
Informatics	Practices	(New	Syllabus)

Unit	2:	Data	Handling	(DH-1)

Introduction	to	data	structures	in	Pandas

Pandas	is	an	open-source,	BSD-licensed	Python	library	providing	high-performance,	easy-to-

use	data	structures	and	data	analysis	tools	for	the	Python	programming	language.	Python

with	Pandas	is	used	in	a	wide	range	of	fields	including	academic	and	commercial	domains

including	finance,	economics,	Statistics,	analytics,	etc.

Pandas	deals	with	the	following	three	data	structures	−

Series

DataFrame

Panel

These	data	structures	are	built	on	top	of	Numpy	array,	which	means	they	are	fast.

Dimension	&	Description

The	best	way	to	think	of	these	data	structures	is	that	the	higher	dimensional	data	structure	is

a	container	of	its	lower	dimensional	data	structure.	For	example,	DataFrame	is	a	container

of	Series,	Panel	is	a	container	of	DataFrame.

Data

Structure
Dimensions Description

Series 1 1D	labeled	homogeneous	array,	sizeimmutable.

Data

Frames
2

General	2D	labeled,	size-mutable	tabular	structure	with

potentially	heterogeneously	typed	columns.

Panel 3 General	3D	labeled,	size-mutable	array.

Building	and	handling	two	or	more	dimensional	arrays	is	a	tedious	task,	burden	is	placed	on

the	user	to	consider	the	orientation	of	the	data	set	when	writing	functions.	But	using	Pandas

data	structures,	the	mental	effort	of	the	user	is	reduced.

For	example,	with	tabular	data	(DataFrame)	it	is	more	semantically	helpful	to	think	of	the

index	(the	rows)	and	the	columns	rather	than	axis	0	and	axis	1.

Mutability

All	Pandas	data	structures	are	value	mutable	(can	be	changed)	and	except	Series	all	are	size

mutable.	Series	is	size	immutable.

Note	−	DataFrame	is	widely	used	and	one	of	the	most	important	data	structures.	Panel	is

used	much	less.

Series

Series	is	a	one-dimensional	array	like	structure	with	homogeneous	data.	For	example,	the

following	series	is	a	collection	of	integers	10,	23,	56,	…

10 23 56 17 52 61 73 90 26 72

Key	Points

Homogeneous	data

Size	Immutable

Values	of	Data	Mutable

DataFrame

DataFrame	is	a	two-dimensional	array	with	heterogeneous	data.	For	example,

Name Age Gender Rating

Steve 32 Male 3.45

Lia 28 Female 4.6

Vin 45 Male 3.9

Katie 38 Female 2.78

The	table	represents	the	data	of	a	sales	team	of	an	organization	with	their	overall

performance	rating.	The	data	is	represented	in	rows	and	columns.	Each	column	represents

an	attribute	and	each	row	represents	a	person.

Data	Type	of	Columns

The	data	types	of	the	four	columns	are	as	follows	−

Column Type

Name String

Age Integer

Gender String

Rating Float

Key	Points

Heterogeneous	data

Size	Mutable

Data	Mutable

Panel

Panel	is	a	three-dimensional	data	structure	with	heterogeneous	data.	It	is	hard	to	represent

the	panel	in	graphical	representation.	But	a	panel	can	be	illustrated	as	a	container	of

DataFrame.

Key	Points

Heterogeneous	data

Size	Mutable

Data	Mutable

Informatics	Practices	(New	Syllabus)

Unit	2:	Data	Handling	(DH-1)

Operations	on	a	Series

Series	is	a	one-dimensional	labeled	array	capable	of	holding	data	of	any	type	(integer,	string,

float,	python	objects,	etc.).	The	axis	labels	are	collectively	called	index.

pandas.Series

A	pandas	Series	can	be	created	using	the	following	constructor	−

pandas.Series(data,	index,	dtype,	copy)

The	parameters	of	the	constructor	are	as	follows	−

S.No Parameter	&	Description

1 data	-	data	takes	various	forms	like	ndarray,	list,	constants

2
index	-	Index	values	must	be	unique	and	hashable,	same	length	as	data.	Default

np.arrange(n)	if	no	index	is	passed.

3 dtype	-	dtype	is	for	data	type.	If	None,	data	type	will	be	inferred

4 copy	-	Copy	data.	Default	False

A	series	can	be	created	using	various	inputs	like	−

Array

Dict

Scalar	value	or	constant

Create	an	Empty	Series

A	basic	series,	which	can	be	created	is	an	Empty	Series.

Example

#import	the	pandas	library	and	aliasing	as	pd

import	pandas	as	pd

s	=	pd.Series()

print	s

Its	output	is	as	follows	−

Series([],	dtype:	float64)

Create	a	Series	from	ndarray

If	data	is	an	ndarray,	then	index	passed	must	be	of	the	same	length.	If	no	index	is	passed,

then	by	default	index	will	be	range(n)	where	n	is	array	length,	i.e.,	[0,1,2,3….

range(len(array))-1].

Example	1

#import	the	pandas	library	and	aliasing	as	pd

import	pandas	as	pd

import	numpy	as	np

data	=	np.array(['a','b','c','d'])

s	=	pd.Series(data)

print	s

Its	output	is	as	follows	−

0		a

1		b

2		c

3		d

dtype:	object

We	did	not	pass	any	index,	so	by	default,	it	assigned	the	indexes	ranging	from	0	to

len(data)-1,	i.e.,	0	to	3.

Example	2

#import	the	pandas	library	and	aliasing	as	pd

import	pandas	as	pd

import	numpy	as	np

data	=	np.array(['a','b','c','d'])

s	=	pd.Series(data,index=[100,101,102,103])

print	s

Its	output	is	as	follows	−

100	a

101	b

102	c

103	d

dtype:	object

We	passed	the	index	values	here.	Now	we	can	see	the	customized	indexed	values	in	the

output.

Create	a	Series	from	dict

A	dict	can	be	passed	as	input	and	if	no	index	is	specified,	then	the	dictionary	keys	are	taken

in	a	sorted	order	to	construct	index.	If	index	is	passed,	the	values	in	data	corresponding	to

the	labels	in	the	index	will	be	pulled	out.

Example	1

#import	the	pandas	library	and	aliasing	as	pd

import	pandas	as	pd

import	numpy	as	np

data	=	{'a'	:	0.,	'b'	:	1.,	'c'	:	2.}

s	=	pd.Series(data)

print	s

Its	output	is	as	follows	−

a	0.0

b	1.0

c	2.0

dtype:	float64

Observe	−	Dictionary	keys	are	used	to	construct	index.

Example	2

#import	the	pandas	library	and	aliasing	as	pd

import	pandas	as	pd

import	numpy	as	np

data	=	{'a'	:	0.,	'b'	:	1.,	'c'	:	2.}

s	=	pd.Series(data,index=['b','c','d','a'])

print	s

Its	output	is	as	follows	−

b	1.0

c	2.0

d	NaN

a	0.0

dtype:	float64

Observe	−	Index	order	is	persisted	and	the	missing	element	is	filled	with	NaN	(Not	a

Number).

Create	a	Series	from	Scalar

If	data	is	a	scalar	value,	an	index	must	be	provided.	The	value	will	be	repeated	to	match	the

length	of	index

#import	the	pandas	library	and	aliasing	as	pd

import	pandas	as	pd

import	numpy	as	np

s	=	pd.Series(5,	index=[0,	1,	2,	3])

print	s

Its	output	is	as	follows	−

0	5

1	5

2	5

3	5

dtype:	int64

pandas.Series.head

Series.head(n=5)

Return	the	first	n	rows.

This	function	returns	the	first	n	rows	for	the	object	based	on	position.	It	is	useful	for	quickly

testing	if	your	object	has	the	right	type	of	data	in	it.

Parameters:
n	:	int,	default	5

Number	of	rows	to	select.

Returns:
obj_head	:	type	of	caller

The	first	n	rows	of	the	caller	object.

Returns	the	last	n	rows.

Examples

>>>	df	=	pd.DataFrame({'animal':['alligator',	'bee',	'falcon',	'lion',

'monkey',	'parrot',	'shark',	'whale',	'zebra']})

>>>	df

	animal

0	alligator

1		bee

2	falcon

3		lion

4	monkey

5	parrot

6	shark

7	whale

8	zebra

Viewing	the	first	5	lines

>>>	df.head()

	animal

0	alligator

1		bee

2	falcon

3		lion

4	monkey

Viewing	the	first	n	lines	(three	in	this	case)

>>>	df.head(3)

	animal

0	alligator

1		bee

2	falcon

pandas.Series.tail

Series.tail(n=5)

Return	the	last	n	rows.

This	function	returns	last	n	rows	from	the	object	based	on	position.	It	is	useful	for	quickly

verifying	data,	for	example,	after	sorting	or	appending	rows.

Parameters:
n	:	int,	default	5

Number	of	rows	to	select.

Returns:
type	of	caller

The	last	n	rows	of	the	caller	object.

The	first	n	rows	of	the	caller	object.

Examples

>>>	df	=	pd.DataFrame({'animal':['alligator',	'bee',	'falcon',	'lion',

'monkey',	'parrot',	'shark',	'whale',	'zebra']})

>>>	df

	animal

0	alligator

1		bee

2	falcon

3		lion

4	monkey

5	parrot

6	shark

7	whale

8	zebra

Viewing	the	last	5	lines

>>>	df.tail()

		animal

4	monkey

5	parrot

6		shark

7		whale

8		zebra

Viewing	the	last	n	lines	(three	in	this	case)

>>>	df.tail(3)

	animal

6	shark

7	whale

8	zebra

Here	we	discuss	a	lot	of	the	essential	functionality	common	to	the	pandas	data	structures.

