Filters and Magnetic Coupled Circuits

Multiple Choice Questions

Q.1 The circuit shown in the figure below is a

- (a) low pass filter (b) high pass filter
- (c) band pass filter (d) band stop filter

[ESE-2000]

Q.2 The circuit of the figure represents a

- (a) low pass filter (b) high pass filter
- (c) band pass filter (d) band reject filter

[GATE-2000]

- Q.3 If the numerator of a second-order transfer function F(s) is a constant, then the filter is a
 - (a) band-pass filter (b) band-stop filter
 - (c) high-pass filter (d) low-pass filter

[ESE-2001]

Q.4 The pole-zero pattern shown in the given figure is for

- (a) a low-pass filter (b) a high-pass filter
- (c) an all-pass filter (d) a band-pass filter

[ESE-2001]

Q.5 The transfer function

$$\frac{V_2(s)}{V_1(s)} = \frac{10s}{s^2 + 10s + 100}$$
 is for an active

- (a) low pass filter (b) band pass filter
- (c) high pass filter (d) all pass filter

[ESE-2001]

Q.6 Which one of the following is the transfer function of an electrical lowpass filter using R and C elements?

(a)
$$\frac{RCs}{[1+RCs]}$$

(b)
$$\frac{1}{[1+RCs]}$$

(c)
$$\frac{RC}{[1+RCs]}$$

(d)
$$\frac{s}{[1+RCs]}$$

[ESE-2004]

Q.7 The RC circuit shown in the figure is

- (a) a low-pass filter
- (b) a high-pass filter
- (c) a band-pass filter
- (d) a band-reject filter

[GATE-2007]

Q.8 Two series resonant filters are as shown in the figure. Let the 3-dB bandwidth of Filter 1 be B,

and that of Filter 2 be B_2 . The value of $\frac{B_1}{B_2}$ is

- (c) 1/2
- (d) 1/4

[GATE-2007]

Q.9 In the transformer shown in the figure below, the inductance measured across the terminal 1 and 2 was 4 H with open terminals 3 and 4. It was 3 H when the terminal 3 and 4 were short circuited. The coefficient of coupling would be

- (a) 1
- (b) 0.707
- (c) 0.5
- (d) indeterminate due to insufficient data

[ESE-2000]

Q.10 The inductance matrix of a system of two mutually coupled inductors shown in figure 1 is

given by
$$L = \begin{bmatrix} 5 & +4 \\ +4 & 7 \end{bmatrix}$$

When the inductors are connected as shown in figure 2, the equivalent inductance of the system is given by

- (a) 20 H
- (b) 4 H (d) 8 H
- (c) 16 H

[ESE-2002]

[GATE-2005]

Q.11 Impedance Z as shown in the given figure is

- (a) $j29 \Omega$
- (b) $j9 \Omega$
- (c) $j19 \Omega$
- (d) $j39 \Omega$

Q.12 The following arrangement consists of an ideal transformer and an attenuator which attenuates by a factor of 0.8. An ac voltage $V_{WY1} = 100 \text{ V}$ is applied across WX to get an open circuit voltage V_{YZ1} across YZ. Next, an ac voltage $V_{YZ2} = 100 \text{ V}$ is applied across YZ to get an open circuit voltage V_{WX2} across WX. Then, V_{YZ1}/V_{WX1} , V_{WX2}/V_{YZ2} are respectively,

- (a) 125/100 and 80/100
- (b) 100/100 and 80/100
- (c) 100/100 and 100/100
- (d) 80/100 and 80/100

[GATE-2013]

Try Yourself

T1. The circuit given below will act

- (a) Low pass filter (b) High pass filter
- (c) Band pass filter (d) Band stop filter

T2. In the circuit below, the load consists of a 400 Ω resistor and an inductor. For what value of n and L, the power transferred to the load will be maximum?

- (a) n = 4, L = 3.2 H
- (b) n = 0.5, L = 1.6 H
- (c) n = 2, L = 6.4 H
- (d) n = 2, L = 4.8 H

