
Chapter 2

Mathematical Tools of Quantum

Mechanics

2.1 Introduction

We deal here with the mathematical machinery needed to study quantum mechanics. Although

this chapter is mathematical in scope, no attempt is made to be mathematically complete or

rigorous. We limit ourselves to those practical issues that are relevant to the formalism of

quantum mechanics.

The Schrödinger equation is one of the cornerstones of the theory of quantum mechan-

ics; it has the structure of a linear equation. The formalism of quantum mechanics deals with
operators that are linear and wave functions that belong to an abstract Hilbert space. The math-

ematical properties and structure of Hilbert spaces are essential for a proper understanding of

the formalism of quantum mechanics. For this, we are going to review briefly the properties of

Hilbert spaces and those of linear operators. We will then consider Dirac’s bra-ket notation.
Quantum mechanics was formulated in two different ways by Schrödinger and Heisenberg.

Schrödinger’s wave mechanics and Heisenberg’s matrix mechanics are the representations of

the general formalism of quantum mechanics in continuous and discrete basis systems, respec-
tively. For this, we will also examine the mathematics involved in representing kets, bras,

bra-kets, and operators in discrete and continuous bases.

2.2 The Hilbert Space and Wave Functions

2.2.1 The Linear Vector Space

A linear vector space consists of two sets of elements and two algebraic rules:

a set of vectors and a set of scalars a, b, c, ;

a rule for vector addition and a rule for scalar multiplication.

(a) Addition rule

The addition rule has the properties and structure of an abelian group:

79
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If and are vectors (elements) of a space, their sum, , is also a vector of the

same space.

Commutativity: .

Associativity: .

Existence of a zero or neutral vector: for each vector , there must exist a zero vector

O such that: O O .

Existence of a symmetric or inverse vector: each vector must have a symmetric vector

such that O.

(b) Multiplication rule

The multiplication of vectors by scalars (scalars can be real or complex numbers) has these

properties:

The product of a scalar with a vector gives another vector. In general, if and are two

vectors of the space, any linear combination a b is also a vector of the space, a and
b being scalars.

Distributivity with respect to addition:

a a a a b a b (2.1)

Associativity with respect to multiplication of scalars:

a b ab (2.2)

For each element there must exist a unitary scalar I and a zero scalar "o" such that

I I and o o o (2.3)

2.2.2 The Hilbert Space

A Hilbert spaceH consists of a set of vectors , , , and a set of scalars a, b, c, which

satisfy the following four properties:

(a) H is a linear space

The properties of a linear space were considered in the previous section.

(b) H has a defined scalar product that is strictly positive

The scalar product of an element with another element is in general a complex

number, denoted by , where complex number. Note: Watch out for the

order! Since the scalar product is a complex number, the quantity is generally not

equal to : while . The scalar product satisfies the

following properties:

The scalar product of with is equal to the complex conjugate of the scalar

product of with :

(2.4)
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The scalar product of with is linear with respect to the second factor if

a 1 b 2:

a 1 b 2 a 1 b 2 (2.5)

and antilinear with respect to the first factor if a 1 b 2:

a 1 b 2 a 1 b 2 (2.6)

The scalar product of a vector with itself is a positive real number:

2 0 (2.7)

where the equality holds only for O.

(c) H is separable

There exists a Cauchy sequence n H n 1 2 such that for every of H and

0, there exists at least one n of the sequence for which

n (2.8)

(d) H is complete

Every Cauchy sequence n H converges to an element of H . That is, for any n , the

relation

lim
n m

n m 0 (2.9)

defines a unique limit ofH such that

lim
n

n 0 (2.10)

Remark

We should note that in a scalar product , the second factor, , belongs to the Hilbert

spaceH, while the first factor, , belongs to its dual Hilbert spaceHd . The distinction between

H and Hd is due to the fact that, as mentioned above, the scalar product is not commutative:

; the order matters! From linear algebra, we know that every vector space can

be associated with a dual vector space.

2.2.3 Dimension and Basis of a Vector Space

A set of N nonzero vectors 1, 2, , N is said to be linearly independent if and only if the
solution of the equation

N

i 1

ai i 0 (2.11)

is a1 a2 aN 0. But if there exists a set of scalars, which are not all zero, so that

one of the vectors (say n) can be expressed as a linear combination of the others,

n

n 1

i 1

ai i

N

i n 1

ai i (2.12)
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the set i is said to be linearly dependent.
Dimension: The dimension of a vector space is given by the maximum number of linearly
independent vectors the space can have. For instance, if the maximum number of linearly inde-

pendent vectors a space has is N (i.e., 1, 2, , N ), this space is said to be N -dimensional.
In this N -dimensional vector space, any vector can be expanded as a linear combination:

N

i 1

ai i (2.13)

Basis: The basis of a vector space consists of a set of the maximum possible number of linearly
independent vectors belonging to that space. This set of vectors, 1, 2, , N , to be denoted

in short by i , is called the basis of the vector space, while the vectors 1, 2, , N are

called the base vectors. Although the set of these linearly independent vectors is arbitrary,

it is convenient to choose them orthonormal; that is, their scalar products satisfy the relation

i j i j (we may recall that i j 1 whenever i j and zero otherwise). The basis is
said to be orthonormal if it consists of a set of orthonormal vectors. Moreover, the basis is said
to be complete if it spans the entire space; that is, there is no need to introduce any additional
base vector. The expansion coefficients ai in (2.13) are called the components of the vector
in the basis. Each component is given by the scalar product of with the corresponding base

vector, a j j .

Examples of linear vector spaces

Let us give two examples of linear spaces that are Hilbert spaces: one having a finite (discrete)
set of base vectors, the other an infinite (continuous) basis.

The first one is the three-dimensional Euclidean vector space; the basis of this space

consists of three linearly independent vectors, usually denoted by i , j , k. Any vector of
the Euclidean space can be written in terms of the base vectors as A a1i a2 j a3k,
where a1, a2, and a3 are the components of A in the basis; each component can be
determined by taking the scalar product of A with the corresponding base vector: a1
i A, a2 j A, and a3 k A. Note that the scalar product in the Euclidean space is real
and hence symmetric. The norm in this space is the usual length of vectors A A.
Note also that whenever a1i a2 j a3k 0 we have a1 a2 a3 0 and that none

of the unit vectors i , j , k can be expressed as a linear combination of the other two.

The second example is the space of the entire complex functions x ; the dimension of
this space is infinite for it has an infinite number of linearly independent basis vectors.

Example 2.1

Check whether the following sets of functions are linearly independent or dependent on the real

x-axis.
(a) f x 4, g x x2, h x e2x

(b) f x x , g x x2, h x x3

(c) f x x , g x 5x , h x x2

(d) f x 2 x2, g x 3 x 4x3, h x 2x 3x2 8x3

Solution
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(a) The first set is clearly linearly independent since a1 f x a2g x a3h x 4a1
a2x2 a3e2x 0 implies that a1 a2 a3 0 for any value of x .
(b) The functions f x x , g x x2, h x x3 are also linearly independent since

a1x a2x2 a3x3 0 implies that a1 a2 a3 0 no matter what the value of x . For
instance, taking x 1 1 3, the following system of three equations

a1 a2 a3 0 a1 a2 a3 0 3a1 9a2 27a3 0 (2.14)

yields a1 a2 a3 0.

(c) The functions f x x , g x 5x , h x x2 are not linearly independent, since
g x 5 f x 0 h x .
(d) The functions f x 2 x2, g x 3 x 4x3, h x 2x 3x2 8x3 are not

linearly independent since h x 3 f x 2g x .

Example 2.2

Are the following sets of vectors (in the three-dimensional Euclidean space) linearly indepen-

dent or dependent?

