Exercise 4.1

- 1. (i) All circles are (congruent, similar).
 - (ii) All squares are (similar, congruent).
 - (iii) All triangles are similar (isosceles, equilaterals):
 - (iv) Two triangles are similar, if their corresponding angles are (proportional, equal)
 - (v) Two triangles are similar, if their corresponding sides are (proportional, equal)
 - (vi) Two polygons of the same number of sides are similar, if (a) their corresponding angles are and (b) their corresponding sides are (equal, proportional).

Sol:

- (i) All circles are similar
- (ii) All squares are similar
- (iii)All equilateral triangles are similar
- (iv)Two triangles are similar, if their corresponding angles are equal
- (v) Two triangles are similar, if their corresponding sides are proportional
- (vi)Two polygons of the same number of sides are similar, if (a) their corresponding angles are equal and (b) their corresponding sides are proportional.
- 2. Write the truth value (T/F) of each of the following statements:
 - (i) Any two similar figures are congruent.
 - (ii) Any two congruent figures are similar.
 - (iii) Two polygons are similar, if their corresponding sides are proportional.
 - (iv) Two polygons are similar if their corresponding angles are proportional.
 - (v) Two triangles are similar if their corresponding sides are proportional.
 - (vi) Two triangles are similar if their corresponding angles are proportional.

Sol:

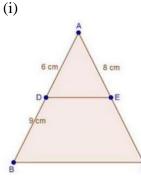
- (i) False
- (ii) True
- (iii)False
- (iv)False
- (v) True
- (vi)True

Exercise 4.2

- 1. In $\triangle ABC$, D and E are points on the sides AB and AC respectively such that DE \parallel BC
 - (i) If AD = 6 cm, DB = 9 cm and AE = 8 cm, find AC.
 - (ii) If $\frac{AD}{DB} = \frac{3}{4}$ and AC = 15 cm, find AE
 - (iii) If $\frac{AD}{DB} = \frac{2}{3}$ and AC = 18 cm, find AE

- (iv) If AD = 4, AE = 8, DB = x 4, and EC = 3x 19, find x.
- (v) If AD = 8cm, AB = 12 cm and AE = 12 cm, find CE.
- (vi) If AD = 4 cm, DB = 4.5 cm and AE = 8 cm, find AC.
- (vii) If AD = 2 cm, AB = 6 cm and AC = 9 cm, find AE.
- (viii) If $\frac{AD}{BD} = \frac{4}{5}$ and EC = 2.5 cm, find AE
- (ix) If AD = x, DB = x 2, AE = x + 2 and EC = x 1, find the value of x.
- (x) If AD = 8x 7, DB = 5x 3, AE = 4x 3 and EC = (3x 1), find the value of x.
- (xi) If AD = 4x 3, AE = 8x 7, BD = 3x 1 and CE = 5x 3, find the volume of x.
- (xii) If AD = 2.5 cm, BD = 3.0 cm and AE = 3.75 cm, find the length of AC.

Sol:



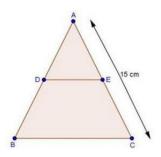
We have,

 $DE \parallel BC$

Therefore, by basic proportionally theorem,

We have
$$\frac{AD}{DB} = \frac{AE}{EC}$$

 $\Rightarrow \frac{6}{9} = \frac{8}{EC}$
 $\Rightarrow \frac{2}{3} = \frac{8}{EC}$
 $\Rightarrow EC = \frac{8 \times 3}{2}$
 $\Rightarrow EC = 12 \text{ cm}$
 $\Rightarrow \text{ Now, AC = AE + EC = 8 + 12 = 20 \text{ cm}}$
 $\therefore AC = 20 \text{ cm}$



We have, $\frac{AD}{DB} = \frac{3}{4}$ and $DE \mid \mid BC$ Therefore, by basic proportionality theorem, we have $\frac{AD}{DB} = \frac{AE}{EC}$ Adding 1 on both sides, we get $\frac{AD}{DB} + 1 = \frac{AE}{EC} + 1$ $\frac{3}{4} + 1 = \frac{AE + EC}{EC}$ $\Rightarrow \frac{3+4}{4} = \frac{AC}{EC}$ [:: AE + EC = AC] $\Rightarrow \frac{7}{4} = \frac{15}{EC}$ \Rightarrow EC = $\frac{15 \times 4}{7}$ $\Rightarrow \text{EC} = \frac{60}{7}$ Now, AE + EC = AC $\Rightarrow AE + \frac{60}{7} = 15$ $\Rightarrow AE = 15 - \frac{60}{7}$ $=\frac{105-60}{7}$ $=\frac{45}{7}$ = 6.43 cm $\therefore AE = 6.43 \text{ cm}$ (iii) 18 cm We have, $\frac{AD}{DB} = \frac{2}{3}$ and $DE \mid \mid BC$ Therefore, by basic proportionality theorem, we have, $\frac{AD}{DB} = \frac{EC}{AE}$ $\Rightarrow \frac{3}{2} = \frac{EC}{AE}$ Adding 1 on both sides, we get

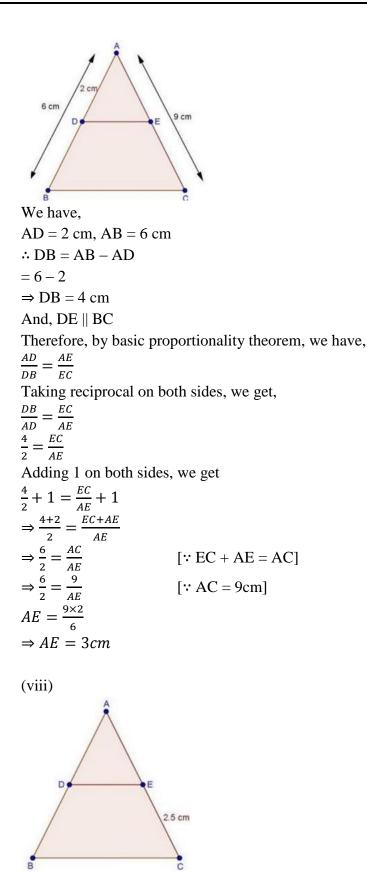
2 50	
$\frac{3}{2} + 1 = \frac{EC}{AE} + 1$	
$\Rightarrow \frac{3+2}{2} = \frac{EC + AE}{AE}$	
$\Rightarrow \frac{5}{2} = \frac{AC}{AE}$	[:: AE + EC = AC]
$\Rightarrow \frac{5}{2} = \frac{18}{AE}$	[:: AC = 18]
$\Rightarrow AE = \frac{18 \times 2}{5}$	
$\Rightarrow AE = \frac{36}{5} = 7.2 \ cm$	
(iv)	
Â	
4 cm 8 cm	
D	
(x-4) (3x)19)
	<u>\</u>
B We have,	c
DE BC	
	portionality theorem, we have,
	F,
$\frac{AD}{DB} = \frac{AE}{EC}$	
$\frac{4}{x-4} = \frac{8}{3x-19}$	
$\Rightarrow 4(3x - 19) = 8(x - 4)$)
$\Rightarrow 12x - 76 = 8x - 32$	
$\Rightarrow 12x - 8x = -32 + 76$	5
$\Rightarrow 4x = 44$	
$\Rightarrow x = \frac{44}{4} = 11cm$	
$\therefore x = 11 \text{ cm}$	
$\cdots x = 11$ cm	
(v)	
12 cm	

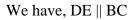
c

AD = 8cm, AB = 12 cm \therefore BD = AB - AD = 12 - 8 \Rightarrow BD = 4 cm And, DE || BC Therefore, by basic proportionality theorem, we have, $\frac{AD}{BD} = \frac{AE}{CE}$ $\Rightarrow \frac{8}{4} = \frac{12}{CE}$ $\Rightarrow CE = \frac{12 \times 4}{8} = \frac{12}{2}$ \Rightarrow CE = 6cm \therefore CE = 6cm (vi) 8 cm 4.5 cm We have, DE || BC Therefore, by basic proportionality theorem, we have, $\frac{AD}{DB} = \frac{AE}{EC}$ $\Rightarrow \frac{4}{4.5} = \frac{8}{EC}$ $\Rightarrow EC = \frac{8 \times 4.5}{4}$ \Rightarrow EC = 9cm Now, AC = AE + EC= 8 + 9= 17 cm

(vii)

 \therefore AC = 17 cm

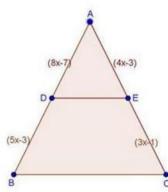




Therefore, by basic proportionality theorem,

We have, $\frac{AD}{BD} = \frac{AE}{EC}$ $\Rightarrow \frac{4}{5} = \frac{AE}{2.5}$ $\Rightarrow AE = \frac{4 \times 2.5}{5}$ $\Rightarrow AE = 2cm$

(ix)



We have, DE || BC Therefore, by basic proportionality theorem,

We have,

$$\frac{AD}{DB} = \frac{AE}{EC}$$

$$\Rightarrow \frac{x}{x-2} = \frac{x+2}{x-1}$$

$$\Rightarrow x(x-1) = (x+2)(x-2)$$

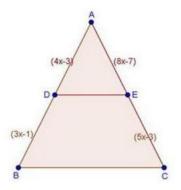
$$\Rightarrow x^2 - x = x^2 - (2)^2$$

$$\Rightarrow -x = -4$$

$$\Rightarrow x = 4 \text{ cm}$$

$$\therefore x = 4 \text{ cm}$$

(x)



We have,

DE || BC

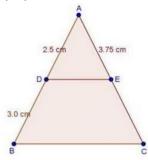
Therefore, by basic proportionality theorem, we have, $\frac{AD}{DB} = \frac{AE}{EC}$ $\Rightarrow \frac{8x-7}{5x-3} = \frac{4x-3}{3x-1}$ $\Rightarrow (8x - 7)(3x - 1) = (4x - 3)(5x - 3)$ $\Rightarrow 24x^2 - 8x - 21x + 7 = 20x^2 - 12x - 15x + 9$ $\Rightarrow 24x^2 - 20x^2 - 29x + 27x + 7 - 9 = 0$ $\Rightarrow 4x^2 - 2x - 2 = 0$ $\Rightarrow 2[2x^2 - x - 1] = 0$ $\Rightarrow 2x^2 - x - 1 = 0$ $\Rightarrow 2x^2 - 2x + 1x - 1 = 0$ $\Rightarrow 2x(x-1) + 1(x-1) = 0$ \Rightarrow (2x + 1) (x - 1) = 0 $\Rightarrow 2x + 1 = 0 \text{ or } x - 1 = 0$ \Rightarrow x = $-\frac{1}{2}$ or x = 1 $x = -\frac{1}{2}$ is not possible $\therefore x = 1$

(xi) We have, DE || BC Therefore, by basic proportionality theorem, We have, $\frac{AD}{DB} = \frac{AE}{EC}$ $\Rightarrow \frac{4x-3}{3x-1} = \frac{8x-7}{5x-3}$

 $\Rightarrow (4x - 3)(5x - 3) = (8x - 7)(3x - 1)$ $\Rightarrow 4x(5x - 3) - 3(5x - 3) = 8x(3x - 1) - 7(3x - 1)$ $\Rightarrow 20x^{2} - 12x - 15x + 9 = 24x^{2} - 8x - 21x + 7$

$$\Rightarrow 4x^2 - 2x - 2 = 0$$

 $\Rightarrow 2(2x^{2} - x - 1) = 0$ $\Rightarrow 2x^{2} - x - 1 = 0$ $\Rightarrow 2x^{2} - 2x + 1x - 1 = 0$ $\Rightarrow 2x(x - 1) + 1(x - 1) = 0$ $\Rightarrow (2x + 1) (x - 1) = 0$ $\Rightarrow 2x + 1 = 0 \text{ or } x - 1 = 0$ $\Rightarrow x = -\frac{1}{2} \text{ or } x = 1$ $x = -\frac{1}{2} \text{ is not possible}$ $\therefore x = 1$

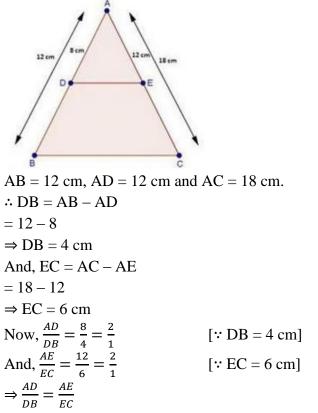


We have, DE || BC Therefore, by basic proportionality theorem, we have, $\frac{AD}{DB} = \frac{AE}{EC}$ $\Rightarrow \frac{2.5}{3.0} = \frac{3.75}{EC}$ $\Rightarrow EC = \frac{3.75 \times 3}{2.5} = \frac{375 \times 3}{250}$ $\Rightarrow EC = \frac{15 \times 3}{10}$ $= \frac{45}{10} = 4.5 \text{ cm}$

Now, AC = AE + EC = 3.75 + 4.5 = 8.25 $\therefore AC = 8.25$ cm

- 2. In a \triangle ABC, D and E are points on the sides AB and AC respectively. For each of the following cases show that DE || BC:
 - (i) AB = 2cm, AD = 8cm, AE = 12 cm and AC = 18cm.
 - (ii) AB = 5.6 cm, AD = 1.4 cm, AC = 7.2 cm and AE = 1.8 cm.
 - (iii) AB = 10.8 cm, BD = 4.5 cm, AC = 4.8 cm and AE = 2.8 cm.
 - (iv) AD = 5.7 cm, BD = 9.5 cm, AE = 3.3 cm and EC = 5.5 cm.

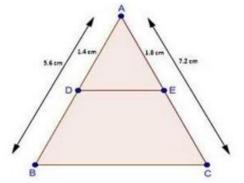
Sol:



Thus, DE divides sides AB and AC of \triangle ABC in the same ratio. Therefore, by the converse of basic proportionality theorem,

(ii)

We have, $DE \parallel BC$



We have,

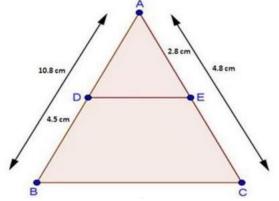
AB = 5.6 cm, AD = 1.4 cm, AC = 7.2 cm and AE = 1.8 cm \therefore DB = AB - AD = 5.6 - 1.4 \Rightarrow DB = 4.2 cm And, EC = AC - AE = 7.2 - 1.8 \Rightarrow EC = 5.4 cm

Now,
$$\frac{AD}{DB} = \frac{1.4}{4.2} = \frac{1}{3}$$
 [: DB = 4.2 cm]
And, $\frac{AE}{EC} = \frac{1.8}{5.4} = \frac{1}{3}$ [: EC = 5.4 cm]
Thus, DE divides sides AB and AC of AABC in th

Thus, DE divides sides AB and AC of \triangle ABC in the same ratio. Therefore, by the converse of basic proportionality theorem,

(iii)

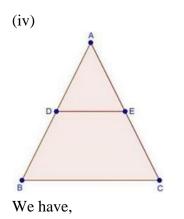
We have,



We have,

AB = 10.8cm, BD = 4.5cm, AC = 4.8 cm and AE = 2.8cm \therefore AD = AB - DB = 10.8 - 4.5 \Rightarrow AD = 6.3 cm And, EC = AC - AE = 4.8 - 2.8 \Rightarrow EC = 2 cm Now, $\frac{AD}{DB} = \frac{6.3}{4.5} = \frac{7}{5}$ [: AD = 6.3 cm] And, $\frac{AE}{EC} = \frac{2.8}{2} = \frac{28}{20} = \frac{75}{5}$ [: EC = 2 cm]

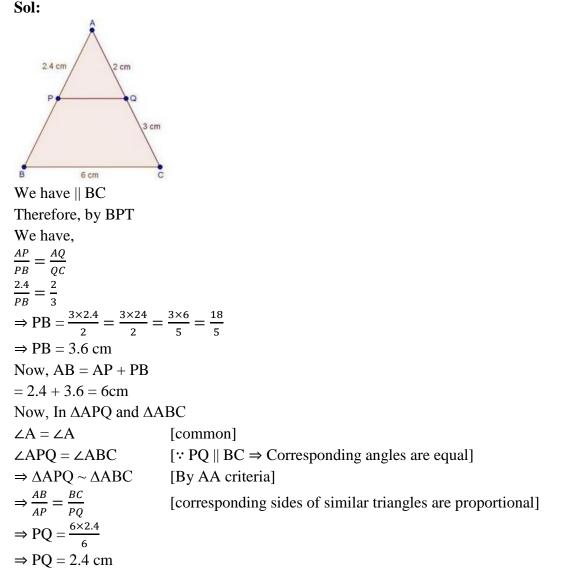
Thus, DE divides sides AB and AC of \triangle ABC in the same ratio. Therefore, by the converse of basic proportionality theorem.



