NEET (UG) 2024

SAMPLE PAPER - 3

Time Allowed: 3 hours and 20 minutes

Maximum Marks: 720

General Instructions:

- The test is of 3 hours and 20 minutes and it contains 200 questions. Internal choice is given within the sections.
- For each correct response, the candidate will get 4 marks.
- For each incorrect response, one mark will be deducted from the total scores.
- The maximum marks are 720.

PHYSICS (Section-A)

1.	A physical quantity depends upon five factors, all of which have dimensions; then the	[4]
	method of dimensional analysis:	

- i. can be applied
- ii. cannot be applied
- iii. depends upon factors involved
- iv. both can be applied and depends upon factors involved
 - a) iv and i

b) only ii

c) iii and iv

d) i and ii

 $\cos \theta T^{x} \cdot \tau$ [4]

A hypothetical experiment is conducted to determine Young's formula $Y = \frac{1}{\sqrt{3}}$, 2.

If Y = Young's modulus, T = time period, τ = torque and l = length, then find the value of x:

a) 3

b) 2

c) 1

d) 0

3. A police car is travelling in a straight line with a constant speed v. A truck travelling in [4] the same direction with constant velocity 3v/2 passes the police car at t = 0. The police car starts accelerating 10 s after passing the truck, at a constant rate of 3 m/s², while the truck continues to move at constant speed. If the police car takes 10 s further to catch the truck, find the value of v.

a) 15 m/s

b) 20 m/s

c) 10 m/s

- d) 30 m/s
- 4. Three vectors A, B, and C add up to zero. Find which is false.

- [4]
- a) $(\vec{A} \times \vec{B}) \times \vec{C}$ is not zero unless \vec{B} , \vec{C} b) $(\vec{A} \times \vec{B}) \cdot \vec{C}$ is not zero unless \vec{B} , \vec{C}

are parallel.

are parallel

- $(\vec{A} \times \vec{B}) \cdot \vec{C} = |\vec{A}| |\vec{B}| |\vec{C}| \Rightarrow C^2$
- d) if \vec{A} , \vec{B} , \vec{C} define a plane,

$$=A^2+B^2$$

 $(\overrightarrow{A} \times \overrightarrow{B}) \times \overrightarrow{C}$ is in that plane

5. Let
$$\begin{vmatrix} \overrightarrow{A}_1 \end{vmatrix} = 3$$
, $\begin{vmatrix} \overrightarrow{A}_2 \end{vmatrix} = 5$ and $\begin{vmatrix} \overrightarrow{A}_1 + \overrightarrow{A}_2 \end{vmatrix} = 5$. The value of $\begin{pmatrix} \overrightarrow{A}_1 + 3\overrightarrow{A}_2 \end{pmatrix} \cdot \begin{pmatrix} \overrightarrow{A}_1 - 2\overrightarrow{A}_2 \end{pmatrix}$

is:

a) -106.5

b) -112.5

c) -118.5

- d) -99.5
- A toy car with charge q moves on a frictionless horizontal plane surface under the 6. [4] influence of a uniform electric field \vec{E} . Due to the force $q\vec{E}$, its velocity increases from 0

to 6m/s in one-second duration. At that instant, the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively:

a) 1 m/s, 3 m/s

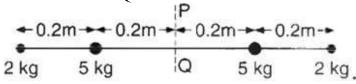
b) 1.5 m/s, 3 m/s

c) 2 m/s, 4 m/s

- d) 1 m/s, 3.5 m/s
- 7. The potential energy of a long spring when stretched by 2 cm is U. If the same spring is [4] stretched by 8 cm the potential energy stored in it is
 - a) 16 U

b) 8 U

c) U


d) 4 U

- 8. A billiard ball moving with a speed of 5 m/s collides with an identical ball, originally at [4] rest. If the first ball stops dead after the collision, then the second ball will move forward with a speed of:
 - a) 2.5 ms^{-1}

b) 10 ms^{-1}

c) 5 ms⁻¹

- d) 1.0 ms⁻¹
- 9. Four masses are fixed on a massless rod as shown in the figure. The moment of inertia about the axis PQ is about:

a) 0.5 kg-m^2

b) 0.3 kg-m^2

c) $_{2 \text{ kg-m}}^2$

- d) 1.04 kg-m²
- 10. A particle with position vector \vec{r} has a linear momentum p. Which of the following [4]

statements is true in respect of its angular momentum L about the origin?

a) L acts along r

b) L is maximum when p and r are parallel

c) L acts along p

- d) L is maximum when p is perpendicular to r
- 11. A satellite of mass m is orbiting the earth (of radius R) at a height h from its surface. [4] The total energy of the satellite in terms of g₀? the value of acceleration due to gravity at the earth's surface is:
 - a) $2mg_0R^2$

b) $2mg_0R^2$

 $\overline{R, + h}$

 $\overline{R + h}$

c) mg_0R^2

d) mg_0R^2

 $\overline{2(R+h)}$

 $-\frac{1}{2(R+h)}$

12.	Which of the following statements is incorrect?		[4]
	a) Rubber is more elastic than steel.	b) The stretching of a coil is determined by its shear modulus.	
	c) When a material is under tensile stress, the restoring forces are caused by interatomic attraction while under compressional stress; the restoring force is due to interatomic repulsion.	d) Shearing stress plays an important role in the buckling of shafts.	
13.	Under steady-state the temperature of a be	ody:	[4]
	a) Increases with time	b) Decreases with time	
	c) Does not change with time but is different at different cross-sections of the body	d) Does not change with time and is same at all points of the body	
14.		o another heat reservoir at $T = 10^2$ K by a the thermal conductivity of copper is 0.1 the steady state is:	[4]
	a) 200 Wm ⁻²	b) 90 Wm ⁻²	
	c) 65 Wm ⁻²	d) $_{120~\mathrm{Wm}}$ -2	
15.	Which of the following relations is correct	et between pressure and temperature?	[4]
	a) $P^{\gamma}T^{\gamma-1}$	b) $P^{\gamma}T^{1-\gamma}$	
	c) $_P 1 - \gamma_T \gamma$	d) $P^{\gamma}T^{\gamma}$	
16.		of 76 cm of Hg at a certain temperature. The atroducing more gas in the vessel at the same gas is:	[4]
	a) 112 cm of Hg	b) 114 cm of Hg	
	c) 76 cm of Hg	d) 108 cm of Hg	
17.		elastic spring of spring constant 640 Nm ⁻¹ -2 kg s ⁻¹ . The system dissipates its energy	[4]

gradually. The time taken for its mechanical energy of vibration to drop to half of its initial value is closest to:			
a) 2 s	b) 7 s		
c) 5 s	d) 7 s		
A source of sound is in the shape of a long normal to the axis of the cylinder. Two poir 9 m and 25 m from the axis. The ratio of the	nts P and Q are at perpendicular distances of	[4]	
a) 3:5	b) $\sqrt{5}:\sqrt{3}$		
c) 25:d	d) 5:3		
An observer moves towards a stationary so the velocity of sound. What is the percentage	•	[4]	
a) 0	b) 5%		
c) 0.5%	d) 20%		
Three point charges, each +q, are placed at	the corners of an equilateral triangle. The	[4]	
electric field at the centre will be: $K = \frac{1}{4\pi}$	$\left(\frac{1}{e^{2}0}\right)$		
a) 3Kq	b) zero		
c) $\frac{3Kq}{2r^2}$	d) $\frac{Kq}{r^2}$		
Assume that an electric field $\vec{E} = 30x^2 \hat{i}$ exp $V_A - V_0$, where V_0 is the potential at the o		[4]	

Page 5 of 76

18.

19.

20.

21.

	a) 120 J/C	b) -120 J/C	
	c) 80 J/C	d) -80 J/C	
22.	A 40 μ F capacitor in a defibrillator is ch	narged to 3000 V. The energy stored in the	[4]
	capacitor is sent through the patient dur delivered to the patient is	ing a pulse of duration 2 ms. The power	
	a) 360 kW	b) 90 kW	
	c) 45 kW	d) 180 kW	
23.	A copper wire of resistance 10Ω is in the	ne form of a perfect circle. Two points A and B	[4]
	on it are connected to a battery of emf 5	δ V and internal resistance 0.5 Ω. The two	
	segments of the circle have lengths in the centre of the circle is:	ne ratio 2:3. The net magnetic induction at the	
	a) 2π	b) Zero	
	c) π	d) μ_0	
		$\overline{4} \pi$	
24.	•	lipoles of length d in end-on positions, are e force between them is proportional to x ⁻ⁿ	[4]
	a) 2	b) 4	
	c) 3	d) 1	
25.	——————————————————————————————————————	s poured into a U-tube and one arm of this tube magnet with the meniscus in line with the field,	[4]
	a) remain unchanged	b) rise	
	c) oscillate slowly	d) fall	
26.	A wire loop is rotated in a magnetic fiel induced emf is:	d. The frequency of change of direction of the	[4]
	i. twice per revolution	e 6 of 76 •	
	_		

- ii. four times per revolution
- iii. six times per revolution
- iv. once per revolution
 - a) only i

b) ii and i

c) iii and iv

- d) iv and i
- 27. The magnetic flux through a circuit of resistance R changes by an amount $\Delta \phi$ in a time [4] Δt . Then the total quantity of electric charges Q that passes through any point in the circuit during the time Δt is represented by:
 - a) $Q = \frac{\Delta \phi}{R}$

b) $Q = \frac{\Delta \phi}{\Delta t}$

 $Q = R \frac{\Delta \phi}{\Delta t}$

- $Q = \frac{1}{R} \cdot \frac{\Delta \phi}{\Delta t}$
- 28. A voltage source $V = V_0 \sin(\omega t + \phi)$ is applied to a circuit containing a resistance R [4] capacitance C and inductance in series. The current will be maximum when:

a)
$$\omega^2 = RLC$$

b)
$$\omega^2 = LC$$

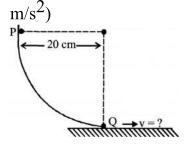
$$c) R = L = C$$

d)
$$\omega L = \frac{1}{\omega C}$$

- 29. A point source of electromagnetic radiation has an average power output of 1500 W. [4] The maximum value of electric field at a distance of 3 m from this source (in Vm⁻¹) is:
 - a) 500

3

	c) 250	d) 100	
	3		
30.	deviation. The angles	and P_2 are to be combined together to produce dispersion without of the prisms P_1 and P_2 are selected as 4^0 and 3^0 respectively. If P_1 is 1.54, then refractive index of P_2 will be:	[4]
	a) 1.72	b) 1.58	
	c) 1.62	d) 1.48	
31.	_	of wavelength 589 nm is incident from air on a water surface. The ter is 1.33. The wavelength of the refracted light is:	[4]
	a) 589 nm	b) 333 nm	
	c) 443 nm	d) 221 nm	
		o	[4]
32.	De-Broglie wavelengt	th of an electron is 10 A then velocity will be:	
	a) 7.2×10^6 m/s	b) $7.2 \times 10^7 \text{m/s}$	
	c) $7.2 \times 10^5 \text{ m/s}$	d) $7.2 \times 10^4 \text{ m/s}$	
33.		5 times the threshold frequency is incident on a photosensitive the photoelectric current if the frequency is halved and intensity	[4]
	a) Four times	b) Zero	
	c) Doubled	d) One -fourth	
34.		an electron is moving in the nth orbit. The circumference S of the ie wavelength λ of the moving electron are related by the equation:	[4]
	(Where n is a whole n	umber)	
	a) $S = nh$	b) $S = n\lambda$	
	c) $Snh = 1$		

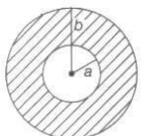

$$d) \qquad h \\ S = \frac{1}{n}$$

35. For radioactive material, the half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is:

PHYSICS (Section-B)

Attempt any 10 questions

36. As per the given figure, a small ball P slides down the quadrant of a circle and hits the other ball Q of equal mass which is initially at rest. Neglecting the effect of friction and assume the collision to be elastic, the velocity of ball Q after collision will be: (g = 10)


a) 0.25 m/s

b) 4 m/s

c) 0

- d) 2 m/s
- 37. A circular disc of radius b has a hole of radius a at its centre (see figure). If the mass per [4] unit area of the disc varies as $\left(\frac{\sigma_0}{r}\right)$, then the radius of gyration of the disc about its axis

passing through the centre is

a)
$$a+b$$
 3

b)
$$\sqrt{\frac{a^2+b^2+ab}{2}}$$

c)
$$\sqrt{a^2+b^2+ab}$$

d)
$$a+b$$

$$\frac{a+b}{2}$$

- 38. The height at which the acceleration due to gravity decreases by 36 % of its value on the surface of the earth is: (Assume the radius of the earth is R)
 - a) R $\frac{\pi}{2}$

b) 4 R

c) R

- d) *R*
- 39. The study of physical phenomenon at low temperatures (below liquid nitrogen temperature) is called:
- [4]

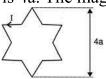
a) radiation

b) refrigeration

c) pyrometry

- d) cryogenics
- 40. What is the effect of humidity on sound waves when humidity increases?
- [4]

- a) Speed of sound waves is more
- b) Speed of sound waves is less
- c) Speed of sound waves becomes zero
- d) Speed of sound waves remains same
- 41. Speed of sound wave is v. If a reflector moves towards a stationary source emitting waves of frequency f with speed u, the wavelength of reflected wave will be:


a)
$$\left(\frac{v+u}{v-u}\right)f$$

b)
$$\left(\frac{v-u}{v+u}\right)f$$

c)
$$\left(\frac{v+u}{v}\right)f$$

$$d) \left(\frac{v-u}{v}\right) f$$

42. Symmetric star-shaped conducting wire loop is carrying a steady-state current I as shown in the figure. The distance between the diametrically opposite vertices of the star is 4a. The magnitude of the magnetic field at the centre of the loop is:

a)
$$\mu_0 I$$

$$\frac{1}{4\pi a} 6[\sqrt{3} + 1]$$

b)
$$\mu_0 I$$

$$\frac{1}{4\pi a} 6[\sqrt{3} - 1]$$

c)
$$\mu_0 I$$

$$\frac{1}{4\pi a} 3[2 - \sqrt{3}]$$

d)
$$\mu_0 I$$

$$\frac{1}{4\pi a} 3[\sqrt{3} - 1]$$

43. A paramagnetic sample shows a net magnetisation of 8 Am⁻¹ when placed in an external magnetic field of 0.6 Tesla at a temperature of 4K. When the same sample is placed in an external magnetic field of 0.2 Tesla at a temperature of 16K, the magnetisation will be:

b) 2
$$\frac{1}{3}$$
 Am⁻¹

c)
$$_{2.4 \text{ Am}}^{-1}$$

d) 32
$$\frac{1}{3}$$
 Am⁻¹

44. Which of the following is not an application of eddy currents?

[4]

i. Induction furnace

- ii. Galvanometer damping
- iii. Crystallography
- iv. Speedometer of automobiles
 - a) iv and i

b) ii and ii

c) i and ii

- d) only iii
- 45. In a series L-C-R circuit $R = 200\Omega$ and the voltage and the frequency of the main supply is 220 V and 50 Hz respectively. On taking out the capacitance from the circuit the current lags behind the voltage by 30° . On taking out the inductor from the circuit the current leads the voltage by 30° . The power dissipated in the L-C-R circuit is:
 - a) 305 W

b) zero

c) 242 W

d) 210 W

[4]

46. A transparent solid cylinder rod has a refractive index of $\frac{1}{\sqrt{3}}$. It is surrounded by air. A

light ray is incident at the mid-point of one end of the rod as shown in the figure. The incident angel θ for which the light ray grazes along the wall of the rod is:

a) $\sqrt{3}$ $\sin^{-1}\left(\frac{1}{2}\right)$

b) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$

c) $\sin^{-1}\left(\frac{1}{2}\right)$

- d) $\sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$
- 47. In a laboratory four convex lenses L₁, L₂, L₃ and L₄ of focal lengths 2, 4, 6 and 8 cm, respectively are available. Two of these lenses form a telescope of length 10 cm and magnifying power 4. The objective and eye-lenses are respectively:

a)	Lı		L_{\prime}
α,	_	•	

b)
$$L_1, L_2$$

48. A proton and an α -particle are accelerated through the same potential differences. The

[4]

$$\lambda_p$$

ratio of their de Broglie wavelengths $\frac{1}{\lambda_{\alpha}}$ is:

$$\sqrt{8}$$

c)
$$\sqrt{8}$$

For an explanation of Bohr's theory, Bohr used which of the following principles? 49.