(a) A 3 0 0 , B 0 2 0 , C 0 0 1

(b) A 6 9 0 , B 2 3 0

(c) A 2 3 1 , B 0 1 2 , C 0 0 5

(d) A 1 2 3 , B 4 1 7 , C 0 10 11 , and D 14 3 4

Solution

(a) The three vectors A 3 0 0 , B 0 2 0 , C 0 0 1 are linearly indepen-

dent, since

a1A a2B a3C 0 3a1i 2a2 j a3k 0 (2.15)

leads to

3a1 0 2a2 0 a3 0 (2.16)

which yields a1 a2 a3 0.

(b) The vectors A 6 9 0 , B 2 3 0 are linearly dependent, since the solution

to

a1A a2B 0 6a1 2a2 i 9a1 3a2 j 0 (2.17)

is a1 a2 3. The first vector is equal to 3 times the second one: A 3B.
(c) The vectors A 2 3 1 , B 0 1 2 , C 0 0 5 are linearly independent,

since

a1A a2B a3C 0 2a1i 3a1 a2 j a1 2a2 5a3 k 0 (2.18)

leads to

2a1 0 3a1 a2 0 a1 2a2 5a3 0 (2.19)

The only solution of this system is a1 a2 a3 0.

(d) The vectors A 1 2 3 , B 4 1 7 , C 0 10 11 , and D 14 3 4 are

not linearly independent, because D can be expressed in terms of the other vectors:

D 2A 3B C (2.20)
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2.2.4 Square-Integrable Functions: Wave Functions

In the case of function spaces, a “vector” element is given by a complex function and the scalar
product by integrals. That is, the scalar product of two functions x and x is given by

x x dx (2.21)

If this integral diverges, the scalar product does not exist. As a result, if we want the function
space to possess a scalar product, we must select only those functions for which is finite.
In particular, a function x is said to be square integrable if the scalar product of with

itself,

x 2 dx (2.22)

is finite.
It is easy to verify that the space of square-integrable functions possesses the properties of

a Hilbert space. For instance, any linear combination of square-integrable functions is also a

square-integrable function and (2.21) satisfies all the properties of the scalar product of a Hilbert

space.

Note that the dimension of the Hilbert space of square-integrable functions is infinite, since

each wave function can be expanded in terms of an infinite number of linearly independent

functions. The dimension of a space is given by the maximum number of linearly independent

basis vectors required to span that space.

A good example of square-integrable functions is the wave function of quantum mechanics,
r t . We have seen in Chapter 1 that, according to Born’s probabilistic interpretation of
r t , the quantity r t 2 d3r represents the probability of finding, at time t , the particle

in a volume d3r , centered around the point r . The probability of finding the particle somewhere
in space must then be equal to 1:

r t 2 d3r dx dy r t 2 dz 1 (2.23)

hence the wave functions of quantum mechanics are square-integrable. Wave functions sat-

isfying (2.23) are said to be normalized or square-integrable. As wave mechanics deals with

square-integrable functions, any wave function which is not square-integrable has no physical

meaning in quantum mechanics.

2.3 Dirac Notation

The physical state of a system is represented in quantum mechanics by elements of a Hilbert

space; these elements are called state vectors. We can represent the state vectors in different

bases by means of function expansions. This is analogous to specifying an ordinary (Euclid-

ean) vector by its components in various coordinate systems. For instance, we can represent

equivalently a vector by its components in a Cartesian coordinate system, in a spherical coor-

dinate system, or in a cylindrical coordinate system. The meaning of a vector is, of course,
independent of the coordinate system chosen to represent its components. Similarly, the state
of a microscopic system has a meaning independent of the basis in which it is expanded.

To free state vectors from coordinate meaning, Dirac introduced what was to become an in-

valuable notation in quantum mechanics; it allows one to manipulate the formalism of quantum



2.3. DIRAC NOTATION 85

mechanics with ease and clarity. He introduced the concepts of kets, bras, and bra-kets, which

will be explained below.

Kets: elements of a vector space

Dirac denoted the state vector by the symbol , which he called a ket vector, or simply a
ket. Kets belong to the Hilbert (vector) spaceH, or, in short, to the ket-space.

Bras: elements of a dual space

As mentioned above, we know from linear algebra that a dual space can be associated with

every vector space. Dirac denoted the elements of a dual space by the symbol , which he

called a bra vector, or simply a bra; for instance, the element represents a bra. Note: For
every ket there exists a unique bra and vice versa. Again, while kets belong to the
Hilbert spaceH, the corresponding bras belong to its dual (Hilbert) spaceHd .

Bra-ket: Dirac notation for the scalar product

Dirac denoted the scalar (inner) product by the symbol , which he called a a bra-ket. For
instance, the scalar product ( ) is denoted by the bra-ket :

(2.24)

Note: When a ket (or bra) is multiplied by a complex number, we also get a ket (or bra).

Remark: In wave mechanics we deal with wave functions r t , but in the more general
formalism of quantum mechanics we deal with abstract kets . Wave functions, like kets,

are elements of a Hilbert space. We should note that, like a wave function, a ket represents the

system completely, and hence knowing means knowing all its amplitudes in all possible

representations. As mentioned above, kets are independent of any particular representation.

There is no reason to single out a particular representation basis such as the representation in

the position space. Of course, if we want to know the probability of finding the particle at some

position in space, we need to work out the formalism within the coordinate representation. The

state vector of this particle at time t will be given by the spatial wave function r t
r t . In the coordinate representation, the scalar product is given by

r t r t d3r (2.25)

Similarly, if we are considering the three-dimensional momentum of a particle, the ket will

have to be expressed in momentum space. In this case the state of the particle will be described

by a wave function p t , where p is the momentum of the particle.

Properties of kets, bras, and bra-kets

Every ket has a corresponding bra

To every ket , there corresponds a unique bra and vice versa:

(2.26)

There is a one-to-one correspondence between bras and kets:

a b a b (2.27)

where a and b are complex numbers. The following is a common notation:

a a a a (2.28)
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Properties of the scalar product

In quantummechanics, since the scalar product is a complex number, the ordering matters

a lot. We must be careful to distinguish a scalar product from its complex conjugate;

is not the same thing as :

(2.29)

This property becomes clearer if we apply it to (2.21):

r t r t d3r r t r t d3r (2.30)

When and are real, we would have . Let us list some

additional properties of the scalar product:

a1 1 a2 2 a1 1 a2 2 (2.31)

a1 1 a2 2 a1 1 a2 2 (2.32)

a1 1 a2 2 b1 1 b2 2 a1b1 1 1 a1b2 1 2

a2b1 2 1 a2b2 2 2

(2.33)

The norm is real and positive

For any state vector of the Hilbert space H, the norm is real and positive;

is equal to zero only for the case where O, where O is the zero vector.
If the state is normalized then 1.

Schwarz inequality

For any two states and of the Hilbert space, we can show that

2 (2.34)

If and are linearly dependent (i.e., proportional: , where is a

scalar), this relation becomes an equality. The Schwarz inequality (2.34) is analogous to

the following relation of the real Euclidean space

A B 2 A 2 B 2 (2.35)

Triangle inequality

(2.36)

If and are linearly dependent, , and if the proportionality scalar

is real and positive, the triangle inequality becomes an equality. The counterpart of this

inequality in Euclidean space is given by A B A B .

Orthogonal states

Two kets, and , are said to be orthogonal if they have a vanishing scalar product:

0 (2.37)
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Orthonormal states

Two kets, and , are said to be orthonormal if they are orthogonal and if each one

of them has a unit norm:

0 1 1 (2.38)

Forbidden quantities

If and belong to the same vector (Hilbert) space, products of the type

and are forbidden. They are nonsensical, since and are

neither kets nor bras (an explicit illustration of this will be carried out in the example

below and later on when we discuss the representation in a discrete basis). If and

belong, however, to different vector spaces (e.g., belongs to a spin space and

to an orbital angular momentum space), then the product , written as

, represents a tensor product of and . Only in these typical cases are

such products meaningful.