Here’s	how	to	create	some	of	the	objects	used	in	the	examples	from	the	previous	section:

In	[1]:	index	=	pd.date_range('1/1/2000',	periods=8)

In	[2]:	s	=	pd.Series(np.random.randn(5),	index=['a',	'b',	'c',	'd',	'e'])

In	[3]:	df	=	pd.DataFrame(np.random.randn(8,	3),	index=index,

		...:				columns=['A',	'B',	'C'])

		...:	

In	[4]:	wp	=	pd.Panel(np.random.randn(2,	5,	4),	items=['Item1',	'Item2'],

		...:				major_axis=pd.date_range('1/1/2000',	periods=5),

		...:				minor_axis=['A',	'B',	'C',	'D'])

		...:	

Head	and	Tail

In	[5]:	long_series	=	pd.Series(np.random.randn(1000))

In	[6]:	long_series.head()

Out[6]:	

0		0.229453

1		0.304418

2		0.736135

3		-0.859631

4		-0.424100

dtype:	float64

In	[7]:	long_series.tail(3)

Out[7]:	

997		-0.351587

998		1.136249

999		-0.448789

dtype:	float64

To	view	a	small	sample	of	a	Series	or	DataFrame	object,	use	the	head()	and	tail()

methods.	The	default	number	of	elements	to	display	is	five,	but	you	may	pass	a	custom

number.

Attributes	and	the	raw	ndarray(s)

pandas	objects	have	a	number	of	attributes	enabling	you	to	access	the	metadata

shape:	gives	the	axis	dimensions	of	the	object,	consistent	with	ndarray

Axis	labels

Series:	index	(only	axis)

DataFrame:	index	(rows)	and	columns

Panel:	items,	major_axis,	and	minor_axis

Note,	these	attributes	can	be	safely	assigned	to!

In	[8]:	df[:2]

Out[8]:	

				A			B		C

2000-01-01	0.048869	-1.360687	-0.47901

2000-01-02	-0.859661	-0.231595	-0.52775

In	[9]:	df.columns	=	[x.lower()	for	x	in	df.columns]

In	[10]:	df

Out[10]:	

				a			b			c

2000-01-01	0.048869	-1.360687	-0.479010

2000-01-02	-0.859661	-0.231595	-0.527750

2000-01-03	-1.296337	0.150680	0.123836

2000-01-04	0.571764	1.555563	-0.823761

2000-01-05	0.535420	-1.032853	1.469725

2000-01-06	1.304124	1.449735	0.203109

2000-01-07	-1.032011	0.969818	-0.962723

2000-01-08	1.382083	-0.938794	0.669142

Unit	2:	Data	Handling	(DH-1)

Introduction	to	data	structures	in	Pandas

A	Data	frame	is	a	two-dimensional	data	structure,	i.e.,	data	is	aligned	in	a	tabular	fashion	in

rows	and	columns.

Features	of	Data	Frame

Potentially	columns	are	of	different	types

Size	–	Mutable

Labeled	axes	(rows	and	columns)

Can	Perform	Arithmetic	operations	on	rows	and	columns

Structure

Let	us	assume	that	we	are	creating	a	data	frame	with	student’s	data.

You	can	think	of	it	as	an	SQL	table	or	a	spreadsheet	data	representation.

pandas.DataFrame

A	pandas	DataFrame	can	be	created	using	the	following	constructor	−

pandas.DataFrame(data,	index,	columns,	dtype,	copy)

The	parameters	of	the	constructor	are	as	follows	−

S.No Parameter	&	Description

1
data	-	data	takes	various	forms	like	ndarray,	series,	map,	lists,	dict,	constants	and

also	another	DataFrame.

2
index	-	For	the	row	labels,	the	Index	to	be	used	for	the	resulting	frame	is	Optional

Default	np.arrange(n)	if	no	index	is	passed.

3
columns	-	For	column	labels,	the	optional	default	syntax	is	-	np.arrange(n).	This	is

only	true	if	no	index	is	passed.

4 dtype	-	Data	type	of	each	column.

4
copy	-	This	command	(or	whatever	it	is)	is	used	for	copying	of	data,	if	the	default	is

False.

Create	DataFrame

A	pandas	DataFrame	can	be	created	using	various	inputs	like	−

Lists

dict

Series

Numpy	ndarrays

Another	DataFrame

In	the	subsequent	sections	of	this	chapter,	we	will	see	how	to	create	a	DataFrame	using	these

inputs.

Create	an	Empty	DataFrame

A	basic	DataFrame,	which	can	be	created	is	an	Empty	Dataframe.

Example

#import	the	pandas	library	and	aliasing	as	pd

import	pandas	as	pd

df	=	pd.DataFrame()

print	df

Its	output	is	as	follows	−

Empty	DataFrame

Columns:	[]

Index:	[]

Create	a	DataFrame	from	Lists

The	DataFrame	can	be	created	using	a	single	list	or	a	list	of	lists.

Example	1

import	pandas	as	pd

data	=	[1,2,3,4,5]

df	=	pd.DataFrame(data)

print	df

Its	output	is	as	follows	−

	0

0	1

1	2

2	3

3	4

4	5

Example	2

import	pandas	as	pd

data	=	[['Alex',10],['Bob',12],['Clarke',13]]

df	=	pd.DataFrame(data,columns=['Name','Age'])

print	df

Its	output	is	as	follows	−

	Name	Age

0	Alex	10

1	Bob	12

2	Clarke	13

Example	3

import	pandas	as	pd

data	=	[['Alex',10],['Bob',12],['Clarke',13]]

df	=	pd.DataFrame(data,columns=['Name','Age'],dtype=float)

print	df

Its	output	is	as	follows	−

	Name	Age

0	Alex	10.0

1	Bob	12.0

2	Clarke	13.0

Note	−	Observe,	the	dtype	parameter	changes	the	type	of	Age	column	to	floating	point.

Create	a	DataFrame	from	Dict	of	ndarrays	/	Lists

All	the	ndarrays	must	be	of	same	length.	If	index	is	passed,	then	the	length	of	the	index

should	equal	to	the	length	of	the	arrays.

If	no	index	is	passed,	then	by	default,	index	will	be	range(n),	where	n	is	the	array	length.

Example	1

import	pandas	as	pd

data	=	{'Name':['Tom',	'Jack',	'Steve',	'Ricky'],'Age':[28,34,29,42]}

df	=	pd.DataFrame(data)

print	df

Its	output	is	as	follows	−

	Age	Name

0	28	Tom

1	34	Jack

2	29	Steve

3	42	Ricky

Note	−	Observe	the	values	0,1,2,3.	They	are	the	default	index	assigned	to	each	using	the

function	range(n).

Example	2

Let	us	now	create	an	indexed	DataFrame	using	arrays.

import	pandas	as	pd

data	=	{'Name':['Tom',	'Jack',	'Steve',	'Ricky'],'Age':[28,34,29,42]}

df	=	pd.DataFrame(data,	index=['rank1','rank2','rank3','rank4'])

print	df

Its	output	is	as	follows	−

	Age	Name

rank1	28	Tom

rank2	34	Jack

rank3	29	Steve

rank4	42	Ricky

Note	−	Observe,	the	index	parameter	assigns	an	index	to	each	row.

Create	a	DataFrame	from	List	of	Dicts

List	of	Dictionaries	can	be	passed	as	input	data	to	create	a	DataFrame.	The	dictionary	keys

are	by	default	taken	as	column	names.

Example	1

The	following	example	shows	how	to	create	a	DataFrame	by	passing	a	list	of	dictionaries.

import	pandas	as	pd

data	=	[{'a':	1,	'b':	2},{'a':	5,	'b':	10,	'c':	20}]

df	=	pd.DataFrame(data)

print	df

Its	output	is	as	follows	−

	a	b	c

0	1	2	NaN

1	5	10	20.0

Note	−	Observe,	NaN	(Not	a	Number)	is	appended	in	missing	areas.

Example	2

The	following	example	shows	how	to	create	a	DataFrame	by	passing	a	list	of	dictionaries	and

the	row	indices.

import	pandas	as	pd

data	=	[{'a':	1,	'b':	2},{'a':	5,	'b':	10,	'c':	20}]

df	=	pd.DataFrame(data,	index=['first',	'second'])

print	df

Its	output	is	as	follows	−

	a	b	c

first	1	2	NaN

second	5	10	20.0

Example	3

The	following	example	shows	how	to	create	a	DataFrame	with	a	list	of	dictionaries,	row

indices,	and	column	indices.

import	pandas	as	pd

data	=	[{'a':	1,	'b':	2},{'a':	5,	'b':	10,	'c':	20}]

#With	two	column	indices,	values	same	as	dictionary	keys

df1	=	pd.DataFrame(data,	index=['first',	'second'],	columns=['a',	'b'])

#With	two	column	indices	with	one	index	with	other	name

df2	=	pd.DataFrame(data,	index=['first',	'second'],	columns=['a',	'b1'])

print	df1

print	df2

Its	output	is	as	follows	−

#df1	output

	a	b

first	1	2

second	5	10

#df2	output

	a	b1

first	1	NaN

second	5	NaN

Note	−	Observe,	df2	DataFrame	is	created	with	a	column	index	other	than	the	dictionary	key;

thus,	appended	the	NaN’s	in	place.	Whereas,	df1	is	created	with	column	indices	same	as

dictionary	keys,	so	NaN’s	appended.