DE || BC We have, AD = 5.7 cm, BD = 9.5 cm, AE = 3.3 cm and EC = 5.5 cm Now $\frac{AD}{BD} = \frac{5.7}{9.5} = \frac{57}{95}$ $\Rightarrow \frac{AD}{BD} = \frac{3}{5}$ And, $\frac{AE}{EC} = \frac{3.3}{5.5} = \frac{33}{55}$ $\Rightarrow \frac{AE}{EC} = \frac{3}{5}$ Thus DE divides sides AB and AC of \triangle ABC in the same ratio.

Therefore, by the converse of basic proportionality theorem. We have DE || BC

3. In a \triangle ABC, P and Q are points on sides AB and AC respectively, such that PQ || BC. If AP = 2.4 cm, AQ = 2 cm, QC = 3 cm and BC = 6 cm, find AB and PQ.

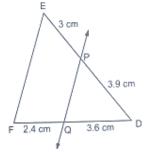


```
Hence, AB = 6 cm and PO = 2.4 cm
```

4. In a \triangle ABC, D and E are points on AB and AC respectively such that DE || BC. If AD = 2.4cm, AE = 3.2 cm, DE = 2cm and BC = 5 cm, find BD and CE.

```
Sol:
      2.4 cm
                     3.2 cm
              2 cm
              5 cm
We have,
DE || BC
Now, In \triangle ADE and \triangle ABC
\angle A = \angle A
                                   [common]
\angle ADE = \angle ABC
                                   [: DE \parallel BC \Rightarrow Corresponding angles are equal]
\Rightarrow \Delta ADE \sim \Delta ABC
                                   [By AA criteria]
\Rightarrow \frac{AB}{BC} = \frac{AD}{DE}
                                   [corresponding sides of similar triangles are proportional]
\Rightarrow AB = \frac{2.4 \times 5}{2}
\Rightarrow AB = 1.2 \times 5 = 6.0 \text{ cm}
\Rightarrow AB = 6 cm
\therefore BD = 6 cm
BD = AB - AD
= 6 - 2.4 = 3.6 cm
\Rightarrow DB = 3.6 cm
Now.
\frac{AC}{BC} = \frac{AE}{DE}
                                   [: Corresponding sides of similar triangles are equal]
\Rightarrow \frac{AC}{5} = \frac{3.2}{2}
\Rightarrow AC = \frac{3.2 \times 5}{2} = 1.6 \times 5 = 8.0 \ cm
\Rightarrow AC = 8 cm
\therefore CE = AC - AE
= 8 - 3.2 = 4.8 cm
Hence, BD = 3.6 cm and CE = 4.8 cm
```

5. In below Fig., state if $PQ \parallel EF$.

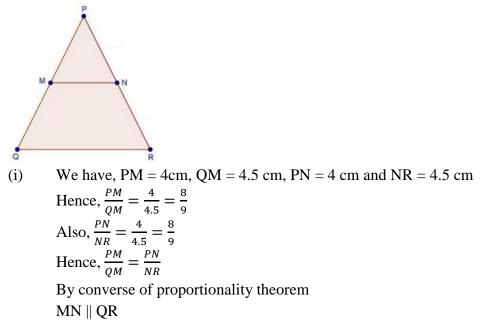


Sol:

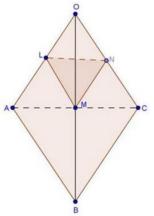
We have, DP = 3.9 cm, PE = 3cm, DQ = 3.6 cm and QF = 2.4 cm Now, $\frac{DP}{PE} = \frac{3.9}{3} = \frac{1.3}{1} = \frac{13}{10}$ And, $\frac{DQ}{QF} = \frac{3.6}{2.4} = \frac{36}{24} = \frac{3}{2}$ $\Rightarrow \frac{DP}{PE} \neq \frac{DQ}{QF}$ So, PQ is not parallel to EF

6. M and N are points on the sides PQ and PR respectively of a Δ PQR. For each of the following cases, state whether MN || QR

(i) PM = 4cm, QM = 4.5 cm, PN = 4 cm and NR = 4.5 cmSol:



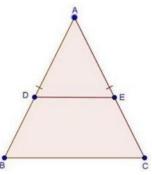
7. In three line segments OA, OB, and OC, points L, M, N respectively are so chosen that LM || AB and MN || BC but neither of L, M, N nor of A, B, C are collinear. Show that LN ||AC. Sol:



We have, LM || AB and MN || BC Therefore, by basic proportionality theorem, We have, $\frac{QL}{AL} = \frac{OM}{MB}$...(i) and, $\frac{ON}{NC} = \frac{OM}{MB}$...(ii) Comparing equation (i) and equation (ii), we get, $\frac{ON}{AL} = \frac{ON}{NC}$

Thus, LN divides sides OA and OC of \triangle OAC in the same ratio. Therefore, by the converse of basic proportionality theorem, we have, LN \parallel AC

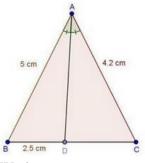
8. If D and E are points on sides AB and AC respectively of a \triangle ABC such that DE || BC and BD = CE. Prove that \triangle ABC is isosceles.



We have, DE || BC Therefore, by BPT, we have, $\frac{AD}{DB} = \frac{AE}{EC}$ $\Rightarrow \frac{AD}{DB} = \frac{AE}{DB}$ [: BD = CE] $\Rightarrow AD = AE$ Adding DB on both sides $\Rightarrow AD + DB = AE + DB$ $\Rightarrow AD + DB = AE + EC$ [: BD = CE] $\Rightarrow AB = AC$ $\Rightarrow \Delta ABC$ is isosceles

Exercise 4.3

- **1.** In a \triangle ABC, AD is the bisector of \angle A, meeting side BC at D.
 - (i) If BD = 2.5cm, AB = 5cm and AC = 4.2cm, find DC.
 - (ii) If BD = 2cm, AB = 5cm and DC = 3cm, find AC.
 - (iii) If AB = 3.5 cm, AC = 4.2 cm and DC = 2.8 cm, find BD.
 - (iv) If AB = lo cm, AC = 14 cm and BC = 6 cm, find BD and DC.
 - (v) If AC = 4.2 cm, DC = 6 cm and 10 cm, find AB
 - (vi) If AB = 5.6 cm, AC = 6cm and DC = 3cm, find BC.
 - (vii) If AD = 5.6 cm, BC = 6cm and BD = 3.2 cm, find AC.
 - (viii) If AB = 10cm, AC = 6 cm and BC = 12 cm, find BD and DC.
 - Sol:
 - (i)

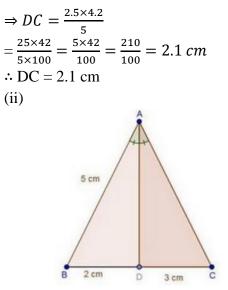


We have,

 $\angle BAD = \angle CAD$

We know that, the internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.

$$\therefore \frac{BD}{DC} = \frac{AB}{AC}$$
$$\Rightarrow \frac{2.5}{DC} = \frac{5}{4.2}$$



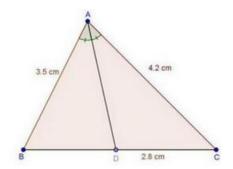
We have,

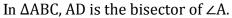
AD is the bisector of $\angle A$

We know that, the internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.

$$\therefore \frac{BD}{DC} = \frac{AB}{AC}$$
$$\Rightarrow \frac{2}{3} = \frac{5}{AC}$$
$$\Rightarrow AC = \frac{5 \times 3}{2} = \frac{15}{2}$$
$$\Rightarrow AC = 7.5 \text{ cm}$$

(iii)



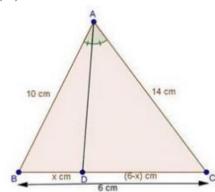


We know that, the internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.

$$\therefore \frac{BD}{DC} = \frac{AB}{AC}$$
$$\Rightarrow \frac{BD}{2.8} = \frac{3.5}{4.2}$$
$$= \frac{3.5 \times 2}{3}$$

$$=\frac{7}{3}=2.33 \ cm$$
$$\therefore BD=2.3 \ cm$$

(iv)



In $\triangle ABC$, AD is the bisector of $\angle A$

We know that, the internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.

$$\therefore \frac{BD}{DC} = \frac{AB}{AC}$$

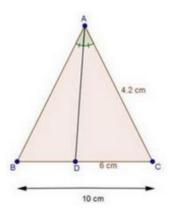
$$\Rightarrow \frac{x}{6-x} = \frac{10}{14}$$

$$\Rightarrow 14x = 10(6-x)$$

$$\Rightarrow 24x = 60$$

$$\Rightarrow x = \frac{60}{24} = \frac{5}{2} = 2.5cm$$
Since, DC = 6 - x = 6 - 2.5 = 3.5 cm
Hence, BD = 2.5cm, and DC = 3.5 cm

(v)

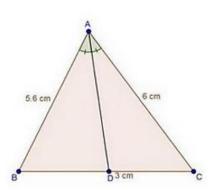


We have, BC = 10 cm, DC = 6 cm and AC = 4.2 cm \therefore BD = BC - DC = 10 - 6 = 4 cm \Rightarrow BD = 4 cm In \triangle ABC, AD is the bisector of \angle A.

We know that, the internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.

 $\therefore \frac{BD}{DC} = \frac{AB}{AC}$ $\Rightarrow \frac{4}{6} = \frac{AB}{4.2}$ [: BD = 4 cm] $\Rightarrow AB = 2.8 \text{ cm}$

(vi)



We have, In $\triangle ABC$, AD is the bisector of $\angle A$.

We know that, the internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.

$$\therefore \frac{BD}{DC} = \frac{AB}{AC}$$

$$\Rightarrow \frac{BD}{3} = \frac{5.6}{6}$$

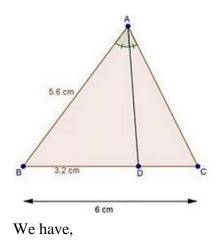
$$\Rightarrow BD = \frac{5.6 \times 3}{6} = \frac{5.6}{2} = 2.8 cm$$

$$\Rightarrow BD = 2.8 cm$$
Since, BC = BD + DC
$$= 2.8 + 3$$

$$= 5.8 cm$$

$$\therefore BC = 5.8 cm$$

(vii)



In \triangle ABC, AD is the bisector of \angle A.

We know that, the internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the containing the angle.

$$\therefore \frac{AB}{AC} = \frac{BD}{DC}$$

$$\frac{5.6}{AC} = \frac{3.2}{6-3.2} \qquad [\because DC = BC - BD]$$

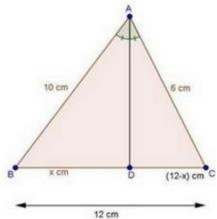
$$\Rightarrow \frac{5.6}{AC} = \frac{3.2}{2.8}$$

$$\Rightarrow AC = \frac{5.6 \times 2.8}{3.2}$$

$$= \frac{5.6 \times 7}{8} = 0.7 \times 7$$

$$= 4.9 \ cm$$

(viii)



In $\triangle ABC$, AD is the bisector of $\angle A$.

We know that, the internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.

$$\therefore \frac{BD}{DC} = \frac{AB}{AC}$$

$$\Rightarrow \frac{x}{12-z} = \frac{10}{6}$$

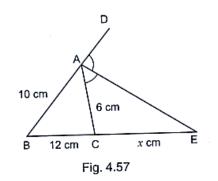
$$\Rightarrow 6x = 10(12 - x)$$

$$\Rightarrow 6x = 120$$

$$\Rightarrow x = \frac{120}{16} = 7.5 \text{ cm}$$

$$\therefore BD = 7.5 \text{ cm and } DC = 12 - x = 12 - 7.5 = 4.5 \text{ cm}$$
Hence, BD = 7.5 cm and DC = 4.5 cm

2. In Fig. 4.57, AE is the bisector of the exterior \angle CAD meeting BC produced in E. If AB = 10cm, AC = 6cm and BC = 12 cm, find CE.



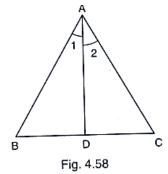
Sol:

In $\triangle ABC$, AD is the bisector of $\angle A$.

We know that, the internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.

$$\therefore \frac{BD}{DC} = \frac{AB}{AC} \Rightarrow \frac{x}{12 - x} = \frac{10}{6}$$
$$\Rightarrow 6(12 + x) = 10x$$
$$\Rightarrow 72 + 6x = 10x$$
$$\Rightarrow 4x - 72$$
$$\Rightarrow x = \frac{72}{4} = 18 \ cm$$
$$\therefore CE = 18 \ cm$$

3. In Fig. 4.58, $\triangle ABC$ is a triangle such that $\frac{AB}{AC} = \frac{BD}{DC}$, $\angle B = 70^\circ$, $\angle C = 50^\circ$. Find $\angle BAD$.

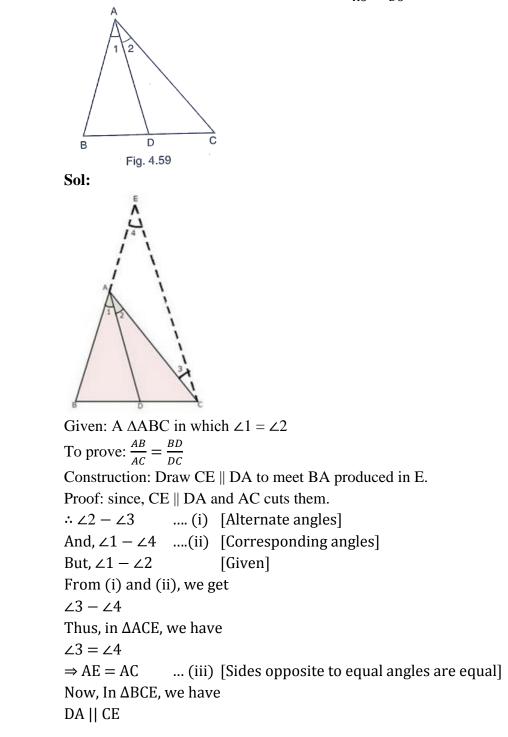


Sol:

We have, if a line through one vertex of a triangle divides the opposite side in the ratio of the other two sides, then the line bisects the angle at the vertex.

