
152 153

Learning Objectives

After learning this chapter, the students
will be able to
•	 Understand the different

kinds of statements.
•	 Construct different flow

of control statements in
C++.

10.1 Introduction

	 In the previous chapters you learnt the
basic concepts of C++ programming such as
variables, constants, operators, data types etc.
Generally a program executes its statements
sequentially from beginning to end. However,
such a strict sequential ordering is restrictive
and less useful. There are lot of situations
where it is useful to decide the code block
executed on the basis of a certain condition.
In such situations, the flow of control jumps
from one part of the code to another segment
of code. Program statements that cause
such jumps are called as “Control flow”.
This chapter deals with the basics of control
structures such as “Selection”, “Iteration” and
“Jump” statement.

10.2 Statements

	 A computer program is a set of
statements or instructions to perform a
specific task. These statements are intended
to perform specific action. The action may
be of variable declarations, expression
evaluations, assignment operations, decision
making, looping and so on.

CHAPTER 10
Flow of Control

There are two kinds of statements used in
C++.
(i)	 Null statement
(ii)	Compound statement

10.2.1 Null statement
	 The "null or empty statement" is a
statement containing only a semicolon. It
takes the flowing form:

	 ; // it is a null statement

	 Null statements are commonly used
as placeholders in iteration statements or as
statements on which to place labels at the
end of compound statements or functions.

10.2.2 Compound (Block) statement
	 C++ allows a group of statements
enclosed by pair of braces {}. This group
of statements is called as a compound
statement or a block.

The general format of compound statement
is:
{
	 statement1;
	 statement2;
	 statement3;
}
For example
{
	 int x, y;
	 x = 10;
	 y = x + 10;
}

Unit III Introduction to C++

Chapter 10 Page 152-179.indd 152 3/24/2020 9:21:32 AM

152 153

	 The compound statement or block
is a treated as a single unit and may appear
anywhere in the program.

10.3 Control Statements

	 Control statements are statements
that alter the sequence of flow of instructions.

	 In a program, statements may
be executed sequentially, selectively or
iteratively. Every programming languages
provide statements to support sequence,
selection (branching) and iteration.

	 If the statements are executed
sequentially, the flow is called as sequential
flow. In some situations, if the statements
alter the flow of execution like branching,
iteration, jumping and function calls, this
flow is called as control flow.

Sequence statement

	 The sequential
statement are the
statements, that are executed
one after another only once
from top to bottom. These
statements do not alter the flow of execution.
These statements are called as sequential
flow statements. They always end with a
semicolon (;).

Selection statement

STATEMENT 2

Entry

True

STATEMENT1

STATEMENT 1 STATEMENT 2

False
Condition

Exit

Statement 1

Statement 2

Statement 3

	 The selection statement means the
statement (s) executed depend upon a
condition. If a condition is true, a true block
(a set of statements) is executed otherwise
a false block is executed. This statement is
also called decision statement or selection
statement because it helps in making
decision about which set of statements are
to be executed.

Iteration statement

True

False

The Exit Condition

The Loop Body

STATEMENT 1

STATEMENT 2

Condition
?

	 The iteration statement is a set of
statement that are repetitively executed
based upon a conditions. If a condition
evaluates to true, the set of statements
(true block) is executed again and again.
As soon as the condition becomes false,
the repetition stops. This is also known as
looping statement or iteration statement.
	 The set of statements that are
executed again and again is called the body
of the loop.The condition on which the
execution or exit from the loop is called
exit-condition or test-condition.
	 Generally, all the programming
languages support this type of statements
to write programs depending upon the
problem. C++ also supports this type
of statements. These statements will be
discussed in coming sections.

Chapter 10 Page 152-179.indd 153 3/24/2020 9:21:32 AM

154 155

Note

	 In C++, any non zero is treated
as true including negative numbers and
zero is treated as false.

	 Selection statements and iteration
statements are executed depending upon
the conditional expression. The conditional
expression evaluates either true or false.

10.4 Selection statements

	 In a program a decision causes a one
time jump to a different part of a program.
Decisions in C++ are made in several ways,
most importantly with if .. else … statement
which chooses between two alternatives.
Another decision statement, switch creates
branches for multiple alternatives sections
of code, depending on the value of a single
variable.

10.4.1 if statement
	 The if statement evaluates a condition,
if the condition is true then a true-block
(a statement or set of statements) is executed,

otherwise the true-block is skipped.The
general syntax of the if statement is:

if (expression)
	 true-block;
statement-x;

	 In the above syntax, if is a keyword
that should contain expression or condition
which is enclosed within parentheses. If
the expression is true (nonzero) then the
true-block is executed and followed by
statement-x are also executed, otherwise,
the control passes to statement-x. The true-
block may consists of a single statement, a
compound statement or empty statement.
The control flow of if statement and the
corresponding flow chart is shown below.

Test
expression

True-block

Statement- X

#include <iostream>
using namespace std;
int main()
{
	 int age;
	 cout<< "\n Enter your age: ";
	 cin>> age;
	 if(age>=18)
		 cout<< "\n You are eligible for voting";
	 cout<< "This statement is always executed.";
	 return 0;
}

Illustration 10.1 C++ program to check whether a person is eligible to vote using if
statement

The pair of braces is not required
because if condition followed by
only one statement

Output
	 Enter your age: 23
	 You are eligible for voting….
	 This statement is always executed.