Create	a	DataFrame	from	Dict	of	Series

Dictionary	of	Series	can	be	passed	to	form	a	DataFrame.	The	resultant	index	is	the	union	of

all	the	series	indexes	passed.

Example

import	pandas	as	pd

d	=	{'one'	:	pd.Series([1,	2,	3],	index=['a',	'b',	'c']),

	'two'	:	pd.Series([1,	2,	3,	4],	index=['a',	'b',	'c',	'd'])}

df	=	pd.DataFrame(d)

print	df

Its	output	is	as	follows	−

	one	two

a	1.0	1

b	2.0	2

c	3.0	3

d	NaN	4

Note	−	Observe,	for	the	series	one,	there	is	no	label	‘d’	passed,	but	in	the	result,	for	the	d

label,	NaN	is	appended	with	NaN.

Let	us	now	understand	column	selection,	addition,	and	deletion	through	examples.

Column	Selection

We	will	understand	this	by	selecting	a	column	from	the	DataFrame.

Example

import	pandas	as	pd

d	=	{'one'	:	pd.Series([1,	2,	3],	index=['a',	'b',	'c']),

	'two'	:	pd.Series([1,	2,	3,	4],	index=['a',	'b',	'c',	'd'])}

df	=	pd.DataFrame(d)

print	df	['one']

Its	output	is	as	follows	−

a	1.0

b	2.0

c	3.0

d	NaN

Name:	one,	dtype:	float64

Column	Addition

We	will	understand	this	by	adding	a	new	column	to	an	existing	data	frame.

Example

import	pandas	as	pd

d	=	{'one'	:	pd.Series([1,	2,	3],	index=['a',	'b',	'c']),

	'two'	:	pd.Series([1,	2,	3,	4],	index=['a',	'b',	'c',	'd'])}

df	=	pd.DataFrame(d)

#	Adding	a	new	column	to	an	existing	DataFrame	object	with	column	label	by	passing	new	series

print	("Adding	a	new	column	by	passing	as	Series:")

df['three']=pd.Series([10,20,30],index=['a','b','c'])

print	df

print	("Adding	a	new	column	using	the	existing	columns	in	DataFrame:")

df['four']=df['one']+df['three']

print	df

Its	output	is	as	follows	−

Adding	a	new	column	by	passing	as	Series:

	one	two	three

a	1.0	1	10.0

b	2.0	2	20.0

c	3.0	3	30.0

d	NaN	4	NaN

Adding	a	new	column	using	the	existing	columns	in	DataFrame:

	one	two	three	four

a	1.0	1	10.0	11.0

b	2.0	2	20.0	22.0

c	3.0	3	30.0	33.0

d	NaN	4	NaN	NaN

Column	Deletion

Columns	can	be	deleted	or	popped;	let	us	take	an	example	to	understand	how.

Example

#	Using	the	previous	DataFrame,	we	will	delete	a	column

#	using	del	function

import	pandas	as	pd

d	=	{'one'	:	pd.Series([1,	2,	3],	index=['a',	'b',	'c']),	

	'two'	:	pd.Series([1,	2,	3,	4],	index=['a',	'b',	'c',	'd']),	

	'three'	:	pd.Series([10,20,30],	index=['a','b','c'])}

df	=	pd.DataFrame(d)

print	("Our	dataframe	is:")

print	df

#	using	del	function

print	("Deleting	the	first	column	using	DEL	function:")

del	df['one']

print	df

#	using	pop	function

print	("Deleting	another	column	using	POP	function:")

df.pop('two')

print	df

Its	output	is	as	follows	−

Our	dataframe	is:

	one	three	two

a	1.0	10.0	1

b	2.0	20.0	2

c	3.0	30.0	3

d	NaN	NaN	4

Deleting	the	first	column	using	DEL	function:

	three	two

a	10.0	1

b	20.0	2

c	30.0	3

d	NaN	4

Deleting	another	column	using	POP	function:

	three

a	10.0

b	20.0

c	30.0

d	NaN

Row	Selection,	Addition,	and	Deletion

We	will	now	understand	row	selection,	addition	and	deletion	through	examples.	Let	us	begin

with	the	concept	of	selection.

Selection	by	Label

Rows	can	be	selected	by	passing	row	label	to	a	loc	function.

import	pandas	as	pd

d	=	{'one'	:	pd.Series([1,	2,	3],	index=['a',	'b',	'c']),	

	'two'	:	pd.Series([1,	2,	3,	4],	index=['a',	'b',	'c',	'd'])}

df	=	pd.DataFrame(d)

print	df.loc['b']

Its	output	is	as	follows	−

one	2.0

two	2.0

Name:	b,	dtype:	float64

The	result	is	a	series	with	labels	as	column	names	of	the	DataFrame.	And,	the	Name	of	the

series	is	the	label	with	which	it	is	retrieved.

Selection	by	integer	location

Rows	can	be	selected	by	passing	integer	location	to	an	iloc	function.

import	pandas	as	pd

d	=	{'one'	:	pd.Series([1,	2,	3],	index=['a',	'b',	'c']),

	'two'	:	pd.Series([1,	2,	3,	4],	index=['a',	'b',	'c',	'd'])}

df	=	pd.DataFrame(d)

print	df.iloc[2]

Its	output	is	as	follows	−

one	3.0

two	3.0

Name:	c,	dtype:	float64

Slice	Rows

Multiple	rows	can	be	selected	using	‘	:	’	operator.

import	pandas	as	pd

d	=	{'one'	:	pd.Series([1,	2,	3],	index=['a',	'b',	'c']),	

	'two'	:	pd.Series([1,	2,	3,	4],	index=['a',	'b',	'c',	'd'])}

df	=	pd.DataFrame(d)

print	df[2:4]

Its	output	is	as	follows	−

	one	two

c	3.0	3

d	NaN	4

Addition	of	Rows

Add	new	rows	to	a	DataFrame	using	the	append	function.	This	function	will	append	the

rows	at	the	end.

import	pandas	as	pd

df	=	pd.DataFrame([[1,	2],	[3,	4]],	columns	=	['a','b'])

df2	=	pd.DataFrame([[5,	6],	[7,	8]],	columns	=	['a','b'])

df	=	df.append(df2)

print	df

Its	output	is	as	follows	−

	a	b

0	1	2

1	3	4

0	5	6

1	7	8

Deletion	of	Rows

Use	index	label	to	delete	or	drop	rows	from	a	DataFrame.	If	label	is	duplicated,	then	multiple

rows	will	be	dropped.

If	you	observe,	in	the	above	example,	the	labels	are	duplicate.	Let	us	drop	a	label	and	will	see

how	many	rows	will	get	dropped.

import	pandas	as	pd

df	=	pd.DataFrame([[1,	2],	[3,	4]],	columns	=	['a','b'])

df2	=	pd.DataFrame([[5,	6],	[7,	8]],	columns	=	['a','b'])

df	=	df.append(df2)

#	Drop	rows	with	label	0

df	=	df.drop(0)

print	df

Its	output	is	as	follows	−

	a	b

1	3	4

1	7	8

In	the	above	example,	two	rows	were	dropped	because	those	two	contain	the	same	label	0.

Unit	2:	Data	Handling	(DH-1)

Binary	operations	in	a	Data	Frame

pandas.DataFrame.add

DataFrame.add(other,	axis='columns',	level=None,	fill_value=None)

Addition	of	dataframe	and	other,	element-wise	(binary	operator	add).

Equivalent	to	dataframe	+	other ,	but	with	support	to	substitute	a	fill_value	for	missing

data	in	one	of	the	inputs.

Parameters:

other	:	Series,	DataFrame,	or	constant

axis	:	{0,	1,	‘index’,	‘columns’}

For	Series	input,	axis	to	match	Series	index	on

level	:	int	or	name

Broadcast	across	a	level,	matching	Index	values	on	the	passed	MultiIndex

level

fill_value	:	None	or	float	value,	default	None

Fill	existing	missing	(NaN)	values,	and	any	new	element	needed	for

successful	DataFrame	alignment,	with	this	value	before	computation.	If	data

in	both	corresponding	DataFrame	locations	is	missing	the	result	will	be

missing

Returns: result	:	DataFrame

Notes	:	Mismatched	indices	will	be	unioned	together

Examples

>>>	a	=	pd.DataFrame([1,	1,	1,	np.nan],	index=['a',	'b',	'c',	'd'],

...																		columns=['one'])

>>>	a

			one

a		1.0

b		1.0

c		1.0

d		NaN

>>>	b	=	pd.DataFrame(dict(one=[1,	np.nan,	1,	np.nan],

...																							two=[np.nan,	2,	np.nan,	2]),

...																		index=['a',	'b',	'd',	'e'])

>>>	b

			one		two

a		1.0		NaN

b		NaN		2.0

d		1.0		NaN

e		NaN		2.0

>>>	a.add(b,	fill_value=0)

			one		two

a		2.0		NaN

b		1.0		2.0

c		1.0		NaN

d		1.0		NaN

e		NaN		2.0

pandas.DataFrame.sub

DataFrame.sub(other,	axis='columns',	level=None,	fill_value=None)

Subtraction	of	dataframe	and	other,	element-wise	(binary	operator	sub).