 $\therefore \angle 1 = \angle 2$ In $\triangle ABC$ $\angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow \angle A + 70^{\circ} + 50^{\circ} = 180^{\circ} \qquad [\because \angle B = 70^{\circ} \text{ and } \angle C = 50^{\circ}]$ $\Rightarrow \angle A = 180^{\circ} - 120^{\circ} = 60^{\circ}$ $\Rightarrow \angle 1 + \angle 2 = 60^{\circ}$ $\Rightarrow \angle 1 + \angle 1 = 60^{\circ} \qquad [\because \angle 1 = \angle 2]$

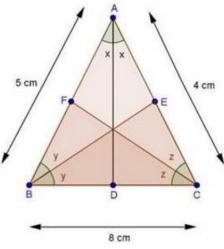
- $\Rightarrow 2 \angle 1 = 60^{\circ}$ $\Rightarrow \angle 1 = 30^{\circ}$ $\therefore \angle BAD = 30^{\circ}$
- 4. In $\triangle ABC$ (Fig., 4.59), if $\angle 1 = \angle 2$, prove that $\frac{AB}{AC} = \frac{BD}{DC}$.



$$\Rightarrow \frac{BD}{DC} = \frac{BA}{AE}$$
[Using basic proportionality theorem]

$$\Rightarrow \frac{BD}{DC} = \frac{AB}{AC}$$
[:: BA - AB and AE - AC from (iii)]
Hence, $\frac{AB}{AC} = \frac{BD}{DC}$

D, E and F are the points on sides BC, CA and AB respectively of △ABC such that AD bisects ∠A, BE bisects ∠B and CF bisects ∠C. If AB = 5 cm, BC = 8 cm and CA = 4 cm, determine AP, CE and BD.



In $\triangle ABC$, CF bisects $\angle C$.

We know that, the internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.

$$\therefore \frac{AF}{FB} = \frac{AC}{BC}$$

$$\Rightarrow \frac{AF}{5-AF} = \frac{4}{8} \qquad [\because FB = AB - AF = 5 - AF]$$

$$\Rightarrow \frac{AF}{5-AF} = \frac{1}{2}$$

$$\Rightarrow 2AF = 5 - AF$$

$$\Rightarrow 2AF + AF = 5$$

$$\Rightarrow 3AF = 5$$

$$\Rightarrow AF = \frac{5}{3} \text{ cm}$$
Again, In $\triangle ABC$, BE bisects $\angle B$.

$$\therefore \frac{AE}{EC} = \frac{AB}{BC}$$

$$\Rightarrow \frac{4-CE}{CE} = \frac{5}{8} \qquad [\because AE = AC - CE = 4 - CE]$$

$$\Rightarrow 8(4 - CE) = 5 \times CE$$

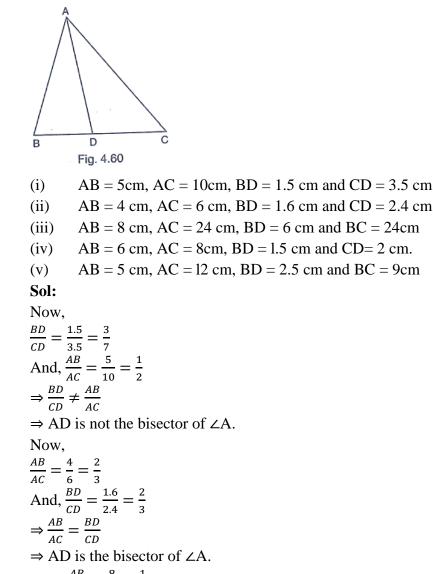
$$\Rightarrow 32 - 8CE = 5CE$$

$$\Rightarrow 32 = 13CE$$

$$\Rightarrow CE = \frac{32}{13} cm$$

Similarly,
$$\frac{BD}{DC} = \frac{AD}{AC}$$
$$\Rightarrow \frac{BD}{8-BD} = \frac{5}{4} \qquad [\because DC = BC - BD = 8 - BD]$$
$$\Rightarrow 4BD = 40 - 5BD$$
$$\Rightarrow 9BD = 40$$
$$\Rightarrow BD = \frac{40}{9} cm$$
Hence, AF = $\frac{5}{3} cm$, CE = $\frac{32}{13} cm$ and BD = $\frac{40}{9} cm$.

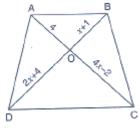
6. In fig., 4.60, check whether AD is the bisector of $\angle A$ of $\triangle ABC$ in each of the following:



And, $\frac{BD}{CD} = \frac{BD}{BC - BD}$	$[\because CD = BC - BD]$
$=\frac{BD}{24-6}$	
$=\frac{6}{18}$	
$=\frac{1}{3}$	
$\therefore \frac{AB}{AC} = \frac{BD}{CD}$	
\therefore AD is the bisector of	of $\angle A$ of $\triangle ABC$.
$\frac{AB}{AC} = \frac{6}{8} = \frac{3}{4}$	
And, $\frac{BD}{CD} = \frac{2.5}{BC - BD}$	$[\because CD = BC - BD]$
$=\frac{2.5}{9-2.5} = \frac{2.5}{6.5}$	
$=\frac{2.5}{6.5}$	
$=\frac{1}{3}$	
$\therefore \frac{AB}{AC} \neq \frac{BD}{CD}$	
\therefore AD is not the bisector of $\angle A$ of $\triangle ABC$.	

Exercise 4.4

1. (i) In below fig., If AB \parallel CD, find the value of x.



Sol:

Since diagonals of a trapezium divide each other proportionally.

$$\therefore \frac{A0}{0c} = \frac{B0}{0D}$$

$$\Rightarrow \frac{4}{4x-2} = \frac{x+1}{2x+4}$$

$$\Rightarrow 4(2x+4) = (x+1)(4x-2)$$

$$\Rightarrow 8x+16 = x(4x-2) + 1(4x-2)$$

$$\Rightarrow 8x+16 = 4x^{2} + 2x - 2$$

$$\Rightarrow 4x^{2} + 2x - 8x - 2 - 16 = 0$$

$$\Rightarrow 4x^{2} - 6x - 18 = 0$$

$$\Rightarrow 2[2x^{2} - 3x - 9] = 0$$

$$\Rightarrow 2x^{2} - 3x - 9 = 0$$

$$\Rightarrow 2x(x-3) + 3(x-3) = 0$$

$$\Rightarrow (x-3)(2x+3) = 0$$

$$\Rightarrow x-3 = 0 \text{ or } 2x+3 = 0$$

$$\Rightarrow x = 3 \text{ or } x = -\frac{3}{2}$$

$$\Rightarrow x = 3 \text{ or } x = -\frac{3}{2}$$

$$x = -\frac{3}{2} \text{ is not possible, because OB} = x + 1 = -\frac{3}{2} + 1 = -\frac{1}{2}$$

Length cannot be negative

$$\therefore \frac{AO}{OC} = \frac{BO}{OD}$$

(ii) In the below fig., If AB \parallel CD, find the value of x.

$$\Rightarrow \frac{3x-1}{5x-3} = \frac{2x+1}{6x-5}$$

$$\Rightarrow (3x-1)(6x-5) = (2x+1)(5x-3)$$

$$\Rightarrow 3x(6x-5) - 1(6x-5) = 2x(5x-3) + 1(5x-3)$$

$$\Rightarrow 18x^2 - 15x - 6x + 5 = 10x^2 - 6x + 5x - 3$$

$$\Rightarrow 8x^2 - 20x + 8 = 0$$

$$\Rightarrow 4(2x^2 - 5x + 2) = 0$$

$$\Rightarrow 2x^2 - 4x - 1x + 2 = 0$$

$$\Rightarrow 2x(x-2) - 1(x-2) = 0$$

$$\Rightarrow 2x - 1 = 0 \text{ or } x - 2 = 0$$

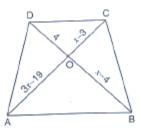
$$\Rightarrow x = \frac{1}{2} \text{ or } x = 2$$

$$x = \frac{1}{2} \text{ is not possible, because, OC} = 5x - 3$$

$$= 5\left(\frac{1}{2}\right) - 3$$

$$= \frac{5-6}{2} = -\frac{1}{2}$$

(iii) In below fig., AB \parallel CD. If OA = 3x - 19, OB = x - 4, OC = x - 3 and OD = 4, find x.

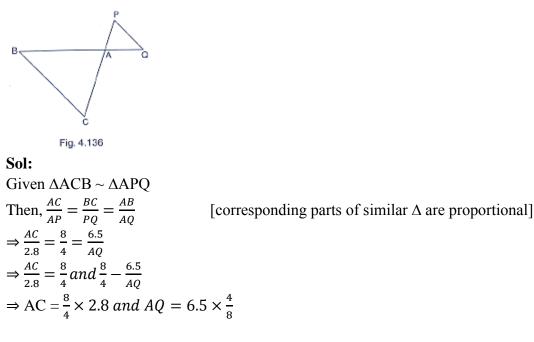


Since diagonals of a trapezium divide each other proportionally.

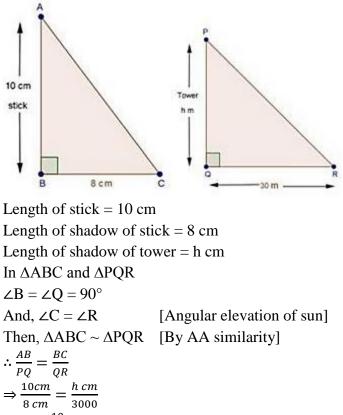
$$:: \frac{A0}{oc} = \frac{B0}{ob}
\Rightarrow \frac{3x-19}{x-3} = \frac{x-4}{4}
\Rightarrow 4(3x-19) = (x-4)(x-3)
\Rightarrow 12x - 76 = x (x-3) - 4(x-3)
\Rightarrow 12x - 76 = x^2 - 3x - 4x + 12
\Rightarrow x^2 - 7x - 12x + 12 + 76 = 0
\Rightarrow x^2 - 19x + 88 = 0
\Rightarrow x^2 - 11z - 8z + 88 = 0
\Rightarrow x(x - 11) - 8(x - 11) = 0
\Rightarrow (x - 11)(x - 8) = 0
\Rightarrow x - 11 = 0 \text{ or } x - 8 = 0
\Rightarrow x = 11 \text{ or } x = 8$$

Exercise 4.5

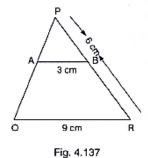
1. In fig. 4.136, $\triangle ACB \sim \triangle APQ$. If BC = 8 cm, PQ = 4 cm, BA = 6.5 cm and AP = 2.8 cm, find CA and AQ.



- \Rightarrow AC = 5.6 cm and AQ = 3.25 cm
- A vertical stick 10 cm long casts a shadow 8 cm long. At the same time a shadow 30 m long. Determine the height of the tower.
 Sol:



- $\Rightarrow h = \frac{10}{8} \times 3000 = 3750 \ cm = 37.5 \ m$
- **3.** In Fig. 4.137, AB \parallel QR. Find the length of PB.



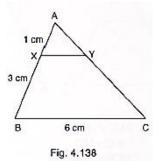
19.4.107

Sol: We have, $\triangle PAB$ and $\triangle PQR$ $\angle P = \angle P$ $\angle PAB = \angle PQR$

[common] [corresponding angles]

Then, $\Delta PAB \sim \Delta PQR$	[By AA similarity]
$\therefore \frac{PB}{PR} = \frac{AB}{QR}$	[Corresponding parts of similar Δ are proportional]
$\Rightarrow \frac{PB}{6} = \frac{3}{9}$	
$\Rightarrow PB = \frac{3}{9} \times 6 = 2 cm$	

4. In fig. 4.138, $XY \parallel BC$. Find the length of XY



Sol:

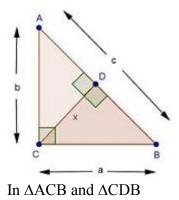
We have, XY || BC In \triangle AXY and \triangle ABC $\angle A = \angle A$ $\angle AXY = \angle ABC$ Then, $\triangle AXY \sim \triangle ABC$ $\therefore \frac{AX}{AB} = \frac{XY}{BC}$ $\Rightarrow \frac{1}{4} = \frac{XY}{6}$ $\Rightarrow XY = \frac{6}{4} = 1.5cm$

[common]
[corresponding angles]
[By AA similarity]
[Corresponding parts of similar Δ are proportional]

5. In a right angled triangle with sides a and b and hypotenuse c, the altitude drawn on the hypotenuse is x. Prove that ab = cx.

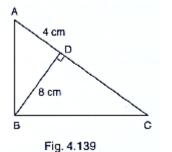
Sol:

We have: $\angle C = 90^{\circ}$ and CD $\perp AB$



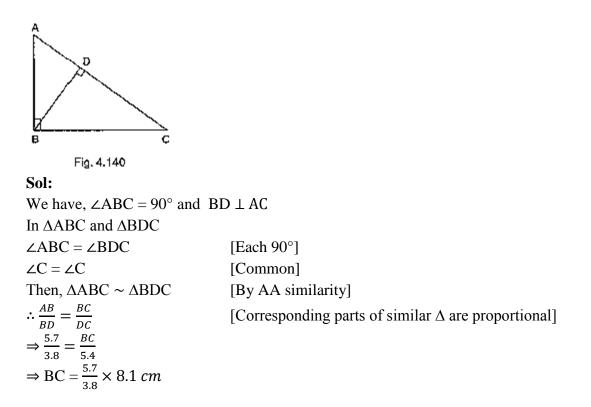
$\angle B = \angle B$	[common]
$\angle ACB = \angle CDB$	[Each 90°]
Then, $\triangle ACB \sim \triangle CDB$	[By AA similarity]
$\therefore \frac{AC}{CD} = \frac{AB}{CB}$	[Corresponding parts of similar Δ are proportional]
$\Rightarrow \frac{b}{x} = \frac{c}{a}$	
\Rightarrow ab = cx	

6. In Fig. 4.139, $\angle ABC = 90^{\circ}$ and BD $\perp AC$. If BD = 8 cm and AD = 4 cm, find CD.



Sol: We have, $\angle ABC = 90^{\circ}$ and $BD \perp AC$ Now, $\angle ABD + \angle DBC - 90^{\circ}$ [∵∠ABC – 90°] ...(i) And, $\angle C + \angle DBC - 90^{\circ}$...(ii) [By angle sum prop. in \triangle BCD] Compare equations (i) & (ii) $\angle ABD = \angle C$...(iii) In $\triangle ABD$ and $\triangle BCD$ $\angle ABD = \angle C$ [From (iii)] $\angle ADB = \angle BDC$ [Each 90°] Then, $\triangle ABD \sim \triangle BCD$ [By AA similarity] $\therefore \frac{BD}{CD} = \frac{AD}{BD}$ [Corresponding parts of similar Δ are proportional] $\Rightarrow \frac{8}{CD} = \frac{4}{8}$ \Rightarrow CD = $\frac{8 \times 8}{4}$ = 16 cm

7. In Fig. 4.14, $\angle ABC = 90^{\circ}$ and BD $\perp AC$. If AB = 5.7 cm, BD = 3.8 cm and CD = 5.4 cm, find BC.



8. In Fig. 4.141, DE || BC such that AE = (1/4) AC. If AB = 6 cm, find AD.

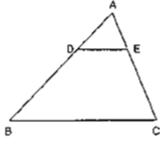
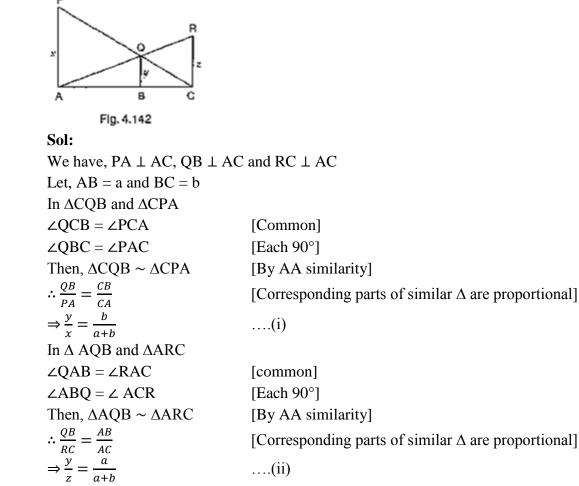


Fig. 4.141

Sol:

We have, DE || BC, AB = 6 cm and AE = $\frac{1}{4}$ AC

In $\triangle ADE$ and $\triangle ABC$ $\angle A = \angle A$ [Common] $\angle ADE = \angle ABC$ [Corresponding angles] Then, $\triangle ADE \sim \triangle ABC$ [By AA similarity] $\Rightarrow \frac{AD}{AB} = \frac{AE}{AC}$ [Corresponding parts of similar \triangle are proportional] $\Rightarrow \frac{AD}{6} = \frac{1}{4} \frac{AC}{AC}$ [$\because AE = \frac{1}{4} AC given$] $\Rightarrow \frac{AD}{6} = \frac{1}{4}$ $\Rightarrow AD = \frac{6}{4} = 1.5 \text{ cm}$



In fig., 4.142, PA, QB and RC are each perpendicular to AC. Prove that $\frac{1}{x} + \frac{1}{z} + \frac{1}{y}$ 9.

