Exercise 11.4

Answer 1E.

- (A) Let $\sum a_n$ and $\sum b_n$ are series with positive terms and $\sum b_n$ is Convergent. If $a_n > b_n$ for all n, then we cannot say anything about $\sum a_n$ since $a_n > b_n$ and b_n is conversant then $\sum a_n$ can be convergent or divergent.
- (B) If $a_n < b_n$ for all n and $\sum b_n$ is convergent then $\sum a_n$ is also convergent by comparison test.

Answer 2E.

- (A) Let $\sum a_n$ and $\sum b_n$ are series with positive terms and $\sum b_n$ is divergent. If $a_n > b_n$ for all n, then $\sum a_n$ is also divergent by comparison test.
- (B) If $a_n < b_n$ for all n, then we can not say anything about $\sum a_n$. It can be convergent or divergent.

Answer 3E.

The series is
$$\sum_{n=1}^{\infty} \frac{n}{2n^3 + 1}$$
.

Determine whether the series converges or diverges.

Apply limit comparison test:

Suppose that $\sum a_n, \sum b_n$ are series with positive terms. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$, where c is a finite number and c>0, then either the series converge or both diverge.

Let
$$a_n = \frac{n}{2n^3 + 1}, b_n = \frac{1}{n^2}$$

Consider the expression,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{n}{2n^3 + 1}}{\frac{1}{n^2}}$$

$$= \lim_{n \to \infty} \frac{\frac{n}{n\left(2n^2 + \frac{1}{n}\right)}}{\frac{1}{n^2}}$$

$$= \lim_{n \to \infty} \frac{1}{\frac{1}{n^2}}$$

$$= \lim_{n \to \infty} \frac{1}{2 + \frac{1}{n^3}}$$

$$= \frac{1}{2} > 0$$

This implies $\lim_{n\to\infty} \frac{a_n}{b_n}$ is a fixed number and greater than 0.

Also, the series $\sum b_n = \sum \frac{1}{n^2}$ converges, because it is in the form $\sum \frac{1}{n^p}$, where p > 1.

By comparison test, the series $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{n}{2n^3 + 1}$ converges.

Answer 4E.

Consider the series.

$$\sum_{n=2}^{\infty} \frac{n^3}{n^4 - 1}$$

To determine the convergence of the series, use Limit Comparison Test.

Limit Comparison Test:

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

If $\lim_{n\to\infty}\frac{a_n}{b_n}=c$, where c is a finite number and c>0, then both the series converge or diverge

Suppose
$$\sum_{n=2}^{\infty} \frac{n^3}{n^4 - 1} = \sum a_n$$

Then, we have

$$a_n = \frac{n^3}{n^4 - 1} > 0$$

Consider b_n by taking the highest power of n from the numerator and the denominator of a_n

$$b_n = \frac{n^3}{n^4}$$
$$= \frac{1}{n} > 0$$

Then $\sum a_n$ and $\sum b_n$ are series with positive terms, because each a_n , and b_n is positive for all $n \ge 2$

Now consider the following limit.

$$c = \lim_{n \to \infty} \frac{a_n}{b_n}$$

$$= \lim_{n \to \infty} \frac{n^3}{n^4 - 1} \cdot n$$

$$= \lim_{n \to \infty} \frac{n^4}{n^4 \left(1 - \frac{1}{n^4}\right)}$$

$$= \lim_{n \to \infty} \frac{1}{1 - \frac{1}{n^4}}$$

$$= \frac{1}{1 - 0}$$

=1 > 0

Therefore, c > 0, and this is a finite number.

The auxiliary series $\sum \frac{1}{n^p}$ converges if p > 1, and diverges if $p \le 1$

So the series, $\sum b_n = \sum \frac{1}{n!}$ is diverges as p = 1

Hence by Limit Comparison Test, the series $\sum_{n=2}^{\infty} \frac{n^3}{n^4 - 1}$ is diverges.

Answer 5E.

Consider the series,

$$\sum_{n=1}^{\infty} \frac{n+1}{n\sqrt{n}}$$

To determine the convergence of the series, use Limit Comparison Test.

Limit Comparison Test:

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

If $\lim_{n\to\infty}\frac{a_n}{b_n}=c$, where c is a finite number and c>0, then both the series converge or diverge

Suppose
$$\sum_{n=1}^{\infty} \frac{n+1}{n\sqrt{n}} = \sum_{n=1}^{\infty} a_n$$

Then, we have

$$a_n = \frac{n+1}{n\sqrt{n}} > 0$$

Consider b_n by taking the highest power of n from the numerator and the denominator of a_n

$$b_n = \frac{n}{n\sqrt{n}}$$
$$= \frac{1}{\sqrt{n}} > 0$$

Then $\sum a_n$ and $\sum b_n$ are series with positive terms, because each a_n , and b_n is positive for all $n \ge 1$

Answer 6E.

Consider the series,

$$\sum_{n=1}^{\infty} \frac{n-1}{n^2 \sqrt{n}}$$

To determine the convergence of the series, use Limit Comparison Test.

Limit Comparison Test:

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

If $\lim_{n\to\infty}\frac{a_n}{b_n}=c$, where c is a finite number and c>0, then both the series converge or diverge

Suppose
$$\sum_{n=1}^{\infty} \frac{n-1}{n^2 \sqrt{n}} = \sum a_n$$

Then, we have

$$a_n = \frac{n-1}{n^2 \sqrt{n}} > 0$$

Consider b_n by taking the highest power of n from the numerator and the denominator of a_n

$$b_n = \frac{n}{n^2 \sqrt{n}}$$
$$= \frac{1}{n\sqrt{n}} > 0$$

Then $\sum a_n$ and $\sum b_n$ are series with positive terms, because each a_n , and b_n is positive for all $n \ge 1$

Now consider the following limit.

$$c = \lim_{n \to \infty} \frac{a_n}{b_n}$$

$$= \lim_{n \to \infty} \frac{n-1}{n^2 \sqrt{n}} \cdot n \sqrt{n}$$

$$= \lim_{n \to \infty} \frac{n-1}{n}$$

$$= \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)$$

$$= 1 - 0$$

$$= 1 > 0$$

Therefore, c > 0, and this is a finite number.

The auxiliary series $\sum \frac{1}{n^p}$ converges if p > 1, and diverges if $p \le 1$

So the series,
$$\sum b_n = \sum \frac{1}{n^{\frac{3}{2}}}$$
 is converges as $p = \frac{3}{2} > 1$

Hence by Limit Comparison Test, the series $\sum_{n=1}^{\infty} \frac{n-1}{n^2 \sqrt{n}}$ is converges.

Answer 7E.

Consider the series,

$$\sum_{n=1}^{\infty} \frac{9^n}{3+10^n}$$

To determine the convergence of the series, use Limit Comparison Test.