Chapter 10 Page 152-179.indd 154 3/24/2020 9:21:32 AM

154 155

10.4.2 if-else statement
	 In the above examples of if, you have
seen that, a block of statements are excecuted
only if the condition evaluates to true. What
if there is another course of action to be
followed if the condition evaluates to false.
There is another form of if that allows for
this kind of either or condition by providing
an else clause. The syntax of the if-else
statement is given below:

if (expression)
{
	 True-block;
}
else
{
	 False-block;
}
Statement-x

	 In if-else statement, first the
expression or condition is evaluated to either
true of false. If the result is true, then the
statements inside true-block is executed and
false-block is skipped. If the result is false,
then the statement inside the false-block is
executed i.e., the true-block is skipped.

Test expression

True

False

True Block
False-Block

Statement-X

#include <iostream>
using namespace std;
int main()
{
	 int num, rem;
	 cout<< "\n Enter a number: ";
	 cin>>num;
	 rem = num % 2;
	 if (rem==0)
		 cout<< "\n The given number" <<num<< " is Even";
	 else
		 cout<< "\n The given number "<<num<< " is Odd";
	 return 0;
}
Output

Enter number: 10
The given number 10 is Even

Illustration 10.2 C++ program to find whether the given number is even number or
odd number using if-else statement

	 In the above program, the remainder of the given number is stored in rem. If the value
of rem is zero, the given number is inferred as an even number otherwise, it is inferred as on
odd number.

Chapter 10 Page 152-179.indd 155 3/24/2020 9:21:32 AM

156 157

10.4.3 Nested if
	 An if statement which contains another if statement is called nested if. The nested can
have one of the following three forms.
1. If nested inside if part
2. If nested inside else part
3. If nested inside both if part and else part
The syntax of the nested if:

if (expression-1)
{
	 if (expression-2)
	 {
	 True_Part_Statements;
	 }
	 else
	 {
	 False_Part_Statements;
	 }
}
else
 body of else part;

If nested inside if part If nested inside else part
if (expression-1)
{
	 body of true part;
}
else
{
	 if (expression-2)
	 {
	 True_Part_Statements;
	 }
	 else
	 {
	 False_Part_Statements;
	 }
}

if (expression)
{
	 if (expression)
	 {
	 True_Part_Statements;
	 }
	 else
	 {
	 False_Part_Statements;
	 }
}
else
{
	 if (expression)
	 {
	 True_Part_Statements;
	 }
	 else
	 {
	 False_Part_Statements;
	 }
}

If nested inside both if part
and else part

	 In the first syntax of the nested if mentioned above the expression-1 is evaluated and
the expression result is false then control passes to statement-m. Otherwise, expression-2 is
evaluated,if the condition is true, then Nested-True-block is executed, next statement-n is also
executed. Otherwise Nested-False-Block, statement-n and statement-m are executed.

	 The working procedure of the above said if..else structures are given as flowchart below:

Statement 3 Statement 2

Statement x

Statement 1

False

False
Condition 2

Condition 1
True

True

Next Statement

Chapter 10 Page 152-179.indd 156 3/24/2020 9:21:33 AM

156 157

Flowchart 10.1 if nested inside if Part

Statement Statement

Statement

Statement

False

Condition

Condition
True

Next Statement

Flowchart 10.2 If nested inside else part

Statement Statement Statement Statement

False

FalseFalse
Condition Condition

Condition
True

True True

Flowchart 10.3 If nested inside both if part and else part

#include <iostream>
using namespace std;
int main()
{
	 int sales, commission;
	 char grade;
	 cout << "\n Enter Sales amount: ";
	 cin >> sales;
	 cout << "\n Enter Grade: ";
	 cin >> grade;
	 if (sales > 5000)
	 {
		 commission = sales * 0.10;
		 cout << "\n Commission: " << commission;
	 }

Illustration 10.3 – C++ program to calculate commission according to grade using
nested if statement

Chapter 10 Page 152-179.indd 157 3/24/2020 9:21:33 AM

158 159

	 else
	 {
		 commission = sales * 0.05;
		 cout << "\n Commission: " << commission;
	 }
	 cout << "\n Good Job ";
	 return 0;
}
Output:
Enter Sales amount: 6000
Enter Grade: A
Commission: 600
Good Job

10.4.4 if -else-if ladder

	 The if-else ladder is a multi-path decision making statement. In this type of statement
'if' is followed by one or more else if statements and finally end with an else statement.

The syntax of if-else ladder:

if (expression 1)
{
 Statement-1
}
else
	 if(expression 2)
	 {
		 Statement-2
	 }
	 else
		 if (expression 3)
		 {
			 Statement-3
		 }
		 else
		 {
			 Statement-4
		 }

	 When the respective expression becomes true, the statement associated with block is
executed, and the rest of the ladder is bypassed. If none of the conditions is true, then the final
else statement will be executed.