10. In below fig., $\angle A = \angle CED$, Prove that $\triangle CAB \sim \triangle CED$. Also, find the value of x.

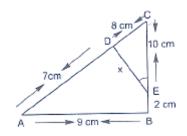
....(ii)

Adding equations (i) & (ii)

 $\frac{y}{x} + \frac{y}{z} = \frac{b}{a+b} + \frac{a}{a+b}$ $\Rightarrow y\left(\frac{1}{x} + \frac{1}{z}\right) = \frac{b+a}{a+b}$

 $\Rightarrow y\left(\frac{1}{x} + \frac{1}{z}\right) = 1$

 $\Rightarrow \frac{1}{x} + \frac{1}{z} = \frac{1}{y}$



Sol:

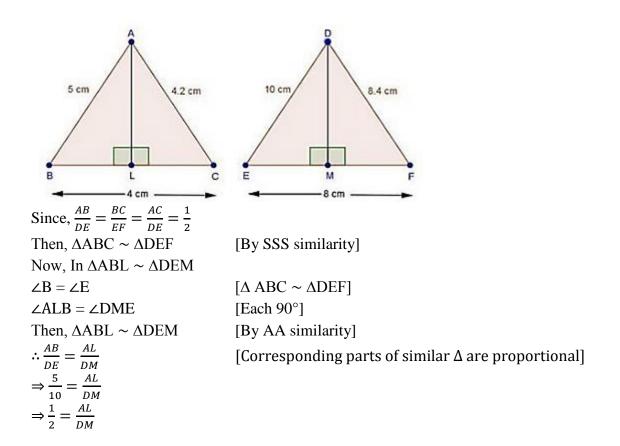
We have, $\angle A = \angle CED$ In $\triangle CAB$ and $\triangle CED$ $\angle C = \angle C$ $\angle A = \angle CED$ Then, $\triangle CAB \sim \triangle CED$ $\therefore \frac{CA}{CE} = \frac{AB}{ED}$ $\Rightarrow \frac{15}{10} = \frac{9}{x}$ $\Rightarrow x = \frac{10 \times 9}{15} = 6 \ cm$

[Common] [Given] [By AA similarity] [Corresponding parts of similar Δ are proportional]

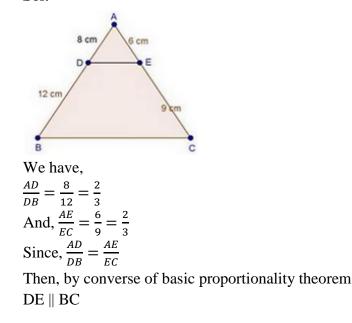
11. The perimeters of two similar triangles are 25 cm and 15 cm respectively. If one side of first triangle is 9 cm, what is the corresponding side of the other triangle?

Sol: Assume ABC and PQR to be 2 triangles We have, $\Delta ABC \sim \Delta PQR$ Perimeter of $\Delta ABC = 25$ cm Perimeter of $\Delta PQR = 15$ cm AB = 9 cm PQ = ?Since, $\Delta ABC \sim \Delta PQR$ Then, ratio of perimeter of triangles = ratio of corresponding sides $\Rightarrow \frac{25}{12} = \frac{AB}{PQ}$ $\Rightarrow \frac{25}{15} = \frac{9}{PQ}$

- \Rightarrow PQ = $\frac{15 \times 9}{25}$ = 5.4 cm
- In ∆ABC and ∆DEF, it is being given that: AB = 5 cm, BC = 4 cm and CA = 4.2 cm; DE=10cm, EF = 8 cm and FD = 8.4 cm. If AL ⊥ BC and DM ⊥ EF, find AL: DM. Sol:

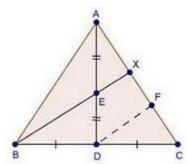


13. D and E are the points on the sides AB and AC respectively of a \triangle ABC such that: AD = 8 cm, DB = 12 cm, AE = 6 cm and CE = 9 cm. Prove that BC = 5/2 DE. Sol:



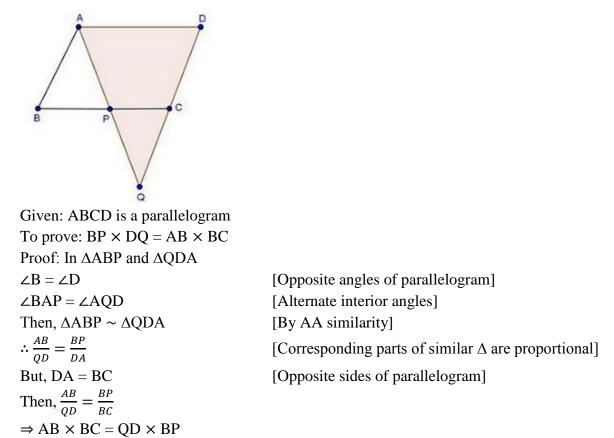
In $\triangle ADE$ and $\triangle ABC$	
$\angle A = \angle A$	[Common]
$\angle ADE = \angle B$	[Corresponding angles]
Then, $\Delta ADE \sim \Delta ABC$	[By AA similarity]
$\therefore \frac{AD}{AB} = \frac{DE}{BC}$	[Corresponding parts of similar Δ are proportional]
$\Rightarrow \frac{8}{20} = \frac{DE}{BC}$	
$\Rightarrow \frac{2}{5} = \frac{DE}{BC}$	
$\Rightarrow BC = \frac{5}{2} DE$	

14. D is the mid-point of side BC of a ∆ABC. AD is bisected at the point E and BE produced cuts AC at the point X. Prove that BE : EX = 3 : 1Sol:



Given: In $\triangle ABC$, D is the mid-point of BC and E is the mid-point of AD. To prove: BE : EX = 3 : 1Const: Through D, draw DF || BX Proof: In $\triangle EAX$ and $\triangle ADF$ $\angle EAX = \angle ADF$ [Common] $\angle AXE = \angle DAF$ [Corresponding angles] Then, $\triangle AEX \sim \triangle ADF$ [By AA similarity] $\therefore \frac{EX}{DF} = \frac{AE}{AD}$ [Corresponding parts of similar Δ are proportional] $\Rightarrow \frac{EX}{DF} = \frac{AE}{2AE}$ [AE = ED given] \Rightarrow DF = 2EX (i) In \triangle CDF and \triangle CBX [By AA similarity] $\therefore \frac{CD}{CB} = \frac{DF}{BX}$ [Corresponding parts of similar Δ are proportional] $\Rightarrow \frac{1}{2} = \frac{DF}{BE + EX}$ [BD = DC given] \Rightarrow BE + EX = 2DF \Rightarrow BE + EX = 4EX \Rightarrow BE = 4EX - EX [By using (i)] \Rightarrow BE = 4EX - EX

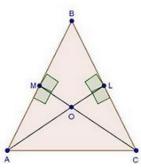
- $\Rightarrow \frac{BE}{EX} = \frac{3}{1}$
- 15. ABCD is a parallelogram and APQ is a straight line meeting BC at P and DC produced at Q. Prove that the rectangle obtained by BP and DQ is equal to the AB and BC.Sol:



16. In \triangle ABC, AL and CM are the perpendiculars from the vertices A and C to BC and AB respectively. If AL and CM intersect at O, prove that:

(i)
$$\Delta$$
 OMA and Δ OLC

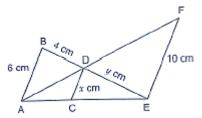
(ii)
$$\frac{OA}{OC} = \frac{OM}{OL}$$



Maths

We have,	
AL \perp BC and CM \perp AB	
In Δ OMA and Δ OLC	
$\angle MOA = \angle LOC$	[Vertically opposite angles]
∠AMO = ∠CLO	[Each 90°]
Then, $\Delta OMA \sim \Delta OLC$	[By AA similarity]
$\therefore \frac{OA}{OC} = \frac{OM}{OL}$	[Corresponding parts of similar Δ are proportional]

17. In Fig below we have AB || CD || EF. If AB = 6 cm, CD = x cm, EF = 10 cm, BD = 4 cm and DE = y cm, calculate the values of x and y.

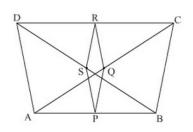


We have AB \parallel CD \parallel EF. If AB = 6 cm, CD = x cm, EF = 10 cm, BD = 4 cm and DE = y cm In \triangle ECD and \triangle EAB

$\angle CED = \angle AEB$	[common]
$\angle ECD = \angle EAB$	[corresponding angles]
Then, $\Delta ECD \sim \Delta EAB$ (i)	[By AA similarity]
$\therefore \frac{EC}{EA} = \frac{CD}{AB}$	[Corresponding parts of similar Δ are proportional]
$\Rightarrow \frac{EC}{EA} = \frac{x}{6} \qquad \dots (ii)$)
In $\triangle ACD$ and $\triangle AEF$	
$\angle CAD = \angle EAF$	[common]
$\angle ACD = \angle AEF$	[corresponding angles]
Then, $\triangle ACD \sim \triangle AEF$	[By AA similarity]
$\therefore \frac{AC}{AE} = \frac{CD}{EF}$	
$\Rightarrow \frac{AC}{AE} = \frac{x}{10} \qquad \dots (111)$)
Add equations (iii) & (ii)	
$\therefore \frac{EC}{EA} + \frac{AC}{AE} = \frac{x}{6} + \frac{x}{10}$	
$\Rightarrow \frac{AE}{AE} = \frac{5x + 3x}{30}$	
$\Rightarrow 1 = \frac{8x}{30}$	
$\Rightarrow x = \frac{30}{8} = 3.75 \text{ cm}$	
From (i) $\frac{DC}{AB} = \frac{ED}{BE}$	

$$\Rightarrow \frac{3.75}{6} = \frac{y}{y+4}$$
$$\Rightarrow 6y = 3.75y + 15$$
$$\Rightarrow 2.25y = 15$$
$$\Rightarrow y = \frac{15}{2.25} = 6.67 \ cm$$

18. ABCD is a quadrilateral in which AD = BC. If P, Q, R, S be the mid-points of AB, AC, CD and BD respectively, show that PQRS is a rhombus.Sol:



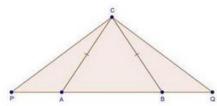
AD = BC and P, Q, R and S are the mid-points of sides AB, AC, CD and BD respectively, show that PQRS is a rhombus.

In \triangle BAD, by mid-point theorem PS || AD and PS = $\frac{1}{2}$ AD ...(i) In Δ CAD, by mid-point theorem QR || AD and QR = $\frac{1}{2}$ AD ...(ii) Compare (i) and (ii) $PS \parallel QR and PS = QR$ Since one pair of opposite sides is equal as well as parallel then PQRS is a parallelogram ...(iii) Now, In $\triangle ABC$, by mid-point theorem PQ || BC and PQ = $\frac{1}{2}$ BC ...(iv) And, AD = BC $\dots(v)$ [given] Compare equations (i) (iv) and (v) PS = PQ...(vi) From (iii) and (vi) Since, PQRS is a parallelogram with PS = PQ then PQRS is a rhombus

19. In Fig. below, if AB \perp BC, DC \perp BC and DE \perp AC, Prove that \triangle CED ~ ABC.

A B C		
Sol:		
Given: AB \perp BC, DC \perp BC an	d DE ⊥	AC
To prove: $\triangle CED \sim \triangle ABC$		
Proof:		
$\angle BAC + \angle BCA = 90^{\circ}$	(i)	[By angle sum property]
And, $\angle BCA + \angle ECD = 90^{\circ}$	(ii)	$[DC \perp BC given]$
Compare equation (i) and (ii)		
$\angle BAC = \angle ECD$	(iii)	
In ΔCED and ΔABC		
$\angle CED = \angle ABC$		[Each 90°]
$\angle ECD = \angle BAC$		[From (iii)]
Then, $\Delta CED \sim \Delta ABC$		[By AA similarity]

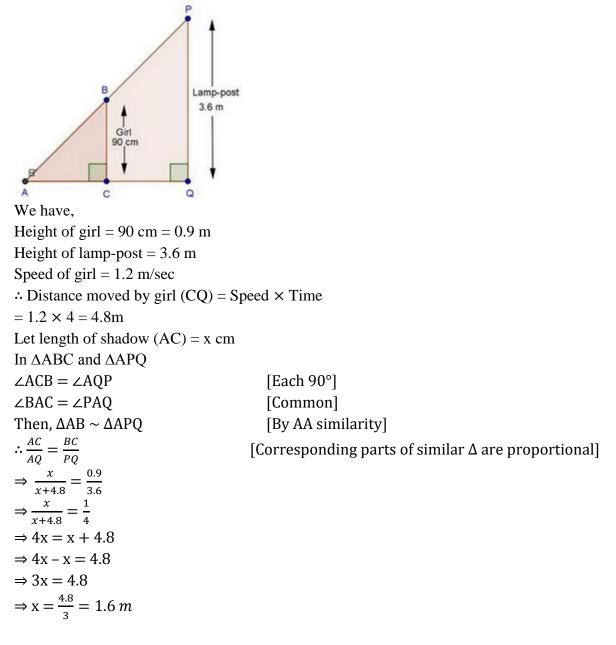
20. In an isosceles $\triangle ABC$, the base AB is produced both the ways to P and Q such that AP × BQ = AC². Prove that $\triangle APC \sim \triangle BCQ$. **Sol:**