Limit Comparison Test:

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

If $\lim_{n\to\infty}\frac{a_n}{b_n}=c$, where c is a finite number and c>0, then both the series converge or diverge

Suppose
$$\sum_{n=1}^{\infty} \frac{9^n}{3+10^n} = \sum a_n$$

Then, we have

$$a_n = \frac{9^n}{3+10^n} > 0$$

Take.

$$b_n = \frac{9^n}{10^n}$$
$$= \left(\frac{9}{10}\right)^n > 0$$

Then $\sum a_n$ and $\sum b_n$ are series with positive terms, because each a_n , and b_n is positive for all $n \ge 1$

Now consider the following limit.

$$c = \lim_{n \to \infty} \frac{a_n}{b_n}$$

$$= \lim_{n \to \infty} \frac{9^n}{3 + 10^n} \cdot \frac{10^n}{9^n}$$

$$= \lim_{n \to \infty} \frac{10^n}{3 + 10^n}$$

$$= \lim_{n \to \infty} \frac{10^n}{10^n \left(\frac{3}{10^n} + 1\right)}$$

$$= \lim_{n \to \infty} \frac{1}{10^n}$$

$$= \frac{1}{0 + 1}$$

Therefore, c > 0, and this is a finite number.

Answer 8E.

To determine the series converges or diverges, consider the series

$$\sum_{n=1}^{\infty} \frac{6^n}{5^n - 1}.$$

The Limit Comparison Test states that, if $\sum a_n$ and $\sum b_n$ are series with positive terms, and

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c\,,$$

where c is a finite number and c>0, then either both series converge or both diverge.

Let
$$a_n = \frac{6^n}{5^n - 1}$$
 and $b^n = \frac{6^n}{5^n}$

Compute the limit value of $\frac{a_n}{b_n}$ as $n \to \infty$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{x \to \infty} \frac{\frac{6^n}{5^n - 1}}{\frac{6^n}{5^n}}$$

$$= \lim_{x \to \infty} \frac{\frac{6^n}{5^n - 1}}{\frac{5^n}{5^n - 1}} \cdot \frac{5^n}{6^n}$$

$$= \lim_{x \to \infty} \frac{\frac{5^n}{5^n - 1}}{\frac{5^n}{5^n - 1}}$$

$$= \lim_{x \to \infty} \frac{\frac{5^n}{5^n - 1}}{\frac{5^n}{5^n - 1}}$$

The limit of $\frac{a_{\scriptscriptstyle n}}{b_{\scriptscriptstyle n}}$ as $n \to \infty$ is,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{x \to \infty} \frac{5^n}{5^n \left(1 - \frac{1}{5^n}\right)}$$

$$= \lim_{x \to \infty} \frac{1}{\left(1 - \frac{1}{5^n}\right)}$$

$$= \frac{1}{1 - 0} \qquad \text{Because as } n \to \infty, \frac{1}{5^n} \to 0$$

$$= 1$$

The series $\sum \frac{6^n}{5^n} = \sum \left(\frac{6}{5}\right)^n$ is a geometric series with common ratio

$$r = \frac{6}{5} > 1$$

Recall the result that, a geometric series is divergent if $|r| \ge 1$

So, the series $\sum b_n = \frac{6^n}{5^n}$ is divergent.

Since $\sum b_n$ divergent and $\lim_{n\to\infty}\frac{a_n}{b_n}=1$, by using limit comparison test it follows that

the series $\sum a_n$ is also divergent.

That is,
$$\sum_{n=1}^{\infty} \frac{6^n}{5^n - 1}$$
 is divergent series

Answer 9E.

To determine the series converges or diverges, consider the series

$$\sum_{k=1}^{\infty} \frac{\ln k}{k}.$$

On expanding the series with respect to k, it becomes

$$\sum_{k=1}^{\infty} \frac{\ln k}{k} = \frac{\ln 1}{1} + \frac{\ln 2}{2} + \sum_{k=3}^{\infty} \frac{\ln k}{k}$$

Take the series $\sum_{k=3}^{\infty} \frac{\ln k}{k}$

Use comparison test to determine the series converges or diverges.

The Comparison test:

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

- (i) If $\sum b_n$ is convergent and $a_n \le b_n$ for all n, then $\sum a_n$ is also convergent.
- (ii) If $\sum b_n$ is divergent and $a_n \ge b_n$ for all n, then $\sum a_n$ is also divergent.

Since $\ln k > 1 \ \forall k \ge 3$.

It follows that

$$\frac{\ln k}{k} > \frac{1}{k} \quad \forall k \ge 3$$

Let
$$a_k = \frac{\ln k}{k}$$
 and $b_k = \frac{1}{k}$

Since each term of the series $\sum_{k=3}^{\infty} \frac{\ln k}{k}$ is greater than the corresponding terms of the series

$$\sum_{k=3}^{\infty} \frac{1}{k}$$
 which is $\left(p - \text{series with } p = 1\right)$ divergent, therefore, the series $\sum_{k=3}^{\infty} \frac{\ln k}{k}$ is divergent by

comparison test.

Recall that, convergence or divergence of a series does not change by adding finite number of terms to it.

Since
$$\sum_{k=3}^{\infty} \frac{\ln k}{k}$$
 is divergent series, so

$$\frac{\ln 1}{1} + \frac{\ln 2}{2} + \sum_{k=3}^{\infty} \frac{\ln k}{k}$$
 is divergent series.

That is,
$$\sum_{k=1}^{\infty} \frac{\ln k}{k}$$
 is divergent series.

Answer 10E.

Given series
$$\sum_{k=1}^{\infty} \frac{k \sin^2 k}{1 + k^3}$$

We have

$$1+k^3 > k^3$$

$$\Rightarrow \frac{1}{1+k^3} < \frac{1}{k^3}$$

$$\Rightarrow \frac{k \sin^2 k}{1+k^3} < \frac{k}{k^3} \ (\because \sin^2 k \le 1)$$

$$\Rightarrow \frac{k \sin^2 k}{1+k^3} < \frac{1}{k^2}$$

We know that $\sum \frac{1}{k^2}$ is convergent (p-series with p=2).

Thus the given series $\sum_{k}^{\infty} \frac{k \sin^2 k}{1+k^3}$ is convergent by the Companion Test.

Answer 11E.

To determine the series converges or diverges, consider the series

$$\sum_{k=1}^{\infty} \frac{\sqrt[3]{k}}{\sqrt{k^3 + 4k + 3}}$$

Use comparison test to determine the series converges or diverges.

The Comparison test:

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

- (i) If $\sum b_n$ is convergent and $a_n \le b_n$ for all n, then $\sum a_n$ is also convergent.
- (ii) If $\sum b_n$ is divergent and $a_n \ge b_n$ for all n, then $\sum a_n$ is also divergent.

Since
$$k^3 + 4k + 3 > k^3 \quad \forall k \ge 1$$
.