Example 2.3

(Note: We will see later in this chapter that kets are represented by column matrices and bras

by row matrices; this example is offered earlier than it should because we need to show some

concrete illustrations of the formalism.) Consider the following two kets:

3i
2 i
4

2

i
2 3i

(a) Find the bra .

(b) Evaluate the scalar product .

(c) Examine why the products and do not make sense.

Solution

(a) As will be explained later when we introduce the Hermitian adjoint of kets and bras, we

want to mention that the bra can be obtained by simply taking the complex conjugate of

the transpose of the ket :

2 i 2 3i (2.39)

(b) The scalar product can be calculated as follows:

2 i 2 3i
3i

2 i
4

2 3i i 2 i 4 2 3i

7 8i (2.40)

(c) First, the product cannot be performed because, from linear algebra, the

product of two column matrices cannot be performed. Similarly, since two row matrices cannot

be multiplied, the product is meaningless.
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Physical meaning of the scalar product

The scalar product can be interpreted in two ways. First, by analogy with the scalar product

of ordinary vectors in the Euclidean space, where A B represents the projection of B on A,
the product also represents the projection of onto . Second, in the case of

normalized states and according to Born’s probabilistic interpretation, the quantity

represents the probability amplitude that the system’s state will, after a measurement is

performed on the system, be found to be in another state .

Example 2.4 (Bra-ket algebra)

Consider the states 3i 1 7i 2 and 1 2i 2 , where 1 and

2 are orthonormal.

(a) Calculate and .

(b) Calculate the scalar products and . Are they equal?

(c) Show that the states and satisfy the Schwarz inequality.

(d) Show that the states and satisfy the triangle inequality.

Solution

(a) The calculation of is straightforward:

3i 1 7i 2 1 2i 2

1 3i 1 5i 2 (2.41)

This leads at once to the expression of :

1 3i 1 5i 2 1 3i 1 5i 2 (2.42)

(b) Since 1 1 2 2 1, 1 2 2 1 0, and since the bras

corresponding to the kets 3i 1 7i 2 and 1 2i 2 are given by

3i 1 7i 2 and 1 2i 2 , the scalar products are

3i 1 7i 2 1 2i 2

3i 1 1 1 7i 2i 2 2

14 3i (2.43)

1 2i 2 3i 1 7i 2

1 3i 1 1 2i 7i 2 2

14 3i (2.44)

We see that is equal to the complex conjugate of .

(c) Let us first calculate and :

3i 1 7i 2 3i 1 7i 2 3i 3i 7i 7i 58 (2.45)

1 2i 2 1 2i 2 1 1 2i 2i 5 (2.46)

Since 14 3i we have 2 142 32 205. Combining the values of
2, , and , we see that the Schwarz inequality (2.34) is satisfied:

205 58 5 2 (2.47)
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(d) First, let us use (2.41) and (2.42) to calculate :

[ 1 3i 1 5i 2 ] [ 1 3i 1 5i 2 ]

1 3i 1 3i 5i 5i

35 (2.48)

Since 58 and 5, we infer that the triangle inequality (2.36) is satisfied:

35 58 5 (2.49)

Example 2.5

Consider two states 1 2i 1 2 a 3 4 4 and 2 3 1 i 2 5 3 4 ,

where 1 , 2 , 3 , and 4 are orthonormal kets, and where a is a constant. Find the value
of a so that 1 and 2 are orthogonal.

Solution

For the states 1 and 2 to be orthogonal, the scalar product 2 1 must be zero. Using

the relation 2 3 1 i 2 5 3 4 , we can easily find the scalar product

2 1 3 1 i 2 5 3 4 2i 1 2 a 3 4 4

7i 5a 4 (2.50)

Since 2 1 7i 5a 4 0, the value of a is a 7i 4 5.

2.4 Operators

2.4.1 General Definitions

Definition of an operator: An operator1 A is a mathematical rule that when applied to a ket
transforms it into another ket of the same space and when it acts on a bra

transforms it into another bra :

A A (2.51)

A similar definition applies to wave functions:

A r r r A r (2.52)

Examples of operators

Here are some of the operators that we will use in this text:

Unity operator: it leaves any ket unchanged, I .

The gradient operator: r r x i r y j r z k.

1The hat on A will be used throughout this text to distinguish an operator A from a complex number or a matrix A.
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The linear momentum operator: P r ih r .

The Laplacian operator: 2 r 2 r x2 2 r y2 2 r z2.

The parity operator: P r r .

Products of operators

The product of two operators is generally not commutative:

AB BA (2.53)

The product of operators is, however, associative:

ABC A BC AB C (2.54)

We may also write A
n
A
m

A
n m

. When the product AB operates on a ket (the order

of application is important), the operator B acts first on and then A acts on the new ket
B :

AB A B (2.55)

Similarly, when ABCD operates on a ket , D acts first, then C , then B, and then A.
When an operator A is sandwiched between a bra and a ket , it yields in general

a complex number: A complex number. The quantity A can also be a

purely real or a purely imaginary number. Note: In evaluating A it does not matter if

one first applies A to the ket and then takes the bra-ket or one first applies A to the bra and then
takes the bra-ket; that is A A .

Linear operators

An operator A is said to be linear if it obeys the distributive law and, like all operators, it
commutes with constants. That is, an operator A is linear if, for any vectors 1 and 2 and

any complex numbers a1 and a2, we have

A a1 1 a2 2 a1A 1 a2A 2 (2.56)

and

1 a1 2 a2 A a1 1 A a2 2 A (2.57)

Remarks

The expectation or mean value A of an operator A with respect to a state is defined

by

A
A

(2.58)

The quantity (i.e., the product of a ket with a bra) is a linear operator in Dirac’s

notation. To see this, when is applied to a ket , we obtain another ket:

(2.59)

since is a complex number.

Products of the type A and A (i.e., when an operator stands on the right of a ket

or on the left of a bra) are forbidden. They are not operators, or kets, or bras; they have

no mathematical or physical meanings (see equation (2.219) for an illustration).
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2.4.2 Hermitian Adjoint

The Hermitian adjoint or conjugate2, †, of a complex number is the complex conjugate of

this number: † . The Hermitian adjoint, or simply the adjoint, A
†
, of an operator A is

defined by this relation:

A
†

A (2.60)

Properties of the Hermitian conjugate rule

To obtain the Hermitian adjoint of any expression, we must cyclically reverse the order of the

factors and make three replacements:

Replace constants by their complex conjugates: † .

Replace kets (bras) by the corresponding bras (kets): † and † .

Replace operators by their adjoints.

Following these rules, we can write

A
† † A (2.61)

aA † a A
†

(2.62)

A
n † A

† n (2.63)

A B C D † A
†

B† C† D† (2.64)

ABCD † D†C†B†A
†

(2.65)

ABCD † D†C†B†A† (2.66)

The Hermitian adjoint of the operator is given by

† (2.67)

Operators act inside kets and bras, respectively, as follows:

A A A A
†

(2.68)

Note also that A
†

A
† † A. Hence, we can also write:

A A
†

A (2.69)

Hermitian and skew-Hermitian operators

An operator A is said to be Hermitian if it is equal to its adjoint A
†
:

A A
†

or A A (2.70)

2The terms “adjoint” and “conjugate” are used indiscriminately.
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On the other hand, an operator B is said to be skew-Hermitian or anti-Hermitian if

B† B or B B (2.71)

Remark

The Hermitian adjoint of an operator is not, in general, equal to its complex conjugate: A
†

A .