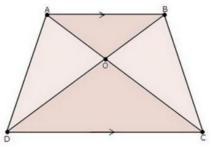
Given: In $\triangle ABC$, CA = CB and AP × BQ = AC2 To prove: $\triangle APC \sim \triangle BCQ$ Proof: $AP \times BQ = AC^2$ [Given] $\Rightarrow AP \times BQ = AC \times AC$ \Rightarrow AP \times BQ = AC \times BC [AC = BC given] $\Rightarrow \frac{AP}{BC} = \frac{AC}{BQ}$...(i) Since, CA = CB[Given] ...(ii) [Opposite angles to equal sides] Then, $\angle CAB = \angle CBA$ Now, $\angle CAB + \angle CAP = 180^{\circ}$...(iii) [Linear pair of angles] And, $\angle CBA + \angle CBQ = 180^{\circ}$...(iv) [Linear pair of angles]

Compare equation (ii) (iii) & (iv)
$\angle CAP = \angle CBQ$	(v)
In $\triangle APC$ and $\triangle BCQ$	
$\angle CAP = \angle CBQ$	[From (v)]
$\frac{AP}{BC} = \frac{AC}{BQ}$	[From (i)]
Then, $\triangle APC \sim \triangle BCQ$	[By SAS similarity]

21. A girl of height 90 cm is walking away from the base of a lamp-post at a speed of 1.2m/sec. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.Sol:



- \therefore Length of shadow = 1.6m
- 22. Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at the point O. Using similarity criterion for two triangles, show that $\frac{OA}{OC} = \frac{OB}{OD}$. Sol:



We have, ABCD is a trapezium with AB || DC In $\triangle AOB$ and $\triangle COD$ $\angle AOB = \angle COD$ [Vertically opposite angles] $\angle OAB = \angle OCD$ [Alternate interior angles] Then, $\triangle AOB \sim \triangle COD$ [By AA similarity] $\therefore \frac{OA}{OC} = \frac{OB}{OD}$ [Corresponding parts of similar \triangle are proportional]

23. If $\triangle ABC$ and $\triangle AMP$ are two right triangles, right angled at B and M respectively such that $\angle MAP = \angle BAC$. Prove that

(i)
$$\triangle ABC \sim \triangle AMP$$

(ii) $\frac{CA}{PA} = \frac{BC}{MP}$

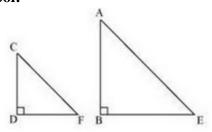
Sol:

We have, $\angle B = \angle M = 90^{\circ}$ And, $\angle BAC = \angle MAP$ In $\triangle ABC$ and $\triangle AMP$ $\angle B = \angle M$ $\angle BAC = \angle MAP$ Then, $\triangle ABC \sim \triangle AMP$

[Each 90°] [Given] [By AA similarity] $\therefore \frac{CA}{PA} = \frac{BC}{MP}$

[Corresponding parts of similar Δ are proportional]

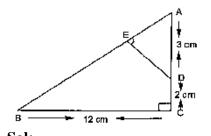
24. A vertical stick of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.Sol:



Let AB be a tower CD be a stick, CD = 6m Shadow of AB is BE = 28m Shadow of CD is DF = 4m At same time light rays from sun will fall on tower and stick at same angle. So, $\angle DCF = \angle BAE$ And $\angle DFC = \angle BEA$ $\angle CDF = \angle ABE$ (tower and stick are vertical to ground) Therefore $\triangle ABE \sim \triangle CDF$ (By AA similarity) So, $\frac{AB}{CD} = \frac{BE}{DF}$ $\frac{AB}{6} = \frac{28}{4}$ AB = $28 \times \frac{6}{4} = 42m$

So, height of tower will be 42 metres.

25. In below Fig., $\triangle ABC$ is right angled at C and DE \perp AB. Prove that $\triangle ABC \sim \triangle ADE$ and Hence find the lengths of AE and DE.



Sol: In \triangle ACB, by Pythagoras theorem $AB^2 = AC^2 + BC^2$ $\Rightarrow AB^2 = (5)^2 + (12)^2$

 $\Rightarrow AB^{2} = 25 + 144 = 169$ $\Rightarrow AB = \sqrt{169} = 13 cm$ In $\triangle AED$ and $\triangle ACB$ $\angle A = \angle A$ [Common] $\angle AED = \angle ACB$ [Each 90°] Then, $\triangle AED \sim \triangle ACB$ [By AA similarity] $\therefore \frac{AE}{AC} = \frac{DE}{CB} = \frac{AD}{AB}$ [Corresponding parts of similar \triangle are proportional] $\Rightarrow \frac{AE}{5} = \frac{3}{13} \text{ and } \frac{DE}{12} = \frac{3}{13}$ $\Rightarrow AE = \frac{15}{13} \text{ cm and } DE = \frac{36}{13} \text{ cm}$

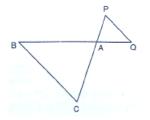
Exercise 4.6

1. Triangles ABC and DEF are similar

(i) If area (ΔABC) = 16 cm^2 , area (ΔDEF) = 25 cm^2 and BC = 2.3 cm, find EF. (ii) If area ($\triangle ABC$) = 9 cm^2 , area ($\triangle DEF$) = 64 cm^2 and DE = 5.1 cm, find AB. (iii)If AC = 19cm and DF = 8 cm, find the ratio of the area of two triangles. (iv) If area ($\triangle ABC$) = 36 cm^2 , area ($\triangle DEF$) = 64 cm^2 and DE = 6.2 cm, find AB. (v) If AB = 1.2 cm and DE = 1.4 cm, find the ratio of the areas of \triangle ABC and \triangle DEF. Sol: (i) We have, $\triangle ABC \sim \triangle DEF$ Area $(\Delta ABC) = 16 \ cm^2$, Area (ΔDEF) = 25 cm² And BC = 2.3 cmSince, $\triangle ABC \sim \triangle DEF$ Then, $\frac{Area(\Delta ABC)}{Area(\Delta DEF)} = \frac{BC^2}{EF^2}$ [By area of similar triangle theorem] $\Rightarrow \frac{16}{25} = \frac{(2.3)^2}{EF^2}$ $\Rightarrow \frac{4}{5} = \frac{2.3}{EF}$ [By taking square root] \Rightarrow EF = $\frac{11.5}{4}$ = 2.875 cm (ii) We have, $\Delta ABC \sim \Delta DEF$ Area($\triangle ABC$) = 9 cm² Area (ΔDEF) = 64 cm²

And DE = 5.1 cm Since, $\triangle ABC \sim \triangle DEF$ Then, $\frac{Area (\Delta ABC)}{Area (\Delta DEF)} = \frac{AB^2}{DE^2}$ [By area of similar triangle theorem] $\Rightarrow \frac{9}{64} = \frac{AB^2}{(5.1)^2}$ $\Rightarrow \frac{3}{8} = \frac{AB}{5.1}$ [By taking square root] $\Rightarrow AB = \frac{3 \times 5.1}{8} = 1.9125 \ cm$ (iii) We have, $\Delta ABC \sim \Delta DEF$ AC = 19 cm and DF = 8 cmBy area of similar triangle theorem $\frac{Area\left(\Delta ABC\right)}{Area\left(\Delta DEF\right)} = \frac{AC^2}{DF^2} = \frac{(19)^2}{8^2} = \frac{361}{64}$ We have, $\triangle ABC \sim \triangle DEF$ AC = 19 cm and DF = 8 cmBy area of similar triangle theorem $\frac{Area\left(\Delta ABC\right)}{Area\left(\Delta DEF\right)} = \frac{AC^2}{DF^2} = \frac{(19)^2}{8^2} = \frac{361}{64}$ (iv) We have, Area ($\triangle ABC$) = 36 cm^2 Area (ΔDEF) = 64 cm^2 DE = 6.2 cmAnd, $\triangle ABC \sim \triangle DEF$ By area of similar triangle theorem $\frac{Area(\Delta ABC)}{Area(\Delta DEF)} = \frac{AB^2}{DE^2}$ $\Rightarrow \frac{36}{64} = \frac{AB^2}{(6.2)^2}$ [By taking square root] $\Rightarrow AB = \frac{6 \times 6.2}{8} = 4.65 \ cm$ (v) We have, $\triangle ABC \sim \triangle DEF$ AB = 1.2 cm and DF = 1.4 cm By area of similar triangle theorem $\frac{Area (\Delta ABC)}{Area (\Delta DEF)} = \frac{AB^2}{DE^2}$ $=\frac{(1.2)^2}{(1.4)^2}$

- $= \frac{1.44}{1.96} \\ = \frac{36}{49}$
- 2. In fig. below $\triangle ACB \sim \triangle APQ$. If BC = 10 cm, PQ = 5 cm, BA = 6.5 cm and AP = 2.8 cm, find CA and AQ. Also, find the area ($\triangle ACB$): *area* ($\triangle APQ$)



Sol:

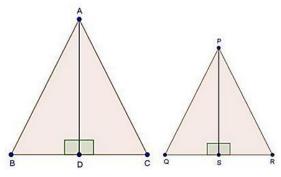
 $=\frac{4}{1}$

We have,

 $\Delta ACB \sim \Delta APQ$

Then,
$$\frac{AC}{AP} = \frac{CB}{PQ} = \frac{AB}{AQ}$$
 [Corresponding parts of similar Δ are proportional]
 $\Rightarrow \frac{AC}{2.8} = \frac{10}{5} = \frac{6.5}{AQ}$
 $\Rightarrow \frac{AC}{2.8} = \frac{10}{5}$ and $\frac{10}{5} = \frac{6.5}{AQ}$
 $\Rightarrow AC = \frac{10}{5} \times 2.8$ and $AQ = 6.5 \times \frac{5}{10}$
 $\Rightarrow AC = 5.6$ cm and $AQ = 3.25$ cm
By area of similar triangle theorem
 $\frac{Area(\Delta ACB)}{Area(\Delta APQ)} = \frac{BC^2}{PQ^2}$
 $= \frac{(10)^2}{(5)^2}$

The areas of two similar triangles are 81 cm² and 49 cm² respectively. Find the ratio of their corresponding heights. What is the ratio of their corresponding medians?
 Sol:

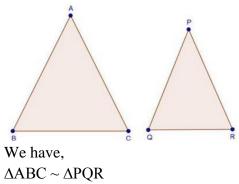


We have, $\Delta ABC \sim \Delta PQR$ Area ($\triangle ABC$) = 81 cm², Area (ΔPOR) = 49 cm² And AD and PS are the altitudes By area of similar triangle theorem $\frac{Area\left(\Delta ABC\right)}{Area\left(\Delta PQR\right)} = \frac{AB^2}{PQ^2}$ $\Rightarrow \frac{81}{49} = \frac{AB^2}{PQ^2}$ $\Rightarrow \frac{9}{7} = \frac{AB}{PQ}$(i) [Taking square root] In $\triangle ABD$ and $\triangle PQS$ $\angle B = \angle Q$ $[\Delta ABC \sim \Delta PQR]$ $\angle ADB = \angle PSQ$ [Each 90°] Then, $\triangle ABD \sim \triangle PQS$ [By AA similarity] $\therefore \frac{AB}{PO} = \frac{AD}{PS}$...(ii) [Corresponding parts of similar Δ are proportional] Compare (1) and (2) $\frac{AD}{PS} = \frac{9}{7}$ \therefore Ratio of altitudes = $\frac{9}{7}$

Since, the ratio of the area of two similar triangles is equal to the ratio of the squares of the squares of their corresponding altitudes and is also equal to the squares of their corresponding medians.

Hence, ratio of altitudes = Ratio of medians = 9:7

The areas of two similar triangles are 169 cm² and 121 cm² respectively. If the longest side of the larger triangle is 26 cm, find the longest side of the smaller triangle.
 Sol:



 $\Delta ABC \sim \Delta PQR$ Area(ΔABC) = 169 cm² Area(ΔPQR) = 121 cm2 And AB = 26 cm By area of similar triangle theorem

$$\frac{Area (\Delta ABC)}{Area (\Delta PQR)} = \frac{AB^2}{PQ^2}$$

$$\Rightarrow \frac{169}{121} = \frac{(26)^2}{PQ^2}$$

$$\Rightarrow \frac{13}{11} = \frac{26}{PQ} \qquad [Taking square root]$$

$$\Rightarrow PQ = \frac{11}{13} \times 26 = 22 \ cm$$

 Two isosceles triangles have equal vertical angles and their areas are in the ratio 36 : 25. Find the ratio of their corresponding heights.
 Sol:

Given: AB = AC, PQ = PQ and $\angle A = \angle P$ And, AD and PS are altitudes And, $\frac{Area (\Delta ABC)}{Area (\Delta PQR)} = \frac{36}{25}$...(i) To find: $\frac{AD}{PS}$ Proof: Since, AB = AC and PQ = PRThen, $\frac{AB}{AC} = 1$ and $\frac{PQ}{PR} = 1$ $\therefore \frac{AB}{AC} = \frac{PQ}{PR}$ $\Rightarrow \frac{AB}{PQ} = \frac{AC}{PR}$...(ii) In $\triangle ABC$ and $\triangle PQR$ $\angle A = \angle P$ [Given] $\frac{AB}{PQ} = \frac{AC}{PR}$ [From (2)] Then, $\triangle ABC \sim \triangle PQR$ [By SAS similarity] $\therefore \frac{Area (\Delta ABC)}{Area (\Delta PQR)} = \frac{AB^2}{PQ^2}$(iii) [By area of similar triangle theorem] *Compare equation* (*i*)*and* (*iii*) $\frac{AB^2}{PQ^2} = \frac{36}{25}$ $\Rightarrow \frac{AB}{PO} = \frac{6}{5}$(iv)

In $\triangle ABD$ and $\triangle PQS$	
$\angle B = \angle Q$	$[\Delta ABC \sim \Delta PQR]$
$\angle ADB = \angle PSQ$	[Each 90°]
Then, $\triangle ABD \sim \triangle PQS$	[By AA similarity]
$\therefore \frac{AB}{PQ} = \frac{AD}{PS}$	
$\Rightarrow \frac{6}{5} = \frac{AD}{PS}$	[From (iv)]

6. The areas of two similar triangles are 25 cm² and 36 cm² respectively. If the altitude of the first triangle is 2.4 cm, find the corresponding altitude of the other. **Sol:**

č Q We have, $\triangle ABC \sim \triangle PQR$ Area (ΔABC) = 25 cm² Area (ΔPQR) = 36 cm² AD = 2.4 cmAnd AD and PS are the altitudes To find: PS Proof: Since, $\triangle ABC \sim \triangle PQR$ Then, by area of similar triangle theorem $\frac{Area (\Delta ABC)}{Area (\Delta PQR)} = \frac{AB^2}{PQ^2}$ $\Rightarrow \frac{25}{36} = \frac{AB^2}{PQ^2}$ $\Rightarrow \frac{5}{6} = \frac{AB}{PQ}$(i) In $\triangle ABD$ and $\triangle PQS$ $\angle B = \angle Q$ $[\Delta ABC \sim \Delta PQR]$ $\angle ADB \sim \angle PSQ$ [Each 90°] Then, $\triangle ABD \sim \triangle PQS$ [By AA similarity] $\therefore \frac{AB}{PS} = \frac{AD}{PS}$(ii) [Corresponding parts of similar Δ are proportional] Compare (i) and (ii)

$$\frac{AD}{PS} = \frac{5}{6}$$
$$\Rightarrow \frac{2.4}{PS} = \frac{5}{6}$$
$$\Rightarrow PS = \frac{2.4 \times 6}{5} = 2.88 \ cm$$

7. The corresponding altitudes of two similar triangles are 6 cm and 9 cm respectively. Find the ratio of their areas.

Sol:

$$interpretation of the equations of the equations of the equations of the equations (i) and (ii)$$

$$\frac{Area(\Delta ABC)}{Area(\Delta PQR)} = \frac{AB^2}{PQ^2} \qquad \dots (i)$$

$$In \Delta ABD \ and \Delta PQS$$

$$\angle B = \angle Q \qquad [\Delta ABC \sim \Delta PQR]$$

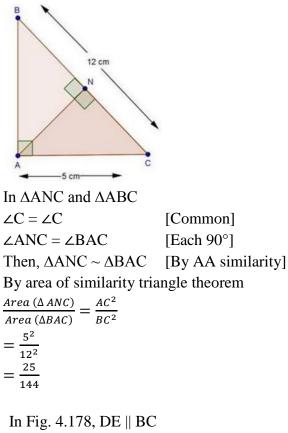
$$\angle ADB = \angle PSQ \qquad [Each 90^\circ]$$

$$Then, \Delta ABD \sim \Delta PQS \qquad [By AA similarity]$$

$$\Rightarrow \frac{AB}{PQ} = \frac{AD}{PS} \qquad [Corresponding parts of similar \Delta are proportional]$$

$$\Rightarrow \frac{AB}{PQ} = \frac{2}{3} \qquad \dots (i)$$

8. ABC is a triangle in which ∠A =90°, AN⊥ BC, BC = 12 cm and AC = 5cm. Find the ratio of the areas of ΔANC and ΔABC.
Sol:



C D Fig. 4.179 Fig. 4.179

(i) If DE = 4 cm, BC = 6 cm and Area (ΔADE) = 16 cm², find the area of ΔABC .