It follows that

$$\sqrt{k^{3} + 4k + 3} > \sqrt{k^{3}} \quad \forall k \ge 1$$

$$\frac{1}{\sqrt{k^{3} + 4k + 3}} < \frac{1}{\sqrt{k^{3}}} \quad \forall k \ge 1$$

$$\frac{\sqrt[3]{k}}{\sqrt{k^{3} + 4k + 3}} < \frac{\sqrt[3]{k}}{\sqrt{k^{3}}} \quad \forall k \ge 1$$

$$\frac{\sqrt[3]{k}}{\sqrt{k^{3} + 4k + 3}} < \frac{\sqrt[1]{3}}{\sqrt[3]{k^{3}}} \quad \forall k \ge 1$$

Continuation to the above

$$\frac{\sqrt[3]{k}}{\sqrt{k^3 + 4k + 3}} < \frac{k^{\frac{1}{3}}}{k^{\frac{3}{2}}} \quad \forall k \ge 1$$

$$\frac{\sqrt[3]{k}}{\sqrt{k^3 + 4k + 3}} < \frac{1}{k^{\frac{3-1}{2}}} \quad \forall k \ge 1$$

$$\frac{\sqrt[3]{k}}{\sqrt{k^3 + 4k + 3}} < \frac{1}{k^{\frac{9-2}{6}}} \quad \forall k \ge 1$$

$$\frac{\sqrt[3]{k}}{\sqrt{k^3 + 4k + 3}} < \frac{1}{k^{\frac{7}{6}}} \quad \forall k \ge 1$$

Let
$$a_k = \frac{\sqrt[3]{k}}{\sqrt{k^3 + 4k + 3}}$$
 and $b_k = \frac{1}{k^{\frac{7}{6}}}$

Now,
$$\sum b_k = \sum \frac{1}{k^{\frac{7}{6}}}$$

Since
$$\sum \frac{1}{k^{\frac{7}{6}}}$$
 is $\left(p - \text{series with } p = \frac{7}{6} > 1\right)$ convergent,

so $\sum b_k$ is convergent.

As

$$\sum a_k < \sum b_k \quad \forall k \ge 1$$

and $\sum b_{k}$ is convergent, so by comparison test it follows that

$$\sum a_{k} = \sum \frac{\sqrt[3]{k}}{\sqrt{k^{3} + 4k + 3}}$$

is convergent series.

That is,
$$\sum_{k=1}^{\infty} \frac{\sqrt[3]{k}}{\sqrt{k^3 + 4k + 3}}$$
 is **convergent series** by comparison test.

Answer 12E.

To determine the series converges or diverges, consider the series

$$\sum_{k=1}^{\infty} \frac{(2k-1)(k^2-1)}{(k+1)(k^2+4)^2}$$

Use comparison test to determine the series converges or diverges.

The Comparison test:

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

- (i) If $\sum b_n$ is convergent and $a_n \le b_n$ for all n, then $\sum a_n$ is also convergent.
- (ii) If $\sum b_n$ is divergent and $a_n \ge b_n$ for all n, then $\sum a_n$ is also divergent.

Since
$$(k+1)(k^2+4)^2 > k^5 \quad \forall k \ge 1$$
.

It follows that

$$\frac{1}{(k+1)(k^2+4)^2} < \frac{1}{k^5} \quad \forall k \ge 1$$

$$\frac{(2k-1)(k^2-1)}{(k+1)(k^2+4)^2} < \frac{2k^3}{k^5} \quad \forall k \ge 1 \quad \text{since } (2k-1)(k^2-1) < 2k^3 \quad \forall k \ge 1$$

$$\frac{(2k-1)(k^2-1)}{(k+1)(k^2+4)^2} < \frac{2}{k^2} \quad \forall k \ge 1$$

Let
$$a_k = \frac{(2k-1)(k^2-1)}{(k+1)(k^2+4)^2}$$
 and $b_k = \frac{2}{k^2}$

Now,
$$\sum b_k = \sum \frac{2}{k^2}$$

$$=2\sum \frac{1}{k^2}$$

Since $\sum \frac{1}{k^2}$ is (p - series with p > 1) convergent,

so $\sum b_k$ is convergent.

As

$$\sum a_k < \sum b_k \quad \forall k \ge 1$$

and $\sum b_{k}$ is convergent, so by comparison test it follows that

$$\sum a_k = \sum \frac{(2k-1)(k^2-1)}{(k+1)(k^2+4)^2}$$

is convergent series.

That is,
$$\sum_{k=1}^{\infty} \frac{(2k-1)(k^2-1)}{(k+1)(k^2+4)^2}$$
 is **convergent series** by comparison test.

Answer 13E.

Consider the series,

$$\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n^{1.2}}$$

To determine the convergence of the series, use Comparison Test.

Comparison Test:

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms such that $a_n \leq b_n$

If the series $\sum b_n$ converges, then the series $\sum a_n$ also converges.

Also, if the series $\sum b_{\scriptscriptstyle n}$ diverges, then the series $\sum a_{\scriptscriptstyle n}$ diverges

For all $n \ge 1$, we have

$$\tan^{-1} n < 2$$

$$\frac{\tan^{-1} n}{n^{1.2}} < \frac{2}{n^{1.2}}$$

Suppose
$$a_n = \frac{\tan^{-1} n}{n!^2}$$
, and $b_n = \frac{2}{n!^2}$

The auxiliary series $\sum \frac{1}{n^p}$ converges if p > 1, and diverges if $p \le 1$

So the series, $\sum \frac{1}{n^{12}}$ is converges as p=1.2>1, and hence $\sum b_n=\sum \frac{2}{n^{12}}$ converges.

So, by Comparison Test, the series $\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n^{1.2}}$ also converges.

Answer 14E.

We have the series
$$\sum_{n=2}^{\infty} \frac{\sqrt{n}}{n-1}$$

We use the limit comparison Test with

$$a_n = \frac{\sqrt{n}}{n-1}$$
 $b_n = \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}$

We have
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{\sqrt{n}}{n-1} \cdot \frac{\sqrt{n}}{1}$$

$$= \lim_{n\to\infty} \frac{n}{n-1}$$

$$= \lim_{n\to\infty} \frac{1}{1-1/n}$$

$$= \frac{1}{1-0} = 1 > 0$$

Since this limit exists and $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$ is divergent $\left(p\text{-series with }p=\frac{1}{2}<1\right)$

Therefore by the Limit comparison test the given series diverges.

Answer 15E.

Given series
$$\sum_{n=1}^{\infty} \frac{4^{n+1}}{3^n - 2}$$

We have

$$3^{n}-2 < 3^{n}$$

$$\Rightarrow \frac{1}{3^{n}-2} > \frac{1}{3^{n}}$$

$$\Rightarrow \frac{4^{n+1}}{3^{n}-2} > \frac{4^{n}}{3^{n}} \quad (:: 4^{n+1} > 4^{n})$$

$$\Rightarrow \frac{4^{n+1}}{3^{n}-2} > \left(\frac{4}{3}\right)^{n}$$

We know that $\sum_{n=1}^{\infty} \left(\frac{4}{3}\right)^n$ is divergent, (geometric series with $r = \frac{4}{3} > 1$).

Thus the given series $\sum_{n=1}^{\infty} \frac{4^{n+1}}{3^n - 2}$ is divergent by the Companion Test.

Answer 16E.

Given series
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{3n^4 + 1}}$$

We have

$$3n^4 + 1 > n^4$$

$$\Rightarrow \sqrt[3]{3n^4 + 1} > \sqrt[3]{n^4}$$

$$\Rightarrow \frac{1}{\sqrt[3]{3n^4 + 1}} < \frac{1}{\sqrt[3]{n^4}}$$

We know that $\sum \frac{1}{n^{\frac{4}{3}}}$ is convergent (p-series with $p = \frac{4}{3} > 1$)

Thus the given series $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{3n^4+1}}$ is convergent by the Companion Test.

Answer 17E.