Equivalent	to	dataframe	-	other ,	but	with	support	to	substitute	a	fill_value	for	missing

data	in	one	of	the	inputs.

other	:	Series,	DataFrame,	or	constant

axis	:	{0,	1,	‘index’,	‘columns’}

For	Series	input,	axis	to	match	Series	index	on

level	:	int	or	name

Parameters:
Broadcast	across	a	level,	matching	Index	values	on	the	passed	MultiIndex

level

fill_value	:	None	or	float	value,	default	None

Fill	existing	missing	(NaN)	values,	and	any	new	element	needed	for

successful	DataFrame	alignment,	with	this	value	before	computation.	If	data

in	both	corresponding	DataFrame	locations	is	missing	the	result	will	be

missing

Returns: result	:	DataFrame

Notes	:	Mismatched	indices	will	be	unioned	together

Examples

>>>	a	=	pd.DataFrame([2,	1,	1,	np.nan],	index=['a',	'b',	'c',	'd'],

...																		columns=['one'])

>>>	a

			one

a		2.0

b		1.0

c		1.0

d		NaN

>>>	b	=	pd.DataFrame(dict(one=[1,	np.nan,	1,	np.nan],

...																							two=[3,	2,	np.nan,	2]),

...																		index=['a',	'b',	'd',	'e'])

>>>	b

			one		two

a		1.0		3.0

b		NaN		2.0

d		1.0		NaN

e		NaN		2.0

>>>	a.sub(b,	fill_value=0)

			one		two

a		1.0		-3.0

b		1.0		-2.0

c		1.0		NaN

d		-1.0		NaN

e		NaN		-2.0

pandas.DataFrame.mul

DataFrame.mul(other,	axis='columns',	level=None,	fill_value=None)

Multiplication	of	dataframe	and	other,	element-wise	(binary	operator	mul).

Equivalent	to	dataframe	*	other ,	but	with	support	to	substitute	a	fill_value	for	missing

data	in	one	of	the	inputs.

Parameters:

other	:	Series,	DataFrame,	or	constant

axis	:	{0,	1,	‘index’,	‘columns’}

For	Series	input,	axis	to	match	Series	index	on

level	:	int	or	name

Broadcast	across	a	level,	matching	Index	values	on	the	passed	MultiIndex

level

fill_value	:	None	or	float	value,	default	None

Fill	existing	missing	(NaN)	values,	and	any	new	element	needed	for

successful	DataFrame	alignment,	with	this	value	before	computation.	If	data

in	both	corresponding	DataFrame	locations	is	missing	the	result	will	be

missing

Returns: result	:	DataFrame

Notes	:	Mismatched	indices	will	be	unioned	together

pandas.DataFrame.div

DataFrame.div(other,	axis='columns',	level=None,	fill_value=None)

Floating	division	of	dataframe	and	other,	element-wise	(binary	operator	truediv).

Equivalent	to	dataframe	/	other ,	but	with	support	to	substitute	a	fill_value	for	missing

data	in	one	of	the	inputs.

Parameters:

other	:	Series,	DataFrame,	or	constant

axis	:	{0,	1,	‘index’,	‘columns’}

For	Series	input,	axis	to	match	Series	index	on

level	:	int	or	name

Broadcast	across	a	level,	matching	Index	values	on	the	passed	MultiIndex

level

fill_value	:	None	or	float	value,	default	None

Fill	existing	missing	(NaN)	values,	and	any	new	element	needed	for

successful	DataFrame	alignment,	with	this	value	before	computation.	If	data

in	both	corresponding	DataFrame	locations	is	missing	the	result	will	be

missing

Returns: result	:	DataFrame

Notes	:	Mismatched	indices	will	be	unioned	together

pandas.DataFrame.radd

DataFrame.radd(other,	axis='columns',	level=None,	fill_value=None)

Addition	of	dataframe	and	other,	element-wise	(binary	operator	radd).

Equivalent	to	other	+	dataframe ,	but	with	support	to	substitute	a	fill_value	for	missing

data	in	one	of	the	inputs.

Parameters:

other	:	Series,	DataFrame,	or	constant

axis	:	{0,	1,	‘index’,	‘columns’}

For	Series	input,	axis	to	match	Series	index	on

level	:	int	or	name

Broadcast	across	a	level,	matching	Index	values	on	the	passed	MultiIndex

level

fill_value	:	None	or	float	value,	default	None

Fill	existing	missing	(NaN)	values,	and	any	new	element	needed	for

successful	DataFrame	alignment,	with	this	value	before	computation.	If	data

in	both	corresponding	DataFrame	locations	is	missing	the	result	will	be

missing

Returns: result	:	DataFrame

Notes	:	Mismatched	indices	will	be	unioned	together

Examples

>>>	a	=	pd.DataFrame([1,	1,	1,	np.nan],	index=['a',	'b',	'c',	'd'],

...																		columns=['one'])

>>>	a

			one

a		1.0

b		1.0

c		1.0

d		NaN

>>>	b	=	pd.DataFrame(dict(one=[1,	np.nan,	1,	np.nan],

...																							two=[np.nan,	2,	np.nan,	2]),

...																		index=['a',	'b',	'd',	'e'])

>>>	b

			one		two

a		1.0		NaN

b		NaN		2.0

d		1.0		NaN

e		NaN		2.0

>>>	a.add(b,	fill_value=0)

			one		two

a		2.0		NaN

b		1.0		2.0

c		1.0		NaN

d		1.0		NaN

e		NaN		2.0

pandas.DataFrame.rsub

DataFrame.rsub(other,	axis='columns',	level=None,	fill_value=None)

Subtraction	of	dataframe	and	other,	element-wise	(binary	operator	rsub).

Equivalent	to	other	-	dataframe ,	but	with	support	to	substitute	a	fill_value	for	missing

data	in	one	of	the	inputs.

Parameters:

other	:	Series,	DataFrame,	or	constant

axis	:	{0,	1,	‘index’,	‘columns’}

For	Series	input,	axis	to	match	Series	index	on

level	:	int	or	name

Broadcast	across	a	level,	matching	Index	values	on	the	passed	MultiIndex

level

fill_value	:	None	or	float	value,	default	None

Fill	existing	missing	(NaN)	values,	and	any	new	element	needed	for

successful	DataFrame	alignment,	with	this	value	before	computation.	If	data

in	both	corresponding	DataFrame	locations	is	missing	the	result	will	be

missing

Returns: result	:	DataFrame

Notes	:	Mismatched	indices	will	be	unioned	together

Examples

>>>	a	=	pd.DataFrame([2,	1,	1,	np.nan],	index=['a',	'b',	'c',	'd'],

...																		columns=['one'])

>>>	a

			one

a		2.0

b		1.0

c		1.0

d		NaN

>>>	b	=	pd.DataFrame(dict(one=[1,	np.nan,	1,	np.nan],

...																							two=[3,	2,	np.nan,	2]),

...																		index=['a',	'b',	'd',	'e'])

>>>	b

			one		two

a		1.0		3.0

b		NaN		2.0

d		1.0		NaN

e		NaN		2.0

>>>	a.sub(b,	fill_value=0)

			one		two

a		1.0		-3.0

b		1.0		-2.0

c		1.0		NaN

d		-1.0		NaN

e		NaN		-2.0

Unit	2:	Data	Handling	(DH-1)

Matching	and	Broadcasting	operations

Matching	/	broadcasting	behavior

DataFrame	has	the	methods	add(),	sub(),	mul(),	div()	and	related	functions	radd(),

rsub(),	…	for	carrying	out	binary	operations.	For	broadcasting	behavior,	Series	input	is	of

primary	interest.	Using	these	functions,	you	can	use	to	either	match	on	the	index	or	columns

via	the	axis	keyword:

In	[14]:	df	=	pd.DataFrame({'one'	:	pd.Series(np.random.randn(3),

																													index=['a',	'b',	'c']),

		:	'two'	:	pd.Series(np.random.randn(4),	index=['a',	'b',	'c',	'd']),

		:	'three'	:	pd.Series(np.random.randn(3),	index=['b',	'c',	'd'])})

		:	

In	[15]:	df

Out[15]:	

								one							two					three

a	-1.101558		1.124472							NaN

b	-0.177289		2.487104	-0.634293

c		0.462215	-0.486066		1.931194

d							NaN	-0.456288	-1.222918

In	[16]:	row	=	df.iloc[1]

In	[17]:	column	=	df['two']

In	[18]:	df.sub(row,	axis='columns')

Out[18]:	

								one							two					three

a	-0.924269	-1.362632							NaN

b		0.000000		0.000000		0.000000

c		0.639504	-2.973170		2.565487

d							NaN	-2.943392	-0.588625

In	[19]:	df.sub(row,	axis=1)

Out[19]:	

								one							two					three

a	-0.924269	-1.362632							NaN

b		0.000000		0.000000		0.000000

c		0.639504	-2.973170		2.565487

d							NaN	-2.943392	-0.588625

In	[20]:	df.sub(column,	axis='index')

Out[20]:	

								one		two					three

a	-2.226031		0.0							NaN

b	-2.664393		0.0	-3.121397

c		0.948280		0.0		2.417260

d							NaN		0.0	-0.766631

In	[21]:	df.sub(column,	axis=0)

Out[21]:	

								one		two					three

a	-2.226031		0.0							NaN

b	-2.664393		0.0	-3.121397

c		0.948280		0.0		2.417260

d							NaN		0.0	-0.766631

Furthermore	you	can	align	a	level	of	a	multi-indexed	DataFrame	with	a	Series.

