. CONCEPT OF PROGRAMMING
AND PROGRAMMING
CHAPTER - 6 LANGUAGES

OBJECTIVES OF THIS CHAPTER

6.1 Introduction

6.2 Concept of Program and Programming
6.3 Programming Languages

6.4 Language Translator

6.5 Programming Process

6.1 INTRODUCTION

In this chapter. we are going to leam about the concept of program, programming,
programming process and different categories of programming languages used for computer
systems. A program is basically a set of instructions to be executed by computer to perform
some task. The process of writing a program is called programming, The person who writes
the program is called programmer. When a programmer writes a program, he or she goes
through a particular process. This process of developing a program is called programming
process. The programmer can use any language from hundreds of available programming
languages for program development.

6.2 CONCEPT OF PROGRAM AND PROGRAMMING

We know that a computer system basically consists of two parts: hardware and software.
Without software, computer-hardware cannot do anything hence computer is nothing bul a
piece of metal without software. To make the computer-hardware to do something, we must
install and use software in our computer system, Now the question arises what is software?

Software is a set of computer programs which are designed and developed to perform
desired tasks on computer. It is the software which makes a computer capable of data processing,
storing and retrieval. Basically, softwares are categorised into two types: system software and
application software. System software are designed and developed to control the functionality
& o operale computer system hardware while the application software are designed and
developed to perform specific tasks using computer systermn. System softwares are more complex
as compared to application softwares. The development (programming) of system soltwares
require more skills as compared to application software development.

c PR & A Pt . L . 91

Software 18 usually not a single entity. It is a set (collection) of programs. A programmer
must write instructions in a prescribed sequence of the programming language bemg used for
development so that the computer system becomes capable of successfully performing the
desired task. Thus, we can say that a Program is a set of Instructions that the computer

executes,
Programmer Program Saftware
Instruction_1 Programl Progaml - Program n
A 4 Instruction.2 instruettons| |inatrections instruetions
" i — instructions | |imroetions, instructions,
| Programming A iR : FOEEy Execution
m :} instruction_n s | i [:} m
== .

Fig. 6.1 Program, Programmer, Programming and Software
The process of writing system program 15 kmown as System programming and the
programmer for the same is called System Programmer whereas writing application program is
known as application programming and the programmer for the same is called application
PrOgrammer.

6.3 PROGRAMMING LANGUAGES

The programming languages are similar to natural languages which are used in our daily
life such as Punjabi, Hindi and English etc. As we use natural languages for communication
purposes, similarly computer programming languages are used to communicate with the
computer systems and to make computers work as desired through softwares.

System programs (Example: Operating Systems) are designed to control & operate the
input/output devices, memory, processor etc. To write system program, such as operating
system, programnmer needs to control the hardware components of computer system. It is
possible only if the programmer knows the internal architecture ol hardware components.
Therefore, system programming is the task of skilled programmers that have a detailed knowledge
of the hardware components of the computer system. Machine, Assembly and C languages are
widely used to develop system programs.

Application programs are developed to perform a particular task or to solve a particular
problem. For example: student management system, library management system, payroll system,
inventory control system, word processors, spread sheets, graphics software etc are application
programs. Application programmer does nol need to possess in-depth hardware knowledge.
The most popular application programming languages are PYTHON, COBOL, FORTRAN.
BASIC, PASCAL, C, C++, JAVA etc.

6.3.1 Types of Programming Languages
In this era, hundreds of programming languages are available. These languages are
categorised on the basis of their abilily to develop different kinds of software. Some of the
programming languages are best for writing system software while some others are best
suitable for writing application software or mobile applications:
a2 Compurer Scmnce

Programming Languages

|
I |

Low Level Languages High Level Languages

|
[|

Machine Language Assembly Language

Fig. 6.2 Types ol Programming Languwages

For designing and developing system programs, low level programming languages are
used while for developing application-programs, many high level programming languages
have been designed. Let's know more about different type of programming languages:

A. Low Level Languages : Machine language and assembly languages are called low

level languages. These programming languages are close to computer hardware and have maore
direct access to the features of the hardware. These are used to develop drivers, high performance
code, kernels for operating systems etc. A detailed explanation of low-level languages is given

below:

A,

Machine Language : Machine language is also known as Binary Language. It is
considered as the first generation of computer programming languages. Machine
language is the fundamental language for computer systems because this language is
directly understood by the computer hardware. Unlike high level programming
languages, there 18 no need for translation of machine language code to make it
understandable by the computer, This language consists of only two binary digits - 0
and 1.