Chapter 10 Page 152-179.indd 158 3/24/2020 9:21:33 AM

158 159

Condition- n

Condition-1

Statement -2 Statement-n Statment-sStatement-1

True True
True

False

False

False

Next Statement

Condition-2

Flowchart 10.4 if-else ladder flow chart

#include <iostream>
using namespace std;
int main ()
{
int marks;
cout<<" Enter the Marks :";
cin>>marks;
if(marks >= 60)
	 cout<< "Your grade is 1st class !!" <<endl;
	 	 else if(marks >= 50 && marks < 60)
			 cout<< "your grade is 2nd class !!" <<endl;
				 else if(marks >= 40 && marks < 50)
					 cout<< "your grade is 3rd class !!" <<endl;
else
	 cout<< "You are fail !!" <<endl;
return 0;
}
Output
Enter the Marks :60
Your grade is 1st class !!

Illustration 10.4 C++ program to find your grade using if-else ladder.

	 When the marks are greater than or
equal to 60, the message "Your grade is 1st
class !!" is displayed and the rest of the ladder
is bypassed. When the marks are between
50 and 59, the message "Your grade is 2nd

class !!" is displayed, and the other ladder is
bypassed. When the mark between 40 to 49,
the message "Your grade is 3rd class !!" is
displayed, otherwise, the message "You are
fail !!" is displayed.

Chapter 10 Page 152-179.indd 159 3/24/2020 9:21:33 AM

160 161

10.4.5 The ?: Alternative to if- else

	 The conditional operator (or Ternary operator) is an alternative for ‘if else statement’.
The conditional operator that consists of two symbols (?:). It takes three arguments. The control
flow of conditional operator is shown below:

The syntax of the conditional operator is:

 expression 1? expression 2 : expression 3

FALSE

Expression1 (with
Condition) ? Expression 2 Expression 3

TRUE

:

	 In the above syntax, the expression 1 is a condition which is evaluated, if the condition
is true (Non-zero), then the control is transferred to expression 2, otherwise, the control passes
to expression 3.

#include <iostream>
using namespace std;
int main()
{
	 int a, b, largest;
	 cout << "\n Enter any two numbers: ";
	 cin >> a >> b;
	 largest = (a>b)? a : b;
	 cout << "\n Largest number : " << largest;
	 return 0;
}
Output:
 Enter any two numbers: 12 98
 Largest number : 98

Illustration 10.5 – C++ program to find greatest of two numbers using conditional
operator

10.4.6 Switch statement

	 The switch statement is a multi-way branch statement. It provides an easy way to
dispatch execution to different parts of code based on the value of the expression. The switch
statement replaces multiple if-else sequence.

Chapter 10 Page 152-179.indd 160 3/24/2020 9:21:33 AM

160 161

The syntax of the switch statement is;

switch(expression)
{
	 case constant 1:
		 statement(s);
		 break;
	 case constant 2:
		 statement(s);
		 break;
	 .
	 .
	 .
	 .
	 default:
		 statement(s);
}

	 In the above syntax, the expression is evaluated and if its value matches against the
constant value specified in one of the case statements, that respective set of statements are
executed. Otherwise, the statements under the default option are executed. The workflow of
switch statement and flow chart are shown below.

Expression

default

Case 3

Case 2

Case 1

code in case 1Block

code in case 1Block

code in case 2Block

code in case 3Block

code in default Block

Flowchart10.5: workflow of switch and flow chart
Rules:
1.	 The expression provided in the switch should result in a constant value otherwise it would

not be valid.

2. 	 Duplicate case values are not allowed.

3.	 The default statement is optional.
4.	 The break statement is used inside the switch to terminate a statement sequence. When

a break statement is reached, the switch terminates, and the flow of control jumps to the
next line following the switch statement.

Chapter 10 Page 152-179.indd 161 3/24/2020 9:21:33 AM

162 163

5.	 The break statement is optional. If omitted, execution will continue on into the next case.
The flow of control will fall through to subsequent cases until a break is reached.

6.	 Nesting of switch statements is also allowed.

#include <iostream>
using namespace std;
int main()
{
	 int num;
	 cout << "\n Enter week day number: ";
	 cin >> num;
	 switch (num)
	 {
		 case 1 : cout << "\n Sunday"; break;
		 case 2 : cout << "\n Monday"; break;
		 case 3 : cout << "\n Tuesday"; break;
		 case 4 : cout << "\n Wednessday"; break;
		 case 5 : cout << "\n Thursday"; break;
		 case 6 : cout << "\n Friday"; break;
		 case 7 : cout << "\n Saturday"; break;
		 default: cout << "\n Wrong input....";
	 }
}
Output:
Enter week day number: 6
Friday

Illustration 10.6 – C++ program to demonstrate switch statement

10.4.7 Switch vs if-else
	 “if-else” and “switch” both are selection statements. The selection statements, transfer the
flow of the program to the particular block of statements based upon whether the condition is
“true” or “false”. However, there are some differences in their operations. These are given below:

Key Differences Between if-else and switch

S.No if-else Switch

1
Expression inside if statement decide whether
to execute the if block or under else block.

expression inside switch statement
decide which case to execute.