In	[22]:	dfmi	=	df.copy()

In	[23]:	dfmi.index	=	pd.MultiIndex.from_tuples([(1,'a'),

																																	(1,'b'),(1,'c'),(2,'a')],

		:																names=['first','second'])

		:	

In	[24]:	dfmi.sub(column,	axis=0,	level='second')

Out[24]:	

																			one						two					three

first	second																													

1					a						-2.226031		0.00000							NaN

						b						-2.664393		0.00000	-3.121397

						c							0.948280		0.00000		2.417260

2					a												NaN	-1.58076	-2.347391

With	Panel,	describing	the	matching	behavior	is	a	bit	more	difficult,	so	the	arithmetic

methods	instead	(and	perhaps	confusingly?)	give	you	the	option	to	specify	the	broadcast	axis.

For	example,	suppose	we	wished	to	demean	the	data	over	a	particular	axis.	This	can	be

accomplished	by	taking	the	mean	over	an	axis	and	broadcasting	over	the	same	axis:

In	[25]:	major_mean	=	wp.mean(axis='major')

In	[26]:	major_mean

Out[26]:	

						Item1					Item2

A	-0.878036	-0.092218

B	-0.060128		0.529811

C		0.099453	-0.715139

D		0.248599	-0.186535

In	[27]:	wp.sub(major_mean,	axis='major')

Out[27]:	

<class	'pandas.core.panel.Panel'>

Dimensions:	2	(items)	x	5	(major_axis)	x	4	(minor_axis)

Items	axis:	Item1	to	Item2

Major_axis	axis:	2000-01-01	00:00:00	to	2000-01-05	00:00:00

Minor_axis	axis:	A	to	D

And	similarly	for	axis="items"	and	axis="minor".

Note

I	could	be	convinced	to	make	the	axis	argument	in	the	DataFrame	methods	match	the

broadcasting	behavior	of	Panel.	Though	it	would	require	a	transition	period	so	users	can

change	their	code…

Series	and	Index	also	support	the	divmod()	builtin.	This	function	takes	the	floor	division

and	modulo	operation	at	the	same	time	returning	a	two-tuple	of	the	same	type	as	the	left

hand	side.	For	example:

In	[28]:	s	=	pd.Series(np.arange(10))

In	[29]:	s

Out[29]:	

0				0

1				1

2				2

3				3

4				4

5				5

6				6

7				7

8				8

9				9

dtype:	int64

In	[30]:	div,	rem	=	divmod(s,	3)

In	[31]:	div

Out[31]:	

0				0

1				0

2				0

3				1

4				1

5				1

6				2

7				2

8				2

9				3

dtype:	int64

In	[32]:	rem

Out[32]:	

0				0

1				1

2				2

3				0

4				1

5				2

6				0

7				1

8				2

9				0

dtype:	int64

In	[33]:	idx	=	pd.Index(np.arange(10))

In	[34]:	idx

Out[34]:	Int64Index([0,	1,	2,	3,	4,	5,	6,	7,	8,	9],	dtype='int64')

In	[35]:	div,	rem	=	divmod(idx,	3)

In	[36]:	div

Out[36]:	Int64Index([0,	0,	0,	1,	1,	1,	2,	2,	2,	3],	dtype='int64')

In	[37]:	rem

Out[37]:	Int64Index([0,	1,	2,	0,	1,	2,	0,	1,	2,	0],	dtype='int64')

We	can	also	do	elementwise	divmod():

In	[38]:	div,	rem	=	divmod(s,	[2,	2,	3,	3,	4,	4,	5,	5,	6,	6])

In	[39]:	div

Out[39]:	

0				0

1				0

2				0

3				1

4				1

5				1

6				1

7				1

8				1

9				1

dtype:	int64

In	[40]:	rem

Out[40]:	

0				0

1				1

2				2

3				0

4				0

5				1

6				1

7				2

8				2

9				3

dtype:	int64

Broadcasting

The	term	broadcasting	describes	how	numpy	treats	arrays	with	different	shapes	during

arithmetic	operations.	Subject	to	certain	constraints,	the	smaller	array	is	“broadcast”	across

the	larger	array	so	that	they	have	compatible	shapes.	Broadcasting	provides	a	means	of

vectorizing	array	operations	so	that	looping	occurs	in	C	instead	of	Python.	It	does	this

without	making	needless	copies	of	data	and	usually	leads	to	efficient	algorithm

implementations.	There	are,	however,	cases	where	broadcasting	is	a	bad	idea	because	it

leads	to	inefficient	use	of	memory	that	slows	computation.

NumPy	operations	are	usually	done	on	pairs	of	arrays	on	an	element-by-element	basis.	In

the	simplest	case,	the	two	arrays	must	have	exactly	the	same	shape,	as	in	the	following

example:

>>>	a	=	np.array([1.0,	2.0,	3.0])

>>>	b	=	np.array([2.0,	2.0,	2.0])

>>>	a	*	b

array([2.,		4.,		6.])

NumPy’s	broadcasting	rule	relaxes	this	constraint	when	the	arrays’	shapes	meet	certain

constraints.	The	simplest	broadcasting	example	occurs	when	an	array	and	a	scalar	value	are

combined	in	an	operation:

>>>	a	=	np.array([1.0,	2.0,	3.0])

>>>	b	=	2.0

>>>	a	*	b

array([2.,		4.,		6.])

The	result	is	equivalent	to	the	previous	example	where	b	was	an	array.	We	can	think	of	the

scalar	b	being	stretched	during	the	arithmetic	operation	into	an	array	with	the	same	shape	as

a.	The	new	elements	in	b	are	simply	copies	of	the	original	scalar.	The	stretching	analogy	is

only	conceptual.	NumPy	is	smart	enough	to	use	the	original	scalar	value	without	actually

making	copies,	so	that	broadcasting	operations	are	as	memory	and	computationally	efficient

as	possible.

The	code	in	the	second	example	is	more	efficient	than	that	in	the	first	because	broadcasting

moves	less	memory	around	during	the	multiplication	(b	is	a	scalar	rather	than	an	array).

General	Broadcasting	Rules

When	operating	on	two	arrays,	NumPy	compares	their	shapes	element-wise.	It	starts	with

the	trailing	dimensions,	and	works	its	way	forward.	Two	dimensions	are	compatible	when

1.	 they	are	equal,	or

2.	 one	of	them	is	1

If	these	conditions	are	not	met,	a	ValueError:	frames	are	not	aligned 	exception	is

thrown,	indicating	that	the	arrays	have	incompatible	shapes.	The	size	of	the	resulting	array

is	the	maximum	size	along	each	dimension	of	the	input	arrays.

Arrays	do	not	need	to	have	the	same	number	of	dimensions.	For	example,	if	you	have	a

256x256x3	array	of	RGB	values,	and	you	want	to	scale	each	color	in	the	image	by	a	different

value,	you	can	multiply	the	image	by	a	one-dimensional	array	with	3	values.	Lining	up	the

sizes	of	the	trailing	axes	of	these	arrays	according	to	the	broadcast	rules,	shows	that	they	are

compatible:

Image		(3d	array):	256	x	256	x	3

Scale		(1d	array):													3

Result	(3d	array):	256	x	256	x	3

When	either	of	the	dimensions	compared	is	one,	the	other	is	used.	In	other	words,

dimensions	with	size	1	are	stretched	or	“copied”	to	match	the	other.

In	the	following	example,	both	the	A	and	B	arrays	have	axes	with	length	one	that	are

expanded	to	a	larger	size	during	the	broadcast	operation:

A						(4d	array):		8	x	1	x	6	x	1

B						(3d	array):						7	x	1	x	5

Result	(4d	array):		8	x	7	x	6	x	5

Here	are	some	more	examples:

A						(2d	array):		5	x	4

B						(1d	array):						1

Result	(2d	array):		5	x	4

A						(2d	array):		5	x	4

B						(1d	array):						4

Result	(2d	array):		5	x	4

A						(3d	array):		15	x	3	x	5

B						(3d	array):		15	x	1	x	5

Result	(3d	array):		15	x	3	x	5

A						(3d	array):		15	x	3	x	5

B						(2d	array):							3	x	5

Result	(3d	array):		15	x	3	x	5

A						(3d	array):		15	x	3	x	5

B						(2d	array):							3	x	1

Result	(3d	array):		15	x	3	x	5

Here	are	examples	of	shapes	that	do	not	broadcast:

A						(1d	array):		3

B						(1d	array):		4	#	trailing	dimensions	do	not	match

A						(2d	array):						2	x	1

B						(3d	array):		8	x	4	x	3	#	second	from	last	dimensions	mismatched

An	example	of	broadcasting	in	practice:

>>>	x	=	np.arange(4)

>>>	xx	=	x.reshape(4,1)

>>>	y	=	np.ones(5)

>>>	z	=	np.ones((3,4))

>>>	x.shape

(4,)

>>>	y.shape

(5,)

>>>	x	+	y

<type	'exceptions.ValueError'>:	shape	mismatch:	objects	cannot

																											be	broadcast	to	a	single	shape

>>>	xx.shape

(4,	1)

>>>	y.shape

(5,)

>>>	(xx	+	y).shape

(4,	5)

>>>	xx	+	y

array([[1.,		1.,		1.,		1.,		1.],

							[2.,		2.,		2.,		2.,		2.],

							[3.,		3.,		3.,		3.,		3.],

							[4.,		4.,		4.,		4.,		4.]])

