HYPERBOLA

SYNOPSIS

- A Conic is said to be hyperbola if its eccentricity > 1
- If $e = \sqrt{2}$ then the Hyperbola is called Rectangular Hyperbola.
- If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents the Hyperbola then $h^2 - ab > 0$ and D⁻¹ 0.
- If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents the Rectangular Hyperbola then $h^2 - ab > 0$ and D¹ 0 and a + b = 0. If $S \circ ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ and S = 0 represents the hyperbola, then, to find the centre of the hyperbola then solve the equations $\frac{\P s}{\P x} = 0$, $\frac{\P s}{\P y} = 0$

	HYPERBOLA	CONJUGATE HYPERBOLA
General Equation	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$
Centre	(0,0)	(0,0)
Eccentricity	$e = \frac{\sqrt{a^2 + b^2}}{a}$ (or)	$e = \frac{\sqrt{a^2 + b^2}}{b} \text{ (or)}$
	$b^2 = a^2 \left(e^2 - 1\right)$	$a^2 = b^2 \left(e^2 - 1\right)$
• Foci	(± <i>ae</i> ,0)	(0,± <i>be</i>)
• Vertices	$(\pm a, 0)$	(0,±b)
Length of the latusrectum	$\frac{2b^2}{a}$	$\frac{2a^2}{b}$
Length of the transverse axis	2a	2b
Length of the conjugate axis	2b	2a
Equations of directrices	$x = \pm \frac{a}{e}$	$y = \pm \frac{b}{e}$
Equations of latusrecta	$x = \pm ae$	$y = \pm be$
Equation of the transverse axis	y=0	x=0
Equation of the conjugate axis	x=0	y=0
Equation of the director circle	$x^2 + y^2 = a^2 - b^2$	$x^2 + y^2 = b^2 - a^2$
Equation of the auxiliary circle	$x^2 + y^2 = a^2$	$x^2 + y^2 = b^2$
• If P is any point on the hyperbola	$\left SP - S^{1}P\right = 2a$	$ SP - S^1P = 2b$
and S, S ¹ are foci then		
SR. MATHEMATICS	371	HYPERBOL

• Ends of latusrectum	$\overset{\mathfrak{E}}{\underbrace{E}}_{\mathbf{z}} ae, \pm \frac{b^2 \ddot{\underline{\mathbf{o}}}}{a \frac{1}{\underline{\mathbf{o}}}}$	$\overset{\mathfrak{X}}{\overset{\mathfrak{X}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}{\overset{\mathfrak{Z}}}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}}{\overset{\mathfrak{Z}}}}{\overset{\mathfrak{Z}}}}}}}}}}$
General equation	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = -1$
Centre	(x - h, y - k) = (0, 0)	(x - h, y - k) = (0, 0)
Eccentricity	$e = \frac{\sqrt{a^2 + b^2}}{a}$	$e = \frac{\sqrt{a^2 + b^2}}{b}$
• Foci	$(\pm ae, 0) = (x - h, y - k)$	$(0,\pm be) = (x - h, y - k)$
Length of the latusrectum	$\frac{2b^2}{a}$	$\frac{2a^2}{b}$
Length of the transverse axis	2a	2b
Length of the conjugate axis	2b	2a
Equation of the directrices	$x - h = \pm \frac{a}{e}$	$y - k = \pm \frac{b}{e}$
Equation of the latusrecta	$x - h = \pm ae$	$y - k = \pm be$
Equation of the transverse axis	y-k=0	x - h = 0
Equation of the conjugate axis	x - h = 0	y - k = 0
Equation of the director circle	$(x - h)^2 + (y - k)^2 = a^2 - b^2$	$(x - h)^2 + (y - k)^2 = b^2 - a^2$
Equation of the auxiliary circle	$(x - h)^2 + (y - k)^2 = a^2$	$(x - h)^2 + (y - k)^2 = b^2$
• If "P" is any point on hyperbola	$ SP - S^1P = 2a$	$\left SP - S^{1}P\right = 2b$
and S and S ¹ are foci, then		
Ends of the latusrectum	$(x - h, y - k) = \overset{\mathfrak{a}}{\underbrace{g}}_{\underline{g}} ae_{\underline{g}} \pm \frac{b^2 \ddot{\underline{g}}}{a \overline{\underline{g}}}$	$(x - h, y - k) = \overset{\mathfrak{C}}{\underset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}}}}}}}}}$
• The equation of the tangent at (x_1, y_1) to the hyper- • The condition that the line y=mx+c may be tange		
bola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $\frac{xx_1}{a^2} - \frac{x^2}{a^2} = 1$	$\frac{yy_1}{b^2} = 1.$ to the	hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is
• The equation of the normal to the	hyperbola S=0 at $ $ $c^2 = a^2$	m^2 - b^2 and the point of contact is
(x_1, y_1) is $\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + a^2$	b^2 .	$\frac{-b^2}{c}\frac{\ddot{o}}{\dot{a}}$
SR. MATHEMATICS	372	HYPERBOLA

The condition that the line lx + my + n = 0 may be tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $a^{2}l^{2}$ - $b^{2}m^{2} = n^{2}$ and the point of contact is If $m_1 \& m_2$ are the slopes of the tangents to the hyperbola $\frac{x^2}{r^2} - \frac{y^2}{k^2} = 1$ through (x_1, y_1) then m_1, m_2 are satisfying the equation $(x_1^2 - a^2)m^2 - 2x_1y_1m + (y_1^2 + b^2) = 0$. • $m_1 + m_2 = \frac{2x_1y_1}{x_1^2 - a^2}$ • $m_1m_2 = \frac{y_1^2 + b^2}{x_2^2 - a^2}$ If "q" is the angle between the tangents from S=0 (x_1, y_1) to the hyperbola then $\tan q = \frac{2ab\sqrt{-s_{11}}}{x_1^2 + v_1^2 - a^2 + b^2}$ The condition that the line lx + mv + n = 0 may be normal to the hyperbola S=0 is $\frac{a^2}{l^2} - \frac{b^2}{m^2} = \frac{(a^2 + b^2)^2}{m^2}$ The pole of the line lx + my + n = 0 w.r. to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $\frac{a^2 l}{b^2} - \frac{b^2 m \ddot{0}}{a^2}$ The pole of the line y = mx + c w.r. to the hyperbola S=0 is $\underbrace{\overset{a}{\underline{c}}}_{\underline{c}} a^2 m$, $\underbrace{-b^2 \overset{o}{\underline{c}}}_{\underline{c}}$ The condition that the lines $l_1x + m_1y + n_1 = 0$, $l_2 x + m_2 y + n_2 = 0$ are conjugate lines w.r. to the hyperbola S=0 is $a^2 l_1 l_2 - b^2 m_1 m_2 = n_1 n_2$

The condition that the points (x_1, y_1) and (x_2, y_2) are conjugate points w.r. to the hyperbola S=0 is $S_{12} = 0$. Slope of the chord of the hyperbola $\frac{x^2}{2} - \frac{y^2}{L^2} = 1$ having mid point at (x_1, y_1) is $\frac{b^2 x_1}{a^2 y_1}$ The midpoing of the chord of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ on the line lx + my + n = 0 is $\underbrace{\underbrace{\overset{\text{w}}{\xi}}_{a^{2}l^{2}} - a^{2}ln}_{a^{2}l^{2}} + b^{2}m^{2}}, \underbrace{\frac{b^{2}mn}_{a^{2}l^{2}} - b^{2}m^{2}}_{a^{2}l^{2}}}_{a^{2}l^{2}} + b^{2}m^{2}\underbrace{\overset{\text{w}}{\vdots}}_{a^{2}l^{2}}}_{a^{2}l^{2}}$ The tangents at infinity to the hyperbola are called asymptotes of the hyperbola. The equation of the asymptotes of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ (or) $\frac{x}{a} + \frac{y}{b} = 0$, $\frac{x}{a} - \frac{y}{b} = 0$ The angle between the asymptotes of the hyperbola S=0 is $2 \sec^{-1} e$ or $2Tan^{-1} \frac{b}{r}$. The angle between the asymptotes of the hyperbola $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ is Tan^{-1} $\underbrace{\underbrace{\overset{\circ}{\underline{8}}}_{\underline{2}} \sqrt{h^2 - ab} \underbrace{\overset{\circ}{\underline{2}}}_{\underline{2}}}_{\underline{a+b}}$ Each asymptote makes an angle $Tan^{-1}\frac{D}{a}$ with the x-axis. The angle between the asymptotes of the rectangular hyperbola is $\frac{p}{2}$ The equations of a hyperbola and its asymptotes always differ by a constant

SR. MATHEMATICS

Equation of the pair of asymptotes of the hyperbola

$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$$
is
$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$$
is
$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$$
is
$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$$
is
$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$$
is
$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$$
is
$$x^{2} - \frac{D}{b^{2}} = 0$$
If (x_{1}, y_{1}) is the centre of the hyperbola S=0, then
the equation to its asymptotes is $S = S_{11}$.
The product of the perpendiculars from any point on
the hyperbola to its asymptotes is
$$\frac{d^{2}b^{2}}{a^{2} + b^{2}}$$
The product of the perpendiculars from foci to any
tangent to the hyperbola S=0 is b^{2}
The equation of the tangent at "q" is

$$\frac{x}{a} \sec q, y = b \tan q$$
The equation of the tangent at "q" is

$$\frac{x}{a} \sec q, y = \frac{b}{b} \tan q = 1$$
The equation of the tangent at "q" is

$$\frac{x}{a} \sec q, \frac{b}{2} \frac{b}{a} = cos \frac{gar}{b} + \frac{b}{2}$$
Equation of the correliant $a^{2} - b^{2}$.
Equation of the terreliant $a^{2} - b^{2}$.
Equation of the correliant $a^{2} - b^{2}$.
Equation of the tangent at "q" is

$$\frac{ax}{a} \cos \frac{gar}{b} - \frac{b}{b} \sin \frac{gar}{b} + \frac{b}{b}$$
The equation of the correliant $a^{2} - b^{2}$.
Equation of the tangent at "q" is

$$\frac{ax}{a} \cos \frac{gar}{b} - \frac{b}{b} \sin \frac{gar}{b} + \frac{b}{b}$$
The equation of the correliant $a^{2} - b^{2}$.
Equation of the tangent at "q" is

$$\frac{ax}{a} \cos \frac{gar}{b} - \frac{b}{b} \sin \frac{gar}{b} + \frac{b}{b}$$
The equation of the correliant $a^{2} - b^{2}$.
Equation of the tangent at "q" is

$$\frac{ax}{a} \cos \frac{gar}{b} - \frac{b}{b} \sin \frac{gar}{b} + \frac{b}{b}$$
The add b are the eccentriciangles of the extermi-
ties of a face ichord of the hyperbola then
 $e \cos \frac{gar}{b} - \frac{b}{b} \sin \frac{gar}{b} + \frac{b}{b}$
If the chord joining the two points
 $(a sc q_{1}, b \tan q_{1})$ and $(a sc q_{2}, b \tan q_{2})$
passes through the focus of the hyperbola.
The is inside the hyperbola then $S_{11} > 0$
The samptode of the hyperbola itersects the hyperbola at of y and pro-
partial intersects the hyperbola aten $S_{11} = 0$
The less inside the hyperbol