We have the series
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$$

We use the limit comparison test with

$$a_n = \frac{1}{\sqrt{n^2 + 1}}, \quad b_n = \frac{1}{\sqrt{n^2}} = \frac{1}{n}$$

We have
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{\sqrt{n^2}}{\sqrt{n^2+1}}$$
$$= \lim_{n\to\infty} \frac{1}{\sqrt{1+1/n^2}}$$
$$= \frac{1}{1+0} = 1 > 0$$

Since this limit exists, and $\sum b_n = \sum \frac{1}{n}$ diverges (harmonic series) Therefore $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$ also diverges by the limit comparison test.

Answer 18E.

We have the series
$$\sum_{n=1}^{\infty} \frac{1}{2n+3}$$

Take $a_n = \frac{1}{2n+3}$, $b_n = \frac{1}{2n}$
Then $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n}{2n+3}$
 $= \lim_{n \to \infty} \frac{2}{2+3/n}$
 $= \frac{2}{2+0} = 1 > 0$

Since this limit exists and $\sum \frac{1}{2n}$ diverges (constant multiple of harmonic series)

Therefore $\sum_{n=1}^{\infty} \frac{1}{2n+3}$ diverges by the limit comparison test.

Answer 19E.

Consider the series.

$$\sum_{n=1}^{\infty} \frac{1+4^n}{1+3^n}$$

To determine the convergence of the series, use Limit Comparison Test.

Limit Comparison Test:

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

If $\lim_{n\to\infty}\frac{a_n}{b_n}=c$, where c is a finite number and c>0, then both the series converge or diverge

Suppose
$$\sum_{n=1}^{\infty} \frac{1+4^n}{1+3^n} = \sum_{n=1}^{\infty} a_n$$

Then, we have

$$a_n = \frac{1+4^n}{1+3^n} > 0$$

Consider b_n by taking the highest power of n from the numerator and the denominator of a_n

$$b_n = \frac{4^n}{3^n}$$
$$= \left(\frac{4}{3}\right)^n > 0$$

Then $\sum a_n$ and $\sum b_n$ are series with positive terms, because each a_n , and b_n is positive for all $n \ge 1$

Now consider the following limit.

$$c = \lim_{n \to \infty} \frac{a_n}{b_n}$$

$$= \lim_{n \to \infty} \frac{1 + 4^n}{1 + 3^n} \cdot \frac{3^n}{4^n}$$

$$= \lim_{n \to \infty} \frac{4^n \left(\frac{1}{4^n} + 1\right)}{3^n \left(\frac{1}{3^n} + 1\right)} \cdot \frac{3^n}{4^n}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{4^n} + 1}{\frac{1}{3^n} + 1}$$

$$= \frac{0 + 1}{0 + 1}$$

Therefore, c > 0, and this is a finite number.

The geometric series $\sum r''$ converges if |r| < 1 , and diverges if $r \ge 1$

So the series,
$$\sum b_n = \sum \left(\frac{4}{3}\right)^n$$
 diverges as $r = \frac{4}{3} > 1$

Hence by Limit Comparison Test, the series $\sum_{n=1}^{\infty} \frac{1+4^n}{1+3^n}$ is diverges.

Answer 20E.

Consider the series.

$$\sum_{n=1}^{\infty} \frac{n+4^n}{n+6^n}$$

Use Limit comparison test, to decide the convergence of this series.

Limit comparison test:

If $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ are series with positive terms, and if $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, where c is finite, then both

the series convernes or divernes

Suppose
$$\sum_{n=1}^{\infty} \frac{n+4^n}{n+6^n} = \sum_{n=1}^{\infty} a_n$$

Then, we get

$$a_n = \frac{n+4^n}{n+6^n} > 0$$
, for all n

Suppose that,
$$b_n = \frac{4^n}{6^n} > 0$$

Now we find the value of the limit,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{n+4^n}{n+6^n}}{\frac{4^n}{6^n}}$$

$$= \lim_{n \to \infty} \frac{n+4^n}{n+6^n} \cdot \frac{6^n}{4^n}$$

$$= \lim_{n \to \infty} \frac{4^n \left(\frac{n}{4^n} + 1\right)}{6^n \left(\frac{n}{6^n} + 1\right)} \cdot \frac{6^n}{4^n}$$

$$= \lim_{n \to \infty} \frac{\frac{n}{4^n} + 1}{\frac{n}{6^n} + 1}$$
$$= \frac{\lim_{n \to \infty} \frac{n}{4^n} + 1}{\lim_{n \to \infty} \frac{n}{6^n} + 1}$$

Use L-Hospital's rule, $\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$ if $\lim_{n\to\infty}\frac{f(n)}{g(n)}=\frac{\infty}{\infty}$, and use $\frac{d}{dx}(a^x)=a^x\log a$, to get the value of the limit.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} \frac{1}{4^n \cdot \log 4} + 1}{\lim_{n \to \infty} \frac{1}{6^n \cdot \log 6} + 1}$$
$$= \frac{\frac{1}{\infty} + 1}{\frac{1}{\infty} + 1}$$
$$= \frac{1}{1}$$

$$=1>0$$

And, consider the series,

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{4^n}{6^n}$$

The geometric series $\sum_{n=1}^{\infty} r^n$ converges if $0 \le r < 1$, and diverges if $r \ge 1$.

So the series
$$\sum_{n=1}^{\infty} \frac{4^n}{6^n} = \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$
 converges as $r = \frac{2}{3} < 1$.

So by Limit comparison test, the series $\sum_{n=1}^{\infty} \frac{n+4^n}{n+6^n}$ also converges.

Answer 21E.

Consider the series.

$$\sum_{n=1}^{\infty} \frac{\sqrt{n+2}}{2n^2+n+1}$$

Use Limit comparison test, to decide the convergence of this series.

Limit comparison test:

If $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ are series with positive terms, and if $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, where c is finite, then both the series converges or diverges.

Suppose
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+2}}{2n^2+n+1} = \sum_{n=1}^{\infty} a_n$$

Then, we get

$$a_n = \frac{\sqrt{n+2}}{2n^2 + n + 1} > 0$$
, for all n

Suppose that,

$$b_n = \frac{\sqrt{n}}{n^2}$$
$$= \frac{1}{n\sqrt{n}} > 0$$

Now we find the value of the limit,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{\sqrt{n+2}}{2n^2 + n + 1}}{\frac{1}{n\sqrt{n}}}$$

$$= \lim_{n \to \infty} \frac{\sqrt{n+2}}{2n^2 + n + 1} \cdot n\sqrt{n}$$

$$= \lim_{n \to \infty} \frac{\sqrt{n}\sqrt{1 + \frac{2}{n}}}{n^2 \left(2 + \frac{1}{n} + \frac{1}{n^2}\right)} \cdot n\sqrt{n}$$

$$= \lim_{n \to \infty} \frac{n^2 \sqrt{1 + \frac{2}{n}}}{n^2 \left(2 + \frac{1}{n} + \frac{1}{n^2}\right)}$$

$$= \frac{\sqrt{1 + \frac{2}{\infty}}}{2 + \frac{1}{\infty} + \frac{1}{\infty}}$$

$$= \frac{\sqrt{1 + 0}}{2 + 0 + 0}$$

$$= \frac{1}{2} > 0$$

And, consider the series,

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$
$$= \sum_{n=1}^{\infty} \frac{1}{\frac{3}{2}}$$

The auxiliary series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1.