[4]

- a) Conservation of linear momentum
- b) Conservation of energy
- c) Conservation of moment of inertia
- d) Conservation of angular momentum
- Tritium with a half-life of 12.5 years undergoing beta decay. What fraction of a sample 50. [4] of pure tritium will remain undecayed after 25 years?
 - a) Two third

b) one half

c) one fourth

d) one third

CHEMISTRY (Section-A)

51. Which equation represents charge balance equation for a solution of H₂S in water? [4]

$$a) [H^{+}] = [S^{2-}] + [HS^{-}] + [OH^{-}]$$

$$b) [H^{+}] = [S^{2-}] + [HS^{-}] + [H^{+}]$$

b)
$$[H^+] = [S^2] + [HS] + [H^+]$$

c)
$$[H^{+}] = 2[S^{2-}] + [HS^{-}] + [OH^{-}]$$
 d) $[H^{+}] = [OH^{-}]$

$$d$$
) $[H^+] = [OH^-]$

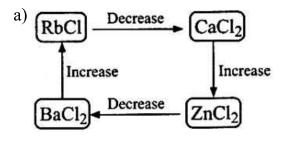
If uncertainty in the position of a particle (Δx) is _____, the uncertainty in 52. [4] momentum (Δp) would be _____.

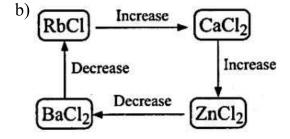
a) large, large

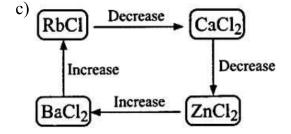
b) small, large

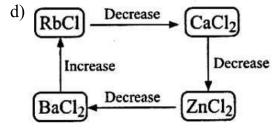
c) small, small

- d) large, infinite
- 53. The right order of ionization potential of Li, Be, B and C is:


[4]


a)
$$C > B > Li > Be$$


b) C > Be > B > Li


c) C > B > Be > Li

- d) B > C > Be > Li
- 54. The compounds C₃H₈, CH₃CH₂OH and CH₃OCH₃ have very similar molar masses. [4] When they are arranged in order of increasing strength of their intermolecular forces, what is the **correct** order?
 - a) C₃H₈, CH₃OCH₃, CH₃CH₂OH
- b) CH₃CH₂OH, CH₃OCH₃, C₃H₈
- c) CH₃OCH₃, C₃H₈, CH₃CH₉OH
- d) CH₃CH₂OH, C₃H₈, CH₃OCH₃
- 55. Which of the following diagram show **CORRECT** change in the ionic character of given compounds according to Fajans rule? [4]

56. Strongest hydrogen bond is shown by:

[4]

a) hydrogen sulphide

b) ammonia

c) water

- d) hydrogen fluoride
- One mole of a non-ideal gas undergoes a change of state (2.0 atm, 3.0 L, 95 K) → [4] (4.0 atm, 5.0 L, 245 K) with a change in internal energy, ΔE = 30.0 L-atm The change in enthalpy (ΔH) of the process in L-atm is

`	4 4	\sim
ล ۱	$\Delta \Delta$.0
a 1	44	٠.٧,

- d) not defined, because pressure is not constant
- Which of the following conditions is correct for the [OHT] of either weak or strong 58. monoacidic base?

a)
$$[OH^{-}] = c_b$$
, if $(pK_b + 1) < pc_b$

b)
$$1 = \frac{1}{2} [-K_b +$$

$$\sqrt{K_b^2 + 4K_b \cdot c_b}$$
, if $(pK_b - 2) <$

$$pK_b < (pK_b + 1)$$

c) [OH⁻] =
$$\sqrt{K_b \cdot c_b}$$
, if pc_b < (pK_b - d) [OH⁻] = c_b, if pK_b + 1 > pc_b

d)
$$[OH^{-}] = c_b$$
, if $pK_b + 1 > pc_b$

2)

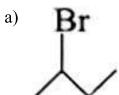
- 59. Hydrogen peroxide in its reaction with KIO₄ and NH₂OH respectively is acting as a: [4]
 - i. reducing agent, oxidising agent
 - ii. reducing agent, reducing agent
 - iii. oxidising agent, oxidising agent
 - iv. oxidising agent, reducing agent
 - a) iv and i

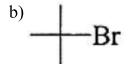
b) only i

c) iii and iv

d) ii and iii

60. Given, that
$$EO_2/H_2O = +1.23V$$
;


$$E_{\text{S}_2\text{O}_8}^{\Theta} - _{/\text{SO}_4}^{2} - = 2.05\text{V};$$


$$E_{\text{Br}_2/\text{Br}}^{\Theta} - = +1.09\text{V};$$

$$E_{\text{Au}}^{\Theta} 3 + A_{\text{U}} = +1.4 \text{V}$$

The strongest oxidising agent is

	a) O ₂	b) Au^{3+}	
	$^{c)}S_{2}O_{8}^{2-}$	d) Br ₂	
61.	Select the name of mineral which is used	I for the production of boric acid.	[4]
	a) Calamine	b) Chromite	
	c) Colemanite	d) Chalcopyrite	
	H ₂ O Cu∙powder	condensation	[4]
62.	$RCl \xrightarrow{Si} R_2SiCl_2 \longrightarrow R_2Si(OH)$	$_2 \longrightarrow A$	
	Compound (A) is:		
	a) a linear silane	b) a chlorosilane	
	c) a linear silicone	d) a network silane	
63.	The correct stability order of the following $H_2C \stackrel{\oplus}{=} \stackrel{\ominus}{N} = \stackrel{\ominus}{N} \qquad H_2\stackrel{\ominus}{C} \stackrel{\ominus}{=} \stackrel{\ominus}{N} \qquad H_2\stackrel{\ominus}{C} \stackrel{\ominus}{=} \stackrel{\ominus}{N} \qquad H_2\stackrel{\ominus}{C} \stackrel{\ominus}{N} = \stackrel{\ominus}{N} \qquad H_2\stackrel{\ominus}{C} \stackrel{\ominus}{=} \stackrel{\ominus}{N} \qquad H_2\stackrel{\Box}{C} \stackrel{\ominus}{N} \qquad H_2\stackrel{\Box}{C} \stackrel{\ominus}{=} \stackrel{\ominus}{N} \qquad H_2\stackrel{\Box}{C} \stackrel{\ominus}{=} \stackrel{\ominus}{N} \qquad H_2\stackrel{\Box}{C} \stackrel{\ominus}{=} \stackrel{\ominus}{N} \qquad H_2\stackrel{\Box}{C} \stackrel{\ominus}{N} \qquad H_2\stackrel{\Box}{C} \stackrel{\ominus}$	ng resonance structures is:	[4]
	a) $II > I > III > IV$	b) $I > III > IV$	
	c) $III > I > IV > II$	d) $I > II > IV > III$	
	(i) O ₃		[4]
64.	$2 - \text{hexene} \rightarrow \text{Products}$		
	(ii) H ₂ O		
	The two products formed in above reacti	on are-	
	a) Butanal and acetic acid	b) Butanal and acetaldehyde	
	c) Butanoic acid and acetic acid	d) Butanoic acid and acetaldehyde	
65.	Formation of free radical takes place wit formation of	h absorption of minimum energy in the	[4]
	• Page	16 of 76 •	

- d) /\^_Br
- 66. If liquids A and B form an ideal solution:

[4]

- a) the enthalpy of mixing is zero
- b) the free energy as well as the entropy of mixing are each zero
- c) the entropy of mixing is zero
- d) the free energy of mixing is zero
- 67. The amount of ice that will separate out on cooling a solution containing 50 g of ethylene glycol in 200 g water to -9.3°C is: $(K_f = 1.86 \text{ K molality}^{-1})$

[4]

a) 42 g

b) 38.71 mg

c) 38.71 g

d) 42 mg

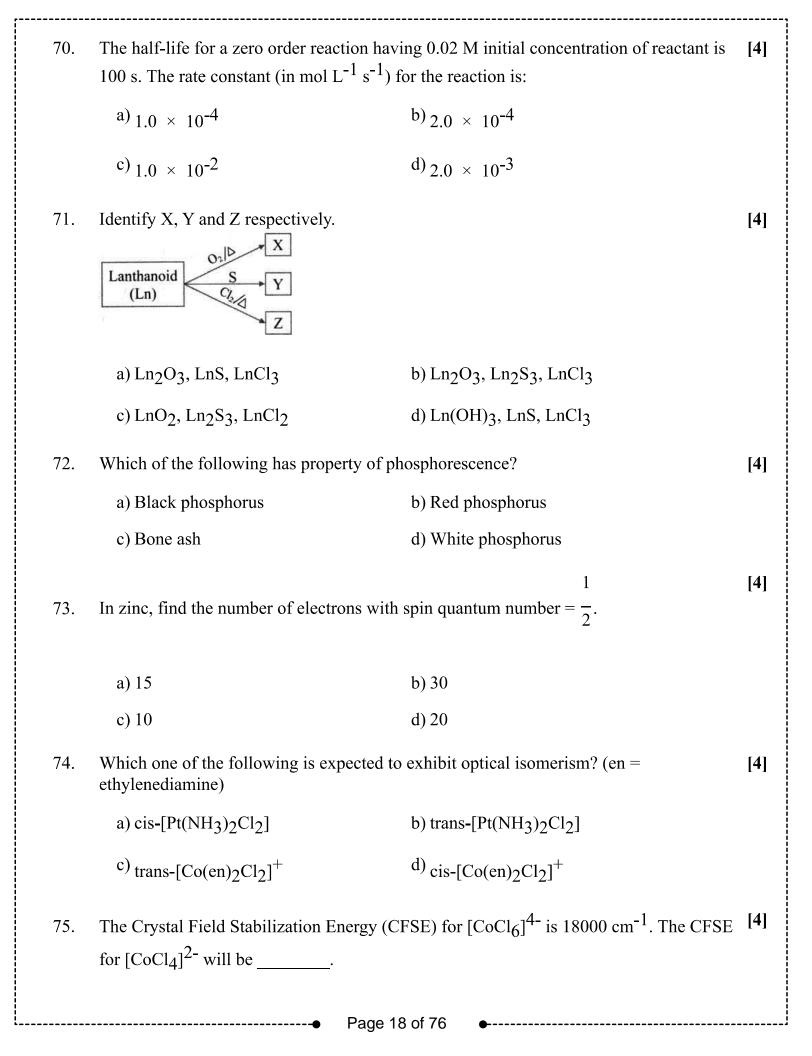
68. For the cell reaction,

[4]

$$2Fe^{3+}(aq) + 2I\overline{(aq)} \rightarrow 2Fe^{2+}_{(aq)} + I_{2(aq)}$$

 $E_{\text{cell}}^{0} = 0.24 \text{ V}$ at 298 K. The standard Gibbs energy $(\Delta_r G^o)$ of the cell reaction is

[Given that Faraday constant $F = 96500 \text{ C mol}^{-1}$]


a) 23.16 kJ mol⁻¹

b) -23.16 kJ mol⁻¹

c) 46.32 kJ mol⁻¹

- d) -46.32 kJ mol⁻¹
- 69. The value of rate constant of a pseudo first-order reaction:

- a) is independent of the concentration of reactants
- b) depends on the concentration of reactants present in excess
- c) depends on the concentration of reactants present in small amount
- d) depends only on temperature

a) 16000 cm⁻¹

b) 6000 cm⁻¹

c) ₁₈₀₀₀ cm⁻¹

- d) 8000 cm^{-1}
- 76. Benzene reacts with n-propyl chloride in the presence of anhydrous AICl₃ to give:

[4]

[4]

- a) 3-propyl-I-chlorobenzene
- b) isopropyl benzene

c) n-propyl benzene

d) no reaction

 H^{\bigoplus}

77. \rightarrow Product

a) 0

b) **0**

c) |

- d) но
- 78. Arrange the following compounds in decreasing order of nucleophilic addition reaction: [4]

 O

i. H - C - H

O

ii. $H_3C - C - H$

iii.
$$H_3C - C - CH_3$$

a) ii > iv > iii > i

b) iv > iii > ii > i

c) i > ii > iii > iv

d) ii > iii > iv > i

79. The final product in the following reaction sequence is NaN₃+conc.
$$H_2SO_4$$
 NaNO₂+dil.HCl H_2C

[4]

 \rightarrow

A

 $B \rightarrow C$

Δ

$$0-5$$
° C

[4]

a) 8

b) 10

c) 9

d) 20

81. Given the amino acids, identify essential amino acids.

[4]

- i. Isoleucine
- ii. Tryptophan
- iii. Serine
- iv. Lysine
- v. Glutamine
- vi. Methionine
 - a) i, ii, iv, v and vi

b) i, ii, iv and vi

c) i, iii, v and vi

d) i, ii and v

82.	 Which of the following statements is not of A. Primary amines show intermolecular by B. Secondary amines show intermolecular C. Tertiary amines show intermolecular by D. Amines have lower boiling points as coacids of comparable molar masses. a) Only C 	ydrogen bonding. hydrogen bonding.	[4]
	c) Only A	d) Only B	
83.	The standard reduction potential for the form $NO_3(aq) + 2H(aq) + e^- \rightarrow NO_2(g) + 2H(aq) + 2$		[4]
	What will be the reduction potential of the other species have unit concentration and	e half cell in a neutral solution? Assume all the temperature is 298 K.	
	a) -0.0272 V	b) -0.421 V	
	c) 0.826 V	d) -0.0474 V	
84.	The technique of gas chromatography is s	uitable for compounds which	[4]
	a) are soluble in water	b) vapourize without decomposition	
	c) are liquids	d) have very low boiling points	
85.	Compound (A) Cl ₂ H ₂ O, discharges the correduction with H ₂ /Pt it gives compound (cyclohexanone. Find structure of A:	2 2	[4]
	a) None of these	b) H ₃ C	
	c) —	d) CH ₃	
	CHEMIST	RY (Section-B)	
	Attempt an	y 10 questions	
86.	Decreasing order of the hydrogen bonding represented by	g in following forms of water is correctly	[4]
	A. Liquid water B. Ice		
	Page 2 ⁻	1 of 76 •	

į

	C. Impure water		
	a) A > B > C	b) B > A > C	
	c) A = B > C	d) C > B > A	
87.	Oxidation number of oxygen in KO ₃ ,	KO ₂ and K ₂ O is:	[4]
	a) $\frac{1}{-\frac{3}{3}}$, $-\frac{1}{2}$, $-\frac{1}{2}$	b) -2, -2, -2	
	c) -1, -1, -1	d) $\frac{1}{-\frac{1}{3}}, -\frac{1}{2}, -1$	
88.	Aluminium hydroxide is soluble in exc	cess of sodium hydroxide forming the ion:	[4]
	$a)_{AlO2}$	b) $AlO\overline{3}$	
	c) Be(OH) ₂	$^{\text{d})}AlO_2^{-3}$	
89.	The order of basic strength of given ox A. Na ₂ O > MgO > Al ₂ O ₃ > CuO	xide:	[4]
	B. $MgO > Al_2O_3 > CuO > Na_2O$		
	C. Al2O3 > MgO > CuO > Na2O		
	D. $CuO > Na_2O > MgO > Al_2O_3$		
	a) D only	b) C only	
	c) B only	d) A only	
90.	Given is a table of work function (ϕ) o photoelectric effect when 300 nm light	f some metals. How many metals will show is incident on the metal?	[4]
	Metal	φ (ev)	
	Li	2.4	\dashv
	Na	2.3	
	K	2.2	

Mg	3.7
Mg Cu	4.8
Ag Fe	4.3
Fe	4.7
Pt	6.3
W	4.75

a) 3

b) 2

c) 4

- d) 1
- 91. Which of the following oxide is amphoteric in nature?