CONCEPTUAL QUESTIONS LEVEL - I ECCENTRICITY 1. If a triangle is inscribed in a rectangular hyperbola, 1. then its orthocentre lies on. In a hyperbola the distance between the foci is three times the distance between the directrices then its 1) circle 2) parabola 3) Ellipse 4) same curve eccentricity is 2. The points of intersection of asymptotes with 1) $\frac{5}{2}$ 2) $\frac{3}{2}$ 3) $\frac{5}{4}$ 4) $\sqrt{3}$ directrices lies on 1) Auxiliary circle 2) Director circle In a hyperbola the distance between the foci is 2 2. 3) Transverse axis 4) Conjugate axis and the distance between the directrices is 1 its eccentricity is 3. The product of lengths of latusrectums of 1) $\sqrt{3}$ 2) $\frac{3}{2}$ 3) $\sqrt{2}$ 4) $\frac{5}{2}$ $\frac{x^2}{x^2} - \frac{y^2}{k^2} = 1$ and its conjugate hyperbola's is 3. In a hyperbola the latusrectum equals to 1)2ab 2) 3ab 3)4ab 4)6ab. semitransverse axis its eccentricity is 4. If a rectangular hyperbola circumscribes a triangle 1) $\frac{3}{2}$ 2) $\frac{4}{3}$ 3) $\frac{5}{2}$ 4) $\sqrt{\frac{3}{2}}$ by t_1, t_2, t_3 it also passes through the orthocentre t_4 of the triangle then $t_1 t_2 t_3 t_4$ = 4. e and e¹ are the eccentricities of the hyperbolas 1) 1 2) -1 4) -2 3) 2 $16x^2 - 9v^2 = 144$ and 5. If a triangle is inscribed in a rectangular hyperbola $9x^2 - 16y^2 = -144$ then $e - e^1 =$ $x_V = c^2$ with vertices A,B,C with its parameters t_1, t_2 and t_3 then orthocentre of VABC is 1) 2 2) 1 5. The ratio between the transverse axis and conju-1) $(c(t_1+t_2+t_3);-ct_1t_2t_3)$ gate axes of a hyperbola is 5:2 then its e= 1) $\frac{\sqrt{31}}{5}$ 2) $\left(\frac{-c}{t_1t_2t_3}, -ct_1t_2t_3\right)$ 3) $\frac{\sqrt{33}}{5}$ 3) $\left(-c(t_1+t_2+t_3), ct_1t_2t_3\right)$ 4) $(-c+t_1+t_2+t_3,t_1t_2t_3-c)$ 6. at its centre its e= 6. Two straight lines passing through the fixed points $(\pm a, 0)$ and having slopes whose product is k > 0, then the locus of point of intersection of the lines is 1) A circle 2) A parabola 3) An ellipse 4) A hyperbola 7. If PN is the perpendicular from a point 'P' on a rectangular hyperbola to its asymptotes, then locus of 7. the mid points of PN is 1) circle 2) parabola 3) ellipse 4) hyperbola 1) $\sqrt{2}$ 8. If P is a point on the rectangular hyperbola $x^2 - y^2 = a^2$, "C" is its centre and S, S^1 are focii, 8. then $SP \cdot S^1 P =$ 2) 5/2 1) 2 2) $(CP)^2$ 3) $(CS)^2$ 4) $(SS^1)^2$ 1) 2 9. **KEY** 1) 4 2) 1 4) 2 3) 3 1) $\frac{7}{3}$ 2) $\frac{7}{5}$ 3) $\frac{6}{5}$ 7)4 6) 4 8) 2 5) 2 SR. MATHEMATICS 375

3) 0 4) 3/2 2) $\frac{\sqrt{29}}{5}$ 4) $\frac{\sqrt{29}}{4}$

The latusrectum of a hyperbola subtends a right angle

1)
$$\frac{\sqrt{3}+1}{2}$$
 2) $\frac{\sqrt{7}+1}{2}$
3) $\frac{\sqrt{5}+1}{2}$ 4) $\frac{\sqrt{5}}{2}$

If the latusrectum of a hyperbola subtends an angle 60^0 at the other focus then its e=

2) $\sqrt{3}$ 3) $\sqrt{5}$ 4) $\sqrt{6}$ The length of the latusrectum of a hyperbola is 12 and semiconjugate axis is $2\sqrt{3}$ then its e= 3) $\sqrt{3}$ 4) $\sqrt{2}$

The length of latusrectum of a hyperbola

$$\frac{x^2}{k} - \frac{y^2}{25} = -1$$
 is $\frac{22}{5}$ then its e is

HYPFRBOI

10.	The eccentricity of the conjugate hyperbola of the	19.	A hyperbola with foci $\left(0,\pm\sqrt{10} ight)$ passes through
	hyperbola $9y^2$ - $4x^2 = 36$ is		(2,3) then its e=
	1) $\frac{\sqrt{13}}{2}$ 2) $\frac{\sqrt{13}}{3}$ 3) $\frac{5}{3}$ 4) $\frac{4}{3}$		1) $\sqrt{3}$ 2) $\sqrt{5}$ 3) $\frac{5}{3}$ 4) $\sqrt{2}$
11.	The eccentricity of the conjugate hyperbola of the	20.	In a hyperbola the transverse axis is double the con- jugate axis then its eccentricity is
	hyperbola $4x^2$ - $9y^2$ - $8x$ - $32 = 0$ is		1) $\sqrt{3}$ 2) $\frac{\sqrt{5}}{2}$ 3) $\frac{7}{2}$ 4) $\frac{5}{2}$
	1) $\frac{\sqrt{13}}{3}$ 2) $\frac{5}{3}$ 3) $\frac{5}{4}$ 4) $\frac{\sqrt{13}}{2}$		1) $\sqrt{3}$ 2) $\frac{1}{2}$ 3) $\frac{1}{2}$ 4) $\frac{1}{2}$
	5 5 2	21.	z=x+iy is a complex number. If the imaginary part
12.	The "e" of the hyperbola with centre at origin trans- verse axis is x axis and passing through the points		of z^2 is 32, then Locus of z is a hyperbola of eccentricity
	(3,0), $(3\sqrt{2},2)$ is		1) $\sqrt{2}$ 2) 2 3) $\frac{3}{2}$ 4) $\frac{4}{3}$
	1) $\frac{7}{2}$ 2) $\frac{\sqrt{13}}{3}$ 3) $\frac{\sqrt{13}}{2}$ 4) $\frac{5}{3}$	22.	1) $\sqrt{2}$ 2) 2 3) 2 4) 3 e ₁ and e ₂ are the eccentricities of two conics S and
	1) 2 2) $\frac{2}{3}$ 3) $\frac{2}{2}$ 4) 3		S ¹ . If $e_1^2 + e_2^2 = 3$ then both S and S ¹ can be
40	The locus of the point $\underbrace{\overset{e}{e}}_{e} \underbrace{e^{t} + e^{-t}}_{2}, \underbrace{e^{t} - e^{-t} \overset{o}{=}}_{2} \underbrace{\dot{a}}_{\dot{a}}$ is		1) ellipse 2) parabolas
13.	• ~	23.	3) hyperbolas 4) circles If $\sec q$ is the eccentricity of a hyperbola then the
	a hyperbola of eccentricity 1) $\sqrt{3}$ 2) 3 3) $\sqrt{2}$ 4) 2		eccentricity of the conjugate hyperbola is 1) $\tan q$ 2) $\cot q$
	1) \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		3) $\cos q$ 4) $\cos e c q$
14.	The eccentricity of a hyperbola is $\frac{3}{3}$ then the ec-	24.	If the angle between the asymptotes of a hyperbola is 30° then eccentricity =
	centricity of the conjugate hyperbola is		1) $\sqrt{6} + \sqrt{2}$ 2) $\sqrt{6} - \sqrt{2}$
	1) $\frac{5}{2}$ 2) $\frac{7}{2}$ 3) $\frac{7}{3}$ 4) $\frac{5}{4}$	25.	3) $\sqrt{5} - \sqrt{3}$ 4) $\sqrt{5} + \sqrt{3}$ In the hyperbola the distance between the foci is
15.			equal to distance between one focus to one end of
	the two lines joining it to $(-2, 1), (4, 5)$ is 3. If the locus of P is a hyperbola then its e=		conjugate axis then its eccentricity 1) 5/2 2) 7/2 2) 7/2 4) does not exist
	1) 5 2) $\frac{5}{2}$ 3) $\frac{3}{2}$ 4) 2		3) 7/3 4) does not exist $r^2 = v^2$
		26.	The latusrectum of the hyperbola $\frac{x^2}{16} - \frac{y^2}{p} = 1$
16.	If e_1 and e_2 are the eccentricities of the hyperbo- las x^2 - $y^2 = 7$ and $xy = 3$ then $e_1^2 + e_2^2 =$		is $4\frac{1}{2}$. Its eccentricity e=
	1) 6 2) 8 3) 12 4) 4		1) $4/5$ 2) $5/4$
17.	The eccentricity of $xy = 10$ is		1) 4/5 2) 5/4 3) 3/4 4) 4/3
	1) 2 2) $\frac{3}{2}$ 3) $\frac{5}{2}$ 4) $\sqrt{2}$		FOCI:
18.	The eccentricity of the hyperbola	27.	The foci of the conjugate hyperbola of the hyperbola
	$25x^2 - y^2 + 200x - 375 = 0$ is		$\frac{x^2}{4} - \frac{y^2}{12} = 1$.
	1) $2\sqrt{5}$ 2) $2\sqrt{6}$ 3) $\sqrt{22}$ 4) $\sqrt{26}$		T 12
			1) $(0, \pm 2\sqrt{2})$ 2) $(0, \pm 3)$
		76	3) $(0, \pm 4)$ 4) $(0, \pm 5)$

SR. MATHEMATICS

376

The length of latusrectum of the hyperbola 28. The distance between the foci of the hyperbola 36. $\frac{x^2}{16} - \frac{y^2}{9} = 1$ is $\frac{x^2}{26} - \frac{y^2}{64} = 1$ is 1) $2\sqrt{7}$ 1) $\frac{32}{3}$ 2) $\frac{18}{5}$ 3) 9 4) $\frac{64}{3}$ 2) 10 3) 8 4) 6 If the lengths of transverse and conjugate axes of 29. the hyperbola are 4,2 then the distance between the foci is The length of latusrectum of $\frac{(x-1)^2}{25} - \frac{y^2}{2} = 1$ 37. 1) $4\sqrt{5}$ 2) $8\sqrt{5}$ 3) $\sqrt{5}$ 4) $2\sqrt{5}$ The foci of the hyperbola 30. is $9x^2 - 18x - 16y^2 - 64y + 89 = 0$ are 1) 50/3 2) 18/5 3) 9/5 4) 25/3 38. The length of latusrectum of the hyperbola 1) (1,3), (1,-7) 2) (1,5), (1,-9) $4x^2 - 9y^2 - 16x - 54y - 101 = 0$ 1) 8/5 2) 8/7 3) 8/9 3) (1,1), (1,-5) 4) (1,5), (1,-11)4) 8/3 31. of The foci the hyperbola TRANSVERSE AND CONJUGATE AXES: $x^2 - v^2 - 4x + 10v - 22 = 0$ are 39. In a hyperbola e=2 and the length of semitransverse axis is 3 and the length of conjugate axis is 1) $(\pm 2 \pm \sqrt{2}, 5)$ 2) $(2 \pm \sqrt{2}, 5)$ 1) $3\sqrt{3}$ 2) $6\sqrt{3}$ 4) $3\sqrt{2}$ 3) $6\sqrt{2}$ 3) $(\pm 3 + \sqrt{2}, 5)$ 4) $(\pm 4 + \sqrt{2}, 5)$ 40. In a hyperbola $e = \frac{9}{4}$ and the distance between 32. The distance between the foci of the hyperbola $9x^2 - 16y^2 + 18x + 32y - 151 = 0$ is the directrices is 3. Then the length of transverse 3) 10 1) 2 2) 8 4) 6 axis is S and S^1 are the foci and A is one vertex of 33. 1) 27/2 2) 27/8 3) 27/4 4) 17/4 41. In the hyperbola the length of conjugate axis is 5 $x^{2} - 2v^{2} = 1$ then SA.S¹A= and the distance between the foci is 13 then the length of transverse axis is 2) 1 3) 1/2 4) 1/4 1) 2 S and S¹ are the foci and B is one vertex of 1)10 2)14 3)16 4) 12 34. 42. The centre of the hyperbola is origin and one direc $v^2 - 3x^2 = 4$ then $SB_1S^1B =$ trix is x+3=0. Its e=5. Then the length of semitransverse axis is 1) 3/4 2) 4/3 3) 1 4) 1/2 2)25 1)20 3) 30 4) 15 The lengths of the axes of the hyperbola 43. LENGTH OF LATUSRECTUM: $9x^2 - 16y^2 + 72x - 32y - 16 = 0$ are The eccentricity of a hyperbola is $\frac{\sqrt{5}}{2}$, then its 35. 1) 16.9 2) 8, 6 3) 4, 3 4) 18, 8 Equation of the transverse axis of the hyperbola 44. length of latusrectum is $\frac{(y-2)^2}{9} - \frac{(x+3)^2}{16} = 1$ is 1) $\frac{1}{4}$ (length of transverse axis) 1) x + 3 = 02) x - 5 = 03) x - 7 = 0 4) x - 9 = 02) $\frac{1}{2}$ (length of transverse axis) 45. Equation of the conjugate axis of the hyperbola $5x^2 - 4v^2 - 30x - 8v - 39 = 0$ 3) $\frac{2}{2}$ (length of transverse axis) 1) x - 3 = 0 2) y + 1 = 04) $\frac{1}{3}$ (length of transverse axis) 3) x + 3 = 0 4) y - 1 = 0