So the series $\sum_{n=1}^{\infty} \frac{1}{n^p} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ converges as $p = \frac{3}{2} > 1$.

So by Limit comparison test, the series $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{\sqrt{n+2}}{2n^2+n+1}$ also converges.

Answer 22E.

We have the series
$$\sum_{n=1}^{\infty} \frac{n+2}{(n+1)^3}$$

Take $a_n = \frac{n+2}{(n+1)^3}$, $b_n = \frac{n}{n^3}$
 $= \frac{1}{n^2}$
And $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(n+2)}{(n+1)^3} n^2$
 $= \lim_{n \to \infty} \frac{(n^3 + 2n^2)}{(n+1)^3}$
 $= \lim_{n \to \infty} \frac{(1+2/n)}{(1+1/n)^3}$
 $= \frac{1+0}{(1+0)^3} = 1 > 0$

Since this limit exists and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges (p-series with p=2>1) Therefore given series also converges by the limit comparison test

Answer 23E.

The Limit Comparisin Test:

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ where c is a finite number and c > 0, then either

both series converge or both diverge.

We have the series
$$\sum_{n=1}^{\infty} \frac{5+2n}{\left(1+n^2\right)^2}$$

Take
$$a_n = \frac{5+2n}{\left(1+n^2\right)^2}$$

$$b_n = \frac{2n}{n^4}$$

$$= \frac{2}{n^3}$$

And
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{5 + 2n}{(1 + n^2)^2} \cdot \frac{n^3}{2}$$

$$= \lim_{n \to \infty} \frac{1}{2} \frac{\left(\frac{5}{n} + 2\right)}{\left(\frac{1}{n^2} + 1\right)^2}$$

$$= \frac{1}{2} \times 2$$

$$= 1 > 0$$

So the limit exists and is positive.

Now the series
$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{2}{n^3}$$

$$= 2 \sum_{n=1}^{\infty} \frac{1}{n^3} \text{ converges } (p\text{-sereis,with } p\text{=}3\text{>}1)$$
Therefore $\sum_{n=1}^{\infty} \frac{5+2n}{\left(1+n^2\right)^2}$ also converges by the limit compression test.

Answer 24E.

We have the series
$$\sum_{n=1}^{\infty} \frac{n^2 - 5n}{n^3 + n + 1}$$

Take $a_n = \frac{n^2 - 5n}{n^3 + n + 1}$, $b_n = \frac{n^2}{n^3} = \frac{1}{n}$
And $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2 - 5n}{n^3 + n + 1} \times n$
 $= \lim_{n \to \infty} \frac{1 - 5/n}{1 + \frac{1}{n^2} + \frac{1}{n^3}}$
 $= \frac{1 - 0}{1 + 0} = 1 > 0$

Since this limit exists and $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent (harmonic series)

Therefore $\sum_{n=1}^{\infty} \frac{n^2 - 5n}{n^3 + n + 1}$ also diverges by the limit comparison test.

Answer 25E.

Given series
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^4 + 1}}{n^3 + n^2}$$

We have

$$n^{3}+n^{2} < 2n^{3}$$

 $\Rightarrow \frac{1}{n^{3}+n^{2}} > \frac{1}{2n^{3}}$

 $\Rightarrow \frac{\sqrt{n^{4}+1}}{n^{3}+n^{2}} > \frac{\sqrt{n^{4}}}{2n^{3}} \quad (n^{4}+1 > n^{4})$

 $\Rightarrow \frac{\sqrt{n^{4}+1}}{n^{3}+n^{2}} > \frac{1}{2n}$

We know that $\frac{1}{2}\sum \frac{1}{n}$ is divergent (p-series with p=1).

Thus the given series $\sum_{n=1}^{\infty} \frac{\sqrt[1]{n^4+1}}{n^3+n^1}$ is divergent by the Companion Test.

Answer 26E.

To determine the series converges or diverges, consider the series

$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2 - 1}}$$

Use comparison test to determine the series converges or diverges.

The Comparison test:

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

- (i) If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also convergent.
- (ii) If $\sum b_n$ is divergent and $a_n \ge b_n$ for all n, then $\sum a_n$ is also divergent.

Since $n^2 - 1 > n \quad \forall n \ge 2$,

It follows that

$$\sqrt{n^2 - 1} > \sqrt{n} \qquad \forall n \ge 2$$

$$n\sqrt{n^2 - 1} > n\sqrt{n} \qquad \forall n \ge 2$$

$$\frac{1}{n\sqrt{n^2 - 1}} < \frac{1}{n\sqrt{n}} \qquad \forall n \ge 2$$

Continuation to the above

$$\frac{1}{n\sqrt{n^2 - 1}} < \frac{1}{n\sqrt{n}} \quad \forall n \ge 2$$

$$\frac{1}{n\sqrt{n^2 - 1}} < \frac{1}{n \cdot n^{\frac{1}{2}}} \quad \forall n \ge 2$$

$$\frac{1}{n\sqrt{n^2 - 1}} < \frac{1}{n^{\frac{3}{2}}} \quad \forall n \ge 2$$

Let
$$a_n = \frac{1}{n\sqrt{n^2 - 1}}$$
 and $b_n = \frac{1}{n^{\frac{3}{2}}}$

Now,
$$\sum b_n = \sum \frac{1}{n^{\frac{3}{2}}}$$

Since
$$\sum \frac{1}{n^{\frac{3}{2}}}$$
 is convergent $\left(p - \text{series with } p = \frac{3}{2} > 1\right)$.

so $\sum b_n$ is convergent.

As

$$\sum a_n < \sum b_n \quad \forall n \ge 2$$

and $\sum b_{\scriptscriptstyle n}$ is convergent, so by **comparison test** it follows that

$$\sum a_n = \sum \frac{1}{n\sqrt{n^2 - 1}}$$

is convergent series.

That is,
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$$
 is **convergent series** by comparison test.

Answer 27E.

We have to find that the series $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^2 e^{-n}$ is convergent or divergent.

Since
$$\frac{1}{n} \le 1$$

 $\Rightarrow 1 + \frac{1}{n} \le 2$
 $\Rightarrow \left(1 + \frac{1}{n}\right)^2 \le 4$
Then $\frac{\left(1 + \frac{1}{n}\right)^2}{n} \le \frac{4}{n}$

Since
$$\sum_{n=1}^{\infty} \frac{4}{e^n}$$
 is a geometric series with $a = \frac{4}{e}$ and $r = \frac{1}{e}$

Since $|r| = \frac{1}{\rho} < 1$ so this series is convergent.

Then by comparison test, the series $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^2 e^{-n}$ is **convergent**

Answer 28E.

Consider the series,

$$\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n}$$

Use Limit comparison test, to decide the convergence of this series.

Limit comparison test:

If $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ are series with positive terms, and if $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, where c is finite, then both the series converges or diverges.

Suppose
$$\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n} = \sum_{n=1}^{\infty} a_n$$

Then, we get

$$a_n = \frac{e^{\frac{1}{n}}}{n} > 0$$
, for all n

Suppose that,
$$b_n = \frac{1}{n} > 0$$

Now we find the value of the limit,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{e^{\frac{1}{n}}}{n}}{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \frac{e^{\frac{1}{n}}}{n} \cdot n$$

$$= e^{\frac{1}{\infty}}$$

$$= e^0$$

$$=1 > 0$$

And, consider the series,

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$$

The auxiliary series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges if $p \le 1$.