Every instruction in machine language consists of two parts: Opcode and operand, as
shown in the diagram below:

Opcode Operand

Fig. 6.3 Instruction Format in Machine Language
Here. Opcode 1s the Operation Code and Operand is the Operation Address. The first
part - Operation code is the command which tells the computer what operation is
going to be performed. The second part - Operation Address is the memory address
which tells the computer where to find the data for the eperation to be performed.

Because the instruction codes are writlen using binary digits 0 and 1 only, so it
becomes difficult to remember the machine instruction codes in binary format. There
are many advantages and disadvantages of using machine language some of which
are explained below:

OOy G Pt R S . 93

Advantages of Machine Language:

-

Binary format instructions are directly understood by computer without any
translation,

Machine instructions are executed fast because these are executed directly without
any translation,

Disadvantages of Machine Language:

b,

It is difficult to remember the machine instruction codes as they are made up of
complex combinations of binary digits (0 and 1.
Tt ig the most difficult process to find errors in the machine instruction codes.

Highest level of knowledge of low-level internal details of hardware 1s required for
programming in machine language.

Programs developed in machine language are machine dependent because machine
instructions are written according to the underlying architecture of computer system.
So, these instructions are machine specific which cannot be executed on the computer
systems having different architecture.

Assembly Language : This language is also known as Symbolic Language because
symbolic names of instructions are used instead of binary codes, This language is
congidered as second generation of computer programming languages. The major
benefit of assembly language as compared to machine language is that it reduces
coding time and the amount of information the programmer has to remember. The
symbolic names of instructions can be easily remembered therefore it also becomes
easy to find errors in the program and to modify il as compared to machine language.

Despite of these benefits, programming in assembly language still requires in-depth
technical knowledge of hardware. So, programmer must be aware with the machine
architecture for programming in assembly language. Due to this hurdle, programs
written in assembly language are still machine-dependent. These programs cannot be
executed on other machines having different architectures.

Symbolic names used for operation codes in Assembly Language are called Mnemonic
Codes. For example: the codes for addition, subtraction, multiplication, and division
operation are ADD, SUB, MUL and DIV respectively in Assembly language. These
codes are the examples of Mnemonic codes.

Now the question anises how do computers execute the assembly language code
because computers can execute instructions only in binary format. In order to execute
an assembly language code on a computer, it must be translated into equivalent
machine understandable code. For this (ranslation, a translator program, named
Assembler, 18 used. Assembler is a language translator program which translates the
assembly language code into equivalent machine code. In the following sections, we
will study in detail about the assemblers.

CoMpuTER SCIENCE

Advantages of Assembly Language:

» Tt is easy to learn and remember the codes of assembly language because il uses
English like codes instead of binary digits as compared Lo machine language.

» Finding and correcting errors in the assembly language program is easy when compared
to machine (binary) language.

Assembly language programs have the equivalent efficiency of the machine language
Programs.

Disadvantages of Assembly Language:

» Knowledge of low level internal details of hardware is required for programming in
assembly language. Therefore hardware technical skills are required for the programmer
to do programming in assembly language.

+ Programs developed in Assemblylanguage are machine dependent because assembly
instructions are writlen according to the underlying architecture ol computer system.
So these instructions are machine specific which cannot be executed on the computer
systems having different architecture.

B. High Level Languages : The primary objective of developing high level languages 1s
that these languages facilitate a large number of people to build programs or software without
the need to know the internal low level details of computer system hardware. These languages
are designed to be machine-independent.