Example 2.6

(a) Discuss the hermiticity of the operators A A
†
, i A A

†
, and i A A

†
.

(b) Find the Hermitian adjoint of f A 1 i A 3A
2
1 2i A 9A

2
5 7A .

(c) Show that the expectation value of a Hermitian operator is real and that of an anti-

Hermitian operator is imaginary.

Solution

(a) The operator B A A
†
is Hermitian regardless of whether or not A is Hermitian,

since

B† A A
† † A

†
A B (2.72)

Similarly, the operator i A A
†
is also Hermitian; but i A A

†
is anti-Hermitian, since

[i A A
†
]† i A A

†
.

(b) Since the Hermitian adjoint of an operator function f A is given by f † A f A
†
,

we can write

1 i A 3A
2
1 2i A 9A

2

5 7A

†
1 2i A

†
9A†

2

1 i A
†

3A†
2

5 7A
†

(2.73)

(c) From (2.70) we immediately infer that the expectation value of a Hermitian operator is

real, for it satisfies the following property:

A A (2.74)

that is, if A
†

A then A is real. Similarly, for an anti-Hermitian operator, B† B,
we have

B B (2.75)

which means that B is a purely imaginary number.

2.4.3 Projection Operators

An operator P is said to be a projection operator if it is Hermitian and equal to its own square:

P† P P2 P (2.76)

The unit operator I is a simple example of a projection operator, since I† I I 2 I .
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Properties of projection operators

The product of two commuting projection operators, P1 and P2, is also a projection
operator, since

P1P2
† P

†
2 P
†
1 P2P1 P1P2 and P1P2

2 P1P2P1P2 P21 P
2
2 P1P2

(2.77)

The sum of two projection operators is generally not a projection operator.

Two projection operators are said to be orthogonal if their product is zero.

For a sum of projection operators P1 P2 P3 to be a projection operator, it is

necessary and sufficient that these projection operators be mutually orthogonal (i.e., the

cross-product terms must vanish).

Example 2.7

Show that the operator is a projection operator only when is normalized.

Solution

It is easy to ascertain that the operator is Hermitian, since † . As

for the square of this operator, it is given by

2 (2.78)

Thus, if is normalized, we have 2 . In sum, if the state is

normalized, the product of the ket with the bra is a projection operator.

2.4.4 Commutator Algebra

The commutator of two operators A and B, denoted by [A B], is defined by

[A B] AB BA (2.79)

and the anticommutator A B is defined by

A B AB BA (2.80)

Two operators are said to commute if their commutator is equal to zero and hence AB BA.
Any operator commutes with itself:

[A A] 0 (2.81)

Note that if two operators are Hermitian and their product is also Hermitian, these operators

commute:

AB † B†A
†

BA (2.82)

and since AB † AB we have AB BA.
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As an example, we may mention the commutators involving the x-position operator, X ,
and the x-component of the momentum operator, Px ih x , as well as the y and the z
components

[X Px ] ih I [Y Py] ih I [Z Pz] ih I (2.83)

where I is the unit operator.

Properties of commutators

Using the commutator relation (2.79), we can establish the following properties:

Antisymmetry:

[A B] [B A] (2.84)

Linearity:

[A B C D ] [A B] [A C] [A D] (2.85)

Hermitian conjugate of a commutator:

[A B]† [B† A
†
] (2.86)

Distributivity:

[A BC] [A B]C B[A C] (2.87)

[AB C] A[B C] [A C]B (2.88)

Jacobi identity:

[A [B C]] [B [C A]] [C [A B]] 0 (2.89)

By repeated applications of (2.87), we can show that

[A Bn]
n 1

j 0

B j [A B]Bn j 1 (2.90)

[A
n
B]

n 1

j 0

A
n j 1

[A B]A
j

(2.91)

Operators commute with scalars: an operator A commutes with any scalar b:

[A b] 0 (2.92)

Example 2.8

(a) Show that the commutator of two Hermitian operators is anti-Hermitian.

(b) Evaluate the commutator [A [B C]D].
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Solution

(a) If A and B are Hermitian, we can write

[A B]† AB BA † B†A
†

A
†
B† BA AB [A B] (2.93)

that is, the commutator of A and B is anti-Hermitian: [A B]† [A B].
(b) Using the distributivity relation (2.87), we have

[A [B C]D] [B C][A D] [A [B C]]D

BC CB AD DA A BC CB D BC CB AD

CBDA BCDA ABCD ACBD (2.94)

2.4.5 Uncertainty Relation between Two Operators

An interesting application of the commutator algebra is to derive a general relation giving the

uncertainties product of two operators, A and B. In particular, we want to give a formal deriva-
tion of Heisenberg’s uncertainty relations.

Let A and B denote the expectation values of two Hermitian operators A and B with
respect to a normalized state vector : A A and B B .

Introducing the operators A and B,

A A A B B B (2.95)

we have A 2 A
2

2A A A 2 and B 2 B2 2B B B 2, and hence

A 2 A 2 A
2

A 2 B 2 B2 B 2 (2.96)

where A
2

A
2

and B2 B2 . The uncertainties A and B are
defined by

A A 2 A
2

A 2 B B 2 B2 B 2 (2.97)

Let us write the action of the operators (2.95) on any state as follows:

A A A B B B (2.98)

The Schwarz inequality for the states and is given by

2 (2.99)

Since A and B are Hermitian, A and B must also be Hermitian: A
†

A
†

A

A A A and B† B B B. Thus, we can show the following three relations:

A 2 B 2 A B
(2.100)
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For instance, since A
†

A we have A
†
A A 2

A 2 . Hence, the Schwarz inequality (2.99) becomes

A 2 B 2 A B
2

(2.101)

Notice that the last term A B of this equation can be written as

A B
1

2
[ A B]

1

2
A B

1

2
[A B]

1

2
A B (2.102)

where we have used the fact that [ A B] [A B]. Since [A B] is anti-Hermitian and
A B is Hermitian and since the expectation value of a Hermitian operator is real and

that the expectation value of an anti-Hermitian operator is imaginary (see Example 2.6), the

expectation value A B of (2.102) becomes equal to the sum of a real part A B 2

and an imaginary part [A B] 2; hence

A B
2 1

4
[A B]

2 1

4
A B

2
(2.103)

Since the last term is a positive real number, we can infer the following relation:

A B
2 1

4
[A B]

2
(2.104)

Comparing equations (2.101) and (2.104), we conclude that

A 2 B 2 1

4
[A B]

2
(2.105)

which (by taking its square root) can be reduced to

A B
1

2
[A B] (2.106)

This uncertainty relation plays an important role in the formalism of quantum mechanics. Its

application to position and momentum operators leads to the Heisenberg uncertainty relations,

which represent one of the cornerstones of quantum mechanics; see the next example.

Example 2.9 (Heisenberg uncertainty relations)

Find the uncertainty relations between the components of the position and the momentum op-

erators.