EQUATIONS OF LATUSRECTA AND DIRECTRICES: 46. The equations of latusrecta of the hyperbola $5x^2 - 4y^2 - 30x - 8y - 39 = 0$ are 1) x = 9, x = -3 2) x = 6, x = 33) x = -9, x = 3 4) x = -6, x = -3Equation of one of the latusrectum of the hyperbola 47. $(10x - 5)^{2} + (10y - 2)^{2} = 9(3x + 4y - 7)^{2}$ is 1) 30x + 40y - 23 = 02) 40x + 30y - 23 = 03) 30x + 40y + 23 = 04) 40x + 30y + 23 = 0Equations of the directrices of the hyperbola 48. $9x^2 - 16y^2 + 72x - 32y - 16 = 0$ are 1) x - 1 = 0, x + 9 = 02) x + 4 = 0, x + 1 = 03) x = 0, x = 84) 5x + 36 = 0, 5x + 4 = 0If the locus of the point $\frac{\partial a}{\partial x} = \frac{\partial a}{\partial t} + \frac{1}{d} = \frac{\partial a}{\partial t} + \frac{1}{d} = \frac{\partial a}{\partial t} = \frac{1}{d} = \frac{\partial a}{\partial t}$ 49. represents a conic the distance between the directrices is 1) $a\sqrt{2}$ 2) $4a\sqrt{2}$ 3) $2a\sqrt{2}$ 4) $3a\sqrt{2}$ The foci of the hyperbola are S(-3, -2), 50. $S^{1}(5,6)$. If its e=2 then the equation of its directrix corresponding to focus S is 1) x + y - 3 = 0 2) x + y - 5 = 03) x + y - 7 = 0 4) x + y - 1 = 0The foci of the hyperbola are S(-3, -2), 51. $S^{1}(5,6)$. If its e = 2 then the equation of its directrix corresponding to the focus S¹ is 1) x + y - 5 = 0 2) x + y - 7 = 03) x + y - 6 = 0 4) x + y - 9 = 0CENTRE centre of 52. The the hyperbola 2xy + 3x + 4y + 1 = 0 is 1) $\underbrace{\overset{\alpha}{\underbrace{c}}}_{2}^{3}$, - $2\underbrace{\overset{\ddot{o}}{\underline{c}}}_{\underline{a}}^{2}$ 2) $\underbrace{\overset{\alpha}{\underbrace{c}}}_{2}^{2}$, - $3\underbrace{\overset{\ddot{o}}{\underline{c}}}_{2}$ 3) $\overset{\text{ac}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}}}}, \frac{3\ddot{\text{o}}}{2\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}}}}$ 4) $\underbrace{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}}}}, 2\overset{\widetilde{\mathbf{a}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}}}, 2\overset{\widetilde{\mathbf{a}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}}, 2\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}}}, 2\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}}, 2\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}}, 2\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}}}, 2\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}, 2\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}{\overset{\widetilde{\mathbf{a}}}}}}, 2\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}}, 2\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}, 2\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}}, 2\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}}, 2\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}, 2\overset{\widetilde{\mathbf{a}}}}}, 2\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}, 2\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}, 2\overset{\widetilde{\mathbf{a}}}}}, 2\overset{\widetilde{\mathbf{a}}}}{\overset{\widetilde{\mathbf{a}}}}}, 2\overset{\widetilde{\mathbf{a}}}}, 2\overset{\widetilde{\mathbf{a}}$ SR. MATHEMATICS 378

	$2x^2 + 5xy + 2y^2 - 11x - 7y - 4 = 0$ is
	1) (-1,-3) 2) (1,3)
	3) (-1,3) 4) (1,-3)
54.	The centre of the hyperbola
	$\frac{(3x - 4y - 12)^2}{225} - \frac{(4x + 3y - 12)^2}{100} = 1$ is
	1) $\underbrace{\overset{\mathfrak{g}}{\underbrace{25}}}_{25}$, $\underbrace{\overset{12}{\underbrace{0}}}_{25}$, $\underbrace{\overset{\mathfrak{g}}{\underbrace{25}}}_{25}$, $\underbrace{\overset{\mathfrak{g}}{\underbrace{25}}_{25}$, $\underbrace{25}_{25}_{25}$, $\underbrace{25}_{25}_{25}_{25}$, $\underbrace{25}_{25}_{25}$, $\underbrace{25}_{25}_{25}$, $\underbrace{25}_{25}_{25}$, $\underbrace{25}_{25}_{25}_{25}$, $\underbrace{25}_{25}_{25}_{25}$, $\underbrace{25}_{25}_{25}$, 2
	3) $\underbrace{\overset{\mathfrak{g}}{\underbrace{25}}}_{25}, \underbrace{\overset{12}{\underbrace{0}}}_{25} \underbrace{\overset{\mathfrak{g}}{\ddagger}}_{\ddagger}$ 4) $\underbrace{\overset{\mathfrak{g}}{\underbrace{25}}}_{25}, \underbrace{\overset{-12}{\underbrace{0}}}_{25} \underbrace{\overset{\mathfrak{g}}{\ddagger}}_{\ddagger}$
	EQUATIONS OF HYPERBOLAS:
55.	Equation of the hyperbola with focus (-3,4) directrix
	$3x - 4y + 5 = 0$ and $e = \frac{5}{2}$ is
	1) $5x^2 - 24xy + 12y^2 + 6x - 8y - 75 = 0$
	2) $5x^2 - 24xy + 12y^2 - 8x - 6y - 25 = 0$
	3) $5x^2 - 24xy + 12y^2 - 12x + 8y - 55 = 0$
	4) $5x^2 - 24xy + 12y^2 - 7x - 12y - 65 = 0$
56.	Origin is one focus and the corresponding directrix
	is x+3=0. If the eccentricity is of the hyperbola $\sqrt{3}$ its equation is
	1) $x^2 - 2y^2 - 18x + 27 = 0$
	2) $2x^2 - y^2 + 18x + 27 = 0$
	$3) 3x^{2} + y^{2} + 16x + 25 = 0$
57.	4) $2x^2 - y^2 - 20x + 19 = 0$ Equation of the hyperbola passing through (2,1) and
	having the distance between the directrices $\frac{4}{\sqrt{3}}$ is
	1) $5x^2 - 2y^2 = 18$ 2) $3x^2 - 2y^2 = 10$
	3) $2x^2 - y^2 = 7$ 4) $3x^2 - 5y^2 = 7$
58.	Equation of the hyperbola with $e = \sqrt{2}$ and hav- ing the distance between the foci 1 is
	1) $x^2 - y^2 = \frac{1}{4}$ 2) $x^2 - y^2 = 5$
	3) $x^2 - y^2 = \frac{1}{6}$ 4) $x^2 - y^2 = \frac{1}{8}$
.	HYPERBOLA

HYPERBOL/

	6. E
3) $16x^2 - 2y^2 = 1$ 4) $8x^2 - y^2 = 1$ 60. Equation of the hyperbola with vertex (4,0) and focus (6,0) is	3
60. Equation of the hyperbola with vertex (4,0) and fo- cus (6,0) is	6. E
6	-
	е
1) $\frac{x^2}{16} - \frac{y^2}{20} = 1$ 2) $\frac{x^2}{20} - \frac{y^2}{16} = 1$	
3) $\frac{x^2}{16} - \frac{y^2}{36} = 1$ 4) $\frac{x^2}{36} - \frac{y^2}{16} = 1$	1
61. Equation of the hyperbola with centre (0,3) focus (0,5) and semi conjugate axis 1 is	
1) $(y - 3)^2 - 3x^2 = 6$	3
2) $(y - 3)^2 - 3x^2 = 8$	7. T If
3) $(y - 3)^2 - 3x^2 = 3$	а
4) $(y - 3)^2 - 3x^2 = 1$	1
62. Equation of the hyperbola with conjugate axis 4 and the distance between the foci 12 is	
1) $\frac{x^2}{4} - \frac{y^2}{32} = 1$ 2) $\frac{x^2}{32} - \frac{y^2}{4} = 1$	3
1) $\frac{1}{4} - \frac{1}{32} = 1$ 2) $\frac{1}{32} - \frac{1}{4} = 1$	8. T
3) $\frac{x^2}{32} - \frac{y^2}{16} = 1$ 4) $\frac{x^2}{16} - \frac{y^2}{32} = 1$	fo
 63. Equation of the hyperbola with length of the latusrectum 9/2 and e=5/4 is 	1
1) $\frac{x^2}{45} - \frac{y^2}{36} = 1$ 2) $\frac{x^2}{16} - \frac{y^2}{45} = 1$	3
3) $\frac{x^2}{16} - \frac{y^2}{32} = 1$ 4) $\frac{x^2}{16} - \frac{y^2}{9} = 1$	9. E fe
64. Equation of the hyperbola with centre (0,0) distance between the foci 18 and distance between directrices 8 is	1
1) $\frac{x^2}{36} - \frac{y^2}{45} = 1$ 2) $\frac{x^2}{45} - \frac{y^2}{36} = 1$	2
3) $\frac{x^2}{64} - \frac{y^2}{32} = 1$ 4) $\frac{x^2}{32} - \frac{y^2}{65} = 1$	3
65. The foci of the hyperbola coincides with the foci of	
the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$. Then the equation of	4
the hyperbola if its e=2.	

1)
$$\frac{x^2}{12} - \frac{y^2}{4} = 1$$
 2) $\frac{x^2}{4} - \frac{y^2}{12} = 1$
3) $\frac{x^2}{16} - \frac{y^2}{8} = 1$ 4) $\frac{x^2}{8} - \frac{y^2}{16} = 1$

6. Equation of the hyperbola with foci $(0, \pm 5)$ and

$$e = \frac{5}{3} \text{ is}$$
1) $\frac{x^2}{9} - \frac{y^2}{16} = 1$
2) $\frac{x^2}{16} - \frac{y^2}{9} = -1$
3) $\frac{x^2}{16} - \frac{y^2}{9} = 1$
4) $\frac{x^2}{12} - \frac{y^2}{13} = 1$

67. The length of transverse axis of the hyperbola is 14. If the vertex bisects the distance between centre and focus then its equation is

1)
$$\frac{x^2}{14} - \frac{y^2}{49} = 1$$
 2) $\frac{x^2}{147} - \frac{y^2}{14} = 1$
3) $\frac{x^2}{49} - \frac{y^2}{147} = 1$ 4) $\frac{x^2}{147} - \frac{y^2}{49} = 1$

8. The vertices of the hyperbola are
$$(\pm\,2,0)$$
 and the

foci are $(\pm 3, 0)$ then its equation is

1)
$$\frac{x^2}{5} - \frac{y^2}{4} = 1$$
 2) $\frac{x^2}{4} - \frac{y^2}{5} = 1$
3) $\frac{x^2}{5} - \frac{y^2}{2} = 1$ 4) $\frac{x^2}{2} - \frac{y^2}{5} = 1$

Equation of the locus of all points such that the difference of its distances from (-3,-7), (-3,3) is 8 is

1)
$$\frac{(x+3)^2}{16} - \frac{(y+2)^2}{9} = 1$$

2) $\frac{(x+3)^2}{9} - \frac{(y+2)^2}{16} = -1$
3) $\frac{(x+3)^2}{9} - \frac{(y+2)^2}{19} = 1$
4) $\frac{(x+3)^2}{7} - \frac{(y+2)^2}{19} = -1$