>>>	x.shape

(4,)

>>>	z.shape

(3,	4)

>>>	(x	+	z).shape

(3,	4)

>>>	x	+	z

array([[1.,		2.,		3.,		4.],

							[1.,		2.,		3.,		4.],

							[1.,		2.,		3.,		4.]])

Broadcasting	provides	a	convenient	way	of	taking	the	outer	product	(or	any	other	outer

operation)	of	two	arrays.	The	following	example	shows	an	outer	addition	operation	of	two	1-

d	arrays:

>>>	a	=	np.array([0.0,	10.0,	20.0,	30.0])

>>>	b	=	np.array([1.0,	2.0,	3.0])

>>>	a[:,	np.newaxis]	+	b

array([[1.,			2.,			3.],

							[11.,		12.,		13.],

							[21.,		22.,		23.],

							[31.,		32.,		33.]])

Here	the	newaxis	index	operator	inserts	a	new	axis	into	a,	making	it	a	two-dimensional	4x1

array.	Combining	the	4x1	array	with	b,	which	has	shape	(3,),	yields	a	4x3	array.

Unit	2:	Data	Handling	(DH-1)

Missing	data	and	filling	values

Missing	data	is	always	a	problem	in	real	life	scenarios.	Areas	like	machine	learning	and	data

mining	face	severe	issues	in	the	accuracy	of	their	model	predictions	because	of	poor	quality

of	data	caused	by	missing	values.	In	these	areas,	missing	value	treatment	is	a	major	point	of

focus	to	make	their	models	more	accurate	and	valid.

When	and	Why	Is	Data	Missed?

Let	us	consider	an	online	survey	for	a	product.	Many	a	times,	people	do	not	share	all	the

information	related	to	them.	Few	people	share	their	experience,	but	not	how	long	they	are

using	the	product;	few	people	share	how	long	they	are	using	the	product,	their	experience

but	not	their	contact	information.	Thus,	in	some	or	the	other	way	a	part	of	data	is	always

missing,	and	this	is	very	common	in	real	time.

Let	us	now	see	how	we	can	handle	missing	values	(say	NA	or	NaN)	using	Pandas.

#	import	the	pandas	library

import	pandas	as	pd

import	numpy	as	np

df	=	pd.DataFrame(np.random.randn(5,	3),	index=['a',	'c',	'e',	'f',

'h'],columns=['one',	'two',	'three'])

df	=	df.reindex(['a',	'b',	'c',	'd',	'e',	'f',	'g',	'h'])

print	df

Its	output	is	as	follows	−

									one								two						three

a			0.077988			0.476149			0.965836

b								NaN								NaN								NaN

c		-0.390208		-0.551605		-2.301950

d								NaN								NaN								NaN

e		-2.000303		-0.788201			1.510072

f		-0.930230		-0.670473			1.146615

g								NaN								NaN								NaN

h			0.085100			0.532791			0.887415

Using	reindexing,	we	have	created	a	DataFrame	with	missing	values.	In	the	output,	NaN

means	Not	a	Number.

Check	for	Missing	Values

To	make	detecting	missing	values	easier	(and	across	different	array	dtypes),	Pandas	provides

the	isnull()	and	notnull()	functions,	which	are	also	methods	on	Series	and	DataFrame

objects	−

Example	1

import	pandas	as	pd

import	numpy	as	np

	

df	=	pd.DataFrame(np.random.randn(5,	3),	index=['a',	'c',	'e',	'f',

'h'],columns=['one',	'two',	'three'])

df	=	df.reindex(['a',	'b',	'c',	'd',	'e',	'f',	'g',	'h'])

print	df['one'].isnull()

Its	output	is	as	follows	−

a		False

b		True

c		False

d		True

e		False

f		False

g		True

h		False

Name:	one,	dtype:	bool

Example	2

import	pandas	as	pd

import	numpy	as	np

df	=	pd.DataFrame(np.random.randn(5,	3),	index=['a',	'c',	'e',	'f',

'h'],columns=['one',	'two',	'three'])

df	=	df.reindex(['a',	'b',	'c',	'd',	'e',	'f',	'g',	'h'])

print	df['one'].notnull()

Its	output	is	as	follows	−

a		True

b		False

c		True

d		False

e		True

f		True

g		False

h		True

Name:	one,	dtype:	bool

Calculations	with	Missing	Data

When	summing	data,	NA	will	be	treated	as	Zero

If	the	data	are	all	NA,	then	the	result	will	be	NA

Example	1

import	pandas	as	pd

import	numpy	as	np

df	=	pd.DataFrame(np.random.randn(5,	3),	index=['a',	'c',	'e',	'f',

'h'],columns=['one',	'two',	'three'])

df	=	df.reindex(['a',	'b',	'c',	'd',	'e',	'f',	'g',	'h'])

print	df['one'].sum()

Its	output	is	as	follows	−

2.02357685917

Example	2

import	pandas	as	pd

import	numpy	as	np

df	=	pd.DataFrame(index=[0,1,2,3,4,5],columns=['one','two'])

print	df['one'].sum()

Its	output	is	as	follows	−

nan

Cleaning	/	Filling	Missing	Data

Pandas	provides	various	methods	for	cleaning	the	missing	values.	The	fillna	function	can

“fill	in”	NA	values	with	non-null	data	in	a	couple	of	ways,	which	we	have	illustrated	in	the

following	sections.

Replace	NaN	with	a	Scalar	Value

The	following	program	shows	how	you	can	replace	"NaN"	with	"0".

import	pandas	as	pd

import	numpy	as	np

df	=	pd.DataFrame(np.random.randn(3,	3),	index=['a',	'c',	'e'],

columns=['one',	'two',	'three'])

df	=	df.reindex(['a',	'b',	'c'])

print	df

print	("NaN	replaced	with	'0':")

print	df.fillna(0)

Its	output	is	as	follows	−

									one								two					three

a		-0.576991		-0.741695		0.553172

b								NaN								NaN							NaN

c			0.744328		-1.735166		1.749580

NaN	replaced	with	'0':

									one								two					three

a		-0.576991		-0.741695		0.553172

b			0.000000			0.000000		0.000000

c			0.744328		-1.735166		1.749580

Here,	we	are	filling	with	value	zero;	instead	we	can	also	fill	with	any	other	value.

Fill	NA	Forward	and	Backward

Using	the	concepts	of	filling	discussed	in	the	ReIndexing	Chapter	we	will	fill	the	missing

values.

Method Action

pad/fill Fill	methods	Forward

bfill/backfill Fill	methods	Backward

Example	1

import	pandas	as	pd

import	numpy	as	np

df	=	pd.DataFrame(np.random.randn(5,	3),	index=['a',	'c',	'e',	'f',

'h'],columns=['one',	'two',	'three'])

df	=	df.reindex(['a',	'b',	'c',	'd',	'e',	'f',	'g',	'h'])

print	df.fillna(method='pad')

Its	output	is	as	follows	−

									one								two						three

a			0.077988			0.476149			0.965836

b			0.077988			0.476149			0.965836

c		-0.390208		-0.551605		-2.301950

d		-0.390208		-0.551605		-2.301950

e		-2.000303		-0.788201			1.510072

f		-0.930230		-0.670473			1.146615

g		-0.930230		-0.670473			1.146615

h			0.085100			0.532791			0.887415

Example	2

import	pandas	as	pd

import	numpy	as	np

df	=	pd.DataFrame(np.random.randn(5,	3),	index=['a',	'c',	'e',	'f',

'h'],columns=['one',	'two',	'three'])

df	=	df.reindex(['a',	'b',	'c',	'd',	'e',	'f',	'g',	'h'])

print	df.fillna(method='backfill')

Its	output	is	as	follows	−

									one								two						three

a			0.077988			0.476149			0.965836

b		-0.390208		-0.551605		-2.301950

c		-0.390208		-0.551605		-2.301950

d		-2.000303		-0.788201			1.510072

e		-2.000303		-0.788201			1.510072

f		-0.930230		-0.670473			1.146615

g			0.085100			0.532791			0.887415

h			0.085100			0.532791			0.887415

Drop	Missing	Values

If	you	want	to	simply	exclude	the	missing	values,	then	use	the	dropnafunction	along	with

the	axis	argument.	By	default,	axis=0,	i.e.,	along	row,	which	means	that	if	any	value	within	a

row	is	NA	then	the	whole	row	is	excluded.

Example	1

import	pandas	as	pd

import	numpy	as	np

df	=	pd.DataFrame(np.random.randn(5,	3),	index=['a',	'c',	'e',	'f',

'h'],columns=['one',	'two',	'three'])

df	=	df.reindex(['a',	'b',	'c',	'd',	'e',	'f',	'g',	'h'])

print	df.dropna()

Its	output	is	as	follows	−

									one								two						three

a			0.077988			0.476149			0.965836

c		-0.390208		-0.551605		-2.301950

e		-2.000303		-0.788201			1.510072

f		-0.930230		-0.670473			1.146615

h			0.085100			0.532791			0.887415

Example	2

import	pandas	as	pd

import	numpy	as	np

df	=	pd.DataFrame(np.random.randn(5,	3),	index=['a',	'c',	'e',	'f',

'h'],columns=['one',	'two',	'three'])

df	=	df.reindex(['a',	'b',	'c',	'd',	'e',	'f',	'g',	'h'])

print	df.dropna(axis=1)

Its	output	is	as	follows	−

Empty	DataFrame

Columns:	[]

Index:	[a,	b,	c,	d,	e,	f,	g,	h]

Replace	Missing	(or)	Generic	Values

Many	times,	we	have	to	replace	a	generic	value	with	some	specific	value.	We	can	achieve

this	by	applying	the	replace	method.