2
An if-else statement uses multiple statements
for multiple choices

switch statement uses single
expression for multiple choices.

3
If-else statement checks for equality as well as
for logical expression.

switch checks only for equality.

4
The if statement evaluates integer, character,
pointer or floating-point type or Boolean type.

switch statement evaluates only
character or a integer data type.

5
If the condition is false the else block statements
will be executed

If the condition is false then the
default statements are executed.

Chapter 10 Page 152-179.indd 162 3/24/2020 9:21:33 AM

162 163

The if statement is more flexible than switch statement.

10.5 Iteration statements

	 An iteration (or looping) is a
sequence of one or more statements that
are repeatedly executed until a condition is
satisfied. These statements are also called as
control flow statements. It is used to reduce
the length of code, to reduce time, to execute
program and takes less memory space. C++
supports three types of iteration statements;
•	 for statement
•	 while statement
•	 do-while statement

	 All looping statements repeat a set
statements as long as a specified condition
is remains true. The specified condition
is referred as a loop control. For all three
loop statements, a true condition is any
nonzero value and a zero value shows a false
condition.

10.5.1 Parts of a loop
 Every loop has four elements that are used
for different purposes. These elements are
•	 Initialization expression
•	 Test expression
•	 Update expression
•	 The body of the loop
Initialization expression(s): The control
variable(s) must be initialized before the
control enters into loop. The initialization
of the control variable takes place under the
initialization expressions. The initialization
expression is executed only once in the
beginning of the loop.

Test Expression: The test expression is an
expression or condition whose value decides
whether the loop-body will be execute
or not. If the expression evaluates to true
(i.e., 1), the body of the loop gets executed,
otherwise the loop is terminated.
In an entry-controlled loop, the test-
expression is evaluated before the entering
into a loop whereas in an exit-controlled
loop, the test-expression is evaluated before
exit from the loop.
Update expression: It is used to change the
value of the loop variable. This statement
is executed at the end of the loop after the
body of the loop is executed.
The body of the loop: A statement or set of
statements forms a body of the loop that are
executed repetitively. In an entry-controlled
loop, first the test-expression is evaluated
and if it is nonzero, the body of the loop is
executed otherwise the loop is terminated.
In an exit-controlled loop, the body of the
loop is executed first then the test-expression
is evaluated. If the test-expression is true the
body of the loop is repeated otherwise loop
is terminated
10.5.2 for loop

	 The for loop is a entry- controlled
loop and is the easiest looping statement
which allows code to be executed repeatedly.
It contains three different statements
(initialization, condition or test-expression
and update expression(s)) separated by
semicolons.
The general syntax is:

for (initialization(s); test-expression; update expression(s))
{
	 Statement 1;
	 Statement 2;
	 ………….
}
Statement-x;

Chapter 10 Page 152-179.indd 163 3/24/2020 9:21:33 AM

164 165

	 The initialization part is used to
initialize variables or declare variable which
are executed only once, then the control
passes to test-expression. After evaluation
of test-expression, if the result is false, the
control transferred to statement-x. If the
result is true, the body of the for loop is
executed, next the control is transferred
to update expression. After evaluation
of update expression part, the control is
transferred to the test-expression part. Next
the steps 3 to 5 is repeated. The workflow of
for loop and flow chart are shown below.

Test
expression

Body of for
Loop

Initilization
Statement

Statement-X

Update
Statement

Exit for Loop

False

True

Flowchart 10.6: Workflow of for
loop and flow chart

#include <iostream>
using namespace std;
int main ()
{
int i;
for(i = 0; i< 10; i ++)
	 cout<< "value of i : " <<i<<endl;
return 0;
}
Output
value of i : 0
value of i : 1
value of i : 2

Illustration 10.7 C++ program to display numbers from 0 to 9 using for loop

value of i : 3
value of i : 4
value of i : 5
value of i : 6
value of i : 7
value of i : 8
value of i : 9

Chapter 10 Page 152-179.indd 164 3/24/2020 9:21:33 AM

164 165

The following lines describes the working of the above given for loop:

Initialization Expression

 Test Expression Update Expression

for (i=0;		 i < 10;		 i++)

 Body of the loop

cout<<"value of i:"<<i<<endl;

Here, the body of the loop contains
a single statement,so need not use
curly braces

	 In the above program, first the variable i is initialized, next i is compared with 10, if i is
less than ten, the value of i is incremented. In this way, the numbers 0 to 9 are displayed. Once
i becomes 10, it is no longer < 10. So, the control comes out of the for loop.