SR. MATHEMATICS

70. Equation of the hyperbola with centre at the origin, Equation of the tangent to $5x^2 - y^2 = 5$ through 76. transverse axis Y axis and passing through the the point (2,8) is points (4, 6) and (-1, -3) is 1) 3x - 2v + 10 = 01) $5x^2 - 9y^2 = -36$ 2) 3x - 23v + 178 = 02) $9x^2 - 5v^2 = -36$ 3) 23x - 3v - 22 = 04) 23x - 3y + 22 = 03) $4x^2 - 7y^2 = -62$ 77. Equation of the tangent to the hyperbola 4) $7x^2 - 4v^2 = -62$ $3x^2$ - v^2 = 3 parallel to the line y=2x+4 is 71. e=2 and the difference of the focal distances of any 2) y=2x-3 1) y=2x+3 point on the hyperbola is 24. If the origin is the 3) y=2x+1 4) v=2x+5 centre then the equation of the hyperbola is If the line y = x + c is a tangent to the hyper-78. 1) $\frac{x^2}{144} - \frac{y^2}{432} = 1$ 2) $\frac{x^2}{432} - \frac{y^2}{144} = 1$ bola $\frac{x^2}{25}$ - $\frac{y^2}{9}$ = 1 then c is 3) $\frac{x^2}{144} - \frac{y^2}{236} = 1$ 4) $\frac{x^2}{144} - \frac{y^2}{128} = 1$ 1) ± 4 2) ± 5 3) ± 3 4) ± 6 A tangent to the hyperbola $3x^2$ - $4v^2 = 12$ 79. 72. As "t" varies the locus of point of intersection of the makes equal intercepts on the axes. Then the area lines $\frac{x}{a} + \frac{y}{b} = t, \frac{x}{a} - \frac{y}{b} = \frac{1}{t}$ of the triangle formed by the tangent with coordinate axes is 2) 1/4 4) 1/2 3) 4 1) 2 Circle Parabola If y = 4x + k touches the hyperbola 80. 3) Ellipse 4) Hyperbola 73. The curve represented by $x = \cosh t + \sinh t$ $\frac{x^2}{64}$ - $\frac{y^2}{40}$ = 1 then K is and $y = \cosh t - \sinh t$ is (where $t \hat{I} R$) 1) Parabola 1) $\sqrt{875}$ 2) $\sqrt{775}$ 2) Rectangular hyperbola with asymptotes x=y and 3) $\sqrt{675}$ 4) $\sqrt{975}$ x+y=03) half of rectangular hyperbola transverse axis is The condition that the line $\frac{x}{p} + \frac{y}{a} = 1$ to be tanx+v=0 81. 4) half of rectangular hyperbola which is in the first quadrant having asymptotes xy=0 74. Which of the following equations (t being the paramgent to $\frac{x^2}{x^2} - \frac{y^2}{b^2} = 1$ is eter) can't represent a hyperbola? 1) $\frac{tx}{x} - \frac{y}{b} + t = 0, \frac{x}{c} + \frac{ty}{b} - 1 = 0$ 1) $\frac{a^2}{n^2} + \frac{b^2}{a^2} = 1$ 2) $\frac{a^2}{n^2} - \frac{b^2}{a^2} = 1$ 2) $x = \frac{a}{2} \frac{a}{b} \frac{a}{t} + \frac{1}{t} \frac{\ddot{a}}{b} y = \frac{b}{2} \frac{a}{b} \frac{a}{t} - \frac{1}{t} \frac{\ddot{a}}{b}$ 3) $\frac{a^2}{a^2} - \frac{b^2}{n^2} = 1$ 4) $\frac{a^2}{a^2} + \frac{b^2}{n^2} = 1$ 3) $x = e^{t} + e^{-t}, v = e^{t} - e^{-t}$ Equation of the tangent to the hyperbola 82. 4) $x^2 = 2(\cos t + 3), y^2 = 2 \overset{\text{ac}}{\text{scos}}^2 \frac{t}{2} - 1 \stackrel{\text{b}}{=}$ $\frac{x^2}{2\epsilon} - \frac{y^2}{5} = 1$ which is perpendicular to the line TANGENTS 4x + 2v - 3 = 0 is 75. Equation of the tangent to the conic x^{2} - y^{2} - 8x + 2y + 11 = 0 at (2,1) is 1) x - 2v + 4 = 0 2) x - 2v + 7 = 03) x - 2y + 9 = 0 4) x - 2y + 8 = 01) x + 2 = 0 2) 2x + y - 5 = 03) x + y - 3 = 0 4) x - 2 = 0SR. MATHEMATICS 380 HYPERBOL/

83. If the line y = mx + 1 touches the hypebola $\frac{x^2}{2} - \frac{y^2}{2} = 1$ then m= 1) $\pm \frac{1}{\sqrt{2}}$ 2) $\pm \frac{1}{3}$ 3) $\pm \frac{1}{\sqrt{2}}$ 4) $\pm \frac{1}{2}$ 84. Equation of the tangent to the hyperbola $4x^2$ - $3v^2 = 24$ which make an angle 60° with x - axis is 1) $v = x\sqrt{3} \pm 12$ 2) $v = x\sqrt{3} \pm \sqrt{10}$ 3) $v = x\sqrt{3} \pm 9$ 4) $v = x\sqrt{3} \pm 5$ 85. The equations of tangents to the hyperbola $3x^2$ - $4v^2$ = 12 which make equal intercepts on the axes are 1) $x + y = \pm 1$ 2) x + y = 23) x + y = 34) x + y = 4Total number of tangents of the hyperbola 86. $\frac{x^2}{2} - \frac{y^2}{4} = 1$, that are perpendicular to the line 5x + 2v - 3 = 0 is/are 1) 0 2) 1 3) 2 4) 4 The slopes of the common tangents to the parabola 87. $v^2 = 24x$ and the hyperbola $5x^2 - v^2 = 5$ are 1) ± 3 2) ± 2 3) ± 6 4) ± 5 If $4x - 3v = \sqrt{3}$ is a tangent to 88. $4x^2$ - $9y^2 = 1$ then the eccentric angle of the point of contact is 1) $\frac{p}{4}$ 2) $\frac{p}{6}$ 3) $\frac{p}{2}$ 4) $\frac{p}{2}$ If the tangent at the point $(2 \sec q, 3 \tan q)$ of the 89. hyperbola $\frac{x^2}{4} - \frac{y^2}{9} = 1$ is parallel to 3x - y + 4 = 0, then the value of *q* is 1) 45^0 2) 60^0 3) 30^0 4) 75^0 If the line $y = mx + \sqrt{a^2m^2 - b^2}$ touches the 90. hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the point q then $\sin q =$

1) $\frac{b}{am}$ 2) $\frac{a}{bm}$ 3) $\frac{am}{b}$ 4) $\frac{bm}{a}$ 91. Number of tangents drawn from (-2,-1) to $2x^2 - 3y^2 = 6$ are 1) 3 2) 0 3) 1 4) 2 1) 3 (2) 0 (3) 1 (3,0) to the hy-92. perbola $\frac{x^2}{\Omega} - \frac{y^2}{1} = 1$ is 1) 0 3) 2 4) 3 93. Sum of the slopes of the two tangents drawn from (-2,-1) to $2x^2 - 3y^2 = 6$ 1) 4 2) 9/2 3) 7/2 4) 7 Product of the slopes of two tangents drawn from 94. (0,2) to $5x^2 - y^2 = 5$ 1) 9 2) -8 4) 8 3) -9 The point of intersection of two tangents to the hy-95. perbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, the product of whose slopes is c^2 , lies on the curve 1) $y^2 - b^2 = c^2 (x^2 + a^2)$ 2) $y^2 + a^2 = c^2 (x^2 - b^2)$ 3) $y^2 - a^2 = c^2 (x^2 + b^2)$ 4) $y^2 + b^2 = c^2 (x^2 - a^2)$ From any point $(x, y) \neq (\pm a, \pm b)$ on the hyperbola 96. x^2 - $y^2 = a^2$ - b^2 , two tangents are drawn to the ellipse $\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1$. Then they make angles a and b with X-axis such that 1) $\tan a - \tan b = 1$ 2) $\tan a + \tan b = 1$ 3) $\tan a \tan b = 1$ 4) $\tan a \tan b = 2$ The locus point of intersection of the two tangents 97. to the hyperbola $b^2 x^2 - a^2 v^2 = a^2 b^2$ making an angle 60° with another is $1)(x^{2} + y^{2} - a^{2} + b^{2})^{2} = 4(a^{2}y^{2} - b^{2}x^{2} + a^{2}b^{2})$ 2) $3(x^2 + y^2 - a^2 + b^2)^2 = 4(a^2y^2 - b^2x^2 + a^2b^2)$

SR. MATHEMATICS

3)
$$(x^2 + y^2 - a^2 - b^2)^2 = 4(b^2x^2 + a^2y^2 - a^2b^2)$$

4) $(x^2 + y^2 - a^2 - b^2)^2 = 12(b^2y^2 + a^2x^2 - a^2b^2)$
4) $(x^2 + y^2 - a^2 - b^2)^2 = 12(b^2y^2 + a^2x^2 - a^2b^2)$
59. If SK is the perpendicular from focus S of the hyperbola $\frac{x^2}{12} - \frac{y^2}{9} = 1$ is any tangent to it then K lies on
1) $x^2 + y^2 = 12$ 2) $x^2 + y^2 = 18$
3) $x^2 + y^2 = 6$ 4) $x^2 + y^2 = 9$
59. The locus of the foot of the perpendicular drawn from the proper part $\frac{x^2}{3} - \frac{y^2}{9} = 1$ is $1) (y + 4y^2 - (x - 3y^2 = - 1)$
2) $(y + 4y^2 - (x - 3y^2 = - 1)$
3) $(x - 3y^2 + (y - 4y^2 = 13)$
100. Equation of the auxiliary circle of the hyperbola $\frac{x^2}{2} - \frac{y^2}{9} = 1$ is $1) 2x \sqrt{3} + 3y \sqrt{3} = 25$
2) $2x \sqrt{3} + 5y \sqrt{3} = 10$
1) $x^2 + y^2 = 16$ 2) $\frac{x^2}{2} + \frac{y^2}{9} = 1$
102. Equation of the director circle of the hyperbola $\frac{x^2}{3x^2} - \frac{y^2}{9} = 1$ is $1) x^2 + y^2 = 18$ 2) $\frac{x^2}{2} + \frac{y^2}{9} = 1$
102. Equation of the director circle of the hyperbola $\frac{x^2}{2} - \frac{y^2}{9} = 1$ is $1) x^2 + y^2 = 18$ 2) $\frac{x^2}{2} + \frac{y^2}{9} = 1$
103. The equation of the director circle of the hyperbola $\frac{x^2}{3x^2} - \frac{y^2}{3x^2} = 1$ ineets in M and N. The perpendiculars to the axes in M and N. The perpendiculars to the axes in M and N. The perpendicular to the axes in M and N. The perpendicular to the axes in M and N. The perpendicular to the axes in M and N. The perpendicular to the axes in M and N. The perpendicular to the axes in M and N. The perpendicular to the axes in M and N. The perpendicular to the ax

SR. MATHEMATICS

382

3) $4(a^2x^2 - b^2y^2) = (a^2 + b^2)^2$ 4) $a^2x^2 - b^2y^2 = 4(a^2 + b^2)^2$ 111. Number of normals to the hyperbola drawn from the external point are 2) 4 3)6 1) 2 4) 5 112. For the hyperbola $3x^2 - y^2 = 3$ the line 3x - y = 3 is 1) a tangent line 2) not a chord 3) a chord 4) normal chord CHORD OF CONTACT, POLE, POLAR, CONJUGATE POINTS, CONJUGATE LINES: 113. If the chord of contact of tangents from a point P to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ subtends a right angle at the centre, then the locus of P is 1) a parabola 2) an ellipse 4) a circle 3) a hyperbola 114. Pole of 2x - 5y - 12 = 0 w.r. to the hyperbola $4x^2$ - $5y^2 = 24$ is 4) (l,2) 115. The locus of poles w.r. to the parabola $v^2 = 4ax$ of tangents to the hyperbola $x^2 - v^2 = a^2$ is 1) $x^2 + 4y^2 = 8a^2$ 2) $x^2 + 4y^2 = 2a^2$ 3) $4x^2 + y^2 = 4a^2$ 4) $2x^2 + y^2 = 4a^2$ 116. The locus of poles w.r. to the hyperbola $\frac{x^2}{r^2} - \frac{y^2}{r^2} = 1$ of tangents to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is 1) $\frac{a^2x^2}{a^4} + \frac{b^2y^2}{b^4} = 1$

2)
$$\frac{a^2x^2}{a^4} - \frac{b^2y^2}{b^4} = 1$$

3) $\frac{a^2x^2}{b^4} - \frac{b^2y^2}{a^4} = 1$
4) $\frac{a^2x^2}{b^4} + \frac{b^2y^2}{a^4} = 1$
117. The locus of poles w.r. to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
of tangents to $y^2 = 4ax$ is
1) $a^2y^2 + b^4x = 0$
2) $a^3y^2 + b^3x = 0$
3) $a^3y^2 + b^4x = 0$
4) $a^3y^2 + b^2x = 0$
118. If the polars of the points (x_1, y_1) and (x_2, y_2)
w.r. to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are at right
angles then $\frac{x_1x_2}{y_1y_2} =$
1) $\frac{-a^3}{b^3}$ 2) $\frac{4a^4}{b^4}$ 3) $\frac{a^4}{4b^4}$ 4) $\frac{-a^4}{b^4}$
119. The locus of poles with respect to the hyperbola S=0
of tangents to the circle $x^2 + y^2 = d^2$ is
1) $\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{d^2}$ 2) $\frac{x^2}{a^4} - \frac{y^2}{b^4} = \frac{1}{d^2}$
3) $\frac{x^2}{b^4} - \frac{y^2}{a^4} = \frac{1}{d^2}$ 4) $\frac{x^2}{b^4} - \frac{y^2}{a^4} = \frac{1}{3d^2}$
120. For the point (-1,-3) the line $3x - 16y + 48 = 0$
with respect to $9x^2 - 16y^2 = 144$ is a
1) tangent line 2) normal
3) chord of contact 4) polar
121. Any chord passing through the focus $(ae, 0)$ of the
hyperbola $x^2 - y^2 = a^2$ is conjugate to the line
1) $ex - a = 0$ 2) $ae + x = 0$
3) $ax^2 + e = 0$