High level languages are English like languages. These languages use simple & special
characters and numbers for programming. Therefore, these languages make it easy for common
people to learn and write computer programs. An instruction written in high level langunage is
usually called a Statement. Each high level language has its own rules for writing program
ingtructions. These rules are called Syntax of the language. Some of the commeonly used High
Level Languages are: PYTHON, BASIC, COBOL, FORTRAN, PASCAL, C, C++, JAVA, C
SHARP etc.

Similar to Assembly Language, high level languages cannot be directly understood by
computer systems. Language translators are required for translating them into machine
understandable format, There are two approaches for translating high level languages into
machine code: first i via Compiler and other is via Interpreter. Each high level language has
its own translator program. We cannot translate a program written in one specific high level
language with the compiler of some other specific language. For example, we cannot compile
C program using COBOL compiler or vice-versa.

Some of the common categories of high level languages are discussed below:

* Procedural or Procedure Oriented Languages : Procedural languages are considered

as the Third Generation of Programming Languages (3GLs). In procedural
languages, a program can be written by dividing it into small procedures or subroutines.

C PR & A Pt TG LA : 95

Each procedure contains a series of instructions for performing a specific task,
Procedures can be re-used in the program at different places as required.These
languages are designed o express the logic of a problem to be solved. The order of
program instructions is very important in these languages.Some popular Procedural
languages are FORTRAN, COBOL, Pascal, C language etc.

. Froblem-Oriented or Non-FProcedural Languages : Problem oriented languages
are also known as Non-Procedural languages. These languages are considered as the
Fourth Generation of Programming Languages (4GL). These languages have
simple, English-like syntax rules and they are commonly used to access databases. It
allows the users to specify what the output should be instead of specifying each step
one after another to perform a task. It means there 18 no need to describe all the details
of how the data should be manipulated to produce the result. This iz one step ahead
from third generation programming languages. These languages provide the user-
friendly program development tools to write instructions.Using these languages, user
wriles the program using application generator that allows data to be entered into the
database, The program prompts the user to enter the needed data and then it checks
the data for its validity. Examples of problem oriented languages are: SQL (Structure
Query Languages), Visual Basic, C# etc. The objectives of these languages are o
increase the speed of developing programs and reduce errors while writing programs.

« Object-Oriented Programming Languages : The Object-Oriented programming
concept was introduced in the late 1960s, but now it has become the most popular
approach to develop software.In these programming languages, a problem can be
solved by dividing it into a number of objects. Object-Oriented languages support the
concept of object, class, encapsulation, data hiding, inheritance and polymorphism
etc.Now-a-days, most popular and commonly used Object-Oriented programming
(OOPs) languages are C++ and Java.

« Logic-Oriented langunages : These languages use logic programming paradigms as
the design approach for solving various computational problems. Any program
wrilten mn a logic programming language is a set of sentences in logical form. These
sentences express facts and rules about some problem domain. Major logic
programming language families include Prolog, Answer Set Programming (ASP) and
Datalog, In all of these languages, rules are written in the form of clauses. Such
languages are very beneficial in the field of Artificial Intelligence and Robotics.

Advantages of High Level Languages : Some of the common advantages of high level

linguages are given below:

« High Level languages are easy to leam and understand as compared to low level
languages. It i3 because the programs written in these lanpuages are similar to
English-Like statements.

» The errors in a high level language program can be easily detected and removed. All
the syntax crrors are detected and removed during the compilation process of the
programi.

» These languages provide a large number of built-in functions that can be used o
perform specific task during programming which results in huge time saving i.e.
much faster development,

Programs written in high level language are machine independent. A program written
for one type of computer architecture can be executed on another type ol computer
architecture with little or no changes.

Disadvantages of High Level Languages : Some of the common disadvantages of high

level languages are given below:
A program written in high level languages has lower efficiency & speed as compared
to equivalent programs written in low level languages.