#include <iostream>
using namespace std;
int main ()
{
int i,sum=0;
for(i=1; i<=10;i++)
 {
	 sum=sum+i;
 }
cout<<"The sum of 1 to 10 is "<<sum;
return 0;
}
Output
The sum of 1 to 10 is 55

Illustration 10.8 C++ program to sum the numbers from 1 to 10 using for loop

Variations of for loop
	 The for is one of the most important
looping statement in C++ because it allows a
several variations. These variations increase
the flexibility and applicability of for loop.
These variations will be discussed below:

Multiple initialization and multiple
update expressions
	 Multiple statements can be used in
the initialization and update expressions of
for loop. These multiple initialization and
multiple update expressions are separated
by commas. For example,

#include<iostream>
using namespace std;
int main()
{
	 int i, j;
		 for(i=0, j=10 ; i<j ; i++,j--)
		 {
		 cout<<"\nThe value of i is"<<i<<" The value of j is "<<j;

} }

Multiple initialization expressions
(separated by commas)

Multiple update expressions
(separated by commas)

Chapter 10 Page 152-179.indd 165 3/24/2020 9:21:33 AM

166 167

}
return 0;
}
Output
The value of i is 0 The value of j is 10
The value of i is 1 The value of j is 9
The value of i is 2 The value of j is 8
The value of i is 3 The value of j is 7
The value of i is 4 The value of j is 6

	 In the above example, the initialization
part contains two variables i and j and update
expression contains i++ and j++. These two
variables are separated by commas which
is executed in sequential order i.e., during
initialization firstly i=0 followed by j=10.
Similarly, in update expression, firstly i++ is
evaluated followed by j++ is evaluated.

Prefer prefix operator over postfix
	 Generally, the update expression
contains increment/decrement operator

(++ or --). In this part, always prefer prefix
increment/decrement operator over postfix
when to be used alone. The reason behind
this is that when used alone, prefix operators
are executed faster than postfix.

Optional expressions

	 Generally, the for loop contains three
parts, i.e., initialization expressions, test
expressions and update expressions. These
three expressions are optional in a for loop.

#include <iostream>
using namespace std;
int main ()
{
int i, sum=0, n;
cout<<"\n Enter The value of n";
cin>>n;
i =1;
for (; i<=n;)
 {
	 sum += i;
	 ++i;
 }
cout<<"\n The sum of 1 to " <<n<<"is "<<sum;
return 0;
}
Output
Enter the value of n 5
The sum of 1 to 5 is 15

Illustration 10.9 C++ program to sum the numbers from 1 to n

Chapter 10 Page 152-179.indd 166 3/24/2020 9:21:33 AM

166 167

	 In the above code, the update expression is not given, but a semicolon is necessary before the
update expression.

Initialization expression and
update expressions are skipped

for (;	 i<=n;)

	 In the above code, neither the initialization nor the update expression is given in the for loop.
If both or any one of expressions are absent then the control is transferred to conditional part.

infinite loop

	 An infinite loop will be formed if a test-expression is absent in a for loop. For example,

for(i=0 ; ;	 ++i)

cout<<"\n Welcome"; This statement is
displayed infinitely

test - expression is skipped

Similarly, the following for loop also forms an infinite loop.

for(;	 ;)

cout<<"\n Welcome"; This statement is
displayed infinitely

All three expressions are skipped

Empty loop

	 Empty loop means a loop that has no statement in its body is called an empty loop.
Following for loop is an empty loop:

for(i=0	 ;	 i<=5;	 +=i) ; The body of for loop
contains a null statement

	 In the above code, the for loop contains a null statement, it is an empty loop.

Similarly, the following for loop also forms an empty loop.

for(i=0	 ;	 i<=5;	 ++i) ;
The body of for loop
contains a null statement

The body of for loop is not
executed because semicolon(;)
is given at the end of for loop.cout<<"\nWe are Indians";

{

}

int i;

Chapter 10 Page 152-179.indd 167 3/24/2020 9:21:33 AM

168 169

	 In the above code, the body of a for loop enclosed in braces is not executed because a
semicolon is given after the for loop.

Declaration of variable in a for loop
	 In C++, the variables can also be declared within a for loop. For instance,

 int main ()

 int sum = 0;

 for(int i=0; i<=5; ++i)

 Variable (i)is declared within the for loop.

 The variable i can be accessed
only within the body of loop.

 cout<<"\nThe variable i cannot be accessed here";
 cout<<"\n The variable sum can be accessed here";

 sum = sum + i;
 {

 {

 }

 }
	 A variable declared inside the block of main() can be accessed anywhere inside main()
i.e., the scope of variable in main()

10.5.3 While loop
	 A while loop is a control flow statement that allows the loop statements to be executed
as long as the condition is true. The while loop is an entry-controlled loop because the test-
expression is evaluated before entering into a loop.
The while loop syntax is:

while (Test expression)
{
	 Body of the loop;
}
Statement-x;

The control flow and flow chart of the while loop is shown below.

Test
expression

Body of while
Loop

Statement -X;

True

false

Flowchart 10.7: while loop control flow and flowchart

Chapter 10 Page 152-179.indd 168 3/24/2020 9:21:33 AM

168 169

	 In while loop, the test expression is evaluated and if the test expression result is true,
then the body of the loop is executed and again the control is transferred to the while loop.
When the test expression result is false the control is transferred to statement-x.

#include <iostream>
using namespace std;
int main ()
{
int i=1,sum=0;
while(i<=10)
{
	 sum=sum+i;
	 i++;
}
cout<<"The sum of 1 to 10 is "<<sum;
return 0;
}
Output
The sum of 1 to 10 is 55

Illustration 10.10 C++ program to sum numbers from 1 to 10 using while loop

	 In the above program, the integer variable i is initialized to 1 and the variable sum to
0. The while loop checks the condition, i < 10, if the condition is true, the value of i, which is
added to sum and i is incremented by 1. Again, the condition i < 10 is checked. Since 2 < 10, 2
is added to the earlier value of sum. This continues until i becomes 11. At this point in time,
11 < 10 evaluates to false and the while loop terminates. After the loop termination, the value
of sum is displayed.