(ii) If DE = 4cm, BC = 8 cm and Area ($\triangle ADE$) = 25 cm², find the area of $\triangle ABC$.

(iii)If DE : BC = 3 : 5. Calculate the ratio of the areas of \triangle ADE and the trapezium BCED.

Sol:

9.

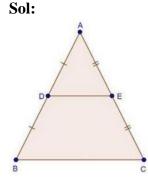
We have, DE || BC, DE = 4 cm, BC = 6 cm and area (ΔADE) = 16cm²

In $\triangle ADE$ and $\triangle ABC$

 $\angle A = \angle A$ [Common] $\angle ADE = \angle ABC$ [Corresponding angles] Then, $\triangle ADE \sim \triangle ABC$ [By AA similarity] ∴ By area of similar triangle theorem $\frac{Area (\Delta ADE)}{Area (\Delta ABC)} = \frac{DE^2}{BC^2}$ $\Rightarrow \frac{16}{Area (\Delta ABC)} = \frac{4^2}{6^2}$

 \Rightarrow Area ($\triangle ABC$) = $\frac{16 \times 36}{16}$ = $36cm^2$ we have, $DE \mid \mid BC$, DE = 4 cm, BC = 8 cm and area (ΔADE) = 25 cm² In $\triangle ADE$ and $\triangle ABC$ $\angle A = \angle A$ [Common] $\angle ADE = \angle ABC$ [Corresponding angles] Then, $\Delta ADE \sim \Delta ABC$ [By AA similarity] By area of similar triangle theorem $\frac{Area (\Delta ADE)}{Area (\Delta ABC)} = \frac{DE^2}{BC^2}$ $\Rightarrow \frac{16}{Area (\Delta ABC)} = \frac{4^2}{6^2}$ \Rightarrow Area (\triangle ABC) = $\frac{16 \times 36}{16}$ = 36 cm² We have, DE || BC, DE = 4 cm, BC = 8 cm and area ($\triangle ADE$) = 25cm² In $\triangle ADE$ and $\triangle ABC$ $\angle A = \angle A$ [Common] $\angle ADE = \angle ABC$ [Corresponding angles] Then, $\triangle ADE \sim \triangle ABC$ [By AA similarity] By area of similar triangle theorem $\Rightarrow \frac{Area (\Delta ADE)}{Area (\Delta ABC)} = \frac{DE^2}{BC^2}$ $\frac{25}{Area\left(\Delta ABC\right)} = \frac{4^2}{8^2}$ \Rightarrow Area ($\triangle ABC$) = $\frac{25 \times 64}{16}$ = 100 cm² We have, DE || BC, and $\frac{DE}{BC} = \frac{3}{5}$(i) In $\triangle ADE$ and $\triangle ABC$ $\angle A = \angle A$ [Common] $\angle ADE = \angle B$ [Corresponding angles] Then, $\triangle ADE \sim \triangle ABC$ [By AA similarity] By area of similar triangle theorem $\Rightarrow \frac{Area (\Delta ADE)}{Area (\Delta ABC)} = \frac{DE^2}{BC^2}$ $\Rightarrow \frac{ar (\Delta ADE)}{ar (\Delta ADE) + ar (trap.DECB)} = \frac{3^2}{5^2} \text{ [From (i)]}$ \Rightarrow 25ar (\triangle ADE) = 9ar (\triangle ADE) + 9ar (trap. DECB) \Rightarrow 25 ar (\triangle ADE – 9ar) (\triangle ADE) = 9ar (trap.DECB) \Rightarrow 16 ar(\triangle ADE) = 9 ar (trap. DECB) $\Rightarrow \frac{ar(\Delta ADE)}{ar(trap.DECB)} = \frac{9}{16}$

10. In \triangle ABC, D and E are the mid-points of AB and AC respectively. Find the ratio of the areas of \triangle ADE and \triangle ABC



We have, D and E as the mid-points of AB and AC So, according to the mid-point theorem DE || BC and DE = $\frac{1}{2}BC$...(i) In $\triangle ADE$ and $\triangle ABC$ $\angle A = \angle A$ [Common] $\angle ADE = \angle B$ [Corresponding angles] Then, $\triangle ADE \sim \triangle ABC$ [By AA similarity] By area of similar triangle theorem $\frac{ar(\Delta ADE)}{ar(\Delta ABC)} = \frac{DE^2}{BC^2}$ $=\frac{\left(\frac{1}{2}BC\right)^2}{BC^2}$ [From (i)] $=\frac{\frac{1}{4}BC^2}{BC^2}$ $=\frac{1}{4}$

11. In Fig., 4.179, $\triangle ABC$ and $\triangle DBC$ are on the same base BC. If AD and BC intersect at O, prove that $\frac{area(\triangle ABC)}{area(\triangle DBC)} = \frac{AO}{DO}$

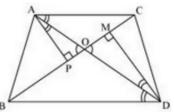
Sol:

We know that area of a triangle $=\frac{1}{2} \times Base \times height$

Since $\triangle ABC$ and $\triangle DBC$ are one same base,

Therefore ratio between their areas will be as ratio of their heights.

Let us draw two perpendiculars AP and DM on line BC.



In \triangle APO and \triangle DMO, $\angle APO = \angle DMO$ (Each is 90°) $\angle AOP = \angle DOM$ (vertically opposite angles) $\angle OAP = \angle ODM$ (remaining angle) Therefore $\triangle APO \sim \triangle DMO$ (By AAA rule) Therefore $\frac{AP}{DM} = \frac{AO}{DO}$ Therefore $\frac{area (\Delta ABC)}{area (\Delta DBC)} = \frac{AO}{DO}$

ABCD is a trapezium in which AB || CD. The diagonals AC and BD intersect at O. Prove 12. that: (i) $\triangle AOB$ and $\triangle COD$ (ii) If OA = 6 cm, OC = 8 cm,

Find:

 $\frac{area (\Delta AOB)}{area (\Delta COD)}$ (a) (b) $\frac{area(\Delta AOD)}{area(\Delta COD)}$ Sol:

We have,

AB || DC

In $\triangle AOB$ and $\triangle COD$

 $\angle AOB = \angle COD$ [Vertically opposite angles] $\angle OAB = \angle OCD$ [Alternate interior angles]

Then, $\triangle AOB \sim \triangle COD$ [By AA similarity]

(a) By area of similar triangle theorem

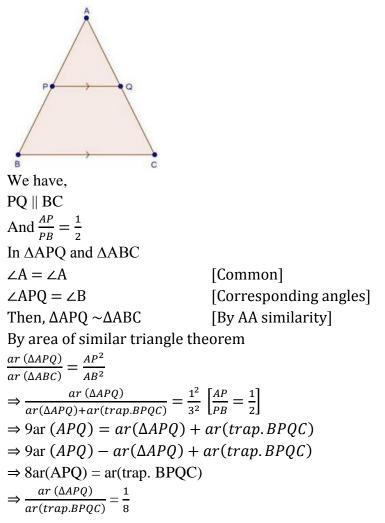
$$\frac{ar(\Delta AOB)}{ar(\Delta COD)} = \frac{OA^2}{OC^2} = \frac{6^2}{8^2} = \frac{36}{64} = \frac{9}{16}$$
(b) Draw DP \perp AC
$$\therefore \frac{area(\Delta AOD)}{area(\Delta COD)} = \frac{\frac{1}{2} \times AO \times DP}{\frac{1}{2} \times CO \times DP}$$

$$= \frac{AO}{CO}$$

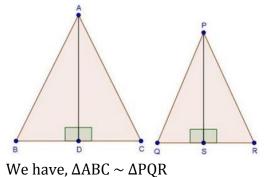
$$= \frac{6}{8}$$

$$= \frac{3}{4}$$

13. In ABC, P divides the side AB such that AP : PB = 1 : 2. Q is a point in AC such that PQ || BC. Find the ratio of the areas of $\triangle APQ$ and trapezium BPQC. Sol:

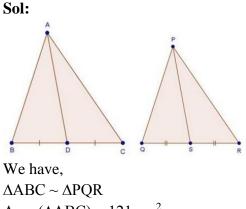


14. The areas of two similar triangles are 100 cm² and 49 cm² respectively. If the altitude the bigger triangle is 5 cm, find the corresponding altitude of the other.
 Sol:



Area(ΔABC) = 100 cm², Area (ΔPQR) = 49 cm² AD = 5 cmAnd AD and PS are the altitudes By area of similar triangle theorem $\frac{Area (\Delta ABC)}{Area (\Delta PQR)} = \frac{AB^2}{PQ^2}$ $\Rightarrow \frac{100}{49} = \frac{AB^2}{PQ^2}$ $\Rightarrow \frac{10}{7} = \frac{AB}{PQ}$...(i) In $\triangle ABD$ and $\triangle PQS$ $\angle B = \angle Q$ $[\Delta ABC \sim \Delta PQR]$ $\angle ADB = \angle PSQ$ [Each 90°] Then, $\triangle ABD \sim \triangle PQS$ [By AA similarity] $\therefore \frac{AB}{PQ} = \frac{AD}{PS}$...(ii) [Corresponding parts of similar Δ are proportional] Compare (i) and (ii) $\frac{AD}{PS} = \frac{10}{7}$ $\Rightarrow \frac{5}{PS} = \frac{10}{7}$ $\Rightarrow PS = \frac{5 \times 7}{10} = 3.5 \ cm$

15. The areas of two similar triangles are 121 cm² and 64 cm² respectively. If the median of the first triangle is 12.1 cm, find the corresponding median of the other.



Area (ΔABC) = 121 cm², Area (ΔPQR) = 64 cm² AD = 12.1 cm And AD and PS are the medians By area of similar triangle theorem $\frac{Area(\Delta ABC)}{Area(\Delta PQR)} = \frac{AB^2}{PQ^2}$

$\Rightarrow \frac{121}{64} = \frac{AB^2}{PQ^2}$	
$\Rightarrow \frac{11}{8} = \frac{AB}{PQ}$	(i)
Since, $\triangle ABC \sim \triangle PQR$	
Then, $\frac{AB}{PQ} = \frac{BC}{QR}$	[Corresponding parts of similar Δ are proportional]
$\Rightarrow \frac{AB}{PQ} = \frac{2BD}{2QS}$	[AD and PS are medians]
$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QS}$	(ii)
In $\triangle ABD$ and $\triangle PQS$	
$\angle B = \angle Q$	$[\Delta ABC \sim \Delta PQS]$
$\frac{AB}{PQ} = \frac{BD}{QS}$	[From (ii)]
Then, $\triangle ABD \sim \triangle PQS$	[By SAS similarity]
$\therefore \frac{AB}{PQ} = \frac{AD}{PS} \qquad \dots (iii)$	[Corresponding parts of similar Δ are proportional]
Compare (i) and (iii)	
$\frac{11}{8} = \frac{AD}{PS}$	
$\Rightarrow \frac{11}{8} = \frac{12.1}{PS}$	
$\Rightarrow PS = \frac{8 \times 12.1}{PS}$	
$\Rightarrow PS = \frac{8 \times 12.1}{PS} = 8.8 \text{ cm}$	n

16. If $\triangle ABC \sim \triangle DEF$ such that AB = 5 cm, area ($\triangle ABC$) = 20 cm² and area ($\triangle DEF$) = 45 cm², determine DE.

Sol:

We have,

 $\triangle ABC \sim \triangle DEF$ such that AB = 5 cm,

Area ($\triangle ABC$) = 20 cm² and area($\triangle DEF$) = 45 cm²

By area of similar triangle theorem

$$\frac{Area(\Delta ABC)}{Area(\Delta DEF)} = \frac{AB^2}{DE^2}$$

$$\Rightarrow \frac{20}{45} = \frac{5^2}{DE^2}$$

$$\Rightarrow \frac{4}{9} = \frac{5^2}{DE^2}$$

$$\Rightarrow \frac{2}{3} = \frac{5}{DE}$$

$$\Rightarrow DE = \frac{3 \times 5}{2} = 7.5 \ cm$$
[Taking square root]

17. In \triangle ABC, PQ is a line segment intersecting AB at P and AC at Q such that PQ || BC and PQ divides \triangle ABC into two parts equal in area. Find $\frac{BP}{AB}$

Sol: We have, PQ || BC And $ar(\Delta APQ) = ar(trap. PQCB)$ $\Rightarrow ar(\Delta APQ) = ar(\Delta ABC) - ar(\Delta APQ)$ $\Rightarrow 2ar(\Delta APQ) = ar(\Delta ABC)$...(i) In $\triangle APQ$ and $\triangle ABC$ $\angle A = \angle A$ [common] $\angle APQ = \angle B$ [corresponding angles] Then, $\triangle APQ \sim \triangle ABC$ [By AA similarity] : By area of similar triangle theorem $\frac{ar(\Delta APQ)}{ar(\Delta ABC)} = \frac{AP^2}{AB^2}$ $\Rightarrow \frac{ar(\Delta APQ)}{ar(\Delta APQ)} = \frac{AP^2}{AB^2}$ [By using (i)] $\Rightarrow \frac{1}{2} = \frac{AP^2}{AB^2}$ $\Rightarrow \frac{1}{\sqrt{2}} = \frac{AP}{AB^2}$ $\Rightarrow \frac{1}{\sqrt{2}} = \frac{AP}{AB}$ [Taking square root] $\Rightarrow \frac{1}{\sqrt{2}} = \frac{AB - BP}{AB}$ $\Rightarrow \frac{1}{\sqrt{2}} = \frac{AB}{AB} - \frac{BP}{AB}$ $\Rightarrow \frac{1}{\sqrt{2}} = 1 - \frac{BP}{AB}$ $=\frac{BP}{AB}=1-\frac{1}{\sqrt{2}}$ $\Rightarrow \frac{BP}{AB} = \frac{\sqrt{2}-1}{\sqrt{2}}$

18. The areas of two similar triangles ABC and PQR are in the ratio 9:16. If BC = 4.5 cm, find the length of QR.

Sol:

We have,

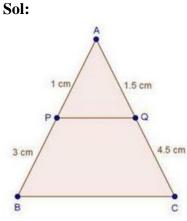
$$\Delta ABC \sim \Delta PQR$$

$$\frac{area (\Delta ABC)}{area (\Delta PQR)} = \frac{BC^2}{QR^2}$$

$$\Rightarrow \frac{9}{16} = \frac{(4.5)^2}{QR^2}$$

$$\Rightarrow \frac{3}{4} = \frac{4.5}{QR}$$
[Taking square root]
$$\Rightarrow QR = \frac{4 \times 4.5}{3} = 6cm$$

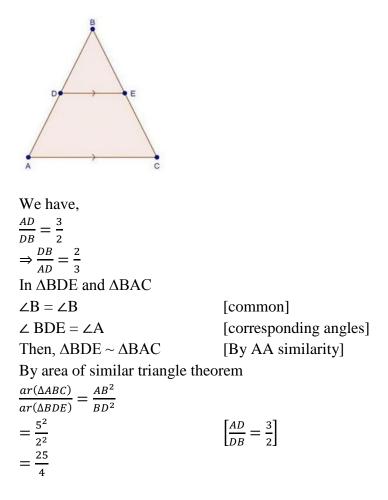
19. ABC is a triangle and PQ is a straight line meeting AB in P and AC in Q. If AP = 1 cm, PB = 3 cm, AQ = 1.5 cm, QC = 4.5 m, prove that area of $\triangle APQ$ is one-sixteenth of the area of ABC.