= Programs written in high level languages require more time and memory space for
execution.

« High level languages are less flexible than low level languages because normally
these languages do not have direct interaction with computer's hardware such as
CPU, memory and registers.

6.4 LANGUAGE TRANSLATORS

Language translators are also called Language Processors. These are the system programs
which are helpful to develop programs. Language translators are designed primarily to perform
two main functions as described below:

These are designed to translate source programs mto machine’s object code. Source
programs may be written in Assembly Language or High Level languages while
object code is a code that a computer CPU can understand without any translation.

« These translator programs are also designed to dete¢l any syntax errors in the source

program, Successful translation of source program into object program takes place
only if the source program does not have any syntax errors in it.

Each language has ifs own translator program which can translate the program written
only in that specific language. Assembler is a translator program which ¢an translate the source
program written in assembly language only. Similarly each high level language has its own
translator program, known as Compiler and Interpreter. Some High level languages use Compiler
(for example: C/C4++ Language) while some other uses Interpreter (for example: BASIC
language). But there exists also some languages which have both compiler and interpreter for
different levels of translation, for example: JAVA is a language which has both corpiler and
interpreter. All these types of translator programs are discussed below:

C PR & A Pt TG LA : 97

6.4.1 Assembler

It is a language translator which converts assembly language program into machine-
understandable format. The program written in assembly langunage is called Source Program,
This source program canmot be directly understood by the computer system. That is why it
must be translated into machine understandable format for the execution. It is the assembler
which translates this assembly language source program into machine understandable program.
The source program after translation (in machine understandable form) iz called Object Program
(Code). This object program is provided to processer for execution.

Input ouput
Program in Program in
Assembly Language WP | Assembler | E |\ nderstable Form
Source Program Language Translator Object Program

Fiz, 6.4 Working of Assembler

As shown above the input to assembler is an Assembly Language Program and the output of
assembleris a program is in the machine understandable from.
6.4.2 Interpreter and Compiler

There are two types of language translators for High level languages i.e. 1. Interpreters 2.
Compilers. These translators are used for translating source programs written in High Level
languages into machine understandable form.,

In the first approach, i.e. Interpreter, one statement of high level language program is taken
at a time and it is (translated into machine mstruction which is executed immediately by the
processor. It means no object program is saved in this approach of translation. Whenever we

want to execute the program we have to translate the source program every time.

input ouput
Program in ,
High Level Language ‘ Interpreter * Result of Program Execution
Source Program Language Translator

Fig. 6.5 Working ol Interpreter

Interpreters do not require large memory space to translate and execute programs. The
main disadvantage of interpreters is that they require same amount of tume whenever we
execute programs on a computer system because every statement of source program must be
translated every time.,

In the other approach, i.e. Compiler, all statements of the high level language program are
taken at a ime and they are translated into machine understandable form which is stored as
Object Program in Memory. This object program is provided to computer system whenever
program is executed. Compilers take more time to translate source program as compared to
interpreter. But compiled object program runs much faster than the interpreted program.

Each High Level language has its own compiler. We cannot compile the source code of
one language with the compiler of another language. For example FORTRAN compiler cannot
compile the source code written in COBOL language and vice-versa.

98 ComruTER SCIERCE

inpLt ouput

Program in : Program in Machine
High Level Language * Eoempiles * Understandable Form
Source Prograrm Language Translator Object Program

Fig. 6.6 Working of Compiler

The difference between an interpreter and a compiler may be understood with the help of
following analogy. Suppose we want to translate a speech from Tamil to Hindi. We can use two
approaches to do this ranglation. In first approach, translator listens to a sentence in Tamil and
immediately translates it into Hindi. In the second approach, the translator listens to the whole
passage in Tamil and then gives the equivalent Hindi passage. An interpreter is similar to first
approach of translation where sentence-by-sentence translation is carried out whereas compiler
15 similar (o second approach where whole passage is translated in a single step.