#include <iostream>
using namespace std;
int main ()
{
int i=1,num,avg,sum=0;
while(i<=5)
{
	 cout<<"Enter the number : ";
	 cin>>num;
	 sum=sum+num;
	 i++;
}
avg=sum/5;
cout<<"The sum is "<<sum<<endl;
cout<<"The average is "<<avg;
return 0;
}
Output
Enter the number : 1
Enter the number : 2
Enter the number : 3
Enter the number : 4
Enter the number : 5
The sum is 15
The average is 3

Illustration 10.11 C++ program to find sum and average of 5 numbers using while loop

Chapter 10 Page 152-179.indd 169 3/24/2020 9:21:33 AM

170 171

	 In the above program, integer variables num and avg are declared and variable i is
initialized to 1 and sum to 0. The while loop checks the condition, since i <= 5 the condition is
true, a number is read from the user and this is added to sum and i is incremented by 1. Now,
the condition is i <= 5 is again checked. Since 2 <=5, the second number is obtained from
the user and it is added to sum. This continues, until i becomes 6, at which point the while
loop terminates. After the loop termination, the avg is computed and both sum and avg are
displayed.

While loop variation
	 A while loop may contain several variations. It can be an empty loop or an infinite
loop. An empty while loop does not have any statement inside the body of the loop except null
statement i.e., just a semicolon.
For example

This is an empty loop because the while
loop does not contain any statement

while(++i < 10000)
int i=0;

return 0;

}

{
int main()

	 In the above code, the loop is a time delay loop. A time delay loop is useful for pausing
the program for some time.

	 A while loop may be infinite loop when no update statement is given inside the body of
the loop. For example,

This statement will be displayed
infinitely because no update
statement inside the body of the loop

This is not a part of the while loop statement
because of missing curly braces

cout <<"The value of i is "<<i;

i++;

while(i < =10)
int i = 0;

int main()
{

}

return 0;

Chapter 10 Page 152-179.indd 170 3/24/2020 9:21:33 AM

170 171

10.5.4 do-while loop

	 The do-while loop is an exit-controlled loop. In do-while loop, the condition is evaluated
at the bottom of the loop after executing the body of the loop. This means that the body of the
loop is executed at least once, even when the condition evaluates false during the first iteration.
The do-while loop syntax is:

do
{
	 Body of the loop;

} while(condition);

The flow control and flowchart for do-while loop is shown below

Body of Loop

Test
expression

Statement - X

False

true

Flowchart 10.8 : do-while loop control flow and flowchart

#include <iostream>
using namespace std;
int main ()
{
int n = 10;
do
{
	 cout<<n<<", ";
	 n--;
}while (n>0) ;
}
Output
10, 9, 8, 7, 6, 5, 4, 3, 2, 1

Illustration 10.12 C++ program to display number from 10 to 1 using do-while loop

Chapter 10 Page 152-179.indd 171 3/24/2020 9:21:33 AM

172 173

	 In the above program, the integer variable n is initialized to 10. Next the value of n is
displayed as 10 and n is decremented by 1. Now, the condition is evaluated, since 9 > 0, again
9 is displayed and n is decremented to 8. This continues, until n becomes equal to 0, at which
point, the condition n > 0 will evaluate to false and the do-while loop terminates.

10.5.5 Nesting of loops
A loop which contains another loop is called as a nested loop.
The syntax is given below:

for (initialization(s); test-expression; update expression(s))
{
	 for (initialization(s); test-expression; update expression(s)
	 {
	 statement(s);
	 }
statement(s);
}

while(condition)
{
	 while(condition)
	 {
	 statement(s);
	 }
statement(s);
}

do
{
statement(s);
	 do
	 {
	 statement(s);
	 }while(condition);
} while(condition);

#include<iostream>
using namespace std;
int main(void)
{
	 cout<< "A multiplication table:" <<endl <<" 1\t2\t3\t4\t5\t6\t7\t8\t9" <<endl<< "" <<endl;
	 for(int c = 1; c < 10; c++)
	 {
	 cout<< c << "| ";
	 for(int i = 1; i< 10; i++)
	 {
	 cout<<i * c << '\t';
	 }
	 cout<<endl;
	 }
return 0;
}

Illustration 10.13 C++ program to display matrix multiplication table using nested for loop

Chapter 10 Page 152-179.indd 172 3/24/2020 9:21:33 AM

172 173

Output
A multiplication table:
1	 2	 3	 4	 5	 6	 7	 8	 9
1| 1	 2	 3	 4	 5	 6	 7	 8	 9
2| 2	 4	 6	 8	 10	 12	 14	 16	 18
3| 3	 6	 9	 12	 15	 18	 21	 24	 27
4| 4	 8	 12	 16	 20	 24	 28	 32	 36
5| 5	 10	 15	 20	 25	 30	 35	 40	 45
6| 6	 12	 18	 24	 30	 36	 42	 48	 54
7| 7	 14	 21	 28	 35	 42	 49	 56	 63
8| 8	 16	 24	 32	 40	 48	 56	 64	 72
9| 9	 18	 27	 36	 45	 54	 63	 72	 81

10.6 Jump statements

	 Jump statements are used to interrupt the normal flow of program. Types of Jump
Statements are
•	 goto statement
•	 break statement
•	 continue statement

10.6.1 goto statement

	 The goto statement is a control statement which is used to transfer the control from one
place to another place without any condition in a program.