[4]

a) SiO₂

b) SnO₂

c) CO₂

- d) GeO2
- For a hypothetical reaction, $aA + bB \rightarrow product$, the rate law is $r = k[A]^X [B]^Y$ then: 92.
- [4]

a) $\{a + b\} < (x + y)$

b) (a + b) = (x + y)

c) (a + b) > (x + y)

- d) (a + b) may or may not be equal to (x + y)
- Given: $A^{+}(aq.) + e \implies A(s) E^{0} = E_{A_{1}}^{\circ} ...(1)$ 93.

[4]

$$A^{2+}(aq.) + 2e \implies A(s) E^0 = EA_2 ...(2)$$

If K₁ and K₂ are equilibrium constant for reaction (1) and (2) respectively, then log₁₀ K_2

 $\overline{K_1}$ can be given by:

a)
$$2E\mathring{A}_2 - E\mathring{A}_1$$

b)
$$0.059 \left[E\mathring{A}_2 - E\mathring{A}_1 \right]$$

0.059

$$\frac{\left(E_{A_{2}}^{\circ}-E_{A_{1}}^{0}\right)}{0.059}$$

$$\begin{array}{c}
\text{d)} \\
2\left(E_{A_2}^0 - E_{A_1}^\circ\right) \\
\hline
0.059
\end{array}$$

94. The most convenient method to protect the bottom of the ship made of iron is

[4]

- a) connecting it with Pb block
- b) coating it with red lead oxide
- c) connecting it with Mg block
- d) white tin plating
- 95. Which one of the given statement for order of the reaction is not correct?

[4]

- a) Order of reaction is equal to sum of the powers of concentration terms in differential rate law
- b) Order cannot be fractional

- c) Order can be determined experimentally
- d) It is not affected with the stoichiometric coefficient of reactant
- 96. The species having pyramidal shape is:

[4]

a) BrF5

b) OSF₂

c) *SrO*₃²-

- d) SO₃
- 97. Match the oxide given in column A with its property given in column B.

[4]

Column-A	Column-B
i. Na ₂ O	a. Neutral
ii. Al ₂ O ₃	b. Basic
iii. N ₂ O	c. Acidic
iv. Cl ₂ O ₇	d. Amphoteric

Which of the following options has all correct pairs?

98. Identify the INCORRECT statement regarding 3d transition series.

- a) The strength of metallic bonds increases from Sc to Cr and then it decreases.
- increases from Sc to Mn and then decreases from Fe to Zn.
- c) The second ionization enthalpy of Cr is high because of the stable d⁵ configuration.
- d) The first ionization enthalpy decreases from Sc to Zn as the atomic number increases.

b) The number of oxidation states

99. Which of the following will show geometrical isomerism?

[4]

- a) Square planar complexes having unsymmetrical bidentate ligands
- b) Tetrahedral complexes having general formula Ma₄
- c) Square planar complexes having general formula Ma₃b
- d) Octahedral complexes having general formula Ma₅b
- 100. In a reaction of aniline a coloured product C was obtained.

[4]

$$\begin{array}{c|c}
\hline
 & NH_2 \\
\hline
 & HCl
\end{array}$$

$$\begin{array}{c}
 & B \\
\hline
 & Cold
\end{array}$$

$$\begin{array}{c}
 & CH_3 \\
\hline
 & Cold
\end{array}$$

The structure of C would be:

a)
$$NH=NH-ON$$
 CH_3 CH_3

b)
$$\langle \bigcirc \rangle$$
 $N=N-CH_2-N-\langle \bigcirc \rangle$

c)
$$CH_3$$
 CH_3 CH_3

d)
$$\sim$$
 NH—NH— \sim CH₃

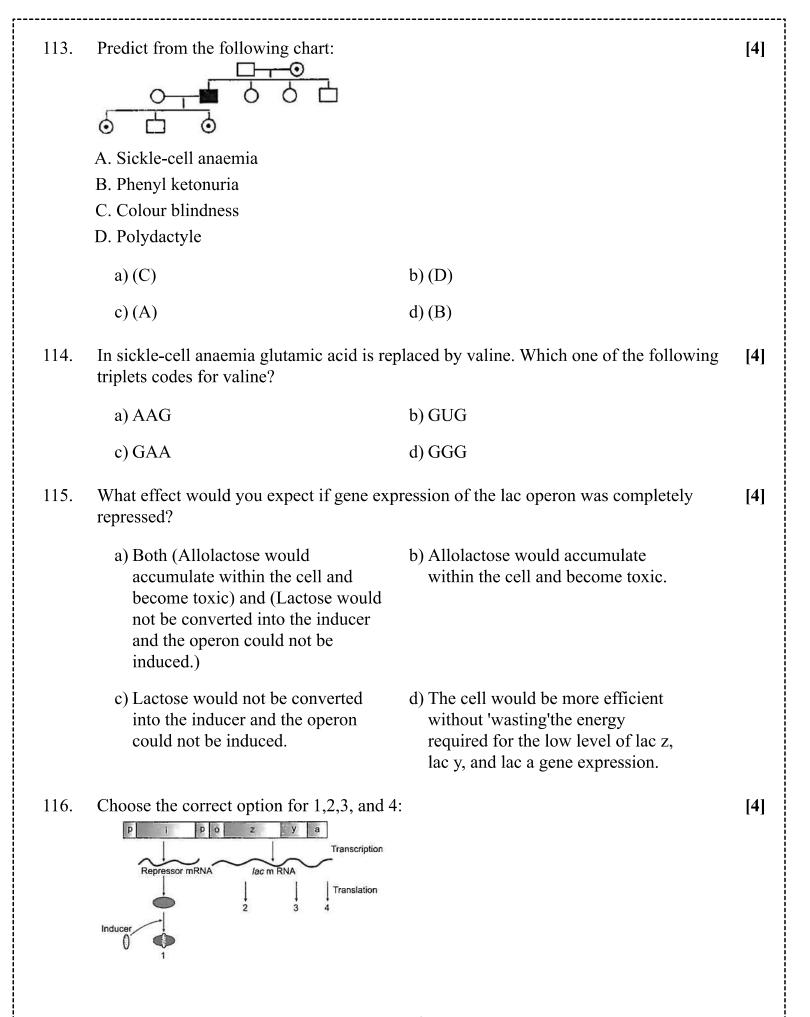
BOTANY (Section-A)

101. The suffix - inae signifies the rank:

[4]

a) Subfamily

b) Subtribe


c) Suborder

- d) Tribe
- 102. Which statement is wrong for growth?

- a) Growth exhibited by living organisms from inside
- b) Increase in body mass is considered as growth
- c) Non-living objects also grow if we take increase in body mass as a criterion for growth
- d) Non-living objects is also grow by accumulation of material from inside

103.	Which of the following are the characters of dinoflagellates? i. They are planktonic golden yellow algae with soap box like structure. ii. They are marine red biflagellated protista. iii. They appear yellow, green, brown, blue and red in colour. iv. They are uniflagellate organisms with pellicle. v. They are saprophytic (or) parasitic unicellular forms.		
	1 1 V / 1		
	a) (ii), (iv) and (v)	b) (i), (ii) and (iii)	
	c) (ii) and (iii)	d) (ii) and (v)	
104.	Which of the following is correct for kin	ngdom fungi?	[4]
	a) Eukaryotic cell type	b) Nuclear membrane present	
	c) Non-cellulosic cell wall present	d) All of these	
105.	Self-pollination can be prevented by		[4]
	a) Both micropyle and dioecy	b) dioecy	
	c) cleistogamy	d) production of bisexual flowers.	
106.	The system of classification based on the floral structure, root modification and leaf venation etc., is called as:		[4]
	a) Artificial system	b) Both Artificial system and Arbitary system	
	c) Natural system	d) Arbitary system	
107.	Match the entities in column I with their	r character in column II:	[4]
	Column I	Column II	7
	(a) Ulothrix	(i) Unicellular	
	(b) Kelps	(ii) Colonial	
	(c) Chlamydomonas	(iii) Filamentous	
	(d) Volvox	(iv) Massive plant bodies	
	a) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)	b) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)	
	c) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)	d) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)	
108.	The pollen grain is related to the embryo	o sac as	[4]
		26 of 76 •	

	a) male gametophyte is to female gametophyte.	b) sperm is to egg.	
	c) male gametophyte is to egg.	d) sperm is to the female gametophyte.	
109.	Parthenocarpic tomato fruits can be prod	uced by	[4]
	 a) treating the plants with low concentrations of gibberellic acid and auxins. 	b) removing androecium of flowers before pollen grains are released.	
	c) raising the plants from vernalised seeds.	d) treating the plants with phenylmercuric acetate.	
110.	False septum found in:		[4]
	a) Mustard	b) Argemone	
	c) Primrose	d) Both Mustard and Argemone	
111.	Different parts of a leaf are modified into Identify the type of tendril that is seen in	tendrils which help the plant in climbing up. Clematis.	[4]
	a) tendril in smilax	b)	
	C) Book of the control of the contro	d)	
112.	As compared to a dicot root, a monocot r	root has:	[4]
	a) More abundant secondary xylem	b) Relatively thicker periderm	
	c) Many xylem bundles	d) Inconspicuous annual rings	