SR. MATHEMATICS

122. Equation of the line through the point (-2,1) and conjugate to the line 8x + 3y - 4 = 0 w.r.to $2x^2 - v^2 = 4$ is 1) 2x + 3y + 1 = 0 2) 3x + 7y - 3 = 03) 4x - v + 9 = 0 4) x - v + 3 = 0123. If the lines 2x + 5y - 3 = 0, 3x + y + l = 0are the conjugate lines with respect to $3x^2$ - $2v^2 = 6$ then the value of *l* is 1) 5 2) 4 3) 1 4) 2 124. If the line x + 3y + 2 = 0 and its perpendicular line are conjugate w.r.to $3x^2 - 5y^2 = 15$ then the equation of the conjugate line is 1) 3x - y = 152) 3x - y + 12 = 03) 3x - y + 10 = 0 4) 3x - y = 4**MID POINT OF THE CHORD:** 125. The line 9x - 8v - 10 = 0 meets the hyperbola $9x^2$ - $16v^2 = 144$ in the points A and B. Then the mid point of chord AB is 1) (2,1) 2) (2, -1) 3) (- 2,1) 4) (- 2, - 1) 126. The locus of middle points of chords of the hyperbola $3x^2 - 2y^2 + 4x - 6y = 0$ parallel to v = 2x1) 3x - 4v = 4 2) 3v - 4x = 03) 4x - 4y = 3 4) 3x - 4y = 2127. All chords of the curve $3x^2 - y^2 - 2x + 4y = 0$. Which subtends a right angle at the origin passes through a fixed point 1) (2, -1) 2) (1, 1) 3) (2, 3) 4) (1, -2)128. Chords of the hyperbola $x^2 - y^2 = a^2$ touch the parabola $v^2 = 4ax$ then the locus of their mid points is 1) $x^{2}(v - a) = v^{3}$ 2) $v^{2}(x - a) = x^{2}$ 3) $y^2 (x - a) = x^3$ 4) $x^2 (y + a) = y^3$ 129. The locus of middle points of chords of the hyperbola $2x^2$ - $3y^2$ = 5 which passes through the point (1,-2) is 1) $2x^2 - 3y^2 - 2x - 6y = 0$

3) $x^2 - 3y^2 - 4x - y = 0$ 4) $3x^2 - y^2 - x - 4y = 0$ ASYMPTOTES: 130. The asymptotes of the hyperbola are $3x = \pm 5y$ and its vertices are $(\pm 5, 0)$ then the length of latusrectum of the hyperbola is 1) 9/5 2) 18/5 3) 50/3 4) 25/3 131. The asymptotes of a hyperbola 7x + 5y - 12 = 0, 2x + 3y - 5 = 0. Its centre is 1) (1,1) 2) (1,2)3) (2,1) 4) (2,2)132. The asymptotes of a hyperbola are 2x - y - 3 = 0 and 3x + y - 7 = 0 If the hyperbola passes through (1,1) then the equation of the hyperbola is 1) $6x^2 - xv - v^2 - 23x + 4v + 17 = 0$ 2) $6x^2 - xv - v^2 - 23x + 4v + 15 = 0$ 3) $6x^2 - xy - y^2 - 23x + 4y - 18 = 0$ 4) $6x^2 - xy - y^2 - 23x + 4y - 19 = 0$ 133. The equation of a rectangular hyperbola is $2x^2 + 3xy - 2y^2 - 6x + 13y - 36 = 0.$ If one asymptote is x + 2v - 5 = 0 then the other asymptote is 1) 2x - y + 6 = 0 2) 2x - y - 7 = 03) 2x - y + 4 = 0 4) 2x - y - 5 = 0134. The equation of the asymptotes of the hyperbola 2xy + 7x - 6y - 18 = 0 is 1) 2xy + 7x - 6y + 19 = 02) 2xy + 7x - 6y + 22 = 03) xv + 7x - 6v + 23 = 04) 2xy + 7x - 6y - 21 = 0135. The equation of the asymptotes of the hyperbola $2x^2 + 5xy + 2y^2 - 11x - 7y - 4 = 0$ 1) $2x^2 + 5xy + 2y^2 - 11x - 7y + 7 = 0$ 2) $2x^2 + 5xy + 2y^2 - 11x - 7y + 9 = 0$ 3) $2x^2 + 5xy + 2y^2 - 11x - 7y + 5 = 0$ 4) $2x^2 + 5xy + 2y^2 - 11x - 7y + 8 = 0$

2) $3x^2 - 2y^2 - 6x - 2y = 0$

SR. MATHEMATICS

136. The focus and directrix of a rectangular hyperbola are (1, -1) and x - y + 1 = 0. Then the equation of asymptotes is 1) xy - 2x + 2y - 4 = 02) xv - 2x + 2v + 5 = 03) xv - 2x + 2v + 7 = 04) xy - 2x + 2y - 6 = 0137. The product of the distances from any point on the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ to its asymptotes is 1) $\frac{124}{25}$ 2) $\frac{25}{124}$ 3) $\frac{25}{14}$ 4) $\frac{144}{25}$ 138. The asymptotes of a hyperbola are $y = \pm x \sqrt{3}$. If the hyperbola passes through (4,6) its e is 1) 3/2 2) 5/2 3) 2 4) 5/3 139. Equations of the asymptotes of the hyperbola $\frac{x^2}{2} - \frac{y^2}{4} = 1$ are 1) $\frac{x}{2} \pm \frac{y}{2} = 0$ 2) $2x \pm 5y = 0$ 3) $\frac{x}{2} \pm \frac{y}{2} = 0$ 4) $5x \pm 2y = 0$ 140. Angle between the asymptotes of the hyperbola 2xy + 2x + 2y + 1 = 0 is 1) $\frac{p}{2}$ 2) $\frac{p}{3}$ 3) $\frac{p}{4}$ 4) $\frac{p}{6}$ 141. If $_{d}$ is the angle between the asymptotes of the hyperbola $x^2 + 2xv - 3v^2 + x + 7v + 9 = 0$ then $\tan q =$ 1) 2/3 2) 1/5 4) 4/5 3) 2 142. The angle between the asymptotes of the hyperbola $3x^2 - y^2 = 3$ is 1) $\frac{p}{3}$ 2) $\frac{p}{2}$ 3) $\frac{2p}{3}$ 4) $\frac{p}{6}$ 143. The points of intersection of the asymptotes with directrices of a hyperbola lie on 1) Director circle 2) Auxiliary circle 3) Circle on the foci as diameter 4) Circle on the ends of conjugate axis as diameter 144. The angle between the asymptotes of the hyperbola $x^2 + 3xy + 2y^2 + 2x + 3y = 0$ is

1) $Tan^{-1} \overset{\text{all } \vec{0}}{\overleftarrow{c}} \overset{\vec{0}}{=} \overset{\vec{0}}{$ 2) $Tan^{-1} \overset{\text{all } \underline{0}}{\underline{C}} \overset{\text{all } \underline{0}}{\underline{C}}$ 3) $Tan^{-1} \overset{\text{all } \underline{O}}{\underline{C}}_{\underline{C}}$ 4) $Tan^{-1} \overset{\text{all } \underline{O}}{\underline{C}}$ 145. If the angle between the asymptotes of a hyperbola is 30° then eccentricity = 1) $\sqrt{6} + \sqrt{2}$ 2) $\sqrt{6} - \sqrt{2}$ 4) $\sqrt{5} + \sqrt{3}$ 3) $\sqrt{5} - \sqrt{3}$ 146. Rectangular hyperbola has one of its asymptotes as x + 2y - 5 = 0. If it passes through (6,0) and (-3,0) then its equation is 1) $2x^2 + 3xy - 2y^2 - 6x + 13y - 36 = 0$ 2) $2x^2 + 3xy + 2y^2 - 6x + 13y - 36 = 0$ 3) $2x^2 + 3xy - 2y^2 + 6x + 13y - 36 = 0$ 4) $2x^2 - 3xy - 2y^2 - 6x - 13y - 36 = 0$ 147. S=0 is a hyperbola, if S + K = 0 (K is real number) represents equation of the asymptotes then S + 2K = 0 represents 1) Hyperbola 2) Ellipse 3) Parabola 4) Circle 148. The asymptotes of the hyperbola xy = hx + kyare 1) x = k, v = h2) x = h, y = k3) x = k, y = k 4) x = h, y = h149. The eccentricity of the conic represented by $2x^2 + 5xy + 2y^2 + 11x - 7y - 4 = 0$ is 1) $\frac{\sqrt{10}}{2}$ 2) $\frac{\sqrt{10}}{4}$ 3) $\frac{5}{4}$ 4) $\frac{3}{5}$ 150. If 3x - 2y + 7 = 0 and 2x + 3y + 4 = 0 are the asymptotes of a hyperbola then its eccentricity is 1) $\frac{3}{2}$ 2) $\sqrt{2}$ 3) 2 4) can't be determined 151. The equation to the conjugate hyperbola of xy + 3x - 4y + 13 = 0 is 1) (x - 4)(y + 3) = 02) xv + 3x - 4v - 13 = 03) (x - 4)(y + 3) = 254) (x - 4)(v + 3) = -25

SR. MATHEMATICS

385

152. The equation to the conjugate hyperbola of 161. The equation of the circle described on the line join- $2x^2 - 3y^2 - 4x + 6y - 15 = 0$ is ing the foci of the hyperbola $\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$ as di-1) $2x^2 - 3y^2 - 4x + 6y + 13 = 0$ ameter is 2) $2x^2 - 3y^2 - 4x + 6y - 1 = 0$ 1) $x^2 + v^2 = a^2 + b^2$ 3) $2x^2 - 3y^2 - 4x + 6y + 15 = 0$ 2) $x^2 + v^2 = a^2 - b^2$ 4) $2x^2 - 3y^2 - 4x + 6y - 8 = 0$ 3) $x^2 + v^2 = a^2$ 4) $x^2 + y^2 = b^2$ FOCAL DISTANCES: 153. The difference of focal distances of any point on the 162. If the eccentricity of a conic is $\frac{3}{\sqrt{5}}$ then the conic is hyperbola $\frac{x^2}{36} - \frac{y^2}{6} = 1$ is 1) an ellipse 2) a hyperbola 3) a parabola 4) a circle 3) 12 1) 36 2) 9 4) 6 163. The equation 154. A point moves in a plane so that its distances PA $2x^2 + 5xy + 2y^2 - 11x - 7y - 4 = 0$ repand PB from two fixed points A and B in the plane satisfy the relation $PA - PB = K(K^{-1} \ 0)$, resents 1) a pair of lines 2) Parabola then the locus of P is 3) Ellipse 4) Hyperbola 1) a hyperbola 164. Theequation represents 2) a branch of the hyperbola 1) no locus if k>0 3) a parabola 4) an ellipse 2) an ellipse if k<0 155. The product of focal distances of the point (4,3) on 4) a hyperbola if k>0 3) a point if k=0 the hyperbola $x^2 - v^2 = 7$ is 165. The point $(at^2, 2bt)$ lies on the hyperbola 1) 25 2) 12 3) 9 4) 16 156. A = (3, 2), B = (7, -1) are two points. Then $\frac{x^2}{x^2} - \frac{y^2}{b^2} = 1$ for the locus of P such that PA - PB = 4 is 1) Parabola 2) Ellipse 3) Hyperbola 4) Rectangular hyperbola 1) all values of t 2) $t^2 = 2 + \sqrt{5}$ 3) $t^2 = 2 - \sqrt{3}$ 157. The locus of centres of the circles which touch the 4) no real value of t given two circles externally is 166. If $5x^2 + lv^2 = 20$ represents a rectangular hy-1) Radical axis 2) Parabola 3) Ellipse 4) Hyperbola perbola, then l is equal to 158. If the locus of the centre of the circle which touch 4) -4 1) 5 2) 4 3) -5 both the circles $x^2 + v^2 = a^2$ and No part of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ lies be $x^{2} + y^{2} = 4ax$ externally is a hyperbola then the 167. length of its transverse axis is 1) 3a 2) a 3) 4a 4) a/2 tween which of the following 1) x = -2a and x = 2a**MISCELLENEOUS PROBLEMS:** 2) x = -a and x = a159. Focus is (1,2) directrix is 7x - y - 30 = 0 and 3) y = -2b and y = 2blatusrectum is 10 units then the conic is 1) Parabola 2) Ellipse 4) y = -b and y = b4) Rectangular hyperbola 3) Hyperbola 160. $\frac{x^2}{12-k} + \frac{y^2}{8-k} = 1$ represents a hyperbola if 1) k=8 2) k<12 3) 8<k<12 4) Both 1 and 2 SR. MATHEMATICS 386 HYPERBOL