The syntax of the goto statement is;

Syntax1

goto label;

label:

Syntax2

label:

goto label;

goto label;
.
.
label :
.
.

label
.
.
goto label :
.
.

backward
jump

For ward
jump

Chapter 10 Page 152-179.indd 173 3/24/2020 9:21:33 AM

174 175

	 In the syntax above, label is an identifier. When goto label; is encountered, the control of
program jumps to label: and executes the code below it.

include <iostream>
using namespace std;
int main()
{
int n=1;
jump:
{
 if(n<10)
 { // Control of the program move to jump:
	 cout<<n<<'\t';
	 n+=2;
	 goto jump;
 }
 else
	 return 0;
} }
Output
1	 2	 5	 7	 9

Illustration 10.14 C++ program to display the first five odd numberts using goto
statement

	 In the above program the first five odd numbers are displayed.if n is is less than 10 goto
transfers the control to jump statement .If n is greater than 10 the control comes out of the
loop.

10.6.2 break statement

	 A break statement is a jump statement which terminates the execution of loop and the
control is transferred to resume normal execution after the body of the loop. The following
Figure. shows the working of break statement with looping statements;

for(init; expr 1; expr 2) while(expe)

statement; statement;
} while (condition);
statement;

do

. . . .
if (condition)
 break;
. . . .

. . . .
if (condition)
 break;
. . . .

. . . .
if (condition)
 break;
. . . .

true truetrue
}

}

{

break statement in for, while and do-while loop

Chapter 10 Page 152-179.indd 174 3/24/2020 9:21:33 AM

174 175

#include <iostream>
using namespace std;
int main ()
{
int count = 1;
do
{
cout<< "Count : " << count <<endl;
if(count > 3)
 {
	 break;
 }
count ++;
}while(count < 20);
return 0;
}

Illustration 10.15 C++ program to count N numbers using break statement

Output
Count : 1
Count : 2
Count : 3

	 In the above example, the while loop will iterate for 20 times, but as soon as the count
reaches 3, the loop is terminated, because of the break statement.

10.6.3 continue statement
	 The continue statement works quite similar to the break statement. Instead of terminating
the loop (break statement), continue statement forces the loop to continue or execute the
next iteration. When the continue statement is executed in the loop, the code inside the loop
following the continue statement will be skipped and next iteration of the loop will begin.
The following Figure describes the working flow of the continue statement

((

()

))
if (expr)if (expr) if (expr)

continue; continue; continue;

while

whilefor
{ {{

} } }.

do

The workflow of the continue statement

	 In the above example, the loop will iterate 10 times but, if i reaches 6, then the control
is transferred to for loop, because of the continue statement.

Chapter 10 Page 152-179.indd 175 3/24/2020 9:21:34 AM

176 177

#include <iostream>
using namespace std;
 int main()
{
for (int i = 1; i<= 10; i++) {
if (i == 6)
continue;
else
cout<<i<< " ";
}
return 0;
}
Output
1 2 3 4 5 7 8 9 10

Illustraion 10.16 C++ program to display numbers from 1 to 10 except 6 using continue
statement

Difference between Break and Continue

Break Continue

Break is used to terminate the
execution of the loop.

Continue is not used to terminate the execution of
loop.

It breaks the iteration. It skips the iteration.

When this statement is executed,
control will come out from the
loop and executes the statement
immediate after loop.

When this statement is executed, it will not come out
of the loop but moves/jumps to the next iteration of
loop.

Break is used with loops as well as
switch case.

Continue is only used in loops, it is not used in
switch case.

Hands on practice:

Write C++ program to solve the following
problems :
1.	 Program to input a character and to

print whether a given character is an
alphabet, digit or any other character.

2.	 Program to print whether a given
character is an uppercase or a
lowercase character or a digit or any
other character. use ASCII codes for it.
The ASCII codes are as given below:

	 Characters	 ASCII Range
	 0' - '9'	 48 - 57
	 'A' - 'Z'	 65 - 90
	 'a' - 'z'	 97 - 122
	 other characters	� 0- 255 excluding the

above mentioned
codes.

3.	 Program to calculate the factorial of an
integer.

4.	 Program to print fibonacci series i.e., 0
1 1 2 3 5 8......

Chapter 10 Page 152-179.indd 176 3/24/2020 9:21:34 AM

176 177

5.	 Programs to produce the following design using nested loops

(a) (b)
A
A B
A B C
A B C D
A B C D E
A B C D E F

5 4 3 2 1
5 4 3 2
5 4 3
5 4
5

•	 A computer program is a set of statements
or instructions to perform a specific task.