Solution

By applying (2.106) to the x-components of the position operator X , and the momentum op-
erator Px , we obtain x px

1
2

[X Px ] . But since [X Px ] ih I , we have
x px h 2; the uncertainty relations for the y and z components follow immediately:

x px
h

2
y py

h

2
z pz

h

2
(2.107)

These are the Heisenberg uncertainty relations.
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2.4.6 Functions of Operators

Let F A be a function of an operator A. If A is a linear operator, we can Taylor expand F A
in a power series of A:

F A
n 0

anA
n

(2.108)

where an is just an expansion coefficient. As an illustration of an operator function, consider

eaA, where a is a scalar which can be complex or real. We can expand it as follows:

eaA

n 0

an

n!
A
n

I aA
a2

2!
A
2 a3

3!
A
3

(2.109)

Commutators involving function operators

If A commutes with another operator B, then B commutes with any operator function that
depends on A:

[A B] 0 [B F A ] 0 (2.110)

in particular, F A commutes with A and with any other function, G A , of A:

[A F A ] 0 [A
n
F A ] 0 [F A G A ] 0 (2.111)

Hermitian adjoint of function operators

The adjoint of F A is given by

[F A ]† F A
†

(2.112)

Note that if A is Hermitian, F A is not necessarily Hermitian; F A will be Hermitian only if

F is a real function and A is Hermitian. An example is

eA † eA
†

ei A † e i A† ei A † e i A† (2.113)

where is a complex number. So if A is Hermitian, an operator function which can be ex-

panded as F A n 0 anA
n
will be Hermitian only if the expansion coefficients an are real

numbers. But in general, F A is not Hermitian even if A is Hermitian, since

F A
†

n 0

an A
† n (2.114)

Relations involving function operators

Note that

[A B] 0 [B F A ] 0 (2.115)

in particular, eAeB eA B . Using (2.109) we can ascertain that

eAeB eA Be[A B] 2 (2.116)

eABe A B [A B]
1

2!
[A [A B]]

1

3!
[A [A [A B]]] (2.117)
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2.4.7 Inverse and Unitary Operators

Inverse of an operator: Assuming it exists3 the inverse A
1
of a linear operator A is defined

by the relation

A
1
A AA

1
I (2.118)

where I is the unit operator, the operator that leaves any state unchanged.

Quotient of two operators: Dividing an operator A by another operator B (provided that the
inverse B 1 exists) is equivalent to multiplying A by B 1:

A

B
AB 1 (2.119)

The side on which the quotient is taken matters:

A

B
A
I

B
AB 1 and

I

B
A B 1A (2.120)

In general, we have AB 1 B 1A. For an illustration of these ideas, see Problem 2.12. We
may mention here the following properties about the inverse of operators:

ABCD
1

D 1C 1B 1A
1

A
n 1

A
1 n

(2.121)

Unitary operators: A linear operator U is said to be unitary if its inverse U 1 is equal to its

adjoint U†:

U† U 1 or UU† U†U I (2.122)

The product of two unitary operators is also unitary, since

UV UV † UV V †U† U VV † U† UU† I (2.123)

or UV † UV 1. This result can be generalized to any number of operators; the product

of a number of unitary operators is also unitary, since

ABCD ABCD † ABCD D†C†B†A
†

ABC DD† C†B†A
†

AB CC† B†A
†

A BB† A
†

AA
†

I (2.124)

or ABCD † ABCD 1.

Example 2.10 (Unitary operator)

What conditions must the parameter and the operator G satisfy so that the operatorU ei G

is unitary?

3Not every operator has an inverse, just as in the case of matrices. The inverse of a matrix exists only when its

determinant is nonzero.
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Solution

Clearly, if is real and G is Hermitian, the operator ei G would be unitary. Using the property

[F A ]† F A
†
, we see that

ei G † e i G ei G 1 (2.125)

that is, U† U 1.

2.4.8 Eigenvalues and Eigenvectors of an Operator

Having studied the properties of operators and states, we are now ready to discuss how to find

the eigenvalues and eigenvectors of an operator.

A state vector is said to be an eigenvector (also called an eigenket or eigenstate) of an
operator A if the application of A to gives

A a (2.126)

where a is a complex number, called an eigenvalue of A. This equation is known as the eigen-
value equation, or eigenvalue problem, of the operator A. Its solutions yield the eigenvalues
and eigenvectors of A. In Section 2.5.3 we will see how to solve the eigenvalue problem in a
discrete basis.

A simple example is the eigenvalue problem for the unity operator I :

I (2.127)

This means that all vectors are eigenvectors of I with one eigenvalue, 1. Note that

A a An an and F A F a (2.128)

For instance, we have

A a ei A eia (2.129)

Example 2.11 (Eigenvalues of the inverse of an operator)

Show that if A
1
exists, the eigenvalues of A

1
are just the inverses of those of A.

Solution

Since A
1
A I we have on the one hand

A
1
A (2.130)

and on the other hand

A
1
A A

1
A aA

1
(2.131)

Combining the previous two equations, we obtain

aA
1

(2.132)
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hence

A
1 1

a
(2.133)

This means that is also an eigenvector of A
1
with eigenvalue 1 a. That is, if A

1
exists,

then

A a A
1 1

a
(2.134)

Some useful theorems pertaining to the eigenvalue problem

Theorem 2.1 For a Hermitian operator, all of its eigenvalues are real and the eigenvectors
corresponding to different eigenvalues are orthogonal.

If A
†

A A n an n an real number, and m n mn

(2.135)

Proof of Theorem 2.1

Note that

A n an n m A n an m n (2.136)

and

m A† am m m A† n am m n (2.137)

Subtracting (2.137) from (2.136) and using the fact that A is Hermitian, A A
†
, we have

an am m n 0 (2.138)

Two cases must be considered separately:

Case m n: since n n 0, we must have an an ; hence the eigenvalues an must
be real.

Case m n: since in general an am , we must have m n 0; that is, m and

n must be orthogonal.

Theorem 2.2 The eigenstates of a Hermitian operator define a complete set of mutually or-
thonormal basis states. The operator is diagonal in this eigenbasis with its diagonal elements
equal to the eigenvalues. This basis set is unique if the operator has no degenerate eigenvalues
and not unique (in fact it is infinite) if there is any degeneracy.

Theorem 2.3 If two Hermitian operators, A and B, commute and if A has no degenerate eigen-
value, then each eigenvector of A is also an eigenvector of B. In addition, we can construct a
common orthonormal basis that is made of the joint eigenvectors of A and B.

Proof of Theorem 2.3

Since A is Hermitian with no degenerate eigenvalue, to each eigenvalue of A there corresponds
only one eigenvector. Consider the equation

A n an n (2.139)
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Since A commutes with B we can write

BA n AB n or A B n an B n (2.140)

that is, B n is an eigenvector of A with eigenvalue an . But since this eigenvector is unique
(apart from an arbitrary phase constant), the ket n must also be an eigenvector of B:

B n bn n (2.141)

Since each eigenvector of A is also an eigenvector of B (and vice versa), both of these operators
must have a common basis. This basis is unique; it is made of the joint eigenvectors of A and
B. This theorem also holds for any number of mutually commuting Hermitian operators.
Now, if an is a degenerate eigenvalue, we can only say that B n is an eigenvector of

A with eigenvalue an; n is not necessarily an eigenvector of B. If one of the operators is
degenerate, there exist an infinite number of orthonormal basis sets that are common to these

two operators; that is, the joint basis does exist and it is not unique.

Theorem 2.4 The eigenvalues of an anti-Hermitian operator are either purely imaginary or
equal to zero.

Theorem 2.5 The eigenvalues of a unitary operator are complex numbers of moduli equal to
one; the eigenvectors of a unitary operator that has no degenerate eigenvalues are mutually
orthogonal.

Proof of Theorem 2.5

Let n and m be eigenvectors to the unitary operator U with eigenvalues an and am ,
respectively. We can write

m U† U n aman m n (2.142)

Since U†U I this equation can be rewritten as

aman 1 m n 0 (2.143)

which in turn leads to the following two cases:

Case n m: since n n 0 then anan an 2 1, and hence an 1.

Case n m: the only possibility for this case is that m and n are orthogonal,

m n 0.