So the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges as p=1.

So by Limit comparison test, the series $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n}$ also diverges.

Answer 29E.

Consider the series,

$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

The objective is to determine whether the given series is convergent or divergent.

Use the ratio test to check the convergence of the series.

The Ratio Test:

For a series $\sum a_n$, suppose the sequence of ratios $\frac{\left|a_{n+1}\right|}{\left|a_n\right|}$ has a limit:

$$\lim_{n\to\infty}\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L.$$

If L < 1, then $\sum a_n$ converges.

If L > 1, or if L is infinite, then $\sum a_n$ diverges.

If L=1, the test does not tell us anything about the convergence of $\sum a_n$.

Let
$$a_n = \frac{1}{n!}$$

Then
$$a_{n+1} = \frac{1}{(n+1)!}$$

Find the ratio:

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{1}{(n+1)!} \cdot \frac{n!}{1} \right|$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{n!}{(n+1)n!} \right|$$

$$= \frac{1}{n+1}$$

Now take the limit:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1}{n+1}$$

$$= \lim_{n \to \infty} \frac{1}{n \left(1 + \frac{1}{n}\right)}$$

$$= 0 < 1$$

Because the limit L=0<1,

Thus by the Ratio Test, the given series is converges to 0.

Answer 30E.

Consider the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$.

To find whether the series is convergent or divergent, use the comparison test.

The comparison test, suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

• If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also convergent.

The expanding of the series is,

$$a_1 = 1$$

$$a_2 = \frac{1.2}{2.2}$$
.....
$$a_n = \frac{1.2.3.4....n}{n.n.n...n}$$

$$a_n = \frac{1}{n} \left(\frac{2.3.4....n}{n.n.n...n} \right)$$

$$= \frac{1}{n} k \text{ where } k = \frac{2.3.4....n}{n.n.n...n}$$

Each term in parenthesis is less than or equal to 1 where k < 1 because the numerator is less than the denominator.

We can write it as $0 < a_n \le \frac{1}{n} \le \frac{n!}{n^n}$.

The value of the limit $\sum a_n$ is,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{1}{n} \right)$$

$$= 0 a_n \to 0 \text{ as } n \to \infty$$

Hence the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ is **convergent** from the comparison test.

Answer 31E.

We have
$$a_n = \sin(1/n)$$

Let
$$b_n = 1/n$$

Then using limit comparison test

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{\sin(1/n)}{(1/n)}$$

Let
$$\frac{1}{n} = \theta$$
 so $\theta \rightarrow 0$ as $n \rightarrow \infty$

Then
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{\theta\to 0} \frac{\sin\theta}{\theta} = 1$$

So
$$\lim_{n\to\infty} \frac{a_n}{b_n} = 1 > 0$$

Since
$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$$
 is a harmonic series which is divergent.

So the series
$$\sum_{n=1}^{\infty} \sin(1/n)$$
 is also divergent

Answer 32E.

We take
$$b_{n} = \frac{1}{n}$$
Then
$$\lim_{n \to \infty} \frac{a_{n}}{b_{n}} = \lim_{n \to \infty} \frac{\frac{1}{n^{1+1/n}}}{1/n}$$

$$= \lim_{n \to \infty} \frac{n}{n^{1+1/n}}$$

$$= \lim_{n \to \infty} \frac{1}{n^{1/n}}$$

Now let $y = x^{1/x} \Leftrightarrow \ln y = \frac{1}{x} \ln x$

Taking limit as $x \to \infty$, we have

$$\lim_{x \to \infty} (\ln y) = \lim_{x \to \infty} \left(\frac{\ln x}{x} \right)$$
$$= \lim_{x \to \infty} \left(\frac{1/x}{1} \right)$$
$$= \lim_{x \to \infty} \left(\frac{1}{x} \right) = 0$$

Therefore $\lim_{x\to\infty}(y)=e^0=1$

[By L-Hospital's rule]

Now let $y = x^{1/x} \Leftrightarrow \ln y = \frac{1}{x} \ln x$ Taking limit as $x \to \infty$, we have

$$\lim_{x \to \infty} (\ln y) = \lim_{x \to \infty} \left(\frac{\ln x}{x} \right)$$
$$= \lim_{x \to \infty} \left(\frac{1/x}{1} \right)$$
$$= \lim_{x \to \infty} \left(\frac{1}{x} \right) = 0$$

Therefore $\lim_{x\to\infty} (y) = e^0 = 1$

[By L-Hospital's rule]

Answer 33E.

Consider the series,

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^4 + 1}}$$

The objective is to use the sum of the first 10 terms to approximate the sum of the series. Estimate the series.

Since

$$\frac{1}{\sqrt{n^4+1}} < \frac{1}{\sqrt{n^4}}$$

Or
$$\frac{1}{\sqrt{n^4+1}} < \frac{1}{n^2}$$

The given series is convergent by Comparison Test.

The remainder of the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^4}}$ is found by the Remainder Estimate for the Integral Test.

$$T_n \le \int_n^\infty \frac{1}{\sqrt{x^4}}$$
$$= \int_n^\infty \frac{1}{x^2}$$
$$= \frac{1}{n}$$

Therefore, the remainder for the given series satisfies

$$R_n \le T_n \le \frac{1}{n}$$

With n=10

$$R_{10} \le \frac{1}{10}$$

= 0.1

Using a programmable calculator,

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^4 + 1}}$$

$$\approx \sum_{n=1}^{10} \frac{1}{\sqrt{n^4 + 1}}$$

$$\approx \boxed{1.249}$$

With error less than $\boxed{0.1}$

Answer 34E.

Consider the series,

$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^3}$$

Use the following results for check the convergence of this series.

- 1. The auxiliary series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges if $p \le 1$, and converges if p > 1.
- 2. Comparison test: if $a_n < b_n$, for all n, and if $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} b_n$ also converges.

Now we have,

$$\sin^2 n \le 1 \ \forall n \ge 1$$

$$\frac{\sin^2 n}{n^3} \le \frac{1}{n^3} \dots (1)$$

The series,
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$
 converges as $p=3>1$

So by comparison test, the series $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^3}$ also converges.

To approximate the sum of the given series, use "Remainder Estimate for the Integral Test".

Remainder Estimate for the Integral Test:

Suppose that f is a continuous, positive, decreasing function for $x \ge n$, $f(k) = a_k$, and $\sum a_n$ is convergent. If $T_n = s - s_n$, then

$$T_n \le \int_{-\infty}^{\infty} f(x) dx$$

Here T_n is the remainder for the comparison series $\sum_{n=1}^{\infty} \frac{1}{n^3}$

Suppose
$$f(x) = \frac{1}{x^3}$$
, where $x \ge 1$

The function $f(x) = \frac{1}{x^3}$ is defined for $x \ge 1$

And it is continuous, because this is a rational function.

Also,
$$f(x) = \frac{1}{x^3} > 0 \ \forall x \ge 1$$

So the function f is positive for $x \ge 1$

Also, we have

$$\frac{1}{x} < \frac{1}{y} \forall x > y \ge 1$$

$$\frac{1}{x^3} < \frac{1}{y^3} \forall x > y$$

$$f(x) < f(y) \forall x > y$$

So the function f is decreasing for $x \ge 1$

And finally, the series $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is convergent.