168.	The pos	itions c	of the po	pints P ((3,- 4) and
	Q (- 4,1)with	respect	to the	hyperbola
	$2x^2 - y$	$^{2} + 20$	x + 6y +	- 37 = () are that
	1) both P	and Q I	ie inside		
	2) both P 3) P lies	outside,	Q inside		
	4) P lies		•	C	
169.	The foci o	of the el	lipse $\frac{x^2}{16}$	$+\frac{y^2}{b^2} =$	1 coincides
	with the fo	oci of th	e hyperbo	bla $\frac{x^2}{144}$ -	$\frac{y^2}{81} = \frac{1}{25}$
	then the v	alue of į	b^2 is		
170.)9 tween	4) 11 the curves
	$\frac{a}{a^2} - \frac{b}{b^2}$	- = 1, 2	$4x^2 + 4y$	$y^{2} = a^{2}$	(b > a), is
	1) $\frac{b}{2}$	2) -	$\frac{b}{}$ 3	$\frac{a}{2}$	4) $\frac{a}{\sqrt{2}}$
	1 2	2) 1	-	2	¬ ′ √2
1-10	4	3	KEY 4	3	2
	3	2	1	3 4	2 2 4
11-20	4	2 4	3 4	4	2
21-30	1	3 3	4 2	2 4	4 1
31-40	2 2 4	3 2	3 4	2 2	1
41-50	4	4	2	1	3 1
51-60		1 2 2	4 3	1 2 3	4 1
61-70		2 2 3	4	1	1 2
71-80	2 1	4	2 4	2 4	2 4
81-90	3	3 1 1	1 3 2	4 2 3	4 1 1
91-10	0 4	2 2	1	3	4
101-1	3 10 4 4	2 4 1	1 4 1	3 1 3	4 3 2
111-1	20 2	3	2	4	2 3
121-1	1 30 1 1	3 1 4	4 3 3	1 2 1	4 1 2
131-1	-	4 2 4	3 3	4 3	2 3 1
141-1		4 3 1	3 2 1	3 2 1	2
151-1		1 4	3	2	1 3
161-1	70 1	4 2 2	4	1	3 2 3
	3	2	4	1	3

HINTS: For the given hyperbola $e_1 = \frac{\sqrt{13}}{3}$ use 11. $\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1$. 24. Use $q = 2Sec^{-1}e$ 27. For the given hyperbola $e_1 = \frac{2}{\sqrt{3}}$. Find e_2 . 33. $SA.SA^1 = b^2$ a/e=perpendicular distance 42. (0,0)to $x + 3 = 0 \neq a = 15$ 54. Intersection point of 3x - 4y - 12 = 0; 4x + 3y - 12 = 0.56. $S(0,0); l; x + 3 = 0; SP^2 = e^2 PM^2$. 64. $2ae = 18, \frac{2a}{2} = 8 \neq 4a^2$ = 144 P a = 6 P $b^2 = 36 \frac{29}{64} - 1\frac{\ddot{0}}{\ddot{a}} = 45$ 67. $a = 7, (a, 0) = \frac{aae}{2}, 0\frac{\ddot{0}}{\dot{a}} \neq e = 2 \neq b^2 = 45$ 69. $SP - S^1P = 8 P b = 4$ 93. $m_1 + m_2 = \frac{2x_1y_1}{x_1^2 - a^2}$ 97. Use $\tan q = \frac{2ab - \sqrt{-S_{11}}}{x_1^2 + y_1^2 - a^2 + b^2}$ K lies on auxiliary circle. 98. 125. Use $\frac{a^2}{b^2} - a^2 \ln \frac{b^2 mn}{a^2 m^2}, \frac{b^2 mn}{a^2 m^2} - \frac{b^2 mn}{b^2 m^2}$ 126. Write $S_1 = S_{11}$ its slope =2 127. Let lx + my = 1 be the line. Homogenise the curve with (x, y) = (1, -2). 133. Perpendicular to x + 2y - 5 = 0 and passes through the centre. 137. Use $\frac{a^2b^2}{a^2+b^2}$.

140.
$$(x + 1)(y + 1) = 0$$

SR. MATHEMATICS

141. Formulae
$$\tan q = \frac{2\sqrt{h^2 - ab}}{a + b}$$

145. By verificcation
156. $PA - PB = k; (k = 4);$
 $AB = 5; AB > k$
157. $PA = r + r_1; PB = r + r_2; PA - PB = r_1 - r_2$
a constant, a hyperbola.
159. $ae - \frac{a}{e} = \left|\frac{-25}{\sqrt{50}}\right|; \frac{2b^2}{a} = 10$
 $\frac{a(e^2 - 1)}{e} = \frac{5}{\sqrt{2}} \triangleright a(e^2 - 1) = 5 \triangleright e = \sqrt{2}$
160. 12 - $k > 0, 8 - k < 0$
LEVEL - II
1. The eccentricity of the hyperbola whose transverse
axis is 2a having coordinate axes as its axes and
passing through the point (h,k) is
1) $\sqrt{\frac{h^2 + k^2 - a^2}{k^2 + a^2}}$ 2) $\sqrt{\frac{h^2 + k^2 - a^2}{h^2 - a^2}}}$
3) $\sqrt{\frac{h^2 - k^2 + a^2}{k^2 - a^2}}$ 4) $\sqrt{\frac{h^2 - k^2 - a^2}{h^2 - a^2}}}$
2. The centre, vertex, focus of a conic are (0,0),
(0,5), (0,6) its length of latusrectum is
1) 11/5 2) 7/5 3) 14/5 4) 22/5
3.. For different values of k if the locus of point of inter-
section of the lines $\sqrt{3x} - y - 4\sqrt{3k} = 0$,
 $\sqrt{3kx + ky} - 4\sqrt{3} = 0$ represents the hyper-
bola then the equations of latusrecta are
1) $x = \pm 8$ 2) $x = \pm \sqrt{2}$
3) $y = \pm 8$ 4) $y = \pm 4\sqrt{2}$
4. The centre, one vertex, one focus of a hyperbola
are (1, - 1), (5, - 1), (6, - 1) its directrices are
1) $5x - 21 = 0, 5x - 19 = 0$
4) $5x - 17 = 0, 5x - 6 = 0$
5. The centre, one vertex, one focus of a hyperbola
are (5, 4), (5, 7), (5, 9) its directrices are

1) 5v - 27 = 0, 5v - 9 = 02) 5v - 17 = 0, 5v - 11 = 03) 5v - 29 = 0, 5v - 11 = 04) 5v - 7 = 0, 5v - 17 = 0If the equation $\sqrt{(x+4)^2 + (y-3)^2}$ $-\sqrt{(x-4)^2+(y-3)^2}=6$ represents a conic its directrices are 1) $x = \pm \frac{9}{4}$ 2) $x = \pm \frac{9}{2}$ 3) $x = \pm \frac{7}{2}$ 4) $x = \pm \frac{7}{2}$ The equation $\left|\sqrt{(x-2)^2+(y-1)^2}-\sqrt{(x+2)^2+y^2}\right| = c$ will represent a hyperbola if 1) $c \hat{I} (0,6)$ 2) $c\hat{1}$ (0,5) 3) $c\hat{1}(0,\sqrt{17})$ 4) $c\hat{1}(0,\sqrt{19})$ The locus of the foot of the perpendicular from the centre of the hyperbola $2x^2$ - $3y^2 = 6$ on any tangent to it is 1) $(x^2 + y^2)^2 = 2x^2 + 3y^2$ 2) $(x^2 - y^2)^2 = 2x^2 - 3y^2$ 3) $(x^2 + y^2)^2 = 3x^2 + 2y^2$ 4) $(x^2 + y^2)^2 = 3x^2 - 2y^2$ Length of the latusrectum of the hyperbola $x_V = c^2$, is equal to 3) $2\sqrt{2c}$ 4) 4c1) 2c 2) $\sqrt{2}c$ Equation of the common tangent to $y^2 = 8x$ and 10. $3x^2 - v^2 = 3$ is 1) 2x + y + 1 = 0 2) x + 2y - 5 = 03) 2x + y - 6 = 0 4) 2x - y + 7 = 0

SR. MATHEMATICS

11. Tangents are drawn from (a, b) to the hyperbola $\frac{x^2}{2}$ - $\frac{y^2}{t^2}$ = 1 making angles q_1, q_2 with x-axis. If $\tan q_1 \cdot \tan q_2 = 1$ then $a^2 - b^2 =$ 2) $2a^2 + b^2$ 1) $a^2 + 2b^2$ 3) $a^2 + b^2$ 4) $a^2 - b^2$ 12. Area of the triangle formed by the lines x - y = 0, x + y = 0 and any tangent to the hyperbola x^2 - $y^2 = a^2$ is 1) $2a^2$ 2) a^2 3) $\frac{a^2}{2}$ 4) $4a^2$ The line y=mx+c is a normal to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 13. then $\frac{a^2}{m^2}$ - b^2 1) $\frac{(a^2 - b^2)^2}{2a^2}$ 2) $\frac{(a^2 + b^2)^2}{4c^2}$ 3) $\frac{(a^2 + b^2)^2}{c^2}$ 4) $\frac{(a^2 - b^2)^2}{4c^2}$ A normal to the hyperbola $\frac{x^2}{r^2} - \frac{y^2}{h^2} = 1$ meets 14. the axes in Q and R. Then the locus of the midpoint of QR is 1) $2(a^2x^2 - b^2y^2) = (a^2 + b^2)^2$ 2) $a^2x^2 - b^2y^2 = 4(a^2 + b^2)^2$ 3) $4(a^2x^2 - b^2y^2) = (a^2 + b^2)^2$ 4) $a^2x^2 - b^2y^2 = (a^2 + b^2)^2$ If the tangent and normal to $x^2 - y^2 = a^2$ at a 15. point cut off intercepts a_1, a_2 and b_1, b_2 on the xaxis and y-axis respectively then $a_1a_2 + b_1b_2 =$ 2) a^2 3) 1 1) 0 4) -1