Transacetylase, 3-Permease, 4-\$-Galactosidase, 3-Permease, 4-Transacetylase c) 1-\$\beta\$-Galactosidase, 2-Inactive repressor, 3-Permease, 4-Transacetylase d) 1-Inactive repressor, 2-Permease, 3-Transacetylase, 4-\$\beta\$-Galactosidase, 117. Which of the following statements about endoplasmic reticulum is true? i. ER divides the intracellular space into two distinct compartments, i.e., luminal (inside ER) and extraluminal (cytoplasm) compartments. ii. The endoplasmic reticulum bearing ribosomes on their surface is called rough endoplasmic reticulum (RER). iii. The smooth endoplasmic reticulum (SER) is frequently observed in the cells actively involved in protein synthesis and secretion. iv. ER is extensive and continuous with the outer membrane of the nucleus. v. Rough endoplasmic reticulum (RER) is the major site for synthesis of lipid. vi. In animal cells lipid-like steroidal hormones are synthesised in SER. a) (i), (iii), (iv) and (v) b) (i), (ii), (iv) and (v) c) (iii) and (v) d) (iii), (iv) and (v) 118. How many statements are correct for cell wall? i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: a) Allergic reaction of the mast cells in the lungs		a) 1-Inactive repressor, 2-	b) 1-Inactive repressor, $2-\beta$ -	
c) 1-\$\beta\$-Galactosidase, 2-Inactive repressor, 3-Permease, 4- 3-Transacetylase, 4-\$\beta\$-Galactosidase, 117. Which of the following statements about endoplasmic reticulum is true? i. ER divides the intracellular space into two distinct compartments, i.e., luminal (inside ER) and extraluminal (cytoplasm) compartments. ii. The endoplasmic reticulum bearing ribosomes on their surface is called rough endoplasmic reticulum (RER). iii. The smooth endoplasmic reticulum (SER) is frequently observed in the cells actively involved in protein synthesis and secretion. iv. ER is extensive and continuous with the outer membrane of the nucleus. v. Rough endoplasmic reticulum (RER) is the major site for synthesis of lipid. vi. In animal cells lipid-like steroidal hormones are synthesised in SER. a) (i), (iii), (iv) and (v) b) (i), (ii), (iv) and (v) c) (iii) and (v) d) (iii), (iv) and (v) 118. How many statements are correct for cell wall? i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three		Transacetylase, 3-Permease, $4-\beta$ -	Galactosidase, 3-Permease, 4-	
repressor, 3-Permease, 4- Transacetylase Galactosidase, 117. Which of the following statements about endoplasmic reticulum is true? i. ER divides the intracellular space into two distinct compartments, i.e., luminal (inside ER) and extraluminal (cytoplasm) compartments. ii. The endoplasmic reticulum bearing ribosomes on their surface is called rough endoplasmic reticulum (RER). iii. The smooth endoplasmic reticulum (SER) is frequently observed in the cells actively involved in protein synthesis and secretion. iv. ER is extensive and continuous with the outer membrane of the nucleus. v. Rough endoplasmic reticulum (RER) is the major site for synthesis of lipid. vi. In animal cells lipid-like steroidal hormones are synthesised in SER. a) (i), (iii), (iv) and (v) b) (i), (ii), (iv) and (v) c) (iii) and (v) d) (iii), (iv) and (v) 118. How many statements are correct for cell wall? i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: a) Allergic reaction of the mast cells in the lungs		Galactosidase,	Transacetylase	
Transacetylase Galactosidase, 117. Which of the following statements about endoplasmic reticulum is true? i. ER divides the intracellular space into two distinct compartments, i.e., luminal (inside ER) and extraluminal (cytoplasm) compartments. ii. The endoplasmic reticulum bearing ribosomes on their surface is called rough endoplasmic reticulum (RER). iii. The smooth endoplasmic reticulum (SER) is frequently observed in the cells actively involved in protein synthesis and secretion. iv. ER is extensive and continuous with the outer membrane of the nucleus. v. Rough endoplasmic reticulum (RER) is the major site for synthesis of lipid. vi. In animal cells lipid-like steroidal hormones are synthesised in SER. a) (i), (iii), (iv) and (v) b) (i), (ii), (iv) and (vi) c) (iii) and (v) d) (iii), (iv) and (v) 118. How many statements are correct for cell wall? i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: a) Allergic reaction of the mast cells in the lungs		•	· -	
i. ER divides the intracellular space into two distinct compartments, i.e., luminal (inside ER) and extraluminal (cytoplasm) compartments. ii. The endoplasmic reticulum bearing ribosomes on their surface is called rough endoplasmic reticulum (RER). iii. The smooth endoplasmic reticulum (SER) is frequently observed in the cells actively involved in protein synthesis and secretion. iv. ER is extensive and continuous with the outer membrane of the nucleus. v. Rough endoplasmic reticulum (RER) is the major site for synthesis of lipid. vi. In animal cells lipid-like steroidal hormones are synthesised in SER. a) (i), (iii), (iv) and (v) b) (i), (ii), (iv) and (v) c) (iii) and (v) d) (iii), (iv) and (v) 118. How many statements are correct for cell wall? i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: a) Allergic reaction of the mast cells in the lungs		-	•	
 i. ER divides the intracellular space into two distinct compartments, i.e., luminal (inside ER) and extraluminal (cytoplasm) compartments. ii. The endoplasmic reticulum bearing ribosomes on their surface is called rough endoplasmic reticulum (RER). iii. The smooth endoplasmic reticulum (SER) is frequently observed in the cells actively involved in protein synthesis and secretion. iv. ER is extensive and continuous with the outer membrane of the nucleus. v. Rough endoplasmic reticulum (RER) is the major site for synthesis of lipid. vi. In animal cells lipid-like steroidal hormones are synthesised in SER. a) (i), (iii), (iv) and (v) b) (i), (ii), (iv) and (vi) c) (iii) and (v) d) (iii), (iv) and (v) i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: a) Allergic reaction of the mast cells in the lungs 		Transacetyrase	Garactosidase,	
(inside ER) and extraluminal (cytoplasm) compartments. ii. The endoplasmic reticulum (RER). iii. The smooth endoplasmic reticulum (SER) is frequently observed in the cells actively involved in protein synthesis and secretion. iv. ER is extensive and continuous with the outer membrane of the nucleus. v. Rough endoplasmic reticulum (RER) is the major site for synthesis of lipid. vi. In animal cells lipid-like steroidal hormones are synthesised in SER. a) (i), (iii), (iv) and (v) b) (i), (ii), (iv) and (vi) c) (iii) and (v) d) (iii), (iv) and (v) 118. How many statements are correct for cell wall? i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: a) Allergic reaction of the mast cells in the lungs	117.	Which of the following statements about	endoplasmic reticulum is true?	[4]
endoplasmic reticulum (RER). iii. The smooth endoplasmic reticulum (SER) is frequently observed in the cells actively involved in protein synthesis and secretion. iv. ER is extensive and continuous with the outer membrane of the nucleus. v. Rough endoplasmic reticulum (RER) is the major site for synthesis of lipid. vi. In animal cells lipid-like steroidal hormones are synthesised in SER. a) (i), (iii), (iv) and (v) b) (i), (ii), (iv) and (v) c) (iii) and (v) d) (iiii), (iv) and (v) 118. How many statements are correct for cell wall? i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: a) Allergic reaction of the mast cells in the lungs		-	<u>-</u>	
involved in protein synthesis and secretion. iv. ER is extensive and continuous with the outer membrane of the nucleus. v. Rough endoplasmic reticulum (RER) is the major site for synthesis of lipid. vi. In animal cells lipid-like steroidal hormones are synthesised in SER. a) (i), (iii), (iv) and (v) b) (i), (ii), (iv) and (vi) c) (iii) and (v) d) (iii), (iv) and (v) 118. How many statements are correct for cell wall? i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three			osomes on their surface is called rough	
v. Rough endoplasmic reticulum (RER) is the major site for synthesis of lipid. vi. In animal cells lipid-like steroidal hormones are synthesised in SER. a) (i), (iii), (iv) and (v) b) (i), (ii), (iv) and (v) c) (iii) and (v) d) (iii), (iv) and (v) 118. How many statements are correct for cell wall? i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three		-		
vi. In animal cells lipid-like steroidal hormones are synthesised in SER. a) (i), (iii), (iv) and (v) b) (i), (ii), (iv) and (vi) c) (iii) and (v) d) (iii), (iv) and (v) 118. How many statements are correct for cell wall? i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three		iv. ER is extensive and continuous with the	e outer membrane of the nucleus.	
a) (i), (iii), (iv) and (v) b) (i), (ii), (iv) and (vi) c) (iii) and (v) d) (iii), (iv) and (v) 118. How many statements are correct for cell wall? i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three		v. Rough endoplasmic reticulum (RER) i	s the major site for synthesis of lipid.	
c) (iii) and (v) d) (iii), (iv) and (v) 118. How many statements are correct for cell wall? i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: [4] a) Allergic reaction of the mast cells in the lungs		vi. In animal cells lipid-like steroidal horn	nones are synthesised in SER.	
118. How many statements are correct for cell wall? i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: a) Allergic reaction of the mast cells in the lungs		a) (i), (iii), (iv) and (v)	b) (i), (ii), (iv) and (vi)	
 i. Cell wall of algae made of cellulose, galactans, mannans and minerals like calcium carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: [4] a) Allergic reaction of the mast cells in the lungs 		c) (iii) and (v)	d) (iii), (iv) and (v)	
carbonate. ii. In other plants cell wall consists of cebulose, hemicellulose, pectins and proteins. iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: [4] a) Allergic reaction of the mast cells in the lungs	118.	How many statements are correct for cell	wall?	[4]
iii. The primary wall gradually diminishes as the cell matures and the secondary wall is formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: a) Allergic reaction of the mast cells in the lungs in the lungs			alactans, mannans and minerals like calcium	
formed. iv. The middle lamella is a layer mainly of sodium pectate which holds or glues the different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: [4] a) Allergic reaction of the mast cells in the lungs		ii. In other plants cell wall consists of ceb	ulose, hemicellulose, pectins and proteins.	
different neighbouring cells together. v. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: a) Allergic reaction of the mast cells in the lungs in the lungs			as the cell matures and the secondary wall is	
connect the cytoplasm of neighbouring cells. a) Four b) One c) Two d) Three 119. Asthma may be attributed to: a) Allergic reaction of the mast cells in the lungs in the lungs		·	f sodium pectate which holds or glues the	
c) Two d) Three 119. Asthma may be attributed to: a) Allergic reaction of the mast cells in the lungs b) Accumulation of fluid in lungs		-	· -	
119. Asthma may be attributed to: a) Allergic reaction of the mast cells in the lungs in the lungs [4]		a) Four	b) One	
a) Allergic reaction of the mast cellsb) Accumulation of fluid in lungsin the lungs		c) Two	d) Three	
in the lungs	119.	Asthma may be attributed to:		[4]
		· · · · · · · · · · · · · · · · · · ·	b) Accumulation of fluid in lungs	
- · • • • • · • · •		Page 2	9 of 76 ●	

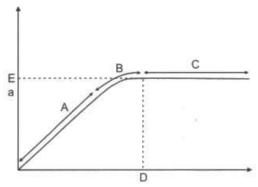
	c) Inflammation of trachea	d) Bacteri	al infection of the lungs	
120.	Which of the following is a carrier of dengue fever?			[4]
	a) Aedes	b) Culex		
	c) Musca	d) Anoph	eles	
121.	Match the following columns and select	the correct o	ontion:	[4]
1-11	Column-I		Column-II	¬ ```
	(A) Smooth endoplasmic reticulum		(i) Protein synthesis	\neg
	(B) Rough endoplasmic reticulum		(ii) Lipid synthesis	
	(C) Golgi complex		(iii) Glycosylation	\neg
	(D) Centriole		(iv) Spindle formation	
	a) (A) - (iv), (B) - (ii), (C) - (i), (D) - (iii)	b) (A) - (i (iv)	i), (B) - (i), (C) - (iii), (D) -	
	c) (A) - (i), (B) - (ii), (C) - (iii), (D) - (iv)	d) (A) - (i (iv)	ii), (B) - (i), (C) - (ii), (D) -	
122.	Maximum trees are present in:			[4]
	a) Tropical rain forest	b) Savann	ah	
	c) Evergreen forest	d) Decidu	ous forest	
123.	Primary productivity is			[4]
	a) the rate of formation of new organic matter by consumers.	*	omass of the ynthetic organisms in the tem.	
	c) the rate of conversion of light into chemical energy in an ecosystem.		e of energy production per ea over a time period by ners.	
124.	The most common substrate used in disti	lleries for th	e production of ethanol is:	[4]
	a) Soya meal	b) Com m	neal	
	c) Ground gram	d) Molass	es	
125.	Nandan Kanan zoo is famous for:			[4]
	Page 3	30 of 76	•	

	a) Hippo	b) White Tiger	
	c) Whale	d) Nilgiri Tahr	
126.	Which of the following is not a step in ur	nderstanding biodiversity?	[4]
	a) Naming the species	b) Quantifying the species genome	
	c) Looking at other related species	d) Assessing the species geographic range	
127.	Which of the following boxes show maxing a species Members Bird I I I Bird II I I Bird III I I Bird III I I I Bird III I I I I I I I I I I I I I I I I I	imum, greater and minimum diversity?	[4]
	 a) A - Maximum diversity, B - Minimum diversity, C - Greater diversity c) A - Maximum diversity, B - Greater diversity, C - Minimum diversity 	 b) A- Minimum diversity, B - Maximum diversity, C - Greater diversity. d) A - Minimum diversity, B - Greater diversity, C - Maximum diversity 	
128.	in metaphase b. Chromatids separate but remain in the c. Chromatids start moving towards opportunity	centre of the cell in anaphase	[4]
	a) Statement (d) is correct.c) Statement (a) is correct.	b) Statement (b) is correct.d) Statement (c) is correct.	
129.	Which stage begins with the simultaneous chromosome, allowing them to move tow	s splitting of the centromere of each	[4]
	a) Anaphase - II	b) Telophase - I	
	c) Telophase - II	d) Anaphase - I	
	Page 3	31 of 76 •	

130. Which pair is wrong?

[4]

a) Hatch and Slack cycle → OAA


b) Calvin cycle → PGA

c) C₄-Kranz anatomy

d) C3-Maize

131. This graph represents _____ and 'a' represents:

[4]

a) Effect of light intensity on photosynthesis-rate of photosynthesis

c) All are correct

b) Effect of light intensity on respiration-rate of photosynthesis

d) Effect of O₂ on rate of photosynthesis-rate of photosynthesis

132. Which one of the following is not a limiting factor for photosynthesis?

[4]

a) Carbon dioxide

b) Oxygen

c) Chlorophyll

d) Light

133. The oxygen-evolving complex has

[4]

a) Mn, Mg, Ca, and CI ions.

b) Mn, Cl, and Ca ions.

c) Mg, Ca, and Cl ions.

d) Mn, Mg, and Ca ions

134. Choose the correct combination of respiratory substrates and their respective RQs.

	Carbohydrate	Fat	Protein
(a)	2	1	1
(b)	0	1	1
(c)	1	0.7	0.9
(d)	1	0.9	0.7

	a) Only D	b) Only A	
	c) Only C	d) Only B	
135.	Which of the following conditions will re of apical bud in the process of apical dom	strict the growth of lateral buds in the presence inance?	[4]
	a) More amount of cytokinins in lateral buds.	b) Less amount of cytokinins in lateral buds.	
	c) Less amount of auxin in apical bud.	d) More amount of auxin in apical bud.	
	BOTAN	Y (Section-B)	
	Attempt a	ny 10 questions	
136.	Which one is the exclusive characteristic	of a living organism?	[4]
	a) Increase in mass from inside	b) Isolated metabolic reaction occuring in vitro.	
	c) Increase in mass both from outside and inside	d) Perception of events happening in the environment and their memory	
137.	Animal viruses usually have:		[4]
	a) DNA	b) DNA and RNA	
	c) DNA or RNA	d) RNA	
138.	Which of the following algae contains ma	annitol as reserve food material?	[4]
	a) Volvox	b) Gracilaria	
	e) Ulothrix	d) Ectocarpus	
139.	An ovule which becomes curved so that to the funicle is:	he nucellus and embryo sac lie at right angles	[4]
	a) Orthotropous	b) Campylotropous	
	c) Anatropous	d) Hemitropous	
140.	Seeds are adaptively important because i. they maintain dormancy.		[4]
	ii. they protect young plants during vulne iii. they store food for young plants and fa	-	
		-	

	a) (i) and (ii)	b) All of these	
	c) (i) and (iii)	d) (ii) and (iii)	
141.	If an albino man marries with a normal ware normal the woman is:	oman and 50% offsprings are albino and 50%	[4]
	a) Hemizygous normal	b) Homozygous	
	c) Homozygous normal	d) Heterozygous carrier	
142.	Initiation codon in eukaryotes is:		[4]
	a) GUG	b) AGU	
	c) UAG	d) AUG	
143.	What is the main function of cytoplasm in	a cell?	[4]
	a) Regulating the transport of molecules into and out of cell.	b) Protein synthesis in the cell.	
	c) Packaging and sending out proteins and lipids.	d) Suspending cellular structures and providing a place for cellular functions to take place.	
144.	The full potential of penicillin as an antib	iotic was established by:	[4]
	a) Alexander Fleming	b) Chain and Florey	
	c) Louis Pasteur	d) F. Sanger	
145.	Disruption of which process will have the carriers used by the electron transport cha	greatest impact on the number of electron in?	[4]
	a) The citric acid cycle	b) Glycolysis	
	c) Formation of FADH ₂	d) Anaerobic pathways	
146.	Maximum number of antibiotics got from	:	[4]
	a) Actinomycetes	b) Viruses	
	c) Mycoplasma	d) Eubacteria	

147.	The given pyramid represents:		[4]
	a) Pyramid of numbers in an aquatic ecosystem	b) Pyramid of biomass in a tree ecosystem.	
	c) Pyramid of numbers in a grassland ecosystem.	d) Pyramid of biomass in an aquatic ecosystem.	
148.	The affect of apical dominance can be over	ercome by which of the following hormone:	[4]
	a) IAA	b) Gibberellin	
	c) Ethylene	d) Cytokinin	
149.	The growth pattern of a plant is different having:	from the growth pattern of an animal in	[4]
	a) Localized growth centres and Indefinite life span	b) Diffused growth	
	c) Indefinite life span	d) Localized growth centres	
150.	The productivity of a crop declines under	water stress condition because	[4]
	a) surface area of leaf decreases.	b) the chlorophyll of leaves destructs.	
	c) Both surface area of leaf decreases and stomata close and CO ₂ cannot enter inside the leaf	d) stomata close and CO ₂ cannot enter inside the leaf.	
	ZOOLOG	SY (Section-A)	
151.	Animals belonging to chordata are fundar structures marked as A, B, C, and D in the correct option. Muscle segments (A) (B) Mouth Mouth	mentally characterised by the presence of e given figure. Identify them and select the	[4]
	a) A-Nerve cord, B-Notochord, C-Post-anal part, D-Gill slits	b) A-Notochord, B-Nerve cord, C-Gill slits, D-Post-anal part. 5 of 76	

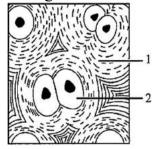
- c) A-Nerve cord, B-Gill slits, C-Notochord, D-Post-anal part.
- d) A-Nerve cord, B-Notochord, C-Post-anal tail, D-Gill slits.
- 152. Which of the following is correct about nematocyst?

[4]

- a) It is an organ of only defence
- b) It is ejected on contact and pierce the prey
- c) Its ejection is conditioned reflex
- d) It can be re-used
- 153. Which one of the following in birds, indicates their reptilian ancestry?