6.5 PROGRAMMING PROCESS

We know that a computer needs a program to tell it what to do. Instructions in the program
guide the computer how to solve the given problem. But developing a program is not a simple
and easy task. A programmer has to go through a specific process for developing a program
successfully. The steps invelve in the programming process are listed below and are required to
be followed in the same sequence:
Defining the problem to be solved
Plan the solution of the problem
Coding the solution in the high level language
Compile the program
Test and Debug the program

Gl e R B

Documenting the program
These steps can be explained in detail as follows:

6.5.1 Defining the problem

It is the first step in the programming process. Before a programmer begins his task, he
rust need to know the extensive details of the problem to be solved through programming. The
details of the problem should be provided to the programmer so that he gets a clear understanding
of it. Analysis of the problem shows what the required mnputs and outputs will be for the
solution of problem. Afier having a clear understanding of the problem, programmer starts
thinking about how to solve the given problem,

6.5.2 Planning the Solution

The next step after defining the problem is to prepare a detailed list of steps required o be
carried out for solving the problem. We will take an example which shows why planning is
required for solving the problem. A teacher asks the student to solve a specific mathematical

C PR & A Pt TG LA : 99

problem and the student is not familiar with the steps involved in solving the problem. Thus, he
would not be able to solve it. The same principle applies to writing computer programs also, A
progratmer cannot write the instructions for any program unless he understands how o solve
the problem manually.

If a programmer knows the steps for solving the problem but while programmung. if he
applies the steps in the wrong sequence or he forgets Lo apply any of these steps, he will get a
wrong output or even no output at all. Hence to write an effeclive program, a programmer has
to write all instructions in the correct sequence. Therefore, to ensure that the imstructions of the
program are appropriate and are in the correct sequence. the programmer must plan the
program before start writing it. For planning and defining the steps for the programs,
programmers normally use Algorithms and Flow-Charts. Both of these approaches are explained
below in detail:

6.5.2.1 Algorithms

The development of an algorithm iz basic requirement to computer programming. Il is a
step-by-step description of how to solve a given problem. An algonthm consists of finite steps
and a guaranteed result. When these steps are carried out as specified in the algorithm, it
produces the required output. The construction of the algorithm requires creative thinking.
Before developing a program, a programmer first set out the algorithm so that he can visualize
the possible alternatives to solve the given problem. In order to qualify for the sequence of
steps, to be called an algorithm, it should have the following features:

1. Each step should be accurate.
Each step should be unambiguous, i.e. it should not have dual meaning.
The inputs and outputs should be carefully specified.

Steps should not be repeated infinitely.

Bhoobe ota b9

After execuling the steps, the required output must be produced.
To gain a clear understanding of algorithms, let us consider some simple examples of
defining algorithms.

Problem Statement 1 : Caleulate and print multiplication of two numbers:
Algorithm-1:

Stepl: Star

Step2: Read two numbers A and B.

Step3: Multiply A and B and store result in C.

Step4: Print C.

Step3: Stop.

100 CoMruTER SCIENCE

Problem Statement 2: Write an algorithm to find whether a given number is Odd

or Even.
Algorithm-II:
Setpl: Start
Step2: Read a Number A
Step3: Divide the number A by 2 and get remainder value
Step4: If remainder of the division is zero then
Print "Number is Even"
Else
Print "Number is Odd"
Step5: Stop

Problem Statement 3: Write an algorithm to print "India is Great" 10 times:
Algorithm-TIT:

Stepl: Start

Step2: Count = |

Step3: While (Count<=10)

Step4: Print "India is great"

Steps: Count=Count + 1

[End of While loop]
Stepb: Stop

6.5.2.2 Flow Charts

Flow charts are the common ways to represent algorithms. These are also frequently used
by the programmers for planning of the program. Programmers often find them very helpful for
developing effective and correct programs.

A flowchart is a pictorial representation of the algorithm. Programmers often draw flow
charts to visually organize the sequence of steps defined in the algorithim. 1t uses different types
of gymbols/shapes 1o represent different types of instructions. The procegs of drawing a
TMowchart for an algorithm is known as flowcharting.