2.4.9 Infinitesimal and Finite Unitary Transformations

We want to study here how quantities such as kets, bras, operators, and scalars transform under

unitary transformations. A unitary transformation is the application of a unitary operator U to
one of these quantities.
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2.4.9.1 Unitary Transformations

Kets and bras transform as follows:

U U† (2.144)

Let us now find out how operators transform under unitary transformations. Since the transform

of A is A , we can rewrite A as A U U

U A which, in turn, leads to A U U A. Multiplying both sides of A U U A byU† and

since UU† U†U I , we have

A U AU† A U†A U (2.145)

The results reached in (2.144) and (2.145) may be summarized as follows:

U U† A U AU† (2.146)

U† U A U†A U (2.147)

Properties of unitary transformations

If an operator A is Hermitian, its transformed A is also Hermitian, since

A † U AU† † U A
†
U† U AU† A (2.148)

The eigenvalues of A and those of its transformed A are the same:

A n an n A n an n (2.149)

since

A n U AU† U n U A U†U n

U A n an U n an n (2.150)

Commutators that are equal to (complex) numbers remain unchanged under unitary trans-

formations, since the transformation of [A B] a, where a is a complex number, is
given by

[A B ] [U AU† UBU†] U AU† UBU† UBU† U AU†

U [A B]U† UaU† aUU† a

[A B] (2.151)

We can also verify the following general relations:

A B C A B C (2.152)

A BCD A B C D (2.153)

where A , B , C , and D are the transforms of A, B, C , and D, respectively.
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Since the result (2.151) is valid for any complex number, we can state that complex

numbers, such as A , remain unchanged under unitary transformations, since

A U† U AU† U U†U A U†U A
(2.154)

Taking A I we see that scalar products of the type

(2.155)

are invariant under unitary transformations; notably, the norm of a state vector is con-

served:

(2.156)

We can also verify that UAU†
n

UA
n
U† since

UAU†
n

UAU† UAU† UAU† UA U†U A U†U U†U AU†

UA
n
U† (2.157)

We can generalize the previous result to obtain the transformation of any operator func-

tion f A :

U f A U† f U AU† f A (2.158)

or more generally

U f A B C U† f U AU† UBU† UCU† f A B C (2.159)

A unitary transformation does not change the physics of a system; it merely transforms one

description of the system to another physically equivalent description.

In what follows we want to consider two types of unitary transformations: infinitesimal

transformations and finite transformations.

2.4.9.2 Infinitesimal Unitary Transformations

Consider an operator U which depends on an infinitesimally small real parameter and which

varies only slightly from the unity operator I :

U G I i G (2.160)

where G is called the generator of the infinitesimal transformation. Clearly, U is a unitary

transformation only when the parameter is real and G is Hermitian, since

U U
†

I i G I i G† I i G G† I (2.161)

where we have neglected the quadratic terms in .

The transformation of a state vector is

I i G (2.162)
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where

i G (2.163)

The transformation of an operator A is given by

A I i G A I i G A i [G A] (2.164)

If G commutes with A, the unitary transformation will leave A unchanged, A A:

[G A] 0 A I i G A I i G A (2.165)

2.4.9.3 Finite Unitary Transformations

We can construct a finite unitary transformation from (2.160) by performing a succession of
infinitesimal transformations in steps of ; the application of a series of successive unitary

transformations is equivalent to the application of a single unitary transformation. Denoting

N , where N is an integer and is a finite parameter, we can apply the same unitary

transformation N times; in the limit N we obtain

U G lim
N

N

k 1

1 i
N
G lim

N
1 i

N
G

N
ei G (2.166)

where G is now the generator of the finite transformation and is its parameter.

As shown in (2.125), U is unitary only when the parameter is real and G is Hermitian,
since

ei G † e i G ei G 1 (2.167)

Using the commutation relation (2.117), we can write the transformation A of an operator A
as follows:

ei G Ae i G A i [G A]
i 2

2!
G [G A]

i 3

3!
G [G [G A]]

(2.168)

If G commutes with A, the unitary transformation will leave A unchanged, A A:

[G A] 0 A ei G Ae i G A (2.169)

In Chapter 3, we will consider some important applications of infinitesimal unitary transfor-

mations to study time translations, space translations, space rotations, and conservation laws.

2.5 Representation in Discrete Bases

By analogy with the expansion of Euclidean space vectors in terms of the basis vectors, we need

to express any ket of the Hilbert space in terms of a complete set of mutually orthonormal

base kets. State vectors are then represented by their components in this basis.
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2.5.1 Matrix Representation of Kets, Bras, and Operators

Consider a discrete, complete, and orthonormal basis which is made of an infinite4 set of kets

1 , 2 , 3 , , n and denote it by n . Note that the basis n is discrete, yet

it has an infinite number of unit vectors. In the limit n , the ordering index n of the unit
vectors n is discrete or countable; that is, the sequence 1 , 2 , 3 , is countably

infinite. As an illustration, consider the special functions, such as the Hermite, Legendre, or

Laguerre polynomials, Hn x , Pn x , and Ln x . These polynomials are identified by a discrete
index n and by a continuous variable x ; although n varies discretely, it can be infinite.
In Section 2.6, we will consider bases that have a continuous and infinite number of base

vectors; in these bases the index n increases continuously. Thus, each basis has a continuum of
base vectors.

In this section the notation n will be used to abbreviate an infinitely countable set of

vectors (i.e., 1 , 2 , 3 , ) of the Hilbert space H. The orthonormality condition of

the base kets is expressed by

n m nm (2.170)

where nm is the Kronecker delta symbol defined by

nm
1 n m
0 n m

(2.171)

The completeness, or closure, relation for this basis is given by

n 1

n n I (2.172)

where I is the unit operator; when the unit operator acts on any ket, it leaves the ket unchanged.

2.5.1.1 Matrix Representation of Kets and Bras

Let us now examine how to represent the vector within the context of the basis n .

The completeness property of this basis enables us to expand any state vector in terms of

the base kets n :

I
n 1

n n
n 1

an n (2.173)

where the coefficient an , which is equal to n , represents the projection of onto n ;

an is the component of along the vector n . Recall that the coefficients an are complex
numbers. So, within the basis n , the ket is represented by the set of its components,

a1, a2, a3, along 1 , 2 , 3 , , respectively. Hence can be represented by a

column vector which has a countably infinite number of components:

1

2

n

a1
a2

an

(2.174)

4Kets are elements of the Hilbert space, and the dimension of a Hilbert space is infinite.



106 CHAPTER 2. MATHEMATICAL TOOLS OF QUANTUM MECHANICS

The bra can be represented by a row vector:

1 2 n

1 2 n

a1 a2 an (2.175)

Using this representation, we see that a bra-ket is a complex number equal to the matrix

product of the row matrix corresponding to the bra with the column matrix corresponding

to the ket :

a1 a2 an

b1
b2

bn n

anbn (2.176)

where bn n . We see that, within this representation, the matrices representing

and are Hermitian adjoints of each other.

Remark

A ket is normalized if n an
2 1. If is not normalized and we want

to normalized it, we need simply to multiply it by a constant so that 2

1, and hence 1 .

Example 2.12

Consider the following two kets:

5i
2

i

3

8i
9i

(a) Find and .

(b) Is normalized? If not, normalize it.

(c) Are and orthogonal?

Solution

(a) The expressions of and are given by

5i
2

i
5i 2 i (2.177)

where we have used the fact that is equal to the complex conjugate of the transpose of the

ket . Hence, we should reiterate the important fact that .