P(3,1) is a point on x^2 - $4y^2 = 5$ and the tan-16. gent and normal at P meets the x-axis at T and N. If C is the centre of the hyperbola then CT. CN= 1) 25/8 2) 25/6 3) 25 4) 25/4 17. If the locus of middle points of the chords of the hyperbola $\frac{x^2}{r^2} - \frac{y^2}{r^2} = 1$ which passes through a fixed point (h,k) is a hyperbola its centre is 1) $\begin{array}{c} ak \\ c_{2} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{7} \\$ 18. The locus of middle points of normal chords of $x^2 - v^2 = a^2$ is 1) $(y^2 - x^2)^3 = 4a^2x^2y^2$ 2) $(y^2 - x^2)^4 = 4a^4x^2y^2$ 3) $(y^2 + x^2)^3 = 2a^4x^2y^2$ 4) $(y^2 + x^2)^3 = 2a^2x^2y^2$ 19. A tangent to auxiliary circle of the hyperbola $\frac{x^2}{2}$ - $\frac{y^2}{x^2}$ = 1 intersects the hyperbola in P and Q. Then the locus of mid point of PQ is 1) $\frac{\partial^2 x^2}{\partial x^2} - \frac{y^2 \ddot{\underline{O}}}{h^2 \div} = a^2 \frac{\partial^2 x^2}{\partial x^2} + \frac{y^2 \ddot{\underline{O}}}{h^4 \div}$ 2) $\frac{\partial^2 x^2}{\partial^2 x^2} + \frac{y^2 \frac{\partial^2}{\partial^2}}{h^2 \frac{d^2}{d^2}} = a^4 \frac{\partial^2 x^2}{\partial^2 x^2} + \frac{y^2 \frac{\partial^2}{\partial^2}}{h^4 \frac{d^2}{d^2}}$ 3) $\frac{\partial^2 x^2}{\partial x^2} - \frac{y^2 \frac{\partial^2}{\partial x}}{h^2 \frac{d^2}{d x}} = a^4 \frac{\partial^2 x^2}{\partial x^4} - \frac{y^2 \frac{\partial^2}{\partial x}}{h^4 \frac{d^2}{d x}}$ 4) $\frac{g^2 x^2}{g^2 a^2} + \frac{y^2 \frac{\ddot{0}}{\dot{2}}}{h^2 \frac{\dot{1}}{\dot{2}}} = a^2 \frac{g^2 x^2}{g^2 a^4} - \frac{y^2 \frac{\ddot{0}}{\dot{2}}}{h^4 \frac{\dot{1}}{\dot{2}}}$ 20. The foot of the perpendicular from the focus of the hyperbola $\frac{x^2}{16} - \frac{y^2}{0} = 1$ on its asymptote is $\underset{1)}{\overset{\text{gef}}{\underset{5}}}, \underbrace{3\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{a}}}, \underbrace{2)}_{5\overset{\circ}{\underline{c}}}, \underbrace{4\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{a}}}, \underbrace{3\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{c}}}, \underbrace{9\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{a}}}, \underbrace{4\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{a}}}, \underbrace{2\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{a}}}, \underbrace{4\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{a}}}, \underbrace{3\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{a}}}, \underbrace{9\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{a}}}, \underbrace{4\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{a}}}, \underbrace{12\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{a}}}, \underbrace{2\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{a}}}, \underbrace{2\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{0}}}, \underbrace{2\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{0}}}, \underbrace{2\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{0}}}, \underbrace{2\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{0}}}, \underbrace{2\overset{\circ}{\underline{0}}}_{5\overset{\circ}{\underline{0}}, \underbrace{2\overset{\circ}{\underline{0}}}, \underbrace{2\overset{\circ}{\underline{0}}}, \underbrace{2\overset{\circ}{\underline{0}}}, \underbrace{2\overset{\circ}{\underline{0}}}, \underbrace{2\overset{\circ}{\underline{0}}}, \underbrace{2\overset{\circ}{\underline{0}}}, \underbrace{2\overset{\circ}{\underline{0}}}, \underbrace{2\overset{\circ}{\underline{0}}, \underbrace{2\overset{\circ}{\underline{0}}}, \underbrace{2\overset{\circ}{\underline{0}}}, \underbrace{2\overset{\circ}{\underline{0}}, \underbrace{2\overset{\circ}{\underline{0}}}, \underbrace{2\overset{\circ}{$

SR. MATHEMATICS

21.	Any straight line parallel to an asymptote of a hy- perbola intersects the hyperbola at how many points 1) One 2) Two 3) Three 4) Four	30. If the normal at P to the rectangular hyperbola $x^2 - y^2 = 4$ meets the axes of X and Y in G and
22.	The eccentricity of a hyperbola is $\sqrt{2}$ and its cen-	g respectively and C is the centre of the hyperbola,
	tre is (1,1) if the equation of one asymptote is	then $2PC =$
	2x + 3y - 5 = 0 then the equation of the other	1) PG 2) Gg 3) Pg 4) 2PG
	asymptote is	31. If the line $ax + by + c = 0$ is a normal to the
	1) $3x - 2y = 0$ 2) $3x - 2y = 1$	hyperbola $xy = 1$, then
	3) $3x - 2y + 1 = 0$ 4) $3x - 2y + 3 = 0$	1) $a > 0, b < 0$ 2) $a > 0, b > 0$
23.	The separate equations of the asymptotes of rectan-	3) $a < 0, b < 0$ 4) $a = 0, b = 0$
	gular hyperbola $x^2 + 2xy \cot 2a - y^2 = a^2$ are	
	1) $x \cot a - y = 0, x \tan a + y = 0$	
	2) $x \cot a + y = 0, x \tan a + y = 0$	KEY
	3. $x \cot a + y = 0, x \tan a - y = 0$	1-10 2 4 1 1 3
	4) $x \cot a - y = 0, x \tan a - y = 0$	1 4 4 3 1 11-20 3 2 3 3 1
24.	The equation of one asymptote of the hyperbola	4 2 1 1 4
	$14x^2 + 38xy + 20y^2 + x - 7y - 91 = 0$	21-30 1 2 1 3 4 1 3 4 2 2
	is $7x + 5y - 3 = 0$ then the other asymptote is	31-40 1
	1) $2x + 4y = 1$ 2) $2x - 4y = 1$	Hints
	3) $2x + 4y + 1 = 0$ 4) $2x - 4y + 1 = 0$	
25.	If PN is perpendicular from a point on the rectangu- lar hyperbola to its asymptotes. Then the locus of the mid point of PN is 1) Circle 2) Parabola	1) $\frac{x^2}{a^2} - \frac{y^2}{a^2(e^2 - 1)} = 1$, Find e.
26.	3) Ellipse 4) Hyperbola The polar of any point on a asymptote of a hyper-	2) C (0,0),A (0,5),S (0,6)
	bola $\frac{x^2}{a^2}$ - $\frac{y^2}{b^2}$ = 1 with respect to it is	b=5, be=6, $e = \frac{6}{5}$ $P a^2 = 11$. Find $\frac{2a^2}{b}$.
	 Parallel to that asymptote Perpendicular to that asymptote not parallel to that asymptote 	3) $\sqrt{3}x - y = 4\sqrt{3k} \otimes \sqrt{3}x + y$
27.	4) not perpendicular to that asymptoteThe curve described parametrically by	$= \frac{4\sqrt{3}}{k} \otimes x \neq 3x^2 - y^2 = 48$
	$x = t^{2} + t + 1, y = t^{2} - t + 1$ represents	5 16
	 a pair of straight lines an ellipse a parabola 	4) $a = 4, ae = 5$ $P = \frac{5}{4}; x = 1 \pm \frac{16}{5}$
28.	3) a parabola4) a hyperbolaTwo straight lines passes through the fixed points	6) It is in the form of $SP - S^1P = 2a$ where
	$(\pm a, 0)$ have gradients whose product is k(>0). Then	$S(-4,3), S^{1}(4,3); a = 3; 2ae = 8 \notin e = \frac{4}{3}$.
	the locus of the point of intersection of the lines is 1) a circle 2) an ellipse	0
	3) a straight line 4) a hyperbola	$c(0,3), x = 0 \pm \frac{9}{4}$
29.	One focus of a hyperbola is (3,0) and its correspond-	1 · · · · · · · · · · · · · · · · · · ·
	ing directrix is $4x - 3y - 3 = 0$. If its $e = \frac{5}{4}$	8) Use $(x^2 + y^2)^2 = (a^2x^2 - b^2y^2)$.
	then one vertex is	14) At q equation of normal is
	$1)\underbrace{\overset{\text{ad}}{\underset{5}{\text{b}}}}_{1},\underbrace{\frac{11}{5}\overset{\text{o}}{\underset{\overline{\overline{b}}}{\text{b}}}}_{5},\underbrace{\frac{\text{ad}}{5}\overset{\text{d}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{3}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{3}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5}\overset{\text{o}}{\underset{\overline{5}}{\text{b}}}}_{5},\underbrace{\frac{4}{5$	$\frac{ax}{\sec q} + \frac{by}{\tan q} = a^2 + b^2;$
SR. M	ATHEMATICS 39	90 HYPERBOLA

HYPERBOLA

its transverse axis.

SR. MATHEMATICS

391

9 The length of latusrectum of a hyperbola 2. (-1,3) B. 2xy + 3x +xy - 3x - 3y + 7 = 0 is 4v + 1 = 01) 4 2) 3 3) 2 4) 1 The normal at *q* on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \| C \cdot \frac{(3x - 4y - 12)^2}{225} \|$ 3. (6,2) 10. $-\frac{(4x+3y-12)^2}{100}=1$ meets the transverse axis in G then $AGA^{1}G =$ 1) $a^{2}(e^{2} \sec^{2} q - 1)$ 2) $a^{2}(e^{4} \sec^{2} q - 1)$ D. $72(x - 6)^2 - 9(y - 2)^2 = 32$ 4. (3,-1) 3) $a^2 (e^4 \sec^2 q + 1)$ 4) $a^2 (1 - e^4 \sec^2 q)$ 5. $\overset{\text{args}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}}}} 2, \frac{-3\ddot{\underline{0}}}{2}$ **KEY** The correct match is В С D 1-10 3 1 3 2 4 1 3 1) 1 3 2 5 2 2 1 2) 5 3 2 1 3) 5 3 Hints :-2 4) 2) $OP O^{1}P = b^{2}$ Match the following: Equations of the curve Nature of the curve $-\frac{x}{a}\cos\frac{\alpha q}{2} - \frac{f}{\frac{\alpha}{2}} - \frac{y}{b}\sin\frac{\alpha q}{2} + \frac{f}{\frac{\alpha}{2}} = \cos\frac{\alpha q}{2} - \frac{f}{\frac{\alpha}{2}}$ A. $x = 2(\cos t + \sin t)$, 1. Parabola $v = 5(\cos t - \sin t)$ $\frac{x}{a}\cos a - \frac{y}{b}\sin(a+q) = \cos(a+q)$ touches B. $x = 3(\cosh q + \sinh q)$, 2. Ellipse $\frac{x^2 \cos^2 a}{x^2} - \frac{y^2}{k^2} = 1$ $y = 4(\cosh q - \sinh q)$ C. $x = \sin^2 t$, $v = 2\cos t$ NEW PATTERN QUESTIONS TYPE - 1 3. Hyperbola 4. Rectangular hyperbola 1.Observe the following lists. **HYPERBOLA** ECCENTRICITY A. $x^2 - y^2 = 9$ The correct match is 1. 1 В С B. xy = 52. $\sqrt{2}$ 2 3 1) 1 2 3 2) 1 C. $2x^2 - 3y^2 = 6$ 3. $\sqrt{\frac{3}{2}}$ 3) 3 2 1 2 1 Match the following 4. D. 4(x - 1)² 4. $\sqrt{3}$ Hyperbola Length of Latusrectum $-2(y+2)^2 = 10$ 1. $x^2 - 4v^2 = 4$ The correct match is a. 1 **C** 3 3 3 4 4 4 II. $25y^2 - 16x^2 = 400$ b. 12 2. 2 III. $2x^2 - y^2 - 4x$ c. $\frac{9}{2}$ Observe the following list 2) **HYPERBOLA** CENTRE -4v - 20 = 0A. $2x^2 + 5xy + 2y^2$ IV. $9x^2 - 16y^2 + 72x$ d. $\frac{25}{2}$ $1.\frac{a84}{25}, \frac{-12\ddot{0}}{25}$ -32v - 16 = 0-11x - 7y - 4 = 0

SR. MATHEMATICS

392

The correct match is	5. Asymptotes of a rectangular hyperbola
I II III IV	5. Asymptotes of a rectangular hyperbola $2x^2 + 3xy - 2y^2 - 6x + 13y - 36 = 0$ are
1. a b c d 2. a d b c	
3. cabd 4. bcda	x + 2y - 5 = 0 and $ax + by + c = 0$ (a>0) . The ascending order of a,b,c is
4. b c d a	1) b,a,c 2) a,b,c
5. Match the following: Hyperbola Auxiliary circle	3) c,a,b 4) b,c,a
	KEY
1. $5x^2 - 9y^2 = 45$ a. $x^2 + y^2 = 2$	1-5 3 1 3 1 1
II. $2x^2 - 5y^2 + 10 = 0$ b. $x^2 + y^2 = 9$	TYPE - 3 1. I: If P,Q,R,S are the ends of the latusrecta of the
III. $x^2 - 4y^2 + 16 = 0$ c. $x^2 + y^2 = 16$	
IV. $xy = 8$ d. $x^2 + y^2 = 4$	hyperbola $\frac{x^2}{16}$ - $\frac{y^2}{9}$ = 1 then the area of the rect-
e. $x^2 + y^2 = 8$	angle PQRS is 45 sq. units.
1) b,a,d,c 2) b,a,d,e 3) a,b,c,d 4) b,c,d,e	II: The centre of the hyerbola
	$\frac{(x+y-1)^2}{2} - \frac{(x-y-3)^2}{6} = 1$ lies in sec-
KEY	5 0
1-5 3 2 4 2 1	ond quadrant.
TYPE - 2	Which of the above statement is correct?
1. The ascending order of lengths of the transverse axis	1) Only I2) Only II3) Both I and II4) Neither I nor II
(a), conjugate axis (b) and eccentricity(g) of	2. I: The number of integral values of k for which the
the hyperbola is	
1) <i>a</i> , <i>b</i> , <i>g</i> 2) <i>a</i> , <i>g</i> , <i>b</i>	equation $\frac{x^2}{3k-2} + \frac{y^2}{k-10} = 1$ represents a hy-
 3) g, a, b 4) b, a, g 2. Arrange the eccentricities of the following hyperbola 	perbola is 10.
in the descending order	
A. In a hyperbola, the distance between the foci is three times the distance between the directrices	$\frac{x^2}{3k-2} + \frac{y^2}{k-10} = 1$ represents a rectangular
B. In a hyperbola, the transverse axis is double the	
conjugate axis	hyperbola if k=3 Which of the above statement is correct?
C. $axy = b + c (abc > 0)$	 Only I Only II Both I and II Neither I nor II
 A,C,B B,C,A A,B,C C,A,B The arrangement of the following hyperbolas in the 	
ascending order of the radius of their director circles.	poins on $xy = c^2$ lies on the same hyperbola.
A) $16x^2 - 25y^2 = 400$	II: The triangle formed by any three points on $\frac{2}{2}$ (up 0 up 0) is an abtuac appled triangle
B) $4x^2 - 9y^2 = 36$	$xy = c^2$ (x>0,y>0) is an obtuse angled triangle. Which of the above statement is correct?
C) $9x^2 - 16y^2 = 144$	1) Only I 2) Only II 3) Both I and II 4) Neither I nor II
D) $3x^2 - 4y^2 = 12$	4. I: The combined equation of the pair of asymptotes
1) A,B,C,D 2) A,C,B,D	of the hyperbola $2xy + 6x + y + 5 = 0$ is
3) D,B,C,A 4) D,C,B,A 4. The equation of the tangent to the hyperbola	2xy + 6x + y + 3 = 0. II: The angle between the asymptotes of the hyper-
$3x^2 - 2y^2 = 10$ at (2,1) is $ax + by + c = 0$	in the angle between the asymptotes of the hyper
then the descending order of a,b,c is	Which of the above statement is correct?
1) a,b,c 2) b,c,a 3) c,a,b 4) c,b,a	1) Only I2) Only II3) Both I and II4) Neither I nor II
SR MATHEMATICS 3	93 HYPERBOLA