Normally, an algorithm is {irst represented as flowchart, and the flow chart is then expressed
in a programming language to develop a computer program. The main advantage of this two-
step approach in program development iz that a programmer can more easily detect logical
errors in the program logic because a flow chart shows the flow of operations in the pictorial
form. Once the flow chart is ready, the programmer can concentrate only on coding of
operations. This normally ensures an error-free program.

o O P aoths AR P AR § an e 101

Experienced programmers, sometimes, wrile programs without drawing flowcharts.
However, beginners should first draw a flowchart to effectively do the programming. Moreover,
it is a good practice to have a flow chart along with the computer program. It proves to be very
useful during testing of the program as well as during modifications in the program.

Before preparing flowcharts, we have to learn about the different symbols used in the
flowcharts. Some of the basic symbols used in the flowcharts are:

Table: 6.1 Symbols used for flowcharts

Symbol Name | Name Description

Ellipse/Oval Terminal It is used to start and terminate the flow
chart

output result

Rectangle Processing It is used for performing computational

operations

Ehombus Diamond It iz uzed when we have o choose one

Symbol
D Parallelogram | Input / Output| Ttis used for taking input data and giving

path from many paths

l — T Arrows Flow Lines It is used to represent the direction of
* flow in the flowchart
(‘5 ? Circles Connectors It is used to connect different parts of the
flowchart.

Now let us consider some examples of flowcharts so that we get familiar with the concept
of flowcharts:
a. Draw a flewchart to Calculate and print multfiplication of two numbers
(Flowchart for Algorithm-I):
Start

/Raad numbers A & B /

C=A'B

Fig. 6.7 lowchart for Algorithm-1

102 CoMruTER SCIENCE

b. Draw a flowchar{ to find whether a given number is odd or even

(Flowchart for Algorithm-II):

/ Read a Number A /

R=A%2

True @ False

k. kA
/ Print “No is Even" / / Print *No is Odd” /

Fig. 6.8 Flowchart for Algorithm-I1

¢. Draw a Mowchart to print "India is great" 10 times

(Flowchart for Algorithm-I1I):

while
Count<=10,

/ Print "India is great" /

" Count=Counted |

Fig. 6.% Flowchart for Algorithm-111

Now, we have a clear understanding of how to plan the steps to solve the given problem.
Ongce, inputs, outputs, algorithms and flowcharts have been clearly defined, the next step is to
translate these steps into a program using High level programming languages.

6.5.3 Coding the Solution:

The sequence of operations defined in flow-chart can be converted into instruction using
some High-Level programming language, such as C, C++, and PASCAL etc. Coding is the
process of writing the instructions using programming language to make a program. This
program file is known as source program or source code. This code is stored in a disk file. This

o O P aoths AR P AR § an e 103

program contains the logic or steps [or solving the problem. For example, let us consider the
following source code using C language for the Algorithm-I:
Source Code for Algorithm-I using High Level Language C:
#include<stdio.h>

void main{) {istepl of the Algorithm-I
(Jfstepl of the Algorithm-I
int a, b, c; /stepl of the Algorithm-I
a=10; /fstep2 of the Algorithm-1
b=20: //step2 of the Algorithm-I
c=a ¥ b; /lstep3 of the Algorithm-I
printf("%d", c); /fstep4 of the Algorithm-1
} //step5 of the Algorithm-1

6.5.4 Compile the program

After writing program code in High level language, we have to translate it into such a form
that computer can understand & execute it becanse computer can understand instructions only
in binary format.A compiler is a small program that translates the source program into a
machine understandable form (Le. object code). This conversion of source code into object
code is known as Compilation. During compilation, compiler also scans the source program
for syntax errors. If there are syntax errors in the program, compiler generates error messages.
These errors must be correcled to generate the object code. Then the object code will be stored
n a disk file. Whenever we want to execute the program, this object code 15 supplied to
computer for execution.