Therefore the function f satisfies all the conditions of Remainder Estimate for the Integral Test.

Hence, by Remainder Estimate for the Integral Test,

$$T_n \le \int_n^\infty f(x) dx$$

$$= \int_n^\infty \frac{1}{x^3} dx$$

$$= \int_n^\infty x^{-3} dx$$

$$= \lim_{t \to \infty} \left[-\frac{1}{2x^2} \right]_n^t \qquad \text{Use} \int x^n dx = \frac{x^{n+1}}{n+1}, n \ne -1$$

$$= \lim_{t \to \infty} \left(-\frac{1}{2t^2} + \frac{1}{2n^2} \right)$$

$$= \frac{1}{2n^2}$$

Therefore, we get

$$T_n \le \frac{1}{2n^2} \dots (2)$$

By (1), and (2), we get the remainder R_n for the given series $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^3}$ as,

$$R_n \le T_n \le \frac{1}{2n^2}$$

$$R_n \le \frac{1}{2n^2}$$
 By transitive property

With n = 10, we have

$$R_{10} \le \frac{1}{2(10)^2}$$
$$= \frac{1}{200}$$
$$= 0.005$$

Therefore,

$$R_{10} \le 0.005$$
 (3)

Also, by using Maple, we get the sun of the series as,

$$\sum_{n=1}^{10} \frac{\sin(n) \cdot \sin(n)}{(n)^3}$$

$$\sin(1)^2 + \frac{1}{8} \sin(2)^2 + \frac{1}{27} \sin(3)^2 + \frac{1}{64} \sin(4)^2 + \frac{1}{125} \sin(5)^2 + \frac{1}{216} \sin(6)^2 + \frac{1}{343} \sin(7)^2 + \frac{1}{512} \sin(8)^2 + \frac{1}{729} \sin(9)^2 + \frac{1}{1000} \sin(10)^2$$

$$\frac{\cot 5 \operatorname{digits}}{\cot 3}$$

0.83253

Therefore, the sum of the given series using first 10 terms is approximately $\boxed{0.833}$ with an error less than $\boxed{0.005}$ (by using (3)).

Answer 35E.

We know that $\cos^2 n \le 1$ for all n. Therefore, $\frac{\cos^2 n}{5^n} \le \frac{1}{5^n}$ for all n. Consider

$$\sum a_n = \frac{\cos^2 n}{5^n} \text{ and } \sum b_n = \frac{1}{5^n}.$$

Let $s = \sum a_n$ and $t = \sum b_n$. Then, $R_n = s - s_n$ and $T_n = t - t_n$. Since $a_n \le b_n$ for all n, we have $R_n \le T_n$. But $T_n = \frac{1}{5^{n+1}} + \frac{1}{5^{n+2}} + \dots$

Simplify.

$$T_{n} = \frac{1}{5^{n+1}} \left[1 + \frac{1}{5} + \frac{1}{5^{2}} + \dots \right]$$

$$= \frac{1}{5^{n+1}} \left(\frac{1}{1 - \frac{1}{5}} \right)$$

$$= \frac{1}{(4)5^{n}}$$

Find T_{10} .

$$T_{10} = \frac{1}{(4)5^{10}}$$
$$= 2.56 \times 10^{-8}$$

This means that $R_{10} \le 2.56 \times 10^{-8}$.

Now,
$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{5^n} = \sum_{n=1}^{10} \frac{\cos^2 n}{5^n} \approx 0.073929303$$
 with error less than 2.56×10^{-8} .

Answer 36E.

Given series
$$\sum_{n=1}^{\infty} \frac{1}{3^n + 4^n}$$

Since $\frac{1}{3^n + 4^n} < \frac{1}{23^n}$, the given series is convergent by the Comparision Test.

Let

$$s = \sum_{n=1}^{\infty} \frac{1}{3^n + 4^n} , \quad s_n = \sum_{i=1}^n \frac{1}{3^i + 4^i} \text{ and.}$$
 and
$$t = \sum_{n=1}^{\infty} \frac{1}{2 \cdot 3^n} , \quad t_n = \sum_{i=1}^n \frac{1}{2 \cdot 3^i}$$

let
$$R_n = s - s_n$$
 and $T_n = t - t_n$

Now

$$T_n = t - t_n$$

$$= \frac{\frac{1}{6}}{1 - \frac{1}{3}} - \frac{\frac{1}{6}(1 - \frac{1}{3^n})}{1 - \frac{1}{3}}$$

$$= \frac{1}{4 \cdot 3^n}$$

Therefore the reminder R_n for the given series satisfies

$$R_n \le T_n \le \frac{1}{4.3^n}$$

With n = 10, we have

$$R_{10} \le \frac{1}{4.3^{10}} = 4.23 \times 10^{-6}$$

Now

$$\sum_{n=1}^{10} \frac{1}{3^n + 4^n}$$
= 0.428571+0.04+0.010989+0.0029674+0.0007892
+0.0002072+0.0000538+0.0000138+0.0000035+0.0000009
= 0.197869

With error less than 4.23×10⁻⁶.

Answer 37E.

We have

$$0.d_1d_2d_3d_4.... = \frac{d_1}{10} + \frac{d_2}{10^2} + \frac{d_3}{10^3} + \frac{d_4}{10^4} +$$
$$= \sum_{n=1}^{\infty} \frac{d_n}{10^n}$$

Since
$$d_n \le 9$$

$$\Rightarrow \frac{d_n}{10^n} \le \frac{9}{10^n}$$
Let $a_n = \frac{d_n}{10^n}$ and $b_n = \frac{9}{10^n}$

$$\Rightarrow a_n \le b_n$$

Since
$$\sum_{n=1}^{\infty} b_n$$
 is a geometric series with $r = \frac{1}{10} < 1$
So $\sum_{n=1}^{\infty} b_n$ is convergent then by comparison test series $\sum_{n=1}^{\infty} \frac{d_n}{10^n}$ is also

Answer 38E.

Since
$$\frac{1}{n^p \ln n} \le \frac{1}{n^p}$$
 for n>2
Let $a_n = \frac{1}{n^p \ln n}$ and $b_n = \frac{1}{n^p}$

So
$$a_s \leq b_s$$

Since
$$\sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{n^p}$$
 is a p-series, it will be convergent when p > 1

So by comparison test, the series $\sum_{n=2}^{\infty} \frac{1}{n^p \ln n}$ will also converge for p > 1

Answer 39E.

We have
$$a_n \ge 0$$

And
$$\sum a_n$$
 converges

Then
$$\lim_{t\to\infty} a_t = 0$$

So there exists a number N such that

$$|a_n - 0| < 1$$
 for all $n > N$ [by defintion of limit]
 $\Rightarrow 0 \le a_n < 1$ for all $n > N$
 $\Rightarrow 0 \le a_n^2 < a_n$

Since $\sum a_n$ converges so by comparison test $\sum a_n^2$ will also be convergent.

Answer 40E.