•	 There are two kinds of statements
used in C++, viz Null and Compound
Statement.

•	 Control Statement are statements
that alter the sequence of flow of
instaructions.

•	 There are three kinds of control
statement used in C++. (1) Sequence
Statement (2) Selection Statement
(3) Iteration Statement

•	 If and Switch are Selection Statements.

•	 The Conditional Operator is an
alternative for 'if else Statement'.

•	 The Switch Statment is a multi-way
branching statement.

•	 Iteration Statement (looping) is use to
execute a set of statements repeatedly
until a condition is satisfied.

•	 There are three kinds Iteration
Statements supported. (1) for (2) While
(3) do-While.

•	 In C++ three Jump Statment are used
(1) goto (2) break (3) continue

Points to Remember:

Evaluation
SECTION – A

Choose the correct answer

1.	 What is the alternate
name of null statement?

	 (A) No statement			
(B) Empty statement

	 (C) Void statement			
(D) Zero statement

2.	 In C++, the group of statements should
be enclosed within:

	 (A) { }			 (B) []			
(C) ()			 (D) < >

3.	 The set of statements that are executed
again and again in iteration is called as:

	 (A) condition	 (B) loop
	 (C) statement	 (D) body of loop

4.	 The multi way branch statement:

	 (A) if			 (B) if … else		
(C) switch		 (D) for

5.	 How many types of iteration
statements?

	 (A) 2			 (B) 3			
(C) 4			 (D) 5

6.	 How many times the following loop
will execute? for (int i=0; i<10; i++)

	 (A) 0			 (B) 10			
(C) 9			 (D) 11

Chapter 10 Page 152-179.indd 177 3/24/2020 9:21:34 AM

178 179

7.	 Which of the following is the exit
control loop?

	 (A) for	 (B) while
	 (C) do…while	 (D) if…else

8.	 Identify the odd one from the keywords
of jump statements:

	 (A) break		 (B) switch		
(C) goto		 (D) continue

9.	 Which of the following is called entry
control loop?

	 (A) do-while		 (B) for			
(C) while		 (D) if-else

10.	 A loop that contains another loop
inside its body:

	 (A) Nested loop	 (B) Inner loop
	 (C) Inline loop	 (D) Nesting of loop

SECTION-B

Very Short Answers

1.	 What is a null statement and compound
statement?

2.	 What is selection statement? write it's
types?

3.	 Correct the following code sigment:
	 if (x=1)
		 p= 100;
	 else
		 p = 10;

4.	 What will be the output of the following
code:

	 int year;
	 cin >> year;
		 if (year % 100 == 0)
			 if (year % 400 == 0)
				 cout << "Leap";
		 else
			 cout << "Not Leap year";
	 If the input given is (i) 2000 (ii) 2003

(iii) 2010?

5.	 What is the output of the following
code?

	 for (int i=2; i<=10 ; i+=2)
		 cout << i;

6.	 Write a for loop that displays the
number from 21 to 30.

7.	 Write a while loop that displays
numbers 2, 4, 6, 8.......20.

8.	 Compare an if and a ? : operator.
SECTION-C

Short Answers

1.	 Convert the following if-else to a single
conditional statement:

	 if (x >= 10)
			 a = m + 5;
	 else
			 a = m;
2.	 Rewrite the following code so that it is

functional:
	 v = 5;
	 do;
	 {
		 total += v;
		 cout << total;
	 while v <= 10
3.	 Write a C++ program to print

multiplication table of a given number.
4.	 Write the syntax and purpose of switch

statement.
5.	 Write a short program to print

following series:
	 (a) 1	 4	 7	 10......	 40

SECTION - D

Explain in detail

1.	 Explain control statement with suitable
example.

2.	 What is an entry control loop? Explain
any one of the entry controlled loop
with suitable example.

Chapter 10 Page 152-179.indd 178 3/24/2020 9:21:34 AM

178 179

3.	 Write a program to find the LCM and
GCD of two numbers.

4.	 Write programs to find the sum of the
following series:

	 (a)
 x2 + x3 - x4 + x5 - x6

2!x- 3! 4! 5! 6!

	 (b) x
2 + x3 +....+ xn

2x+ 3 n
5.	 Write a program to find sum of the

series
	 S = 1 + x + x2 +..... + xn

Reference:

(1)	 Object Oriented Programming with
C++ (4th Edition), Dr. E. Balagurusamy,
Mc.Graw Hills.

(2)	 The Complete Reference C++ (Forth
Edition), Herbert Schildt. Mc.Graw
Hills.

(3)	 Computer Science with C++ (A text
book of CBSE XI and XII), Sumita
Arora, Dhanpat Rai & Co.

Chapter 10 Page 152-179.indd 179 3/24/2020 9:21:34 AM

	Introduction Folder
	Chapter 1 Page 001-013
	Chapter 2 Page 014-040
	Chapter 3 Page 041-049
	Chapter 4 Page 050-056
	Chapter 5 Page 057-075
	Chapter 6 Page 076-087
	Chapter 7 Page 088-101
	Chapter 8 Page 102-114
	Chapter 9 Page 115-151
	Chapter 10 Page 152-179