[4]

- a) Scales on their hind limbs
- b) Presence of mammary gland.
- c) Eggs with a calcareous shell.
- d) Presence of crop and gizzard in their digestive tract.
- 154. The horns of Rhinoceros are composed of


[4]

a) Chitin

b) Keratin

c) Bone

- d) Cartilage
- 155. The intercellular material of the given figure is solid and resists compression. Identify the figure and the label marked as 1 and 2.

a)	Figure	1	2
	Muscular tissue	Reticular fibers	Ligament

b)	Figure	1	2
	Cartilage	Collagen	Chondrocytes

c)	Figure	1	2
	Bone	Collagen	Chondrocytes

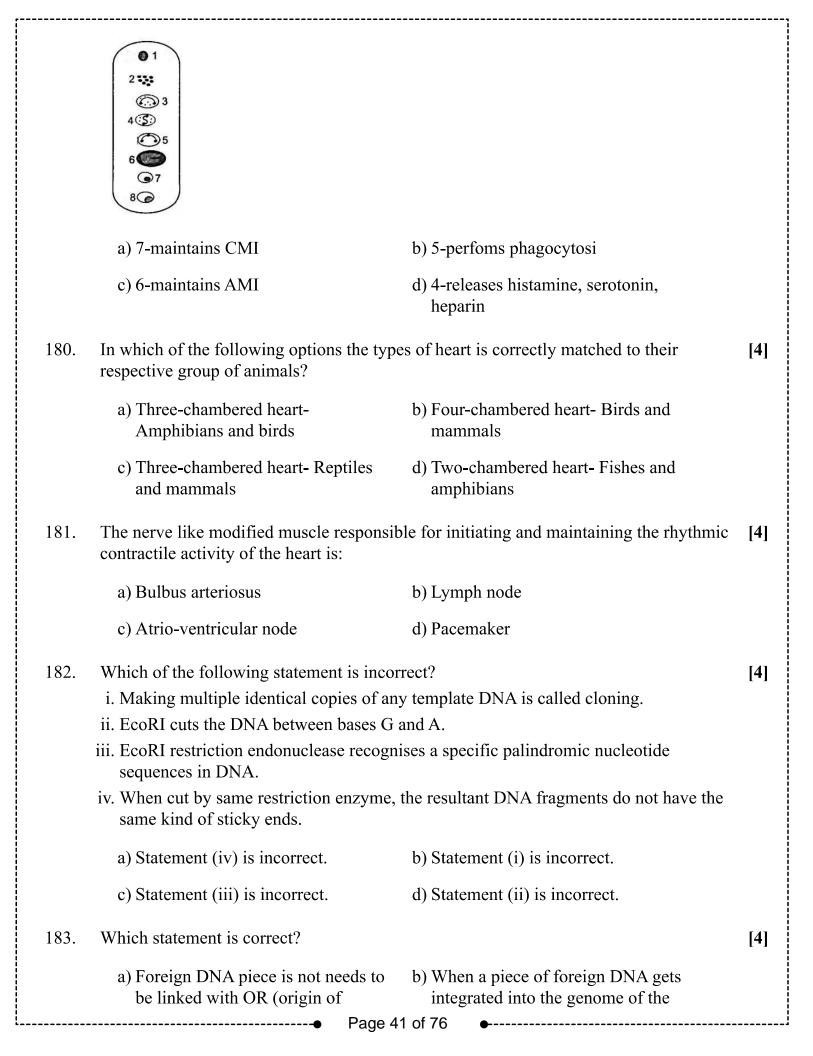
d)	Figure	1	2
	Epithelial tissue	Microtubule	Osteoblasts

156. Maximum amount 70-75% of carbon dioxide transport occurs as:

[4]

a) Dissolved in plasma

b) Carbamino-haemoglobin complex


	c) Bicarbonate	d) Tricarbonate	
157.	Haemoglobin has least affinity for:		[4]
	a) Same affinity for all of these	b) Carbon monoxide	
	c) Carbon dioxide	d) Oxygen	
158.	Oxygen-myoglobin dissociation curve ha	s following shape:	[4]
	a) Straight line	b) Sigmoid	
	c) Rectangular hyperbola	d) Parabola	
159.	Ascent of high mountains may cause altit	ude sickness in men. Prime cause of this is:	[4]
	 a) Decreased proportion of oxygen in air 	b) Excess of CO ₂ in blood	
	c) Decreased partial pressure of oxygen	d) Decreased efficiency of haemoglobin	
160.	Mark the correct statement. a. Human lungs are negative pressure typ b. Avian lungs are non-elastic c. The right lung in human is 3-lobes d. All are correct	e	[4]
	a) Only B	b) Only C	
	c) Only D	d) Only A	
161.	 Identify the correct statement from the following. a. High levels of oestrogen trigger the ovulatory surge. b. Oogonial cells start to proliferate and give rise to functional ova in regular cycles from puberty onwards. c. Sperms released from seminiferous tubules are highly motile. d. Progesterone level is high during the post-ovulatory phase of menstrual cycle. 		[4]
	a) Statement (b) is correct.	b) Statement (d) is correct.	
	c) Statement (a) is correct.	d) Statement (c) is correct.	
162.	The degeneration of follicles is called as:		[4]
	a) Atresia	b) All of these	
	Page 3	/ UI / O	

	c) Metagenesis	d) Regression	
163.	The main tissue present in breast is		[4]
	a) squamous	b) Both squamous and ciliated	
	c) glandular	d) ciliated	
164.	the statements given below:i. They are introduced into the uterusii. They are placed to cover the cervical reiii. They act as physical barriers for sperm		[4]
	iv. They act as spermicidal agents	h) (;;) and (;;;)	
	a) (i) and (iii)c) (i) and (ii)	b) (ii) and (iii) d) (iii) and (iv)	
165.	Veneral diseases can spread through a. Using sterile needles b. Transfusion of blood from infected per c. Infected mother to foetus d. Kissing e. Inheritance a) (a), (b) and (c) only c) (b), (c) and (d) only		[4]
166.	Which one of the following is the direct a	, , , , , ,	[4]
	a) Australopithecusc) Ramapithecus	b) Homo habilis d) Homo erectus	
167.	Evolution for Darwin was gradual while and hence called a) Saltation c) Genetic drift	de Vries believed mutation caused speciation b) Variation d) Gene pool	[4]
168.	The two kidneys in human lie:		[4]

Page 38 of 76

c) Only C	d) Only B
a) Only D	b) Only A
(D) Lymph filled between two	bones, limited movement Gliding joint between carpals
(C) Fluid-filled synovial cavit	y between two bones
(B) Fluid-filled between two j	oints, provides cushion Skull bones
(A) Fluid cartilage between tw	
Characte	
The characteristics and an exar	nple of a synovial joint in humans is:
c) _{HCO} -3	d) $_{\text{Ca}}^{2+}$
a) _{Na} +	b) CI-
Action potential in sarcolemma sarcoplasmic reticulum?	a of muscles causes the release of which ions from
c) Lower arm	d) Shank
a) Upper arm	b) Thigh
The humerus bone is situated i	n:
c) Carbon dioxide	d) Ammonia
a) Urea	b) Uric acid
The end-product of Ornithine of	cycle is
c) Water	d) NH ₃
a) _{Na} +	b) Glucose
Ascending limb of loop of Her	ale is permeable for:
c) At the level of ovaries	d) At the same level

	a) Dorsal root	b) Ventral root	
	c) Gray matter	d) White matter	
175.	ANS is not involved in:		[4]
	a) Learning and memory	b) Micturition	
	c) Control of viscera	d) Heart beat	
176.	Which part of the brain is directly concern	ned with the control of heart?	[4]
	a) Medulla oblongata	b) Cerebrum	
	c) Hypothalamus	d) Pons	
177.	This is a diagrammatic representation of thypothalamus. Select the incorrect statem a) Posterior pituitary receives axons of hypothalamic neurons c) 3-carries oxytocin and vasopressin to pituitary gland	- ·	[4]
178.	Endocrine glands have, to the specific org		[4]
-, -,	a) capillaries.	b) no ducts.	I - J
	c) tubules.	d) ducts.	
179.	State true or false:	e given diagrammatic representation of formed	[4]

	replication) of the recipient for multiplication.	recipient, it may multiply.	
	c) Piece of foreign DNA multiply itself in an alien organism.	d) All are correct	
184.	The diagram below shows		[4]
	a) method of proinsulin formation.	b) enzyme replacement therapy.	
	c) gene therapy.	d) maturation of proinsulin into insulin.	
185.	Agro-chemical based agriculture includes	: :	[4]
	a) Both genetically modified crops and RNA interference	b) genetically modified crops	
	c) fertilisers and pesticides	d) RNA interference	
	ZOOLOG	GY (Section-B)	
186.	A marine cartilaginous fish that can produ	ny 10 questions	[4]
100.	a) Pristis	b) Scoliodon	ניין
	c) Trygon	d) Torpedo	
187.	Following is the most abundant tissue in	· · · ·	[4]
107.	-		[4]
	a) Connective tissuec) Epithelial tissue	b) Muscular tissued) Neural tissue	
100	•	•	- 43
188.	An artificial pacemaker is implanted subcapatients	cutaneously and connected to the heart in	[4]
	a) With irregularity in the heart rhythm	b) Having 90% blockage of the three main coronary arteries	
	c) Having a very high blood pressure	d) Suffering from arteriosclerosis	
	Page 4	2 of 76	

- 189. Breathing with the help of ribs is more pronounced in:
 - a) Female

b) Fatty male

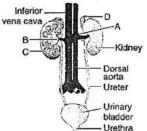
c) Male

- d) Pregnant females
- 190. Match the structures of male reproductive system given in column I with their features [4] given in column II and select the correct match from

Column I (Structures)	Column II (Features)	
(A) Rete testis	stis (i) Facilitates insemination	
(B) Leydig cells	(ii) Meiosisand sperm formation	
(C) Seminiferous tubules	(iii) Connects seminiferous tubules to vasa efferentia	
(D) Penis	(iv) Secrete androgens	

- a) A (ii), B (iv), C (iii), D (i)
- b) A (iii), B (i), C (ii), D (iv)
- c) A (ii), B (i), C (iii), D (iv)
- d) A (iii), B (iv), C (ii), D (i)
- 191. Select the contraceptive which is implanted under the skin

[4]


192. The most acceptable theory of origin of life was proposed by:

[4]

- a) Schleiden and Schwann
- b) Oparin and Haldane

c) Miller and Urey

- d) Darwin and Huxley
- 193. Figure shows human urinary system with structures labelled A to D. Select option which correctly identifies them and gives their characteristics and/or functions:

	 a) D-Adrenal gland-Secrete catecholamines which stimulate glycogen breakdown. 	b) A-Renal artery-contain least amount of urea.	
	c) B-Medulla-inner zone of kidney and contains complete nephrons.	d) C-Cortex-outer part of kidney and do not contain any part of nephrons.	
194.	The cranium of man is made up of:		[4]
	a) 8 bones	b) 12 bones	
	c) 16 bones	d) 10 bones	
195.	If Broca's area is injured then firstly:		[4]
	a) Speech stattered & not clear	b) Only able to speak written word	
	c) Concerning speech muscle are paralysed	d) Unable to speak	
196.	Which of the following is part of pituitar	ry gland?	[4]
	a) Pars intermedia	b) Pars distalis, pars intermedia and pars nervosa	
	c) Pars intermedia and pars distalis	d) Pars distalis and pars nervosa	
197.	97. Select the correct statement: A. Pituitary is the master of the endocrine gland. B. LH and oxytocin are secreted by pars distalis. C. Pars nervosa secretes MSH and FSH. D. Neurosecretory cells are found in adenohypophysis.		[4]
	a) B	b) C	
	c) D	d) A	
198.	an individual. c. The end of the P-wave marks the end	itation of ventricles. time period can determine the heart beat rate of	[4]
		44 of 76	

	a) Statement (a) is correct.	b) Statement (b) is correct.	
	c) Statement (d) is correct.	d) Statement (c) is correct.	
199.	In bacterial cells, the membrane is broke	n with the help of enzyme.	[4]
	a) chitinase	b) lysozyme	
	c) lipase	d) cellulose	
200.	A probe which is a molecule used to loca RNA molecules could be:	ate specific sequences in a mixture of DNA or	[4]
	a) Either RNA or DNA	b) A ssDNA	
	c) A ssRNA	d) Can be ssDNA but not ssRNA	

Page 45 of 76

Solution

SAMPLE PAPER - 3

PHYSICS (Section-A)

1.

(b) only ii

Explanation: If a quantity depends upon more than three factors, each having dimensions, then method of dimensional analysis cannot be applied. It is because applying the principle of homogeneity will give only three equations.

2.

(b) 2

Explanation: 2

3. **(a)** 15 m/s

Explanation: 15 m/s

4.

(d) if \vec{A} , \vec{B} , \vec{C} define a plane, $(\vec{A} \times \vec{B}) \times \vec{C}$ is in that plane

Explanation: According to the given condition,

If \vec{A} , \vec{B} and \vec{C} define a plane, $(\vec{A} \times \vec{B}) \times \vec{C}$ is in that plane.

5.

(c) -118.5

Explanation: Using,

$$R^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\theta$$

$$5^2 = 3^2 + 5^2 + 2 \times 3 \times 5 \cos \theta$$

or $\cos \theta = -0.3$

$$\begin{pmatrix} \overrightarrow{A} & \overrightarrow{A} \\ 2A_1 + 3A_2 \end{pmatrix} \cdot \begin{pmatrix} \overrightarrow{A} & \overrightarrow{A} \\ 3A_1 - 2A_2 \end{pmatrix} = 2A_1 \times 3A_1 + (3A_2)(3A_1)\cos\theta - (2A_1)(2A_2)\cos\theta - (2A_1)(2A_2)\cos\theta$$

$$3A_2 \times 2A_2$$

$$=6A_{1}^{2}+9A_{1}A_{2}\cos\theta-4A_{1}A_{2}\cos\theta-6A_{2}^{2}$$

$$=6A_1^2 6A_2^2 + 5A_1A_2 \cos \theta$$

$$= 6 \times 3^2 - 6 \times 5^2 + 5 \times 3 \times 5(-0.3) = -118.5$$

6. (a) 1 m/s, 3 m/s

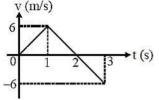
Explanation: 0 < t < 1s: Velocity increases from 0 to 6 m/s

 $1 \le t \le 2s$: Velocity increases from 6 to 0 m/s but car continues to move forward

2 < t <3s : Since field strength is Same

∴ Car's velocity increases from 0 to -6 m/s

Distance traveled in 1st second


$$S = \left(\frac{u+v}{2}\right)t = \left(\frac{0+6}{2}\right)(1) = 3m$$

Distance = 9m

So, Average speed =
$$\frac{9m}{3s}$$
 = 3 m/s

Displacement = 3m

So, Average velocity $=\frac{3m}{3s}=1 \text{ m/s}$

7. **(a)** 16 U

Explanation: Let the initial extension = x

In stretched condition P.E of the string = $\frac{1}{2}kx^2$

where k = spring constant or force constant

$$\frac{U_1}{U_2} = \frac{x_1^2}{x_2^2} \dots (i)$$

By given conditions,

$$U_1 = U$$
, $x_1 = 2$ cm, $x_2 = 8$ cm

After putting these values in eq (i), we get

$$U_2 = 16 U$$

8.

(c) 5 ms^{-1}

Explanation: It is a case of elastic collision. As masses of two balls are equal and 2nd ball is at rest before the collision, hence after the collision the speeds are just exchanged, i.e., 1st ball will now come to rest while the second ball will move forward with the same speed as that of the first, i.e., 5 ms⁻¹.

9.

(d) 1.04 kg-m^2

Explanation: Moment of inertia = $m \times r^2$

Here origin is chosen at the point through which the axis passes the rod. Using the formula total moment of inertia about the axis is $= 2 \times 5 \times (0.2)^2 + 2 \times 2 \times (0.4)^2 = 1.04 \text{kgm}^2$

(d) L is maximum when p is perpendicular to r

Explanation: Angular momentum L is given as:

$$L = \vec{r} \times \vec{p} = rp\sin\theta$$

 \vec{r} = position vector of the particle w.r.t. origin

 \vec{p} = its linear momentum

 $\vec{r} \times \vec{p} = is maximum when p is perpendicular to r,$

i.e.,
$$\theta = 90^{\circ}$$

11.

$$\mathbf{(d)} - \frac{mg_0R^2}{2(R+h)}$$

Explanation: Total energy of satellite at a height h above the earth's surface,

$$TE = -\frac{GMm}{2(R+h)} = -\frac{GMmR^2}{2(R+h)R^2} = -\frac{g_0 mR^2}{2(R+h)}$$

12. (a) Rubber is more elastic than steel.

Explanation: Steel is more elastic than rubber. All other statements are correct.

