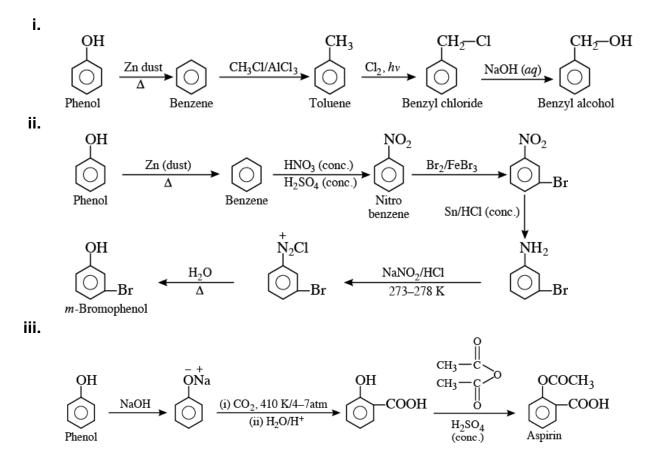
Ans.

Q. Propanone to 2-Methylpropan-2-ol.

Ans.

Q. Propene to propan-2-ol.

Ans.


$$CH_{3} - CH = CH_{2} + H_{2}O \xrightarrow{H^{+}} CH_{3} - CH_{3} - CH_{3}$$

$$H^{+} \rightarrow CH_{3} - CH_{3} -$$

Q.3. How will you bring the following conversions?

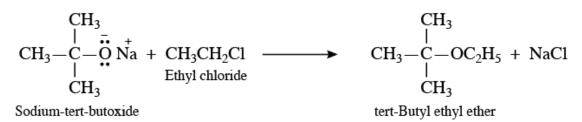
- i. Phenol to benzyl alcohol
- ii. Phenol to m-bromophenol
- iii. Phenol to aspirin.

[HOTS]

Q.4. The following is not an appropriate reaction for the preparation of tert.-butyl ethyl ether:

 C_2H_5 ONa + (CH₃)₃C-Cl \rightarrow (CH₃)₃C-OC₂H₅

- i. What would be the major product of the given reaction?
- ii. Write a suitable reaction for the preparation of tert.-butyl ethyl ether, specifying the names of reagents used.


Justify your answer in both cases.

[CBSE Sample Paper 2016] [HOTS]

Ans. (i) The major product of the given reaction is 2-methylprop-1-ene. It is because sodium ethoxide $(CH_3 - CH_2 \overline{ONa})$ is a strong nucleophile as well as a strong base. Thus, elimination reaction predominates over substitution reaction.

$$\begin{array}{c} CH_{3} \\ CH_{3}-C-CH_{3} + Na-OCH_{2}-CH_{3} \\ C1 \\ \text{tert-butyl chloride} \end{array} \xrightarrow{} CH_{3}-C-CH_{2} + NaC1 + CH_{3}CH_{2}OH \\ Isobutylene \\ (2-methyl prop-1-ene) \end{array}$$

(ii). To prepare tertiary butylethyl ether, the alkyl halide should be primary, *i.e.*, ethyl chloride and the nucleophile should be tertiary, *i.e.*, tertiary butoxide ion. It is because the reaction occurs by S_N2 mechanism and primary alkyl halides are most reactive in S_N2 reactions.

Q.5. Answer the following questions:

Q. Why are ethers insoluble in water?

Ans. Ethers are insoluble in water because due to the bigger size of the alkyl groups, the oxygen atom in ethers fails to form intermolecular H-bonds with water.

Q. Complete the reaction equation:

Ans.

 H_2O/H^+

4-Methylhept-3-ene

4-Methylheptan-4-ol

Q. How will you know whether a given OH group is alcoholic or phenolic in nature?

Ans. Phenolic OH group gives blue or violet colouration with neutral FeCl₃, while alcoholic OH group does not.

Q.6. Account for the following:

Q. Rectified spirit cannot be converted into absolute alcohol by simple distillation.

Ans. Rectified spirit containing 95% ethyl alcohol and 5% water forms an azeotropic mixture which distils at a constant temperature of 351.13 K.

Q. Diethyl ether does not react with sodium.

Ans. Since diethyl ether does not contain an active hydrogen attached to oxygen like alcohols and phenols, it does not react with sodium.