Replacing	NA	with	a	scalar	value	is	equivalent	behavior	of	the	fillna()function.

Example	1

import	pandas	as	pd

import	numpy	as	np

df	=	pd.DataFrame({'one':[10,20,30,40,50,2000],

'two':[1000,0,30,40,50,60]})

print	df.replace({1000:10,2000:60})

Its	output	is	as	follows	−

			one		two

0			10			10

1			20				0

2			30			30

3			40			40

4			50			50

5			60			60

Example	2

import	pandas	as	pd

import	numpy	as	np

df	=	pd.DataFrame({'one':[10,20,30,40,50,2000],

'two':[1000,0,30,40,50,60]})

print	df.replace({1000:10,2000:60})

Its	output	is	as	follows	−

			one		two

0			10			10

1			20				0

2			30			30

3			40			40

4			50			50

5			60			60

Unit	2:	Data	Handling	(DH-1)

Comparisons	and	Boolean	Reductions

Flexible	Comparisons

Series	and	DataFrame	have	the	binary	comparison	methods	eq,	ne,	lt,	gt,	le,	and	ge	whose

behavior	is	analogous	to	the	binary	arithmetic	operations	described	above:

In	[45]:	df.gt(df2)

Out[45]:	

			one		two	three

a	False	False	False

b	False	False	False

c	False	False	False

d	False	False	False

In	[46]:	df2.ne(df)

Out[46]:	

			one		two	three

a	False	False		True

b	False	False	False

c	False	False	False

d		True	False	False

These	operations	produce	a	pandas	object	of	the	same	type	as	the	left-hand-side	input	that	is

of	dtype	bool.	These	boolean	objects	can	be	used	in	indexing	operations.

Boolean	Reductions

You	can	apply	the	reductions:	empty,	any(),	all(),	and	bool()	to	provide	a	way	to

summarize	a	boolean	result.

In	[47]:	(df	>	0).all()

Out[47]:	

one			False

two			False

three		False

dtype:	bool

In	[48]:	(df	>	0).any()

Out[48]:	

one			True

two			True

three		True

dtype:	bool

You	can	reduce	to	a	final	boolean	value.

In	[49]:	(df	>	0).any().any()

Out[49]:	True

You	can	test	if	a	pandas	object	is	empty,	via	the	empty	property.

In	[50]:	df.empty

Out[50]:	False

In	[51]:	pd.DataFrame(columns=list('ABC')).empty

Out[51]:	True

To	evaluate	single-element	pandas	objects	in	a	boolean	context,	use	the	method	bool():

In	[52]:	pd.Series([True]).bool()

Out[52]:	True

In	[53]:	pd.Series([False]).bool()

Out[53]:	False

In	[54]:	pd.DataFrame([[True]]).bool()

Out[54]:	True

In	[55]:	pd.DataFrame([[False]]).bool()

Out[55]:	False

Warning

You	might	be	tempted	to	do	the	following:

>>>	if	df:

			...

Or

>>>	df	and	df2

These	will	both	raise	errors,	as	you	are	trying	to	compare	multiple	values.

ValueError:	The	truth	value	of	an	array	is	ambiguous.

Use	a.empty,	a.any()	or	a.all().

See	gotchas	for	a	more	detailed	discussion.

Comparing	if	objects	are	equivalent

Often	you	may	find	that	there	is	more	than	one	way	to	compute	the	same	result.	As	a	simple

example,	consider	df+df	and	df*2.	To	test	that	these	two	computations	produce	the	same

result,	given	the	tools	shown	above,	you	might	imagine	using	(df+df	==	df*2).all() .	But

in	fact,	this	expression	is	False:

In	[56]:	df+df	==	df*2

Out[56]:	

			one		two	three

a		True	True	False

b		True	True		True

c		True	True		True

d	False	True		True

In	[57]:	(df+df	==	df*2).all()

Out[57]:	

one			False

two				True

three		False

dtype:	bool

Notice	that	the	boolean	DataFrame	df+df	==	df*2	contains	some	False	values!	This	is

because	NaNs	do	not	compare	as	equals:

In	[58]:	np.nan	==	np.nan

Out[58]:	False

So,	NDFrames	(such	as	Series,	DataFrames,	and	Panels)	have	an	equals()	method	for	testing

equality,	with	NaNs	in	corresponding	locations	treated	as	equal.

In	[59]:	(df+df).equals(df*2)

Out[59]:	True

Note	that	the	Series	or	DataFrame	index	needs	to	be	in	the	same	order	for	equality	to	be

True:

In	[60]:	df1	=	pd.DataFrame({'col':['foo',	0,	np.nan]})

In	[61]:	df2	=	pd.DataFrame({'col':[np.nan,	0,	'foo']},	index=[2,1,0])

In	[62]:	df1.equals(df2)

Out[62]:	False

In	[63]:	df1.equals(df2.sort_index())

Out[63]:	True

Comparing	array-like	objects

You	can	conveniently	perform	element-wise	comparisons	when	comparing	a	pandas	data

structure	with	a	scalar	value:

In	[64]:	pd.Series(['foo',	'bar',	'baz'])	==	'foo'

Out[64]:	

0			True

1		False

2		False

dtype:	bool

In	[65]:	pd.Index(['foo',	'bar',	'baz'])	==	'foo'

Out[65]:	array([True,	False,	False],	dtype=bool)

Pandas	also	handles	element-wise	comparisons	between	different	array-like	objects	of	the

same	length:

In	[66]:pd.Series(['foo',	'bar',	'baz'])	==	pd.Index(['foo',	'bar',	'qux'])

Out[66]:	

0			True

1			True

2		False

dtype:	bool

In	[67]:pd.Series(['foo',	'bar',	'baz'])	==	np.array(['foo',	'bar',	'qux'])

Out[67]:	

0			True

1			True

2		False

dtype:	bool

Trying	to	compare	Index	or	Series	objects	of	different	lengths	will	raise	a	ValueError:

In	[55]:	pd.Series(['foo',	'bar',	'baz'])	==	pd.Series(['foo',	'bar'])

ValueError:	Series	lengths	must	match	to	compare

In	[56]:	pd.Series(['foo',	'bar',	'baz'])	==	pd.Series(['foo'])

ValueError:	Series	lengths	must	match	to	compare

Note	that	this	is	different	from	the	NumPy	behavior	where	a	comparison	can	be	broadcast:

In	[68]:	np.array([1,	2,	3])	==	np.array([2])

Out[68]:	array([False,	True,	False],	dtype=bool)

or	it	can	return	False	if	broadcasting	can	not	be	done:

In	[69]:	np.array([1,	2,	3])	==	np.array([1,	2])

Out[69]:	False

Combining	overlapping	data	sets

A	problem	occasionally	arising	is	the	combination	of	two	similar	data	sets	where	values	in

one	are	preferred	over	the	other.	An	example	would	be	two	data	series	representing	a

particular	economic	indicator	where	one	is	considered	to	be	of	“higher	quality”.	However,

the	lower	quality	series	might	extend	further	back	in	history	or	have	more	complete	data

coverage.	As	such,	we	would	like	to	combine	two	DataFrame	objects	where	missing	values	in

one	DataFrame	are	conditionally	filled	with	like-labeled	values	from	the	other	DataFrame.

The	function	implementing	this	operation	is	combine_first(),	which	we	illustrate:

In	[70]:	df1	=	pd.DataFrame({'A'	:	[1.,	np.nan,	3.,	5.,	np.nan],

	:											'B'	:	[np.nan,	2.,	3.,	np.nan,	6.]})

	:	

In	[71]:	df2	=	pd.DataFrame({'A'	:	[5.,	2.,	4.,	np.nan,	3.,	7.],

	:											'B'	:	[np.nan,	np.nan,	3.,	4.,	6.,	8.]})

	:	

In	[72]:	df1

Out[72]:	

			A		B

0	1.0	NaN

1	NaN	2.0

2	3.0	3.0

3	5.0	NaN

4	NaN	6.0

In	[73]:	df2

Out[73]:	

			A		B

0	5.0	NaN

1	2.0	NaN

2	4.0	3.0

3	NaN	4.0

4	3.0	6.0

5	7.0	8.0

In	[74]:	df1.combine_first(df2)

Out[74]:	

			A		B

0	1.0	NaN

1	2.0	2.0

2	3.0	3.0

3	5.0	4.0

4	3.0	6.0

5	7.0	8.0

General	DataFrame	Combine

The	combine_first()	method	above	calls	the	more	general	DataFrame.combine() .	This

method	takes	another	DataFrame	and	a	combiner	function,	aligns	the	input	DataFrame	and

then	passes	the	combiner	function	pairs	of	Series	(i.e.,	columns	whose	names	are	the	same).

So,	for	instance,	to	reproduce	combine_first()	as	above:

In	[75]:	combiner	=	lambda	x,	y:	np.where(pd.isna(x),	y,	x)

In	[76]:	df1.combine(df2,	combiner)

Out[76]:	

			A		B

0	1.0	NaN

1	2.0	2.0

2	3.0	3.0

3	5.0	4.0

4	3.0	6.0

5	7.0	8.0

Unit	2:	Data	Handling	(DH-1)

Transfer	data	CSV	SQL	DataFrame

A	DataFrame	is	a	table	much	like	in	SQL	or	Excel.	It’s	similar	in	structure,	too,	making	it

possible	to	use	similar	operations	such	as	aggregation,	filtering,	and	pivoting.	However,

because	DataFrames	are	built	in	Python,	it’s	possible	to	use	Python	to	program	more

advanced	operations	and	manipulations	than	SQL	and	Excel	can	offer.	As	a	bonus,	the

creators	of	pandas	have	focused	on	making	the	DataFrame	operate	very	quickly,	even	over

large	datasets.