(A) Let
$$\sum a_n$$
 and $\sum b_n$ are series with positive terms and $\sum b_n$ be convergent.
If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$

So there exists a number N such that

$$\begin{vmatrix} a_n \\ b_n \end{vmatrix} = 0 \begin{vmatrix} <1 & \text{for all } n > N \\ \Rightarrow 0 \le \frac{a_n}{b_n} < 1 & \text{for all } n > N \\ \Rightarrow 0 \le a_n < b_n \end{vmatrix}$$
 [By defination of limit]

Since $\sum b_n$ is convergent as our assumption so by comparison test $\sum a_n$ is also convergent

(B) (i) If
$$a_n = \frac{\ln n}{n^3}$$
 and $b_n = \frac{1}{n^2}$
Since $\sum b_n = \sum \frac{1}{n^2}$ is a p-series with p>1 so $\sum b_n$ is convergent

Now we calculate
$$\lim_{n\to\infty} \frac{a_n}{b_n}$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\left(\ln n\right)/n^3}{1/n^2}$$

$$= \lim_{n \to \infty} \frac{\ln n}{n}$$

$$= \lim_{n \to \infty} \frac{\ln x}{x}$$

$$= \lim_{n \to \infty} \frac{(1/x)}{1}$$

$$= \lim_{n \to \infty} \frac{1}{x} = 0$$
(using L-Hospital rule)

So by part (a) $\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$ is a **convergent** series

(ii) If
$$a_n = \frac{\ln n}{\sqrt{n} e^n}$$
 and $b_n = \frac{1}{e^n}$

Since $\sum b_n = \sum_{n=1}^{\infty} \frac{1}{e^n}$ is a geometric series with |r| = 1/e < 1

So $\sum b_n$ is a convergent series.

Then we find
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{\frac{\ln n}{\sqrt{n}e^n}}{1/e^n}$$

$$= \lim_{n\to\infty} \frac{\ln x}{\sqrt{x}}$$

$$= \lim_{n\to\infty} \frac{1/x}{\frac{1}{2\sqrt{x}}}$$

$$= \lim_{n\to\infty} \frac{2}{\sqrt{x}} = 0$$
[by L-Hospital rule]

So by part (a) $\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{ne^n}}$ is a convergent series

Answer 41E.

(A) Let $\sum a_n$ converges and $\sum b_n$ diverges

If
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$$

 $\Rightarrow \lim_{n\to\infty} \frac{b_n}{a_n} = 0$

So by limit comparison test if $\sum a_n$ converges, $\sum b_n$ must be convergent this is the contradiction. So $\sum a_n$ must diverge

(B)(i) If
$$a_n = \frac{1}{\ln n}$$
 and $b_n = \frac{1}{n}$

Since $\sum b_{\mathbf{x}}$ is a harmonic series so it is divergent

Now
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{n}{\ln n}$$

 $= \lim_{n\to\infty} \frac{x}{\ln x}$
 $= \lim_{n\to\infty} \frac{1}{1/x}$
 $= \lim_{n\to\infty} x = \infty$ [L-Hospital Rule]

So by part (a) $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ is a divergent series

(ii) If
$$a_n = \frac{\ln n}{n}$$
 and $b_n = \frac{1}{n}$
Then $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\ln n}{n}(n)$
 $= \lim_{n \to \infty} (\ln n)$
 $= \infty$

Since $\sum b_n$ is divergent so $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ is divergent

Answer 42E.

We choose
$$\sum a_n = \sum \frac{1}{n^2}$$

Which is a p-series with p = 2 > 1 so $\sum a_n$ is convergent series

And
$$\sum b_n = \sum \frac{1}{\sqrt{n}}$$

Which is also a p-series with $p = \frac{1}{2} < 1$ so $\sum b_n$ diverges.

Now
$$\lim_{n \to \infty} = \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1/n^2}{1/\sqrt{n}}$$
$$= \lim_{n \to \infty} \frac{\sqrt{n}}{n^2}$$
$$= \lim_{n \to \infty} \frac{1}{n\sqrt{n}}$$
$$= 0$$

$$n\sqrt{n} \to \infty$$
 as $n \to \infty$

So we have
$$\sum a_n = \sum \frac{1}{n^2}$$
 and $\sum b_n = \sum \frac{1}{\sqrt{n}}$

With $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$, where $\sum a_n$ is convergent and $\sum b_n$ is divergent.

Answer 43E.

We have
$$a_n > 0$$
 and $\lim_{n \to \infty} n a_n \neq 0$

$$\Rightarrow \lim_{n \to \infty} n a_n = \lim_{n \to \infty} \frac{a_n}{1/n} > 0$$

Let $b_n = 1/n$, we use the limit comparison test.

Since $\lim_{n\to\infty} n a_n > 0$ so either both series converge or both diverge.

Since $\sum_{n=0}^{\infty} \frac{1}{n}$ diverges because it is a p-series with p=1.

So
$$\sum a_{\mathbf{x}}$$
 must be divergent

Answer 44E.

Since $\sum a_n$ is convergent and $a_n > 0$

Then $\lim_{n\to\infty} a_n = 0$

We use limit comparison test

We find $\lim_{n\to\infty} \frac{\ln(1+a_n)}{(a_n)}$

Let $x = a_n$

And since $a_* \to 0$ as $n \to \infty$ so $x \to 0$ as $n \to \infty$

Then
$$\lim_{n\to\infty} \frac{\ln\left(1+a_n\right)}{a_n} = \lim_{n\to0} \frac{\ln\left(1+x\right)}{x}$$

$$= \lim_{n\to0} \frac{1/(1+x)}{1}$$

$$= \lim_{n\to0} \frac{1}{1+x}$$

$$= \lim_{n\to0} \frac{1}{1+x}$$

$$= \frac{1}{1+0}$$

$$\Rightarrow \lim_{n\to\infty} \frac{\ln\left(1+a_n\right)}{a} = 1 > 0$$

And since $\sum a_k$ converges so $\sum \ln (1+a_k)$ must be convergent.

Answer 45E.

Since
$$\sum a_i$$
 is convergent (given)

Then $\lim_{n\to\infty} a_n = 0$

Now we use limit comparison test for $\sum \sin(a_n)$

We find $\lim_{n\to\infty} \frac{\sin(a_n)}{a_n}$

For a instant we assume that $x = a_x$

So
$$x \to 0$$
 as $n \to \infty$
Then $\lim_{n \to \infty} \frac{\sin(a_n)}{a_n} = \lim_{n \to 0} \frac{\sin(x)}{x}$
 $= 1 > 0$
$$\left[\lim_{n \to 0} \frac{\sin \theta}{\theta} = 1\right]$$

And since $\sum a_n$ is convergent. So $\sum \sin(a_n)$ must be convergent $\underbrace{\operatorname{Yes}, \sum \sin(a_n)}$ is a convergent series

Answer 46E.

Since
$$\sum a_n$$
 and $\sum b_n$ both are convergent series.

So
$$\lim_{n\to\infty} a_n = 0$$
(1)

And
$$\lim_{n\to\infty} b_n = 0$$
(2)

We use extension of limit comparison test for $\sum a_n b_n$

$$\lim_{n\to\infty} \frac{a_n b_n}{b_n} = \lim_{n\to\infty} a_n$$

$$= 0 \qquad [from(1)]$$
So
$$\lim_{n\to\infty} \frac{a_n b_n}{b_n} = 0$$

And $\sum b_n$ is convergent so $\sum a_n$ must be convergent.