(b) The norm of is given by

5i 2 i
5i
2

i
5i 5i 2 2 i i 30 (2.178)
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Thus, is not normalized. By multiplying it with 1 30, it becomes normalized:

1

30

1

30

5i
2

i
1 (2.179)

(c) The kets and are not orthogonal since their scalar product is not zero:

5i 2 i
3

8i
9i

5i 3 2 8i i 9i 9 i (2.180)

2.5.1.2 Matrix Representation of Operators

For each linear operator A, we can write

A I AI
n 1

n n A
m 1

m m
nm

Anm n m (2.181)

where Anm is the nm matrix element of the operator A:

Anm n A m (2.182)

We see that the operator A is represented, within the basis n , by a square matrix A (A
without a hat designates a matrix), which has a countably infinite number of columns and a

countably infinite number of rows:

A

A11 A12 A13
A21 A22 A23
A31 A32 A33 (2.183)

For instance, the unit operator I is represented by the unit matrix; when the unit matrix is
multiplied with another matrix, it leaves that unchanged:

I

1 0 0

0 1 0

0 0 1 (2.184)

In summary, kets are represented by column vectors, bras by row vectors, and operators by
square matrices.
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2.5.1.3 Matrix Representation of Some Other Operators

(a) Hermitian adjoint operation

Let us now look at the matrix representation of the Hermitian adjoint operation of an operator.

First, recall that the transpose of a matrix A, denoted by AT , is obtained by interchanging the
rows with the columns:

AT nm Amn or

A11 A12 A13
A21 A22 A23
A31 A32 A33

T
A11 A21 A31
A12 A22 A32
A13 A23 A33

(2.185)

Similarly, the transpose of a column matrix is a row matrix, and the transpose of a row matrix

is a column matrix:

a1
a2

an

T

a1 a2 an and a1 a2 an
T

a1
a2

an

(2.186)

So a square matrix A is symmetric if it is equal to its transpose, AT A. A skew-symmetric
matrix is a square matrix whose transpose equals the negative of the matrix, AT A.
The complex conjugate of a matrix is obtained by simply taking the complex conjugate of

all its elements: A nm Anm .

The matrix which represents the operator A
†
is obtained by taking the complex conjugate

of the matrix transpose of A:

A† AT or A
†
nm n A

†
m m A n Amn (2.187)

that is,

A11 A12 A13
A21 A22 A23
A31 A32 A33

†
A11 A21 A31
A12 A22 A32
A13 A23 A33

(2.188)

If an operator A is Hermitian, its matrix satisfies this condition:

AT A or Amn Anm (2.189)

The diagonal elements of a Hermitian matrix therefore must be real numbers. Note that a
Hermitian matrix must be square.

(b) Inverse and unitary operators

A matrix has an inverse only if it is square and its determinant is nonzero; a matrix that has

an inverse is called a nonsingular matrix and a matrix that has no inverse is called a singular
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matrix. The elements A 1
nm of the inverse matrix A

1, representing an operator A
1
, are given

by the relation

A 1
nm

cofactor of Amn
determinant of A

or A 1 BT

determinant of A
(2.190)

where B is the matrix of cofactors (also called the minor); the cofactor of element Amn is equal
to 1 m n times the determinant of the submatrix obtained from A by removing the mth row
and the nth column. Note that when the matrix, representing an operator, has a determinant
equal to zero, this operator does not possess an inverse. Note that A 1A AA 1 I where I
is the unit matrix.

The inverse of a product of matrices is obtained as follows:

ABC PQ 1 Q 1P 1 C 1B 1A 1 (2.191)

The inverse of the inverse of a matrix is equal to the matrix itself, A 1 1
A.

A unitary operator U is represented by a unitary matrix. A matrix U is said to be unitary if
its inverse is equal to its adjoint:

U 1 U† or U†U I (2.192)

where I is the unit matrix.

Example 2.13 (Inverse of a matrix)

Calculate the inverse of the matrix A
2 i 0

3 1 5

0 i 2

. Is this matrix unitary?

Solution

Since the determinant of A is det A 4 16i , we have A 1 BT 4 16i , where the
elements of the cofactor matrix B are given by Bnm 1 n m times the determinant of the

submatrix obtained from A by removing the nth row and the mth column. In this way, we have

B11 1 1 1 A22 A23
A32 A33

1 2
1 5

i 2
2 5i (2.193)

B12 1 1 2 A21 A23
A31 A33

1 3
3 5

0 2
6 (2.194)

B13 1 1 3 A21 A22
A31 A32

1 4
3 1

0 i
3i (2.195)

B21 1 3
i 0

i 2
2i B22 1 4

2 0

0 2
4 (2.196)

B23 1 5
2 i
0 i

2i B31 1 4
i 0

1 5
5i (2.197)

B32 1 5
2 0

3 5
10 B33 1 6

2 i
3 1

2 3i (2.198)
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and hence

B
2 5i 6 3i
2i 4 2i
5i 10 2 3i

(2.199)

Taking the transpose of B, we obtain

A 1 1

4 16i
BT

1 4i

68

2 5i 2i 5i
6 4 10

3i 2i 2 3i

1

68

22 3i 8 2i 20 5i
6 24i 4 16i 10 40i
12 3i 8 2i 14 5i

(2.200)

Clearly, this matrix is not unitary since its inverse is not equal to its Hermitian adjoint:

A 1 A†.

(c) Matrix representation of

It is now easy to see that the product is indeed an operator, since its representation

within n is a square matrix:

a1
a2
a3 a1 a2 a3

a1a1 a1a2 a1a3
a2a1 a2a2 a2a3
a3a1 a3a2 a3a3

(2.201)

(d) Trace of an operator

The trace Tr A of an operator A is given, within an orthonormal basis n , by the expression

Tr A
n

n A n
n

Ann (2.202)

we will see later that the trace of an operator does not depend on the basis. The trace of a matrix

is equal to the sum of its diagonal elements:

Tr

A11 A12 A13
A21 A22 A23
A31 A32 A33 A11 A22 A33 (2.203)

Properties of the trace

We can ascertain that

Tr A
†

Tr A (2.204)

Tr A B C Tr A Tr B Tr C (2.205)

and the trace of a product of operators is invariant under the cyclic permutations of these oper-

ators:

Tr ABCDE Tr E ABCD Tr DEABC Tr CDEAB (2.206)
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Example 2.14

(a) Show that Tr AB Tr BA .
(b) Show that the trace of a commutator is always zero.

(c) Illustrate the results shown in (a) and (b) on the following matrices:

A
8 2i 4i 0

1 0 1 i
8 i 6i

B
i 2 1 i
6 1 i 3i
1 5 7i 0

Solution

(a) Using the definition of the trace,

Tr AB
n

n AB n (2.207)

and inserting the unit operator between A and B we have

Tr AB
n

n A
m

m m B n
nm

n A m m B n

nm

AnmBmn (2.208)

On the other hand, since Tr AB n n AB n , we have

Tr BA
m

m B
n

n n A m
m

m B n n A m

nm

BmnAnm (2.209)

Comparing (2.208) and (2.209), we see that Tr AB Tr BA .
(b) Since Tr AB Tr BA we can infer at once that the trace of any commutator is always

zero:

Tr [A B] Tr AB Tr BA 0 (2.210)

(c) Let us verify that the traces of the products AB and BA are equal. Since

AB
2 16i 12 6 10i
1 2i 14 2i 1 i
20i 59 31i 11 8i

BA
8 5 i 8 4i

49 35i 3 24i 16

13 5i 4i 12 2i
(2.211)

we have

Tr AB Tr

2 16i 12 6 10i
1 2i 14 2i 1 i
20i 59 31i 11 8i

1 26i (2.212)

Tr BA Tr

8 5 i 8 4i
49 35i 3 24i 16

13 5i 4i 12 2i
1 26i Tr AB (2.213)

This leads to Tr AB Tr BA 1 26i 1 26i 0 or Tr [A B] 0.
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2.5.1.4 Matrix Representation of Several Other Quantities