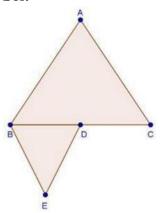
We have,

AP = 1 cm, PB = 3 cm, AQ = 1.5 cm and QC = 4.5 m In \triangle APQ and \triangle ABC $\angle A = \angle A$ [Common] $\frac{AP}{AB} = \frac{AQ}{AC}$ [Each equal to $\frac{1}{4}$] Then, $\triangle APQ \sim \triangle ABC$ [By SAS similarity] By area of similar triangle theorem $\frac{ar(\triangle APQ)}{ar(\triangle ABC)} = \frac{1^2}{4^2}$ $\Rightarrow \frac{ar(\triangle APQ)}{ar(\triangle ABC)} = \frac{1}{16} \times ar(\triangle ABC)$

20. If D is a point on the side AB of \triangle ABC such that AD : DB = 3.2 and E is a Point on BC such that DE || AC. Find the ratio of areas of \triangle ABC and \triangle BDE. **Sol:**

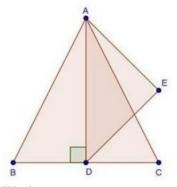


21. If \triangle ABC and \triangle BDE are equilateral triangles, where D is the mid-point of BC, find the ratio of areas of \triangle ABC and \triangle BDE. **Sol:**



We have, $\triangle ABC$ and $\triangle BDE$ are equilateral triangles then both triangles are equiangular $\therefore \triangle ABC \sim \triangle BDE$ [By AAA similarity] By area of similar triangle theorem $\frac{ar(\Delta ABC)}{ar(\Delta BDE)} = \frac{BC^2}{BD^2}$ = $\frac{2(BD)^2}{BD^2}$ [D is the mid-point of BC] = $\frac{4BD^2}{BD^2}$ = $\frac{4}{1}$

22. AD is an altitude of an equilateral triangle ABC. On AD as base, another equilateral triangle ADE is constructed. Prove that Area (\triangle ADE): Area (\triangle ABC) = 3: 4 **Sol:**



We have, ΔABC is an equilateral triangle Then, AB = BC = ACLet, AB = BC = AC = 2xSince, $AD \perp BC$ then BD = DC = xIn ΔADB , by Pythagoras theorem $AB^2 = (2x)^2 - (x)^2$ $\Rightarrow AD^2 = 4x^2 - x^2 = 3x^2$ $\Rightarrow AD = \sqrt{3}x \ cm$ Since, ΔABC and ΔADE both are equilateral triangles then they are equiangular $\therefore \Delta ABC \sim \Delta ADE$ [By AA similarity] By area of similar triangle theorem $\frac{ar(\Delta ADE)}{ar(\Delta ABC)} = \frac{AD^2}{AB^2}$ $= \frac{(\sqrt{3}x)^2}{(2x)^2}$ $= \frac{3x^2}{4x^2}$

Exercise 4.7

1. If the sides of a triangle are 3 cm, 4 cm, and 6 cm long, determine whether the triangle is a right-angled triangle.

Sol:

We have, Sides of triangle AB = 3 cm BC = 4 cm AC = 6 cm $\therefore AB^2 = 3^2 = 9$ $BC^2 = 4^2 = 16$ $AC^2 = 6^2 = 36$ Since, $AB^2 + BC^2 \neq AC^2$ Then, by converse of Pythagoras theorem, triangle is not a right triangle.

2. The sides of certain triangles are given below. Determine which of them right triangles are.

(i) a = 7 cm, b = 24 cm and c = 25 cm(ii) a = 9 cm, b = 16 cm and c = 18 cm(iii) a = 1.6 cm, b = 3.8 cm and c = 4 cm(iv) a = 8 cm, b = 10 cm and c = 6 cm **Sol:** We have, a = 7 cm, b = 24 cm and c = 25 cm $\therefore a^2 = 49, b^2 = 576 \text{ and } c^2 = 625$ Since, $a^2 + b^2 = 49 + 576$ = 625 $= c^2$

Then, by converse of Pythagoras theorem, given triangle is a right triangle.

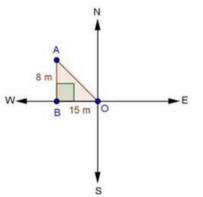
We have, a = 9 cm, b = 16 cm and c = 18 cm $\therefore a^2 = 81, b^2 = 256 \text{ and } c^2 = 324$ Since, $a^2 + b^2 = 81 + 256 = 337$ $\neq c^2$

Then, by converse of Pythagoras theorem, given triangle is not a right triangle.

We have, a = 1.6 cm, b = 3.8 cm and C = 4 cm $\therefore a^2 = 64, b^2 = 100 \text{ and } c^2 = 36$ Since, $a^2 + c^2 = 64 + 36 = 100 = b^2$ Then, by converse of Pythagoras theorem, given triangle is a right triangle.

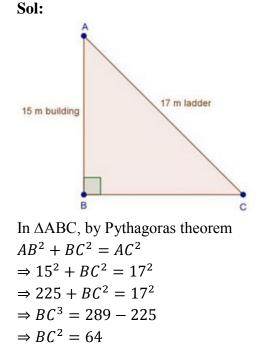
3. A man goes 15 metres due west and then 8 metres due north. How far is he from the starting point?

Sol:



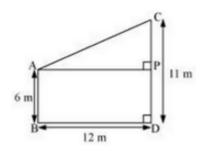
Let the starting point of the man be O and final point be A. \therefore In \triangle ABO, by Pythagoras theorem $AO^2 = AB^2 + BO^2$ $\Rightarrow AO^2 = 8^2 + 15^2$ $\Rightarrow AO^2 = 64 + 225 = 289$ $\Rightarrow AO = \sqrt{289} = 17m$ \therefore He is 17m far from the starting point.

4. A ladder 17 m long reaches a window of a building 15 m above the ground. Find the distance of the foot of the ladder from the building.



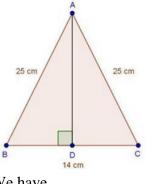
 $\Rightarrow BC = 8 m$ $\therefore Distance of the foot of the ladder from building = 8 m$

Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between their feet is 12 m, find the distance between their tops.
 Sol:



Let CD and AB be the poles of height 11 and 6 m. Therefore CP = 11 - 6 = 5 m From the figure we may observe that AP = 12mIn triangle APC, by applying Pythagoras theorem $AP^2 + PC^2 = AC^2$ $12^2 + 5^2 = AC^2$ $AC^2 = 144 + 25 = 169$ AC = 13Therefore distance between their tops = 13m.

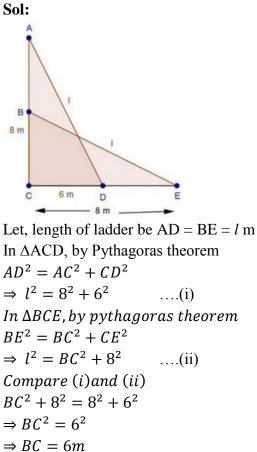
6. In an isosceles triangle ABC, AB = AC = 25 cm, BC = 14 cm. Calculate the altitude from A on BC.



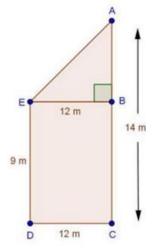
We have AB = AC = 25 cm and BC = 14 cmIn $\triangle ABD$ and $\triangle ACD$ $\angle ADB = \angle ADC$ [Each 90°] AB = AC [Each 25 cm]

AD = AD	[Common]
Then, $\triangle ABD \cong \triangle ACD$	[By RHS condition]
\therefore BD = CD = 7 cm	[By c.p.c.t]
In \triangle ADB, by Pythagoras theorem	em
$AD^2 + BD^2 = AB^2$	
$\Rightarrow AD^2 + 7^2 = 25^2$	
$\Rightarrow AD^2 = 625 - 49 = 576$	
$\Rightarrow AD = \sqrt{576} = 24 \ cm$	

7. The foot of a ladder is 6 m away from a wall and its top reaches a window 8 m above the ground. If the ladder is shifted in such a way that its foot is 8 m away from the wall, to what height does its tip reach?

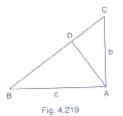


Two poles of height 9 m and 14 m stand on a plane ground. If the distance between their feet is 12 m, find the distance between their tops.
 Sol:



We have, AC = 14 m, DC = 12 m and ED = BC = 9 mConstruction: Draw $EB \perp AC$ $\therefore AB = AC - BC = 14 - 9 = 5 \text{m}$ And, EB = DC = 12 mIn $\triangle ABE$, by Pythagoras theorem, $AE^2 = AB^2 + BE^2$ $\Rightarrow AE^2 = 5^2 + 12^2$ $\Rightarrow AE^2 = 25 + 144 = 169$ $\Rightarrow AE = \sqrt{169} = 13 \text{ m}$ \therefore Distance between their tops = 13 m

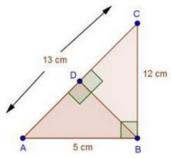
Using Pythagoras theorem determine the length of AD in terms of b and c shown in Fig. 4.219



Sol: We have, In \triangle BAC, by Pythagoras theorem $BC^2 = AB^2 + AC^2$ $\Rightarrow BC^2 = c^2 + b^2$ $\Rightarrow BC = \sqrt{c^2 + b^2}$...(i) In $\triangle ABD$ and $\triangle CBA$ $\angle B = \angle B$ [Common]

$\angle ADB = \angle BAC$	[Each 90°]
Then, $\triangle ABD \sim \triangle CBA$	[By AA similarity]
$\therefore \frac{AB}{CB} = \frac{AD}{CA}$	[Corresponding parts of similar Δ are proportional]
$\Rightarrow \frac{c}{\sqrt{c^2 + b^2}} = \frac{AD}{b}$	
$\Rightarrow AD = \frac{bc}{\sqrt{c^2 + b^2}}$	

10. A triangle has sides 5 cm, 12 cm and 13 cm. Find the length to one decimal place, of the perpendicular from the opposite vertex to the side whose length is 13 cm.Sol:

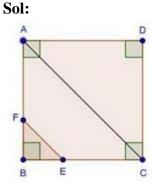


Let, AB = 5cm, BC = 12 cm and AC = 13 cm. Then, $AC^2 = AB^2 + BC^2$. This proves that \triangle ABC is a right triangle, right angles at B. Let BD be the length of perpendicular from B on AC.

Now, Area
$$\triangle ABC = \frac{1}{2}(BC \times BA)$$

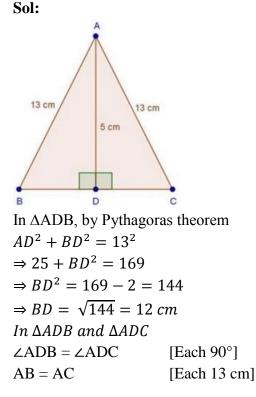
= $\frac{1}{2}(12 \times 5)$
= 30 cm²
Also, Area of $\triangle ABC = \frac{1}{2}AC \times BD = \frac{1}{2}(13 \times BD)$
 $\Rightarrow (13 \times BD) = 30 \times 2$
 $\Rightarrow BD = \frac{60}{13}$ cm

11. ABCD is a square. F is the mid-point of AB. BE is one third of BC. If the area of Δ FBE = 108 cm², find the length of AC.



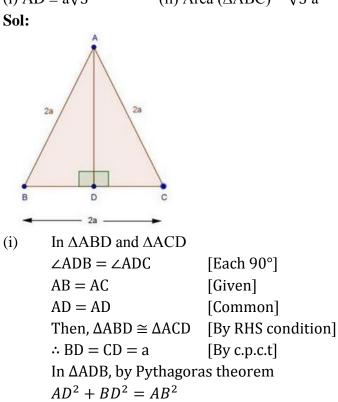
Since, ABCD is a square Then, AB = BC = CD = DA = x cmSince, F is the mid-point of AB Then, AF = $FB = \frac{x}{2} cm$ Since, BE is one third of BC Then, BE = $\frac{x}{3}$ cm We have, area of $\Delta FBE = 108 \text{ cm}^2$ $\Rightarrow \frac{1}{2} \times BE \times FB = 108$ $\Rightarrow \frac{1}{2} \times \frac{x}{3} \times \frac{x}{2} = 108$ $\Rightarrow x^2 = 108 \times 2 \times 3 \times 2$ $\Rightarrow x^2 = 1296$ $\Rightarrow x = \sqrt{1296} = 36cm$ In $\triangle ABC$, by pythagoras theorem $AC^2 = AB^2 + BC^2$ $\Rightarrow AC^2 = x^2 + x^2$ $\Rightarrow AC^2 = 2x^2$ $\Rightarrow AC^2 = 2 \times (36)^2$ $\Rightarrow AC = 36\sqrt{2} = 36 \times 1.414 = 50.904 \ cm$

In an isosceles triangle ABC, if AB = AC = 13 cm and the altitude from A on BC is 5 cm, find BC.



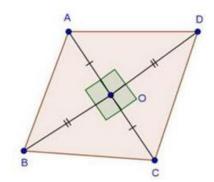
AD = AD [Common] Then, \triangle ADB ≅ \triangle ADC [By RHS condition] ∴ BD = CD = 12 cm [By c.p.c.t] Hence, BC = 12 + 12 = 24 cm

13. In a $\triangle ABC$, AB = BC = CA = 2a and $AD \perp BC$. Prove that (i) $AD = a\sqrt{3}$ (ii) Area ($\triangle ABC$) = $\sqrt{3} a^2$



- in ΔADB , by Pythagoras theorem $AD^2 + BD^2 = AB^2$ $\Rightarrow AD^2 + (a)^2 = (2a)^2$ $\Rightarrow AD^2 + a^2 = 4a^2$ $\Rightarrow AD^2 = 4a^2 - a^2 = 3a^2$ $\Rightarrow AD = a\sqrt{3}$ (ii) Area of $\Delta ABC = \frac{1}{2} \times BC \times AD$ $= \frac{1}{2} \times 2a \times a\sqrt{3}$ $= \sqrt{3}a^2$
- 14. The lengths of the diagonals of a rhombus are 24 cm and 10 cm. Find each side of the rhombus.