13.

(c) Does not change with time but is different at different cross-sections of the body **Explanation:** Under steady-state, the temperature of a body becomes constant at its every point but it is different at different cross-sections. The temperature is maximum at the hot end and goes on decreasing as we move away from the hot end

14.

Explanation:

$$\left(\frac{dQ}{dt}\right) = \frac{kA\Delta T}{l}$$

Energy flux,
$$\frac{1}{A} \left(\frac{dQ}{dt} \right) = \frac{k\Delta T}{l}$$

$$=\frac{(0.1)(900)}{1}=90 \text{ Wm}^{-2}$$

15.

(c)
$$P^{1-\gamma}T^{\gamma}$$

Explanation: $P^{1-\gamma}T^{\gamma}$

16.

(b) 114 cm of Hg

Explanation: Pressure exerted by a gas,

$$P = \frac{1}{2} \frac{M}{V} v_{ms}^2$$

Since temperature T is kept constant,

$$v_{rms}^2$$
 and V are also constant.

$$\therefore P \propto M$$

or
$$\frac{P_2}{P_1} = \frac{M_2}{M_1}$$

According to the question,

$$\therefore \frac{P_2}{76} = \frac{\left[M_1 + \left(\frac{50}{100}\right)M_1\right]}{M_1} = \frac{3}{2}$$

$$\Rightarrow P_2 = \frac{3}{2} \times 76$$

= 114 cm of mercury

17.

(b) 7 s

Explanation: Since the system dissipates its energy gradually, and hence amplitude will also decrease with time according to

$$a = a_0 e^{-bt/m} ...(i)$$

 \therefore Energy of vibration drop to half of its initial value (E₀), as

$$E \propto a^2 \Rightarrow a \propto \sqrt{E}$$

$$a = \frac{a_0}{\sqrt{2}} \Rightarrow \frac{bt}{2m} = \frac{10^{-2}t}{2 \times 0.1} = \frac{t}{20}$$

From eqⁿ (i),

$$\frac{a_0}{\sqrt{2}} = a_0 e^{-t/20}$$

$$\frac{1}{\sqrt{2}} = e^{-t/20} \text{ or } \sqrt{2} = e^{t/20}$$

$$\ln\sqrt{2} = \frac{t}{20}$$

$$t = 6.93$$
 seconds

18.

(d) 5:3

Explanation: For a cylindrical source,

Intensity
$$\propto \frac{1}{\text{distance}} \propto (\text{amplitude})^2$$

19.

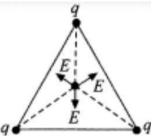
(d) 20%

Explanation: When observer moves towards stationary source then apparent frequency,

$$n' = \left\lceil \frac{v + v_n}{v} \right\rceil n$$

where, \mathbf{v}_0 = frequency of the source \mathbf{v}_0 = velocity of the observer \mathbf{v} = velocity of the sound

$$\therefore \mathbf{v'} = v_0 \left(\frac{v + \frac{v}{5}}{v} \right) = \frac{6v_0}{5}$$


Percentage change in apparent frequency

$$\frac{v'-v_0}{v_0} \times 100 = \frac{\left(\frac{6v_0}{5}-v_0\right)}{v_0} \times 100 = \frac{1}{5} \times 100$$
= 20%

20.

(b) zero

Explanation: Each charge will produce the same magnitude of intensity, say E, at the centroid. These are directed at angles of 120° with each other. So, their vector sum will be zero.

21.

(d) -80 J/C

Explanation: As we know, potential difference $V_{\mbox{\sc A}}$ - $V_{\mbox{\sc O}}$ is

$$dV = -Edx$$

$$\Rightarrow \int_{V_0}^{V_A} dV = -\int_{0}^{2} 30x^2 dx$$

$$V_A - V_O = -30 \times \left[\frac{x^3}{3} \right]_0^2$$

= - 10
$$\times$$
 [2³ - (0)³]
= - 10 \times 8 = -80 J

(b) 90 kW

Explanation: Given that the capacitance is $C = 40 \mu F$ and the potential is V = 3000 V. Therefore the energy

$$E = \frac{1}{2}CV^2 = \frac{1}{2} \times 40 \times 10^{-6} \times (3000)^2$$

$$\Rightarrow$$
 E = 20 \times 9

$$\Rightarrow$$
 E = 180 J

If this energy is transferred in a time t = 2 ms. Then the power delivered is,

$$P = \frac{E}{t} = \frac{180}{2 \times 10^{-3}} = 90 \text{ kW}$$

23.

(b) Zero

Explanation: Zero

24.

(b) 4

Explanation: In magnetic dipole

Force
$$\propto \frac{1}{r^4}$$

In the given question,

Force
$$\propto x^{-n}$$

Hence,
$$n = 4$$

25.

(b) rise

Explanation: rise

26. (a) only i

Explanation: twice per revolution

27. **(a)** Q =
$$\frac{\Delta \phi}{R}$$

Explanation: Since,

$$\frac{\Delta\phi}{\Delta t} = \varepsilon$$

$$= IR$$

$$\Rightarrow \Delta \phi = (I\Delta t)R$$

$$= QR$$

$$\Rightarrow Q = \frac{\Delta \phi}{R}$$

$$(d) \omega L = \frac{1}{\omega C}$$

Explanation: The current will be maximum when Impedance is minimum, i.e., when,

$$X_L = X_C \text{ or } \omega L = \frac{1}{\omega C}$$

29.

(d) 100

Explanation: Average intensity em wave is

$$= \frac{P}{4\pi r^2} = \frac{1}{2} \in {}_{0}E_{0}^{2} \times c$$

$$\operatorname{Or} E_0 = \left[\frac{P}{2\pi v r^2 \in_0 c} \right]^{1/2}$$

$$= \left[\frac{500}{2\pi (3)^2 \times \left[1 / \left(4\pi \times 9 \times 10^9 \right) \right] \times 3 \times 10^8} \right]^{1/2}$$

$$= 100 \text{ V/m}$$

30. **(a)** 1.72

Explanation: For dispersion without deviation, deviation from first prism = deviation from second prism $\delta_1 = \delta_2$

or
$$A_1(\mu_1 - 1) = A_2(\mu_2 - 1)$$

Given that $A_1 = 4^{\circ}$, $A_2 = 3^{\circ}$ and $\mu_1 = 1.54$

$$4(154 - 1) = 3(\mu_2 - 1)$$

or
$$\mu_2 = 1.72$$

31.

(c) 443 nm

Explanation: The refractive index of water with respect to air,

$$\mu = \frac{C_{\text{air}}}{C_{\text{water}}} = \frac{v\lambda_{air}}{v\lambda_{\text{water}}}, \mu = 1.33$$

$$\therefore \lambda \text{ in water} = \frac{\lambda_{\text{air}}}{\mu} \text{ or } \lambda \text{ in water} = \frac{589}{1.33} \text{ nm}$$

or λ in water = 443 nm

32.

(c)
$$7.2 \times 10^5 \text{ m/s}$$

Explanation: As we know that,

$$\lambda = \frac{h}{mv}$$

$$v = \frac{h}{m\lambda}$$

$$v = \frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31} \times 10 \times 10^{-10}}$$

$$= 7.2 \times 10^5 \text{ m/s}$$

33.

(b) Zero

Explanation: $V = \frac{3}{2}v^0$

and
$$v' = \frac{v}{2} = \frac{3}{4}v_0$$

Here, we see $v' < v < v_0$

Below threshold frequency, no photoelectric emission takes place.

34.

(b)
$$S = n\lambda$$

Explanation: It is a postulate by Bohr, written as $2\pi r = n\lambda$ circumference $S = n \times \text{wavelength}$

35.

Explanation: $N_0 = 600$, N' = 450

$$\therefore N = N_0 - N' = 600 - 450 = 150$$

$$\therefore \frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T} H \text{ or } \frac{150}{600} = \left(\frac{1}{2}\right)^{t/10}$$

or
$$\frac{1}{4} = \left(\frac{1}{2}\right)^{t/10}$$
 or $\left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^{t/10}$

$$\therefore 2 = \frac{t}{10}$$

$$\therefore$$
 t = 20 min

PHYSICS (Section-B)

36.

(d)
$$2 \text{ m/s}$$

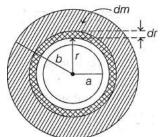
Explanation: The velocities will be interchanged after collision.

$$0 = v^2 - 2gh$$

$$v = \sqrt{2gh}$$

Speed of P just before collision =
$$\sqrt{2gh}$$

= $\sqrt{2 \times 10 \times 0.2}$ = 2 m/s (: h = 20 cm = 0.2 m)


$$\text{(c) } \sqrt{\frac{a^2+b^2+ab}{3}}$$

Explanation:

Given, variation in mass per unit area (surface mass density),

$$\sigma = \frac{\sigma_0}{r} ...(i)$$

Calculation of Mass of Disc

Let us divide whole disc in small area elements, one of them shown at r distance from the centre of the disc with its width as dr.

Mass of this element is

$$dm = \sigma \cdot dA$$

$$\Rightarrow dm = \frac{\sigma_0}{r} \times 2\pi r dr \text{ [from Eq. (i)] ...(ii)}$$

Mass of the disc can be calculated by integrating it over the given limits of r,

$$\int_{0}^{M} dm = \int_{a}^{b} \sigma_{0} \times 2\pi \times dr$$

$$\Rightarrow M = \pi \cdot 2\pi (b - a) \quad \text{(ii)}$$

$$\Rightarrow M = \sigma_0 2\pi (b - a) \dots (iii)$$

Calculation of Moment of Inertia

$$I = \int_0^M r^2 dm = \int_a^b r^2 \cdot \frac{\sigma_0}{r} \times 2\pi r dr = \sigma_0 2\pi \int_a^b r^2 dr = \sigma_0 2\pi \left[\frac{r^3}{3}\right]_a^b$$

$$\Rightarrow I = \frac{1}{3}\sigma_0 2\pi \left[b^3 - a^3 \right] ...(iv)$$

Now, radius of gyration

$$K = \sqrt{\frac{I}{M}} = \sqrt{\frac{2\pi\sigma_0}{3}(b^3 - a^3)} \frac{2\pi\sigma_0(b^3 - a^3)}{2\pi\sigma_0(b - a)}$$

$$\Rightarrow K = \sqrt{\frac{1}{3} \frac{\left(b^3 - a^3\right)}{b - a}}$$

As we know,
$$b^3 - a^3 = (b - a)(b^2 + a^2 + ab)$$

$$\therefore K = \sqrt{\frac{1}{3}(b^2 + a^2 + ab)}$$

or
$$K = \sqrt{\frac{\left(a^2 + b^2 + ab\right)}{3}}$$

(d)
$$\frac{R}{4}$$

Explanation: The acceleration due to gravity at height h is given by $g' = \frac{gR^2}{(R+h)^2}$...(i)

The acceleration due to gravity decreases at height h decreases by 36%

$$g' = g - \frac{36g}{100} = \frac{64}{100} = 0.64 \text{ g ...(ii)}$$

From equation (i) and equation (ii), we get

$$\frac{gR^2}{(R+h)^2} = \frac{64}{100}g$$

$$\left(\frac{R}{R+h}\right)^2 = \left(\frac{8}{10}\right)^2$$

$$\frac{R}{R+h} = \frac{8}{10}$$

$$10R = 8R + 8h$$

$$2R = 8R$$

$$h = \frac{R}{4}$$

39.

(d) cryogenics

Explanation: The study of a definite branch of physics related to phenomena at very low temperatures is called." cryogenics".

40. (a) Speed of sound waves is more

Explanation: As we know that,

The velocity of sound = $\sqrt{\frac{\gamma RT}{M}}$

When water vapor is present in the air, the average molecular weight of air decreases, and hence velocity increases.

41. (a)
$$\left(\frac{v+u}{v-u}\right)f$$

Explanation: Apparent frequency for reflector (which will act here as an observer) would be,

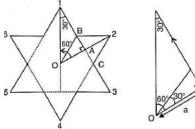
$$f_1 = \left(\frac{v + u}{u}\right) f$$

where f = actual frequency of source

After being reflected the apparent frequency will further change and the reflector will now behave as a source. The apparent frequency will now become:

$$f_2 = \left(\frac{u}{v - u}\right) f_1$$

Substituting the value of f_1 , we get;


$$f_2 = \left(\frac{v+u}{v-u}\right) f$$

42.

(b)
$$\frac{\mu_0 I}{4\pi a} 6[\sqrt{3} - 1]$$

Explanation:

The given points (1, 2, 3, 4, 5, 6) makes 360° angle at O. Hence, angle made by vertices 1 and 2 with O is 60° .

Direction of magnetic field at O due to each segment is same.

Since it is symmetric star shape, magnitude will also be same.

Magnetic field due to section BC

$$B_1 = \frac{KI}{a} \left[\sin\left(+60^{\circ}\right) - \sin\left(30^{\circ}\right) \right] = \frac{KI}{2a} (\sqrt{3} - 1)$$

:.
$$B_{\text{net}} = 12 \times B_1 = \frac{6KI}{a} (\sqrt{3} - 1)$$
 $\left[K = \frac{\mu_0}{4\pi} \right]$

(b)
$$\frac{2}{3}$$
 Am⁻¹

Explanation: On increasing the temperature magnetic susceptibility of paramagnetic material decreases or vice versa. According to Curie law, we can deduce a formula for the relation between magnetic field induction, temperature and magnetisation.

i.e., I (magnetization)
$$\propto \frac{B(\text{ magnetic field induction })}{t(\text{ temperature in kelvin })} \Rightarrow \frac{I_2}{I_1} = \frac{B_2}{B_1} \times \frac{t_1}{t_2}$$

Let us suppose, here $I_1 = 8 \text{ Am}^{-1}$

$$B_1 = 0.6 \text{ T}, t_1 = 4 \text{ K}$$

$$B_2 = 0.2 \text{ T}, t_2 = 16 \text{ K}$$

$$\Rightarrow \frac{0.2}{0.6} \times \frac{4}{16} = \frac{I_2}{8}$$

$$\Rightarrow I_2 = 8 \times \frac{1}{12} = \frac{2}{3} \text{ Am}^{-1}$$

44.

(d) only iii

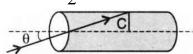
Explanation: Crystallography

45.

(c) 242 W

Explanation: The given circuit is under resonance as $X_L = X_C$

Hence, power dissipated in the circuit is


$$P = \frac{V^2}{R} = 242 \text{ W}$$

46.

(b)
$$\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

Explanation:

$$\sin C = \frac{\sqrt{3}}{2} \dots (i)$$

$$\sin r = \sin (90^{\circ} - C) = \cos C = \frac{1}{2}$$

$$\frac{\sin \theta}{\sin r} = \frac{\mu_2}{\mu_1}$$

$$\sin\theta = \frac{2}{\sqrt{3}} \times \frac{1}{2}$$

$$\theta = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

(c) L_2, L_3

Explanation: L₂, L₃

48.

(c)
$$\sqrt{8}$$

Explanation: add explanation here

49.

(d) Conservation of angular momentum

Explanation: For an explanation of Bohr's theory, Bohr used the principle of Conservation of angular momentum. As he postulated that the angular momentum of the electron remains conserved.

50.

(c) one fourth

Explanation: According to the concept of half-life, half of the initial sample will remain undecayed after 12.5 y. In the next 12.5 y, one-half of these nuclei would decay. Hence one-fourth of the initial sample of pure tritium will remain undecayed.

CHEMISTRY (Section-A)

51.