Q. Phenols do not undergo substitution of the —OH group like alcohols.

Ans. The C—O bond in phenols has some double bond character due to resonance and hence cannot be easily cleaved by nucleophile. In contrast, the C—O bond in alcohols is a pure single bond and hence can be easily cleaved by nucleophile.

Q.7.

- i. Arrange the following sets of compounds in order of their increasing boiling points:
 - (a) Pentan-1-ol, butan-1-ol, butan-2-ol, ethanol, propan-1-ol, methanol(b) Pentan-1-ol, n-butane, pentanal, ethoxyethane.
- ii. Arrange the following compounds in increasing order of acidity and give a suitable explanation.

Phenol, o-nitrophenol, o-cresol

[NCERT Exemplar]

Ans.

- i. (a) Methanol < ethanol < propan-1-ol < butan-2-ol < butane-1-ol < pentan-1-ol.
 (b) *n*-Butane < ethoxyethane < pentanal < pentan-1-ol.
- ii. Increasing order of acidity:
 o-cresol < phenol < o-nitrophenol
 In substituted phenols, the presence of electron-withdrawing groups enhance the acidic strength of phenol whereas, electron-releasing groups decrease the acidic strength of phenol.

Q.8. Arrange the following compounds in decreasing order of acidity.

i. H₂O, ROH, HC**E**CH

CH₃O–
$$\bigcirc$$
–OH, O₂N– \bigcirc –OH, C₆H₅OH

Ans.

ii

i.
$$H_2O > ROH > HC \equiv CH$$

ii. $O_2N = OH > C_6H_5OH > CH_3O = OH$
iii. $C_6H_5OH > H_2O > CH_3OH$

Q.9. An organic compound 'A' having molecular formula C_3H_6 on treatment with aqueous H_2SO_4 gives 'B' which on treatment with $HCI/ZnCI_2$ gives 'C'. The compound C on treatment with ethanolic KOH gives back the compound 'A'. Identify the compounds A, B, C.

[HOTS]

C1

Ans.

$$A = CH_{3} - CH = CH_{2}$$

$$B = CH_{3} - CH - CH_{3}$$

$$C = CH_{3} - CH - CH_{3}$$

$$C = CH_{3} - CH - CH_{3}$$

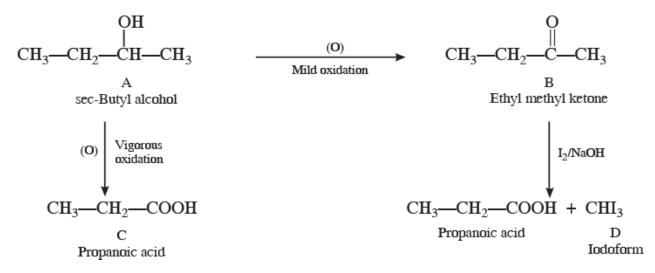
$$CH_{3} - CH = CH_{2}$$

$$A$$

$$CH_{3} - CH = CH_{2}$$

$$A$$

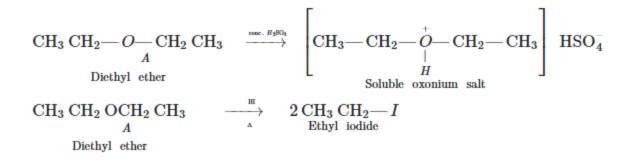
$$CH_{3} - CH - CH_{3}$$


$$CH_{3} - CH - CH - CH_{3}$$

$$CH_{3} - CH -$$

Q.10. A compound 'A' is optically active. On mild oxidation, it gives a compound 'B' but on vigorous oxidation gives another compound 'C'. C along with D is also

formed from B by reaction with iodine and alkali. Deduce the structures of A, B, C, D.


Ans.

Q.11. A compound 'A' having molecular formula $C_4H_{10}O$ is found to be soluble in concentrated sulphuric acid. It does not react with sodium metal or potassium permanganate. On heating with excess of HI, it gives a single alkyl halide. Deduce the structure of compound A and explain all the reactions.

[HOTS]

- i. As compound A does not react with sodium metal or potassium permanganate, it cannot be an alcohol.
- ii. As compound A dissolves in conc. H₂SO₄, it may be an ether.
- iii. As compound A on heating with excess of HI gives a single alkyl halide, therefore, compound A must be a symmetrical ether.
- iv. The only symmetrical ether having molecular formula C₄H₁₀O is diethyl ether. Thus compound 'A' is diethylether, CH₃-CH₂-O-CH₂-CH₃.