Sol:

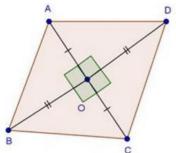


We have,

ABCD is a rhombus with diagonals AC = 10 cm and BD = 24 cm We know that diagonal of a rhombus bisect each other at 90° \therefore AO = OC = 5 cm and BO = OD = 12 cm In \triangle AOB, by Pythagoras theorem $AB^2 = AO^2 + BO^2$ $\Rightarrow AB^2 = 5^2 + 12^2$ $\Rightarrow AB^2 = 25 + 144 = 169$ $\Rightarrow AB = \sqrt{169} = 13 cm$

15. Each side of a rhombus is 10 cm. If one of its diagonals is 16 cm find the length of the other diagonal.

Sol:

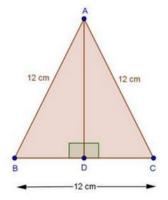


We have,

ABCD is a rhombus with side 10 cm and diagonal BD = 16 cm We know that diagonals of a rhombus bisect each other at 90° \therefore BO = OD = 8 cm In \triangle AOB, by pythagoras theorem $AO^2 + BO^2 = AB^2$ $\Rightarrow AO^2 + 8^2 = 10^2$ $\Rightarrow AO^2 = 100 - 64 = 36$ $\Rightarrow AO = \sqrt{36} = 6 cm$ [By above property] hence, AC = 6 + 6 = 12 cm 16. In an acute-angled triangle, express a median in terms of its sides. **Sol:**

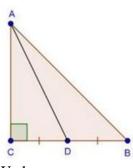
We have,
In
$$\triangle$$
ABC, AD is a median.
Draw AE \perp BC
In \triangle AEB, by pythagoras theorem
 $AB^2 = AE^2 + BE^2$
 $\Rightarrow AB^2 = AD^2 - DE^2 + (BD - DE)^2$ [By Pythagoras theorem]
 $\Rightarrow AB^2 = AD^2 - DE^2 + (BD - DE)^2$ [By Pythagoras theorem]
 $\Rightarrow AB^2 = AD^2 - DE^2 + BD^2 + DE^2 - 2BD \times DE$
 $\Rightarrow AB^2 = AD^2 + BD^2 - 2BD \times DE$
 $\Rightarrow AB^2 = AD^2 + \frac{BC^2}{4} - BC \times DE$ (i) [BC = 2BD given]
Again, In \triangle AEC, by pythagoras theorem
 $AC^2 = AE^2 + EC^2$
 $\Rightarrow AC^2 = AD^2 + \frac{BC^2}{4} + BC \times DE$ (ii) [BC = 2CD given]
 $\Rightarrow AC^2 = AD^2 + \frac{BC^2}{4} + BC \times DE$ (ii) [BC = 2CD given]
 $Add \ equations (i) \ and (ii)$
 $AB^2 + AC^2 = 2AD^2 + \frac{BC^2}{2}$
 $\Rightarrow 2AB^2 + 2AC^2 = 4AD^2 + BC^2$ [Multiply by 2]
 $\Rightarrow 4AD^2 = 2AB^2 + 2AC^2 - BC^2$
 $\Rightarrow AD^2 = \frac{2AB^2 + 2AC^2 - BC^2}{4}$

17. Calculate the height of an equilateral triangle each of whose sides measures 12 cm. **Sol:**



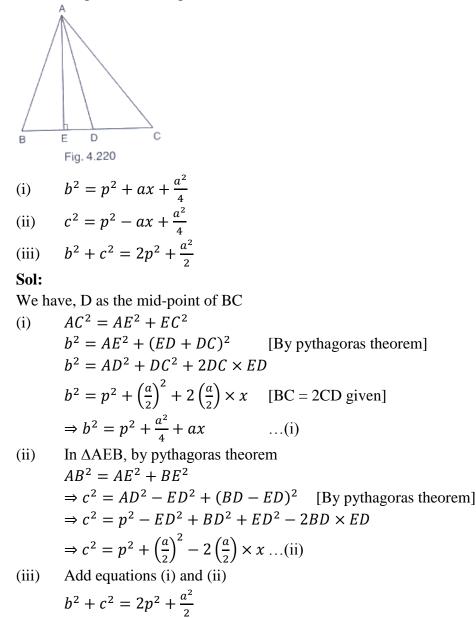
We have, \triangle ABC is an equilateral \triangle with side 12 cm. Draw AE \perp BC In $\triangle ABD$ and $\triangle ACD$ $\angle ADB = \angle ADC$ [Each 90°] AB = AC[Each 12 cm] AD = AD[Common] Then, $\triangle ABD \cong \triangle ACD$ [By RHS condition] $\therefore AD^2 + BD^2 = AB^2$ $\Rightarrow AD^2 + 6^2 = 12^2$ $\Rightarrow AD^2 = 144 - 36 = 108$ $\Rightarrow AD = \sqrt{108} = 10.39 \text{ cm}$

18. In right-angled triangle ABC in which $\angle C = 90^\circ$, if D is the mid-point of BC, prove that $AB^2 = 4 AD^2 - 3 AC^2$. Sol:

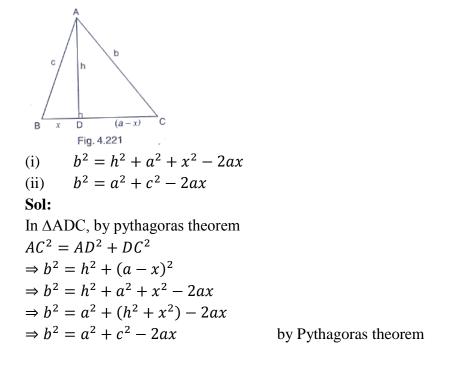


We have, $\angle C = 90^{\circ}$ and D is the mid-point of BC In $\triangle ACB$, by Pythagoras theorem $AB^2 = AC^2 + BC^2$ $\Rightarrow AB^2 = AC^2 + (2CD)^2$ [D is the mid-point of BC] $AB^{2} = AC^{2} + 4CD^{2}$ $\Rightarrow AB^{2} = AC^{2} + 4(AD^{2} - AC^{2})$ [In \triangle ACD, by Pythagoras theorem] $\Rightarrow AB^{2} = AC^{2} + 4AD^{2} - 4AC^{2}$ $\Rightarrow AB^{2} = 4AD^{2} - 3AC^{2}$

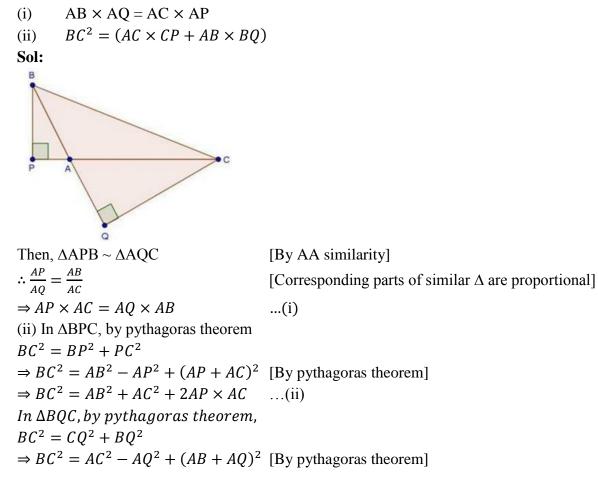
19. In Fig. 4.220, D is the mid-point of side BC and AE \perp BC. If BC = a, AC = b, AB = c, ED = x, AD = p and AE = h, prove that:



20. In Fig., 4.221, $\angle B < 90^{\circ}$ and segment AD \perp BC, show that



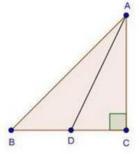
21. In $\triangle ABC$, $\angle A$ is obtuse, PB $\perp AC$ and QC $\perp AB$. Prove that:



 $\Rightarrow BC^{2} = AC^{2} - AQ^{2} + AB^{2} + AQ^{2} + 2AB \times AQ$ $\Rightarrow BC^{2} = AC^{2} + AB^{2} + 2AB \times AQ \qquad \dots (iii)$ Add equations (ii)& (iii) $2BC^{2} = 2AC^{2} + 2AB^{2} + 2AP \times AC + 2AB \times AQ$ $\Rightarrow 2BC^{2} = 2AC^{2} + 2AB^{2} + 2AP \times AC + 2AB \times AQ$ $\Rightarrow 2BC^{2} = 2AC^{2} + 2AB^{2} + 2AP \times AC + 2AB \times AQ$ $\Rightarrow 2BC^{2} = 2AC[AC + AP] + AB[AB + AQ]$ $\Rightarrow 2BC^{2} = 2AC \times PC + 2AB \times BQ$ $\Rightarrow BC^{2} = AC \times PC + AB \times BQ \qquad [Divide by 2]$

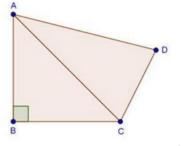
22. In a right \triangle ABC right-angled at C, if D is the mid-point of BC, prove that $BC^2 = 4(AD^2 - AC^2)$

Sol:



To prove: $BC^2 = 4[AD^2 - AC^2]$ We have, $\angle C = 90^\circ$ and D is the mid-point of BC. LHS = BC^2 = $(2CD)^2$ [D is the mid-point of BC] = $4CD^2$ = $4[AD^2 - AC^2]$ [In $\triangle ACD$, by pythagoras theorem] = RHS

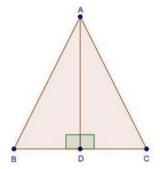
23. In a quadrilateral ABCD, $\angle B = 90^\circ$, $AD^2 = AB^2 + BC^2 + CD^2$, prove that $\angle ACD = 90^\circ$. Sol:



We have, $\angle B = 90^{\circ}$ and $AD^2 = AB^2 + BC^2 + CD^2$ $\therefore AD^2 = AB^2 + BC^2 + CD^2$ [Given] But $AB^2 + BC^2 = AC^2$ [By pythagoras theorem]

Then, $AD^2 = AC^2 + CD^2$ By converse of by pythagoras theorem $\angle ACD = 90^\circ$

24. In an equilateral $\triangle ABC$, AD $\perp BC$, prove that $AD^2 = 3BD^2$. Sol:



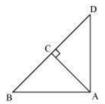
We have, $\triangle ABC$ is an equilateral \triangle and $AD \perp BC$ In \triangle ADB and \triangle ADC $\angle ADB = \angle ADC$ [Each 90°] AB = AC[Given] AD = AD[Common] Then, $\triangle ADB \cong \triangle ADC$ [By RHS condition] \therefore BD = CD = $\frac{BC}{2}$...(i) [corresponding parts of similar Δ are proportional] In, $\triangle ABD$, by Pythagoras theorem $AB^2 = AD^2 + BD^2$ $\Rightarrow BC^2 = AD^2 + BD^2$ [AB = BC given] $\Rightarrow [2BD]^2 = AD^2 + BD^2$ [From (i)] $\Rightarrow 4BD^2 - BD^2 = AD^2$ $\Rightarrow 3BD^2 = AD^2$

25. $\triangle ABD$ is a right triangle right angled at A and AC \perp BD. Show that:

- (i) $AB^2 = CB \times BD$
- (ii) $AC^2 = DC \times BC$
- (iii) $AD^2 = BD \times CD$

(iv)
$$\frac{AB^2}{AC^2} = \frac{BD}{DC}$$

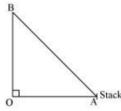
Sol:



(i) In \triangle ADB and \triangle CAB $\angle DAB = \angle ACB = 90^{\circ}$ $\angle ABD = \angle CBA$ (common angle) $\angle ADB = \angle CAB$ (remaining angle) So, $\triangle ADB \sim \triangle CAB$ (by AAA similarity) Therefore $\frac{AB}{CB} = \frac{BD}{AB}$ $\Rightarrow AB^2 = CB \times BD$ Let $\angle CAB = x$ (ii) In ΔCBA $\angle CBA = 180^{\circ} - 90^{\circ} - x$ $\angle CBA = 90^{\circ} - x$ Similarly in $\triangle CAD$ $\angle CAD = 90^{\circ} - \angle CAD = 90^{\circ} - x$ $\angle CDA = 90^{\circ} - \angle CAB$ $=90^{\circ} - x$ $\angle CDA = 180^{\circ} - 90^{\circ} - (90^{\circ} - x)$ $\angle CDA = x$ Now in \triangle CBA and \triangle CAD we may observe that $\angle CBA = \angle CAD$ $\angle CAB = \angle CDA$ $\angle ACB = \angle DCA = 90^{\circ}$ Therefore $\Delta CBA \sim \Delta CAD$ (by AAA rule) Therefore $\frac{AC}{DC} = \frac{BC}{AC}$ $\Rightarrow AC^2 = DC \times BC$ In ΔDCA & ΔDAB (iii) $\angle DCA = \angle DAB$ (both are equal to 90°) $\angle CDA = \angle ADB$ (common angle) $\angle DAC = \angle DBA$ (remaining angle) $\Delta DCA \sim \Delta DAB$ (AAA property) Therefore $\frac{DC}{DA} = \frac{DA}{DB}$ $\Rightarrow AD^2 = BD \times CD$ From part (i) $AB^2 = CB \times BD$ (iv) From part (ii) $AC^2 = DC \times BC$ Hence $\frac{AB^2}{AC^2} = \frac{CB \times BD}{DC \times BC}$ $\frac{AB^2}{AC^2} = \frac{BD}{DC}$ Hence proved

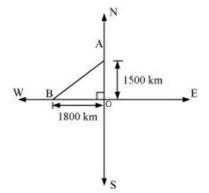
26. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

Sol:



Let OB be the pole and AB be the wire. Therefore by pythagoras theorem, $AB^2 = OB^2 + OA^2$ $24^2 = 18^2 + OA^2$ $OA^2 = 576 - 324$ $OA = \sqrt{252} = \sqrt{6 \times 6 \times 7} = 6\sqrt{7}$ Therefore distance from base = $6\sqrt{7} m$

27. An aeroplane leaves an airport and flies due north at a speed of 1000km/hr. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km/hr. How far apart will be the two planes after 1 hours?Sol:



Distance traveled by the plane flying towards north in $1\frac{1}{2}$ hrs

$$= 1000 \times 1\frac{1}{2} = 1500 \ km$$

Similarly, distance travelled by the plane flying towards west in $1\frac{1}{2}$ hrs

$$= 1200 \times 1\frac{1}{2} = 1800 \ km$$

Let these distances are represented by OA and OB respectively. Now applying Pythagoras theorem

Distance between these planes after $1\frac{1}{2}$ hrs AB = $\sqrt{OA^2 + OB^2}$ = $\sqrt{(1500)^2 + (1800)^2} = \sqrt{2250000 + 3240000}$ $=\sqrt{5490000} = \sqrt{9 \times 610000} = 300\sqrt{61}$

So, distance between these planes will be $300\sqrt{61}$ km, after $1\frac{1}{2}$ hrs

28. Determine whether the triangle having sides (a - 1) cm, $2\sqrt{a}$ cm and (a + 1) cm is a right-angled triangle.

Sol:

Let ABC be the Δ with AB = (a - 1) cm BC = $2\sqrt{a}$ cm, CA = (a + 1) cm Hence, $AB^2 = (a - 1)^2 = a^2 + 1 - 2a$ $BC^2 = (2\sqrt{a})^2 = 4a$ $CA^2 = (a + 1)^2 = a^2 + 1 + 2a$ Hence $AB^2 + BC^2 = AC^2$ So ΔABC is right angled Δ at B.