DataFrames	are	particularly	useful	because	powerful	methods	are	built	into	them.	In	Python,

methods	are	associated	with	objects,	so	you	need	your	data	to	be	in	the	DataFrame	to	use

these	methods.	DataFrames	can	load	data	through	a	number	of	different	data	structures

and	files,	including	lists	and	dictionaries,	csv	files,	excel	files,	and	database	records.

The	Pandas	library	documentation	defines	a	DataFrame	as	a	“two-dimensional,	size-mutable,

potentially	heterogeneous	tabular	data	structure	with	labeled	axes	(rows	and	columns)”.	In

plain	terms,	think	of	a	DataFrame	as	a	table	of	data,	i.e.	a	single	set	of	formatted	two-

dimensional	data,	with	the	following	characteristics:

There	can	be	multiple	rows	and	columns	in	the	data.

Each	row	represents	a	sample	of	data,

Each	column	contains	a	different	variable	that	describes	the	samples	(rows).

The	data	in	every	column	is	usually	the	same	type	of	data	–	e.g.	numbers,	strings,

dates.

Usually,	unlike	an	excel	data	set,	DataFrames	avoid	having	missing	values,	and	there

are	no	gaps	and	empty	values	between	rows	or	columns.

By	way	of	example,	the	following	data	sets	that	would	fit	well	in	a	Pandas	DataFrame:

In	a	school	system	DataFrame	–	each	row	could	represent	a	single	student	in	the

school,	and	columns	may	represent	the	students	name	(string),	age	(number),	date	of

birth	(date),	and	address	(string).

In	an	economics	DataFrame,	each	row	may	represent	a	single	city	or	geographical

area,	and	columns	might	include	the	the	name	of	area	(string),	the	population

(number),	the	average	age	of	the	population	(number),	the	number	of	households

(number),	the	number	of	schools	in	each	area	(number)	etc.

In	a	shop	or	e-commerce	system	DataFrame,	each	row	in	a	DataFrame	may	be	used

to	represent	a	customer,	where	there	are	columns	for	the	number	of	items	purchased

(number),	the	date	of	original	registration	(date),	and	the	credit	card	number	(string).

pandas.DataFrame.to_sql

DataFrame.to_sql(name,	con,	schema=None,	if_exists='fail',	index=True,	index_label=None,

chunksize=None,	dtype=None)

Write	records	stored	in	a	DataFrame	to	a	SQL	database.

Databases	supported	by	SQLAlchemy	are	supported.	Tables	can	be	newly	created,	appended

to,	or	overwritten.

Parameters:

name	:	string

Name	of	SQL	table.

con	:	sqlalchemy.engine.Engine	or	sqlite3.Connection

Using	SQLAlchemy	makes	it	possible	to	use	any	DB	supported	by	that

library.	Legacy	support	is	provided	for	sqlite3.Connection	objects.

schema	:	string,	optional

Specify	the	schema	(if	database	flavor	supports	this).	If	None,	use	default

schema.

if_exists	:	{‘fail’,	‘replace’,	‘append’},	default	‘fail’

How	to	behave	if	the	table	already	exists.

fail:	Raise	a	ValueError.

replace:	Drop	the	table	before	inserting	new	values.

append:	Insert	new	values	to	the	existing	table.

index	:	boolean,	default	True

Write	DataFrame	index	as	a	column.	Uses	index_label	as	the	column	name	in

the	table.

index_label	:	string	or	sequence,	default	None

Column	label	for	index	column(s).	If	None	is	given	(default)	and	index	is

True,	then	the	index	names	are	used.	A	sequence	should	be	given	if	the

DataFrame	uses	MultiIndex.

chunksize	:	int,	optional

Rows	will	be	written	in	batches	of	this	size	at	a	time.	By	default,	all	rows	will

be	written	at	once.

dtype	:	dict,	optional

Specifying	the	datatype	for	columns.	The	keys	should	be	the	column	names

and	the	values	should	be	the	SQLAlchemy	types	or	strings	for	the	sqlite3

legacy	mode.

Raises:
ValueError

When	the	table	already	exists	and	if_exists	is	‘fail’	(the	default).

Examples

Create	an	in-memory	SQLite	database.

>>>	from	sqlalchemy	import	create_engine

>>>	engine	=	create_engine('sqlite://',	echo=False)

Create	a	table	from	scratch	with	3	rows.

>>>	df	=	pd.DataFrame({'name'	:	['User	1',	'User	2',	'User	3']})

>>>	df

					name

0		User	1

1		User	2

2		User	3

>>>	df.to_sql('users',	con=engine)

>>>	engine.execute("SELECT	*	FROM	users").fetchall()

[(0,	'User	1'),	(1,	'User	2'),	(2,	'User	3')]

>>>	df1	=	pd.DataFrame({'name'	:	['User	4',	'User	5']})

>>>	df1.to_sql('users',	con=engine,	if_exists='append')

>>>	engine.execute("SELECT	*	FROM	users").fetchall()

[(0,	'User	1'),	(1,	'User	2'),	(2,	'User	3'),

	(0,	'User	4'),	(1,	'User	5')]

Overwrite	the	table	with	just	df1.

>>>	df1.to_sql('users',	con=engine,	if_exists='replace',

...												index_label='id')

>>>	engine.execute("SELECT	*	FROM	users").fetchall()

[(0,	'User	4'),	(1,	'User	5')]

Specify	the	dtype	(especially	useful	for	integers	with	missing	values).	Notice	that	while

pandas	is	forced	to	store	the	data	as	floating	point,	the	database	supports	nullable	integers.

When	fetching	the	data	with	Python,	we	get	back	integer	scalars.

>>>	df	=	pd.DataFrame({"A":	[1,	None,	2]})

>>>	df

					A

0		1.0

1		NaN

2		2.0

>>>	from	sqlalchemy.types	import	Integer

>>>	df.to_sql('integers',	con=engine,	index=False,

...											dtype={"A":	Integer()})

>>>	engine.execute("SELECT	*	FROM	integers").fetchall()

[(1,),	(None,),	(2,)]

Moving	data	to	SQL,	CSV,	Pandas	etc.

CSV

This	uses	the	standard	library	csv	module:

"""Export	to	CSV."""

import	sys

import	csv

from	dbfread	import	DBF

table	=	DBF('files/people.dbf')

writer	=	csv.writer(sys.stdout)

writer.writerow(table.field_names)

for	record	in	table:

				writer.writerow(list(record.values()))

The	output	is:

NAME,BIRTHDATE

Alice,1987-03-01

Bob,1980-11-12

Pandas	Data	Frames

"""

Load	content	of	a	DBF	file	into	a	Pandas	data	frame.

The	iter()	is	required	because	Pandas	doesn't	detect	that	the	DBF

object	is	iterable.

"""

from	dbfread	import	DBF

from	pandas	import	DataFrame

dbf	=	DBF('files/people.dbf')

frame	=	DataFrame(iter(dbf))

print(frame)

This	will	print:

				BIRTHDATE			NAME

0		1987-03-01		Alice

1		1980-11-12				Bob

The	iter()	is	required.	Without	it	Pandas	will	not	realize	that	it	can	iterate	over	the	table.

Pandas	will	create	a	new	list	internally	before	converting	the	records	to	data	frames.	This

means	they	will	all	be	loaded	into	memory.	There	seems	to	be	no	way	around	this	at	the

moment.

dataset	(SQL)

The	dataset	package	makes	it	easy	to	move	data	to	a	modern	database.	Here’s	how	you	can

insert	the	people	table	into	an	SQLite	database:

"""

Convert	a	DBF	file	to	an	SQLite	table.

Requires	dataset:	https://dataset.readthedocs.io/

"""

import	dataset

from	dbfread	import	DBF

#	Change	to	"dataset.connect('people.sqlite')"	if	you	want	a	file.

db	=	dataset.connect('sqlite:///:memory:')

table	=	db['people']

for	record	in	DBF('files/people.dbf',	lowernames=True):

				table.insert(record)

#	Select	and	print	a	record	just	to	show	that	it	worked.

print(table.find_one(name='Alice'))

(This	also	creates	the	schema.)

dbf2sqlite

You	can	use	the	included	example	program	dbf2sqlite	to	insert	tables	into	an	SQLite

database:

dbf2sqlite	-o	example.sqlite	table1.dbf	table2.dbf

This	will	create	one	table	for	each	DBF	file.	You	can	also	omit	the	-o	example.sqlite

option	to	have	the	SQL	printed	directly	to	stdout.

If	you	get	character	encoding	errors	you	can	pass	--encoding	to	override	the	encoding,	for

example:

dbf2sqlite	--encoding=latin1	...

	1. Data Handling - 1.pdf (p.1-3)
	2. Data Handling - 2.pdf (p.4-12)
	3. Data Handling - 3.pdf (p.13-26)
	4. Data Handling - 4.pdf (p.27-34)
	5. Data Handling - 5.pdf (p.35-45)
	6. Data Handling - 6.pdf (p.46-54)
	7. Data Handling - 7.pdf (p.55-62)
	8. Data Handling - 8.pdf (p.63-69)