(c)
$$[H^+] = 2[S^{2-}] + [HS^-] + [OH^-]$$

Explanation: In solution, $H_2O \rightarrow H^+ + OH^-$

$$\mathrm{H_2S} \ \rightarrow \ \mathrm{H}^+ + \mathrm{HS}^- + \mathrm{S}^{-2}$$

In solution, total positive charge from all species is equal to total negative charge from all species.

$$[H^{+}] = 2[S^{2-}] + [HS^{-}] + [OH^{-}]$$

52.

(b) small, large

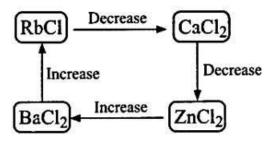
Explanation: If the position of a particle is measured accurately, there will be more error in the measurement of its momentum.

53.

(b)
$$C > Be > B > Li$$

Explanation:

Li	Be	В	С
2s ¹	$2s^2$	2p ¹	2p ²


$$\overline{I.E._1 = C > Be > B > Li}$$

54. (a) C₃H₈, CH₃OCH₃, CH₃CH₂OH

Explanation: Ethers are highly volatile. CH₃CH₂OH has H-bonding.

55.

(c)

Explanation: Ionic character = RbCl > BaCl₂ > CaCl₂ > ZnCl₂

56.

(d) hydrogen fluoride

Explanation: H-F shows strongest H-bonds because fluorine is most electronegative.

57. **(a)** 44.0

Explanation: $\triangle H = \triangle U + P_2 V_2 - P_1 V_1$ Given, $\triangle U = 30.0L$ atm.

$$P_1 = 2.0$$
 atm, $V_1 = 3.0$ L, $T_1 = 95$ K

$$P_2 = 40$$
. atm, $V_2 = 5.0$ L, $T_2 = 245$ K

$$\triangle H = \triangle U + P_2 V_2 - P_1 V_1$$

$$30 + (4 \times 5) - (2 \times 3) = 30 + 20 - 6 = 44L$$
 atm.

58. (a)
$$[OH^-] = c_b$$
, if $(pK_b + 1) < pc_b$

Explanation: $[OH^-] = c_b$, if $(pK_b + 1) < pc_b$

59.

(b) only i

Explanation: $KIO_4 + H_2O_2 \rightarrow KIO_3 + H_2O + O_2$

$$I^{2+} + 2e \rightarrow I^{5+}$$

$$(O^{-1})_2$$
Reductant $\rightarrow (O)_2 + 2e$

$$NH_2OH + 3H_2O_2 \rightarrow HNO_3 + 4H_2O$$

$$N^- \rightarrow N^{5+} + 6e$$

$$(O^{-1})_2 oxidant + 2e \rightarrow 2O^{-2}$$

60.

(c)
$$S_2O_8^2$$

Explanation: Higher the standard reduction potential $\left(E_M^{\circ}n + {}_{/M}\right)$, better is oxidising agent. Among the given, $E_{2O_1^{2-}/SO_4^{2-}}$ is highest, hence $S_2O_8^{2-}$ is the strongest oxidising agent.

Page 59 of 76

The decreasing order of oxidising agent among the given option is as follows: $S_2O_8^{2-}$

$$Au^{3+} > O_2 > Br_2$$

61.

(c) Colemanite

Explanation: Ca₂B₆O₁₁ · 5H₂O is called colemanite and it is used to prepare H₃BO₃ and borax.

62.

(c) a linear silicone

Explanation: a linear silicone

63.

(b)
$$I > III > II > IV$$

Explanation: (I) is most stabilise as all atoms have a complete octet. (IV) is highly destabilize as N is +vely charged and has incomplete octet.

64.

(c) Butanoic acid and acetic acid

 $(i) O_3$

$$CH_3COOHAcetic\ Acid + CH_3CH_2CH_2COOHButanoic\ acid$$

(ii) H₂O

it is oxidative ozonolysis.

65.

Explanation: The compound can give 3° radical which is highly stable.

66. (a) the enthalpy of mixing is zero

Explanation: For ideal solution $\Delta V_{mixing} = 0$, $\Delta H_{mixing} = 0$

67.

(c) 38.71 g

Explanation: 38.71 g

68.

(d) $-46.32 \text{ kJ mol}^{-1}$

Explanation: $\Delta_r G^O = -nFE_{cell}^O$

$$= -2 \times 96500 \times 0.24$$

$$= -46320 \text{ J mol}^{-1}$$

$$= -46.32 \text{ kJ mol}^{-1}$$

69.

(d) depends only on temperature

Explanation: depends only on temperature

70. (a)
$$1.0 \times 10^{-4}$$

Explanation:
$$k = \frac{[R_0]}{2t\frac{1}{2}}$$

$$k = \frac{0.02}{2 \times 100}$$

$$k = 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$$

(b) Ln₂O₃, Ln₂S₃, LnCl₃

Explanation: Ln reacts with O₂, S and Cl₂ respectively to form Ln₂C₃, Ln₂S₃ and LnCl₃.

72.

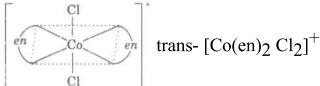
(d) White phosphorus

Explanation: White phosphorus glow in dark.

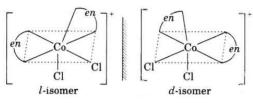
73. **(a)** 15

Explanation:

Electronic configuration of zinc (Zn) is


There are 15 electrons having $+\frac{1}{2}$ value of a spin quantum number.

74.


(d)
$$\operatorname{cis-[Co(en)_2Cl_2]}^+$$

Explanation:

Optical isomerism is not planar complexes. Octahedral complexes of general formulae, $[\text{Ma}_2\text{b}_2\text{c}_2]^{n\,\pm}\,,\,\{\text{Mabcdef}],\,[\text{M}(\text{AA})_3]^{n\,\pm}\,,\,[\text{M}(\text{AA})_2\text{a}_2]^{n\,\pm}\,\,(\text{where AA}=\text{symmetrical bidentate ligand}),\,[\text{M}(\text{AA})_2\text{ab}]^{n\,\pm}\,\,\text{and}\,\,[\text{M}(\text{AB})_3]^{n\,\pm}\,\,(\text{where AB}=\text{unsymmetrical ligands})\,\,\text{show optical isomerism}.$

does not show optical isomerism (superimposable mirror image). But cis-form shows optical isomerism.

cis-[Co(en)₂Cl₂]⁺

75.

(d) 8000 cm⁻¹

Explanation:
$$\Delta_t = \frac{4}{9}\Delta_0$$

$$=\frac{4}{9} \times 18000$$

$$= 8000 \text{ cm}^{-1}$$

76.

(b) isopropyl benzene

77.

Explanation:

78.

(c)
$$i > ii > iii > iv$$

Explanation: i > ii > iii > iv

79. **(a)**

Explanation:

80.

(c) 9

Explanation: Decasaccharide contains 10 monosaccharides linked to each other by 9 glycosidic bonds.

81.

(b) i, ii, iv and vi

Explanation: Essential amino acids are the amino acids which body cannot synthesize and must be supplied from diet.

Essential amino acids: PVT TIM HALL

PTV: Phenylalanine, Threonine, Valine,

TIM: Tryptophan, Isoleucine, Methionine,

HALL: Histidine, Arginine, Lysine, Leucine

Isoleucine, tryptophan, lysine and methionine are essential amino acids.

82. **(a)** Only C

Explanation: Tertiary amines show intermolecular hydrogen bonding.

83.

(c) 0.826 V

Explanation: pH is 7 for a neutral solution.

As pH =
$$-\log_{10} [H^{+}]$$

$$[H^{+}] = 10^{-7}M$$

$$E^{0} = \frac{0.059}{n} \log \frac{\left[\text{NO}_{2}\right] \left[\text{H}_{2}\text{O}\right]}{\left[\text{NO}_{3}^{-}\right] \left[\text{H}^{+}\right]^{2}}$$

$$=\frac{0.059}{1}\log\frac{1}{(10^{-7})^2}$$

$$= 0.059 \times (\log 1 - \log 10^{-14})$$

$$= 0.059 \times (14) = 0.826 \text{ V}$$

84.

(b) vapourize without decomposition

Explanation: vapourize without decomposition

85.

CHEMISTRY (Section-B)

86.

(b)
$$B > A > C$$

Explanation: Ice > Liquid water > Impure water

Due to impurity extent of H-Bonding decreases.

87.

(d)
$$-\frac{1}{3}$$
, $-\frac{1}{2}$, -1

Explanation:
$$-\frac{1}{3}$$
, $-\frac{1}{2}$, -1

88. **(a)** AlO_2^-

Explanation: AlO_2^-

89.

(d) A only

Explanation: Na₂O > MgO > Al₂O₃ > CuO

90.

(c) 4

Explanation: The energy of photon $=\frac{hc}{\lambda} = \frac{hc}{e\lambda}$

$$= \frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{300 \times 10^{-9} \times 1.602 \times 10^{-19}}$$
$$= 4.14 \text{ eV}$$

For the photoelectric effect to occur, the energy of incident photons must be greater than the work function of the metal.

∴ Only Li, Na, K and Mg have ϕ < 4.14 eV

91.

(b) SnO₂

Explanation:

- SnO₂ reacts with acid as well as a base. So SnO₂ is amphoteric.
- $SnO_2 + 4HC1 \rightarrow SnCl_2 + 2H_2O$
- $SnO_2 + 2NaOH \rightarrow Na_2SnO_3 + H_2O$
- CaO is basic in nature while SiO₂ and CO₂ are acidic in nature.

92.

(d) (a + b) may or may not be equal to (x + y)

Explanation: Order of reaction (x + y) is an experimental value. It may have any values. 93.

(c)
$$\frac{\left(E_{A_2}^{\circ} - E_{A_1}^{0}\right)}{0.059}$$

Explanation:
$$\frac{\left(E_{A_2}^{\circ} - E_{A_1}^{0}\right)}{0.059}$$

(d) white tin plating

Explanation: The bottom of the ship which is made up of iron is protected by white tin plating which prevents the build up of barnicles.

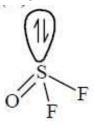
95.

(b) Order cannot be fractional

Explanation: Order cannot be fractional

96.

(b) OSF₂


Explanation: OSF_2 has sp^3 hybridization. According to VSEPR theory, we can conclude that the shape of SOF_2 is a trigonal pyramid.

Sulphur has a nonbonding pair of electrons on top, three downward legs of the pyramid are bonded to oxygen with a double bond & to each fluorine with a single bond.

 SO_2 is sp^2 hybridized with three bond pairs and is trigonal.

BrF₃ is sp³d hybridized with a trigonal bipyramidal shape.

 SrO_3^{2-} is sp² hybridized with trigonal shape.

97.

(d) i - b, ii - d, iii - a, iv - c

Explanation: i - b, ii - d, iii - a, iv - c

98.

- (d) The first ionization enthalpy decreases from Sc to Zn as the atomic number increases. **Explanation:** The first ionization enthalpy increases with some irregularities as the atomic number increases in the 3d transition series. The irregularities are due to the screening effect of added (n 1)d electrons.
- 99. (a) Square planar complexes having unsymmetrical bidentate ligands **Explanation:** Square planar complexes having unsymmetrical bidentate ligands

100. (a)
$$NH=NH$$
 $NH=NH$
 NH_2
 N

p-(N, N dimetyl) amineazobenzene azodye

BOTANY (Section-A)

101.

(b) Subtribe

Explanation: The suffix - inae signifies the rank subtribe.

102.

(d) Non-living objects is also grow by accumulation of material from inside

Explanation: Non-living objects grow by increase in body mass as a criterion for growth. Non-living objects also grow by the accumulation of material on the surface from outside.

103.

(b) (i), (ii) and (iii)

Explanation: Dinoflagellates are mostly single-celled organisms classified in the kingdom protista. Dinoflagellates characteristically have two flagella for locomotion and most have a rigid cell wall of cellulose encrusted with silica. Their cell wall is divided into two halves called theca that may fit as two halves of a soap box or a petri dish.

104.

(d) All of these

Explanation: Kingdom fungi contain eukaryotic, multicellular, and organism with a cell wall formed of chitin.

105.

(b) dioecy

Explanation: Bisexual or cleistogamous flowers exhibit self-pollination.

106.

(b) Both Artificial system and Arbitary system

Explanation:

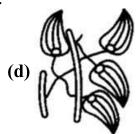
- Artificial system of classification was based on one or a few easily observable characters of plants, such as habit (trees, shrubs, herbs, etc.) or floral characters (particularly the number of stamens and carpels).
- The arbitrary system indicates a system in which easily observable characteristics are the basis for classification. Arbitrary characters include characters like the morphology of all parts of plants.

(d) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)

Explanation: (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)

- Ulothrix is a genus of non-branching filamentous green algae.
- Kelps forms profusely branched massive plant body.
- Chlamydomonas is a unicellular alga.
- Volvox forms spherical colonies.
- 108. (a) male gametophyte is to female gametophyte.

Explanation: Pollen grain carries male gametes so it represents the male gametophyte and the embryo sac carries egg or female gamete so it represents the female gametophyte.


109. (a) treating the plants with low concentrations of gibberellic acid and auxins.

Explanation: Parthenocarpy can be induced through the application of growth hormones. 110.

(d) Both Mustard and Argemone

Explanation: In parietal placentation, the ovules develop on the inner wall of the ovary or on the peripheral part. Ovary is one-chambered but it becomes two-chambered due to the formation of the false septum, e.g., mustard and Argemone. Free central placentation is found in Primrose, the ovules develop on the central axis of the ovary and the septum is absent in this type of placentation.

111.

Explanation: In tendrillar petiole, petiole is tendrillar in nature and helps the plant to climb up as in clematis and Nepenthes. The petiole, rachis and the stalk of the leaflets (petiolule) in clematis are sensitive to contact and can coil around the support to help the plant in climbing. Such tendrils are known as rachis and petiolule tendrils.

112.

(c) Many xylem bundles

Explanation: Dicot root is diarch to hexarch (no. of vascular bundle is 2 to 6), while in monocot polyarch (no. of vascular bundle is numerous, i.e., 6 to many) conditions is present. So, the monocot root has many xylems and phloems in comparison with the dicot root. Vascular bundles are radial in dicot root where xylem and phloem occur in separate patches and are arranged on alternate radii whereas, in monocot root radial arrangement of vascular bundle, xylem and phloem form an equal number of separate bundles.

113. **(a)** (C)

Explanation: (C)

114.

(b) GUG

Explanation: GUG

(c) Lactose would not be converted into the inducer and the operon could not be induced.

Explanation: A low level of lac Z expression is required for the conversion of lactose to the inducer, allolactose.

116.

(b) 1-Inactive repressor, 2- β -Galactosidase, 3-Permease, 4-Transacetylase

Explanation: 1-Inactive repressor, $2-\beta$ -Galactosidase, 3-Permease, 4-Transacetylase

117.

(b) (i), (ii), (iv) and (vi)

Explanation: (i), (ii), (iv) and (vi)

118. **(a)** Four

Explanation: Four

119. (a) Allergic reaction of the mast cells in the lungs

Explanation: Allergy is due to the release of chemicals like histamine and serotonin from the mast cells.

120. (a) Aedes

Explanation: These pathogens of typhoid generally enter the small intestine through food and water contaminated with them and migrate to other organs through blood. Sustained high fever (39° to 40°C), weakness, stomach pain, constipation, headache, and loss of appetite are some of the common symptoms of this disease. Intestinal perforation and death may occur in severe cases.

121.

Explanation: (A) - (ii), (B) - (i), (C) - (iii), (D) - (iv)

122. (a) Tropical rain forest

Explanation: Tropical rain forest

123.

(c) the rate of conversion of light into chemical energy in an ecosystem.