SR. MATHEMATICS

5. I: The angle between the asymptotes of the hyperbola
$$x^2 - 3y^2 = 3$$
 is 30°.
II: The angle between the asymptotes of the hyperbola $x^2 - y^2 = 3$ is 30°.
II: The angle between the asymptotes of the hyperbola $x^2 - y^2 = 1$ is $2Sec^{-1}c^{-1}$.
Which of the above statement is correct?
I) Only I
3) Both I and II 4) Neither I nor II
KEY
1. Assertion(A): The number of tangents to the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ is 9 .
1. Assertion(A): The number of tangents to the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ having slope $\frac{1}{2}$ is zero.
Reason(R): If slope of a tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
is m them m 1 $\frac{e}{8}$ Y, $-\frac{b}{2}$ $\frac{b}{2}$ $\frac{c}{2}$ $\frac{y^2}{b^2} = 1$
1. Both A and R are true but R is not correct explanation of A.
3) A is true but R is false.
4) A is false but R is true.
2. Assertion(A): The equation $(x + 1)(y - 3) = 4$
represents a rectangular hyperbola if $a + b = 0, h^2 > abc, abc + 2/gh - af^2 - bg^2 - ch^2 + 0$
1) Both A and R are true and R is the correct explanation of A.
3) A is true but R is false.
4) A is false but R is true.
3. Assertion(A): The equation $(x + 1)(y - 3) = 4$
represents a rectangular hyperbola if $a + b = 0, h^2 > abc, abc + 2/gh - af^2 - bg^2 - ch^2 + 0$
1) Both A and R are true and R is the correct explanation of A.
3) A is true but R is false.
4) A is false but R is true.
3. Assertion(A): The equation $(x + 1)(y - 3) = 4$
represents a rectangular hyperbola if $a + b = 0, h^2 > abc, abc + 2/gh - af^2 - bg^2 - ch^2 + 0$
1) Both A and R are true and R is the correct explanation of A.
3) A is true but R is false.
4) A is false but R is true.
3. Assertion(A): The difference of the focal distances of any point on the hyperbola is equation the focal distances of any point on the hyperbola is equation the focal distances of any point on the hyperbola is equation the focal distances of any point on the hyperbola is equation the focal distances of any point on the hyperbola is equation the focal distances of any poi

SR. MAI HEMATICS

HTPERBU

1) Both A and R are true and R is the correct explanable of A.
2) Both A and R are true but R is not correct explanable of A.
3) A is true but R is false.
4) A is false but R is true.
8. Assertion(A): If the line
$$x + 3y + 2 = 0$$
 and its perpendicular line $x + 3y + 2 = 0$ and its perpendicular line $x + 3y + 2 = 0$.
Reason(R): If (x_1, y_1) and (x_2, y_2) are conjugate with respect to the hyperbola S=0 then $S_{12} = 0$.
Reason(R): If (x_1, y_1) and (x_2, y_2) are conjugate with respect to the hyperbola S=0 then $S_{12} = 0$.
1) Both A and R are true and R is the correct explanation of A.
3) A is true but R is not correct explanation of A.
3) A is true but R is not correct explanation of A.
3) A is true but R is not correct explanation of A.
3) A is true but R is not correct explanation of A.
3) A is true but R is not correct explanation of A.
3) A is true but R is not correct explanation of A.
3) A is true but R is not correct explanation of A.
3) A is true but R is not correct explanation of A.
3) A is true but R is not correct explanation of A.
4) A is false but R is true.
1. The eccentricity of the onic 36x² + 144y² - 36x - 96y - 119 = 0 is 1, $\frac{\sqrt{3}}{2}$ and $\frac{\sqrt{3}}{4}$ and $\frac{\sqrt{3}}{4}$ and $\frac{\sqrt{3}}{4}$.
3) $\frac{\sqrt{3}}{4}$ and $\frac{\sqrt{3}}{4}$ and $\frac{\sqrt{3}}{4}$.
5) The equation of a line which touches both the curves $y^2 = 4x$ and $3x^2 - 4y^2 = 12$ is 10 is asymptotes is 10 a^2b^2 and a^2b^2 and a^2b^2 .
5) The eccentricity of the hyperbola $\frac{x^2}{2} - \frac{y^2}{2} = 1$ is the eccentricities of the ellipse is $\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4}$.
1) $\frac{1}{2}$ and $\frac{2}{3}$ by $\frac{2}{4} + \frac{2}{2}$.
3) $\frac{a^2 + b^2}{a^2 + b^2}$.
5) The equation of a line which touches both the curves $y^2 = 4x$ and $3x^2 - 4y^2 = 12$ is 10 y $y = x - 1$ and $3x^2 - 4y^2 = 12$ is 10 y $y = x - 1$ and $3x^2 - 4y^2 = 12$ is 10 y $y = x - 1$ and $3x^2 - 4y^2 = 12$ is 10 y $y = x - 1$ and $3x^2 - 4y^2 = 12$ is 10 y $y = x - 1$ and $3x^2 - 4y^2 = 12$ is 10 y $y = x - 1$ and $3y = 1$.
4) The p

12. The length of the latus rectum of the hyperbola 20. If e_1 and e_2 are the eccentricities of a hyperbola and its conjugate then $x^2 - 4y^2 = 4$ is 1) $e_1^2 + e_2^2 = 3$ 1) 2 2) 1 3) 4 4) 3 2) $e_1^2 + e_2^2 = e_1^2 e_2^2$ (1996)3) $e_1^2 + e_2^2 = 4$ 13. The vertices of a hyperbola are (2,0), (-2,0) and the 4) $e_1 = e_2$ The combined equation of the asymptotes of the foci are (3,0), (-3,0). The equation of the hyperbola 21. hyperbola xy + x + y + 5 = 0 is 1) $\frac{x^2}{4} - \frac{y^2}{5} = 1$ 2) $\frac{x^2}{4} + \frac{y^2}{5} = 1$ 1) xv = 02) (x - 1)(y - 1) = 03) (x - 1)(y + 1) = 03) $\frac{x^2}{4} + \frac{y^2}{5} = 2$ 4) $\frac{x^2}{4} - \frac{y^2}{5} = 2$ 4) (x + 1)(y + 1) = 014. The angle between the asymptotes of the hyperbola (1993) 22. The product of the distances from any point on the $x^2 - 3y^2 = 3$ is hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ to its two asymptotes 1) 30^0 2) 60^0 3) 90^0 4) 45^0 1) 144/25 2) 144/2 3) 144/20 4) 134/5 (1995) 15. If e and e_1 are the eccentricities of the hyperbo-1992 n this year Questions were not given in this lesson. $las_{XV} = c^2$ and $x^2 - v^2 = c^2$ then $e^2 + e_1^2$ 1991 is equal to In this year Questions were not given in this lesson. 1) 1 2) 4 3) 6 4) 8 A and B are two fixed points. If PA-PB is a con-23. 16. The number of normals to the hyperbola stant, the locus of P is 1) hyperbola2) parabola 3) circle ellipse $\frac{x^2}{r^2} - \frac{y^2}{r^2} = 1$ from an external point is (1989) The foci of the hyperbola 24. $9x^2 - 16y^2 - 18x + 32y - 151 = 0$ are 2) 4 3) 6 4) 5 17. If e and e¹ are the eccentricities of the hyperbola 1) $(1 \pm 5, 1)$ 2) $(1 \pm 5, -1)$ $\frac{x^2}{r^2}$ - $\frac{y^2}{k^2}$ = 1 and its conjugate hyperbola, the 3) $(-1 \pm 5, -1)$ 4) $(1 \pm 5, +2)$ 25. The locus of the middle points of chords of hyperbola $3x^2 - 2y^2 + 4x - 6y = 0$ parallel to value of $\frac{1}{e^2} + \frac{1}{e^{1^2}}$ v=2x is 1) 3x - 4y = 4 2) 3y - 4x = 03) 4x - 4y = 3 4) 3x - 4y = 21) 3 2) 2 3) 1 4) 0 West Bengal JEE - 2002 (1994) The equation of the hyperbola whose foci are (4,2)26. 18. The equation of the conic with focus at (1,-1), direcand (8,2) and eccentricity is 3, is trix along x - y + 1 = 0 and with eccentricity 1) $72(x - 6)^2 - 9(y - 2)^2 = 32$ $\sqrt{2}$ is 2) $9(x - 6)^2 - 9(y - 2)^2 = 32$ 1) $x^2 - y^2 = 1$ 2) xy = 13) $6(x - 3)^2 - 4(y - 2)^2 = 8$ 3) 2xy - 4x + 4y + 1 = 04) 2xy + 4x - 4y + 1 = 04) $3(x - 2)^2 - 2(y - 2)^2 = 1$ 19. The curve represented by NDA - 2002 $x = a (\cosh q + \sinh q),$ The equation $2x^2 - 3y^2 = 6$ represents 27. $y = b(\cosh q - \sinh q)$ is 1) circle pair of real and distinct lines 1) hyperbola 2) parabola
 4) circle 3) ellipse 4) hyperbola 3) ellipse SR. MATHEMATICS 396 HYPERBOL

NDA-2001

The standard equation of the hyperbola having the 28. distance between the foci as 32 and eccentricity $2\sqrt{2}$ is 1) $7x^2 - y^2 = 56$ 2) $x^2 - 7y^2 = 56$ 3) $7x^2 - y^2 = 224$ 4) $x^2 - 7y^2 = 224$ Kerala PET - 2001 The equations $x = \frac{e^t + e^{-t}}{2}, y = \frac{e^t - e^{-t}}{2}$ 29. represents the hyperbola then t is 1) set of real numbers 2) set of imaginary numbers3) set of negative integers 4) set of natural numbers A triangle formed by the latusrectum of the hyper-30. bola with the farther vertex of the conic is equilateral triangle then the eccentricity is equal to 1) $\sqrt{3}$ 2) $\sqrt{3} + 1$ 3) $\frac{\sqrt{3}+1}{\sqrt{2}}$ 4) $\frac{\sqrt{3}+1}{\sqrt{3}}$ 31. If e and e, are the eccentricities of the hyperbola and its conjugate then $e_1^2 - e^2 =$ 1) $e^2 e_1^2 - 2e^2$ 2) $e^2 e_1^2 + 2e^2$ 3) $2e^2 - e^2 e_1^2$ 4) $2e^2 + e_1^2$ Eamcet-2007 If the line lx + my = 1 is a normal to the hyperbola 32. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ then $\frac{a^2}{l^2} - \frac{b^2}{m^2} =$ 1) $a^2 - b^2$ 2) $a^2 + b^2$ 3) $(a^2 + b^2)^2$ 4) $(a^2 - b^2)^2$ **KEY** 31-40