6.5.5 Testing and Debugging the Program

Testing and debugging are important steps in the software development. Testing 18 a
process which makes it sure that program (software) performs the intended task. Testing is a
time-consuming task. As long as human beings make programs, the programs will have errors.
These program errors are called Bugs. The process of detecting and correcting such bugs is
called Debugging, Generally, two types of errors are found in the programs:

« Syntax Errors : These errors occur when we do not follow the rules or syntax of
programming language being used. These types of errors are antomatically detected
by compilers during compilation process. A program cannot be successfully compiled
until all of the syntax errors in the program are removed. Some examples of syntax
errors in C language are: missing semicolon, variable not declared, un-terminated
string, compound statement missing etc.

« Logical Errors : These errors occur when there are errors in the logic of the program.
If our program has logic errors, though it will compile successfully but it may
produce wrong result/output. Such types of errors cannot be detected by the compilers.

104 CoMruTER SCIENCE

These errors are either traced oul manually by the programmer or some debugging
tools may be used to detect such errors. Programmer can detect any faulty logic by
examining the output.

6.5.6 Documenting the Program

The final stage in the development process of a program is documentation. The term
documentation means specifying the important information regarding the approach and logic
applied in the program by the programmer. The documentation enables other programmers to
understand the logic and purpose of the program. It is also helpful in the maintenance of the

program,

‘2 Deinfs To Rememlier

. A Program is a set of instructions while a Software is a set of programs.

b

A Programmer is the person who writes the program code.

The Process of writing a program is called Programming

ol

Machine language i1s directly understood by computer and consists of binary digiis 0
and 1.
Assembly Language use mnemonic codes to write instructions in the program.

High Level languages use alphanumeric codes to write mstructions in the program.

AR L

Assembler is a language translator which translates Assembly language source program

into machine understandable format which is called Object Program Code.

8. Compiler is a language translator which translates High Level language source program
into machine understandable format which is called Object code.

9. Algorithm is a set of finite steps to solve some specific problem.

10. Flowchart is the pictorial representation of the algorithm.

11. Writing the instructions to make a program using some computer language is called
coding.

12. Finding and correcting errors in the program is called Debugging,

Part-A
1. Multiple Choice Questions
. Set of instructions is called

a. Group

b. Software

¢. Program

d. None of these

k2

II. Which language is directly understood by computer without any translation?
Procedure Oriented Language

Assembly Language
High Level Langunage
[1l. Mnemonic codes & symbolic addresses are used in which programming language?

d
b. Machine Language
C
d

a. Object Oriented Language b. Non-Procedural Language
c. Assembly Language d. Machine Language

IV. Which translator does nol save object code after translation of source program
written 1n high level language?

a. Translator b. Compiler
¢. Assembler d. Interpreter
V. Process of finding and correcting errors in a program is called
a. Compilation b. Coding
¢. Debugging d. Documentation

Fill in the Blanks:
I. A person who writes the program is called

[I. Low level internal details of hardware are required for programming in
1IT. i# the pictorial representation of algorithm

IV. Process of translating source program written in high level language into object
code is called

V. Those errors which are not detected by the compilers are called
ETTOTS.

Write the Full form of following:

Opcode

Operand

4GL

SQL

OOP

= 2B RF

Part-B

Short Answer Type Questions. (Write the answers in 4-5 lines)
1. What is Programming?

[I. What are Procedure Oriented Programming Languages?

III. Write the names of different symbols used in flowcharts.

V. Write the steps used in Programming Process.

V. What are Syntax Errors?

106 CoMruTER SCIENCE

I__.Iu

Part-C

Long Answer Type Questions. (Write the answers in 10-15 lines)

I. What are low level programming languages? Explain their advantages and
disadvantages.

What are Language Translators? Explain any one translator in detail,

What is algorithm? Explain the different features that an algorithm should have.
Explain different types of errors found in the computer programs.

2 EF

Lab Activity

Draw a chart which represents different categories of programming languages.
Make symbols used in flow charts with the cardboard and label them.