Explanation: Primary Productivity (PP) is defined as the rate at which radiant energy is converted by the photosynthetic and chemosynthetic autotrophs to organic substances.

124.

(d) Molasses

Explanation: Molasses

125.

(d) Nilgiri Tahr

Explanation: Nilgiri Tahr

126.

(b) Quantifying the species genome

Explanation: Quantifying or measuring the species genome does not help to recognise biodiversity. Biodiversity is the variety of plant and animal life found in a particular habitat.

127.

(d) A - Minimum diversity, B - Greater diversity, C - Maximum diversity

Explanation: A, B and C respectively show minimum, greater and maximum diversity.

Since the number of individuals in all the three boxes are same but the variety of animals in all the boxes are different, like box A shows diversity of single animal - bird, box B shows diversity of birds and mammals whereas box C shows diversity of three animals - birds, mammals and insects.

128.

(c) Statement (a) is correct.

Explanation: Metaphase is the stage of mitosis where the highly coiled chromosome align in the middle of cell.

129. (a) Anaphase - II

Explanation: Anaphase II: It begins with the simultaneous splitting of the centromere of each chromosome, now individual chromosomes allow to move toward opposite poles of the cell.

130.

(d) C₃-Maize

Explanation:

- Maize is C₄-plant C₄-plant have Kranz type anatomy of leaves.
- PGA (3-phosphoglyceric acid) is found during the Calvin cycle.
- OAA (Oxalo Acetic Acid) a 4C compound is formed during Hatch and Slack cycle (C₄ cycle).
- 131. (a) Effect of light intensity on photosynthesis-rate of photosynthesis

 Explanation: Effect of light intensity on photosynthesis-rate of photosynthesis

132.

(b) Oxygen

Explanation: In the case of photosynthesis, oxygen is never a limiting factor, because oxygen is a bi-product released after photosynthesis and never an element required for photosynthesis.

133.

(b) Mn, Cl, and Ca ions.

Explanation: Photolysis of water occurs in the oxygen-evolving complex associated with PS II. This protein-bound inorganic complex contains cofactors: four manganese (Mn) ions, calcium ions and chloride ions.

134.

(c) Only C

Explanation: Carbohydrate - 1, Fat - 0.7, Protein - 0.9

135.

(d) More amount of auxin in apical bud.

Explanation: Apical dominance is the phenomenon by which presence of apical bud does not allow the nearby lateral buds to grow by releasing auxins. When the apical bud is removed, the lateral buds sprout. When a plant is decapitated, i.e., its apical bud is removed then the lateral buds sprout, resulting in dense bushy growth. This phenomenon is widely used in the tea plucking and hedge making.

BOTANY (Section-B)

(d) Perception of events happening in the environment and their memory **Explanation:** The most obvious and technically complicated feature of all living organisms is this ability to sense their surroundings or environment and respond to these environmental stimuli which could be physical, chemical or biological. We sense our environment through our sense organs. Plants respond to external factors like light, water, temperature, other organisms, pollutants, etc. All organisms, from the prokaryotes to the most complex eukaryotes can sense and respond to environmental cues. Hence, the correct option is the Perception of events happening in the environment and their memory.

137.

(c) DNA or RNA

Explanation: Viruses that infect animals have either single or double-stranded RNA or double-stranded DNA. No virus contains both RNA and DNA.

138.

(d) Ectocarpus

Explanation: Ectocarpus belongs to the class Phaeophyceae. They are very simple branched, filamentous, and represented by kelps. It stores food as complex carbohydrates in the form of larninarin or mannitol.

139.

(d) Hemitropous

Explanation: Hemitropous

140.

(b) All of these

Explanation: Seed performs all the function.

141.

(d) Heterozygous carrier

Explanation: Heterozygous carrier

142.

(d) AUG

Explanation: AUG

143.

(d) Suspending cellular structures and providing a place for cellular functions to take place. **Explanation:** The cytoplasm is a jelly-like substance found inside the cell membrane that suspends all of the cell's internal structures. It also provides a location for many metabolic reactions (such as protein synthesis) to take place.

144.

(b) Chain and Florey

Explanation: In 1939, Ernst Chain, a biochemist who had fled to Britain from Nazi Germany, came across Alexander Fleming's published work on penicillin. He was greatly interested and soon began working on isolating penicillin. Together with lab supervisor Howard Florey, he isolated the antibacterial agent in greater quantity than Fleming had been able to achieve and then tested the extract by injecting it into two mice that had been infected with a bacterial disease.

Ernst Chain was the driving force behind isolating and testing penicillin, but when it came

to manufacturing on a large scale, it was Howard Florey who made more of a contribution, by locating several U.S. companies which were willing to provide resources when U.K. factories were occupied with the war effort.

145. (a) The citric acid cycle

Explanation: The citric acid cycle provides most of the electron carriers for the electron transport chain.

146. (a) Actinomycetes

Explanation: Actinomycetes

147.

(d) Pyramid of biomass in an aquatic ecosystem.

Explanation: Pyramid of biomass in an aquatic ecosystem.

148.

(d) Cytokinin

Explanation: Presence of cytokinin in an area causes preferential movement of nutrients towards it. When applied to lateral buds, they help in their growth despite the presence of apical bud. Thus, they act antagonistically to auxin.

149. (a) Localized growth centres and Indefinite life span

Explanation: Localized growth centres and Indefinite life span

150.

(c) Both surface area of leaf decreases and stomata close and CO₂ cannot enter inside the leaf

Explanation: Water is one of the reactants in the light reaction but its availability affects the plant, rather than directly affecting the photosynthesis. Water stress causes the stomata to close hence, reducing the CO_2 availability. Also, it makes the leaves to wilt which reduces the surface area of the leaves available for photosynthesis.

ZOOLOGY (Section-A)

151.

(d) A-Nerve cord, B-Notochord, C-Post-anal tail, D-Gill slits.

Explanation: The given figure shows the internal organisation of a hypothetical chordate. It possesses notochord (B) either during early embryonic stage or throughout life. The notochord lies ventral to nerve cord (A). It possesses a post anal tail (C) and paired pharyngeal gill slits (D).

152.

(b) It is ejected on contact and pierce the prey

Explanation: Cnidocytes are the stinging cells present on the tentacles of Hydra. These cells get activated by touch, chemicals present in water, vibration or nerve impulse in the organism itself and discharge nematocysts at prey or predator causing its paralysis or death. Once discharged, cnidocytes and nematocysts are not reused and new ones are formed immediately by cell division in an interstitial cell of the epidermis. Hence, nematocysts are ejected from cnidoblasts on contact and pierce the prey.

153. (a) Scales on their hind limbs

Explanation: The hind limbs of birds have scales that are modified for walking, swimming, or clasping the tree branches. The body of reptiles is also covered by dry and

cornified skin, epidermal scales or scutes. This feature indicates that birds have reptilian ancestry.

154.

(b) Keratin

Explanation: Keratin

155.

(b)

Figure	1	2
Cartilage	Collagen	Chondrocytes

Explanation: The given figure represents the image of cartilage. Cartilage is an important structural component of the body. It is a firm tissue but is softer and much more flexible than bone. It is a Connective tissue found in joints between bones e.g. the elbows, knee and ankles; ends of the ribs; between the vertebrae in the spine; ears and nose; bronchial tubes or airways. Cartilage is made up of specialised cells called chondrocytes (B). These chondrocytes produce large amounts of extracellular matrix composed of collagen (A) fibres, proteoglycan, and elastin fibres. There are no blood vessels in cartilage to supply the chondrocytes with nutrients.

156. (a) Dissolved in plasma

Explanation: About 70% of carbon dioxide molecules that are dissolved in blood is transported to lungs as bicarbonates. Carbon dioxide diffuses into capillaries and then to bloodstream and bicarbonate is produced in erythrocytes. Enzyme carbonic anhydrase causes carbon dioxide and water to form carbonic acid which dissociates into bicarbonate and hydrogen ion.

157.

(d) Oxygen

Explanation: Oxygen

158.

(c) Rectangular hyperbola

Explanation: Rectangular hyperbola

159.

(c) Decreased partial pressure of oxygen

Explanation: Altitude sickness (also known as mountain sickness), is caused by gaining altitude too rapidly, which does not allow the body enough time to adjust to reduced oxygen and changes in air pressure and causes hypobaric hypoxia (a lack of oxygen reaching the tissues of the body).

160.

(c) Only D

Explanation: All of these

161.

(b) Statement (d) is correct.

Explanation: Both LH and FSH attain a peak level during ovulatory phase. Oogenesis starts during the embryonic development stage when a couple of million oogonia are

formed within each foetal ovary; no more oogonia are formed and added after birth. These cells start division and enter into prophaseI of the meiotic division and get temporarily arrested at that stage. Sperms released from seminiferous tubules are non-motile.

162. **(a)** Atresia

Explanation: Atresia

163.

(c) glandular

Explanation: The mammary glands contain glandular tissue and variable amount of fat.

164.

(b) (ii) and (iii)

Explanation: (ii) and (iii)

165.

(d) (b) and (c) only

Explanation: Some diseases are transmitted through sexual intercourse. Such diseases are called sexually transmitted diseases or venereal diseases. It can spread by the transfusion of blood from an infected person to a healthy person and from an infected mother to a fetus.

166.

(d) Homo erectus

Explanation: Homo erectus

167. (a) Saltation

Explanation: Saltation

168. (a) Left kidney at a higher level than the right one

Explanation: The kidney is retroperitoneal, located in the abdominal cavity. The left kidney is slightly elevated than right kidney due to the larger size of the liver on the right side of the body. The ribs and muscles of the back protect the kidneys from external damage. Adipose tissue known as perirenal fat surrounds the kidneys and acts as protective padding. So, the correct answer is 'Left kidney at a higher level than the right one'.

169. **(a)** Na⁺

Explanation: The ascending limb of the loop of Henle is a segment of the nephron in the kidney divided into a thin and thick ascending limb. The thin ascending limb is impermeable to water and ions, except sodium and chloride, which cross by diffusion. In the thick ascending limb, sodium (Na⁺), potassium (K⁺), and chloride (Cl⁻) ions are reabsorbed by active transport.

170. **(a)** Urea

Explanation: Ornithine cycle occurs in the liver where the deamination of the amino acids makes ammonia which further is converted into urea. Hence, urea is the end product of ornithine cycle which is excreted out by the kidneys.

171. **(a)** Upper arm

Explanation: Upper arm

172.

(**d**) Ca²⁺

Explanation: The action potential in the sarcolemma causes the release of Ca²⁺ ions in the

sarcoplasm. Increase in the Ca²⁺ level leads to the binding of Ca²⁺ with a sub unit of troponin on the actin filaments and thereby removing the masking of actin sites for myosin.

173.

(c) Only C

Explanation: Joint between atlas and axis is a pivot joint, a type of synovial joint. Synovial joints are characterised by presence of fluid filled cavity between the articulating surface of the two bones.

174.

(b) Ventral root

Explanation: Ventral root

175. (a) Learning and memory

Explanation: Learning and memory

176. (a) Medulla oblongata

Explanation: Hypothalamus is the region of the forebrain in the floor of the third ventricle, linked with the thalamus above and the pituitary gland below. It contains important control temperature (at 37°C), It functions as a centre for the integration of hormonal and autonomic nervous activity through its control o fthe pituitary secretions.

177.

(c) 3-carries oxytocin and vasopressin to pituitary gland

Explanation: 3-carries oxytocin and vasopressin to pituitary gland

178.

(b) no ducts.

Explanation: Endocrine glands lack ducts and pass their secretions into the surrounding blood for transport to the site of action. They are also called the ductless glands. Their secretions are known as hormones.

179.

(c) 6-maintains AMI

Explanation: 6-maintains AMI

180.

(b) Four-chambered heart- Birds and mammals

Explanation: Fishes have two-chambered hearts. Amphibians and reptiles have three chambered hearts. Birds and mammals have four chambered hearts.

181.

(d) Pacemaker

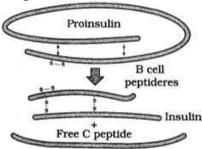
Explanation: A patch of nodal tissue is present in the right upper comer of the right atrium called the sino-atrial node (SAN) and it is responsible for initiating and maintaining the rhythmic contractile activity of the heart. Therefore, it is called the pacemaker.

182. (a) Statement (iv) is incorrect.

Explanation: When cut by the same restriction enzyme, the resultant DNA fragments have the same kind of 'sticky ends' and, these can be joined together (end-to-end) using DNA ligases.

183.

(b) When a piece of foreign DNA gets integrated into the genome of the recipient, it may


multiply.

Explanation: When a piece of foreign DNA gets integrated into the genome of the recipient, it may multiply.

184.

(d) maturation of proinsulin into insulin.

Explanation: Maturation of pro insulin into insulin by removal of C-peptide.

185.

(c) fertilisers and pesticides

Explanation: Agrochemical based agriculture is used to increase the food production. It includes use of agrochemicals such as fertilisers and pesticides.

ZOOLOGY (Section-B)

186.

(d) Torpedo

Explanation: Torpedo produces electric current. Torpedo is commonly known as electric ray. It has a pair of electric organs formed from metamorphosed muscles, they lie between the head and pectoral fins and run through the entire thickness of the body, they receive nerves from an electric lobe of the medulla, they give a powerful electric shock of about 100 volts.

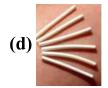
187. (a) Connective tissue

Explanation: Connective tissues are the most abundant and widely distributed in the body of complex animals. They are named connective tissues because of their special function of linking and supporting other tissues/organs of the body.

188. (a) With irregularity in the heart rhythm

Explanation: Artificial pacemakers are electronic devices that restore a normal rhythm. Hence, an artificial pacemaker provides an electrical impulse (discharge) that can stimulate the heart, thus restoring or maintaining a regular heartbeat.

189.


(d) Pregnant females

Explanation: Pregnant females

190.

(d) A - (iii), B - (iv), C - (ii), D - (i)

Explanation: Rete testis carries sperms from the seminiferous tubules (where sperms are produced through meiosis) of the testes into the vasa efferentia. Leydig cells synthesise and secrete testicular hormones called androgens. The penis is the male external genitalia that facilitates insemination.

Explanation: The images in options represent the condoms for female and male, respectively. Condoms are barriers made of thin rubber or latex sheath that are used to cover the penis in the male or vagina and cervix in the female, just before coitus so that the ejaculated semen does not enter the female reproductive tract. The image in option represents an IUD, copper T which is inserted by doctors or expert nurses in the uterus through vagina. The image in option represents the implants which are tiny, thin rods placed under the skin.

192.

(b) Oparin and Haldane

Explanation: Oparin and Haldane

193. (a) D-Adrenal gland-Secrete catecholamines which stimulate glycogen breakdown.

Explanation: D-Adrenal gland-Secrete catecholamines which stimulate glycogen breakdown.

194. (a) 8 bones

Explanation: 8 bones

195.

(d) Unable to speak

Explanation: Unable to speak

196.

(b) Pars distalis, pars intermedia and pars nervosa

Explanation: Pars distalis, pars intermedia and pars nervosa

197.

(d) A

Explanation: Pituitary is the master of endocrine gland.

198.

(c) Statement (d) is correct.

Explanation: In a standard ECG, a patient is connected to the machine with three electrical leads, one to each wrist and one to the left ankle.

199.

(b) lysozyme

Explanation: Lysozyme is capable of breaking the chemical bonds in the outer cell wall of the bacteria. Bacterial cell walls contain a layer of peptidoglycan, which is the specific site that lysozyme targets.

200. (a) Either RNA or DNA

Explanation: ss DNA or ss RNA attached with the probe is allowed to hybridised with its complementary DNA.