(a) Matrix representation of A
The relation A can be cast into the algebraic form I I AI or

n
n n

n
n n A

m
m m (2.214)

which in turn can be written as

n

bn n
nm

am n n A m
nm

am Anm n (2.215)

where bn n , Anm n A m , and am m . It is easy to see that (2.215)

yields bn m Anmam ; hence the matrix representation of A is given by

b1
b2
b3

A11 A12 A13
A21 A22 A23
A31 A32 A33

a1
a2
a3 (2.216)

(b) Matrix representation of A
As for A we have

A I AI
n 1

n n A
m 1

m m

nm
n n A m m

nm

bnAnmam (2.217)

This is a complex number; its matrix representation goes as follows:

A b1 b2 b3

A11 A12 A13
A21 A22 A23
A31 A32 A33

a1
a2
a3 (2.218)

Remark

It is now easy to see explicitly why products of the type , , A , or A
are forbidden. They cannot have matrix representations; they are nonsensical. For instance,

is represented by the product of two column matrices:

1

2

1

2 (2.219)

This product is clearly not possible to perform, for the product of two matrices is possible only

when the number of columns of the first is equal to the number of rows of the second; in (2.219)

the first matrix has one single column and the second an infinite number of rows.
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2.5.1.5 Properties of a Matrix A

Real if A A or Amn Amn

Imaginary if A A or Amn Amn

Symmetric if A AT or Amn Anm

Antisymmetric if A AT or Amn Anm with Amm 0

Hermitian if A A† or Amn Anm

Anti-Hermitian if A A† or Amn Anm

Orthogonal if AT A 1 or AAT I or AAT mn mn

Unitary if A† A 1 or AA† I or AA† mn mn

Example 2.15

Consider a matrix A (which represents an operator A), a ket , and a bra :

A
5 3 2i 3i
i 3i 8

1 i 1 4

1 i
3

2 3i
6 i 5

(a) Calculate the quantities A , A, A , and .

(b) Find the complex conjugate, the transpose, and the Hermitian conjugate of A, , and

.

(c) Calculate and ; are they equal? Comment on the differences between the

complex conjugate, Hermitian conjugate, and transpose of kets and bras.

Solution

(a) The calculations are straightforward:

A
5 3 2i 3i
i 3i 8

1 i 1 4

1 i
3

2 3i

5 17i
17 34i
11 14i

(2.220)

A 6 i 5

5 3 2i 3i
i 3i 8

1 i 1 4

34 5i 26 12i 20 10i

(2.221)

A 6 i 5

5 3 2i 3i
i 3i 8

1 i 1 4

1 i
3

2 3i
59 155i (2.222)

1 i
3

2 3i
6 i 5

6 6i 1 i 5 5i
18 3i 15

12 18i 3 2i 10 15i
(2.223)
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(b) To obtain the complex conjugate of A, , and , we need simply to take the

complex conjugate of their elements:

A
5 3 2i 3i
i 3i 8

1 i 1 4

1 i
3

2 3i
6 i 5

(2.224)

For the transpose of A, , and , we simply interchange columns with rows:

AT
5 i 1 i

3 2i 3i 1

3i 8 4

T 1 i 3 2 3i T
6

i
5
(2.225)

The Hermitian conjugate can be obtained by taking the complex conjugates of the transpose

expressions calculated above: A† AT , † T , † T :

A†
5 i 1 i

3 2i 3i 1

3i 8 4

1 i 3 2 3i
6

i
5
(2.226)

(c) Using the kets and bras above, we can easily calculate the needed scalar products:

6 i 5

1 i
3

2 3i
6 1 i i 3 5 2 3i 4 18i (2.227)

1 i 3 2 3i
6

i
5

6 1 i i 3 5 2 3i 4 18i (2.228)

We see that and are not equal; they are complex conjugates of each other:

4 18i (2.229)

Remark

We should underscore the importance of the differences between , T , and †. Most

notably, we should note (from equations (2.224)–(2.226)) that is a ket, while T and
† are bras. Additionally, we should note that is a bra, while T and † are kets.

2.5.2 Change of Bases and Unitary Transformations

In a Euclidean space, a vector A may be represented by its components in different coordinate
systems or in different bases. The transformation from one basis to the other is called a change

of basis. The components of A in a given basis can be expressed in terms of the components of
A in another basis by means of a transformation matrix.
Similarly, state vectors and operators of quantum mechanics may also be represented in

different bases. In this section we are going to study how to transform from one basis to

another. That is, knowing the components of kets, bras, and operators in a basis n , how
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does one determine the corresponding components in a different basis n ? Assuming that

n and n are two different bases, we can expand each ket n of the old basis in

terms of the new basis n as follows:

n
m

m m n
m

Umn m (2.230)

where

Umn m n (2.231)

The matrix U , providing the transformation from the old basis n to the new basis n ,

is given by

U
1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

(2.232)

Example 2.16 (Unitarity of the transformation matrix)

Let U be a transformation matrix which connects two complete and orthonormal bases n

and n . Show that U is unitary.

Solution

For this we need to prove that UU† I , which reduces to showing that m UU† n

mn . This goes as follows:

m UU† n m U
l

l l U† n
l

UmlUnl (2.233)

where Uml m U l and Unl l U† n n U l . According to

(2.231), Uml m l and Unl l n ; we can thus rewrite (2.233) as

l

UmlUnl
l

m l l n m n mn (2.234)

Combining (2.233) and (2.234), we infer m UU† n mn , or UU† I .

2.5.2.1 Transformations of Kets, Bras, and Operators

The components n of a state vector in a new basis n can be expressed in terms

of the components n of in an old basis n as follows:

m m I m
n

n n
n

Umn n (2.235)

This relation, along with its complex conjugate, can be generalized into

ne U old ne old U† (2.236)
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Let us now examine how operators transform when we change from one basis to another. The

matrix elements Amn m A n of an operator A in the new basis can be expressed in

terms of the old matrix elements, A jl j A l , as follows:

Amn m
j

j j A
l

l l n
jl

Umj A jlUnl (2.237)

that is,

Ane U AoldU
† or Aold U†Ane U (2.238)

We may summarize the results of the change of basis in the following relations:

ne U old ne old U† Ane U AoldU
† (2.239)

or

old U† ne old ne U Aold U†Ane U (2.240)

These relations are similar to the ones we derived when we studied unitary transformations; see

(2.146) and (2.147).

Example 2.17

Show that the operator U n n n satisfies all the properties discussed above.

Solution

First, note that U is unitary:

UU†

nl
n n l l

nl
n l nl

n
n n I (2.241)

Second, the action ofU on a ket of the old basis gives the corresponding ket from the new basis:

U m
n

n n m
n

n nm m (2.242)

We can also verify that the actionU† on a ket of the new basis gives the corresponding ket from
the old basis:

U† m
l

l l m
l

l lm m (2.243)

How does a trace transform under unitary transformations? Using the cyclic property of the

trace, Tr ABC Tr CAB Tr BCA , we can ascertain that

Tr A Tr U AU† Tr U†U A Tr A (2.244)
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Tr n m
l

l n m l
l

m l l n

m
l

l l n m n mn (2.245)

Tr m n n m (2.246)

Example 2.18 (The trace is base independent)

Show that the trace of an operator does not depend on the basis in which it is expressed.

Solution

Let us show that the trace of an operator A in a basis n is equal to its trace in another basis

n . First, the trace of A in the basis n is given by

Tr A
n

n A n (2.247)

and in n by

Tr A
n

n A n (2.248)

Starting from (2.247) and using the completeness of the other basis, n , we have

Tr A
n

n A n
n

n
m

m m A n

nm
n m m A n (2.249)

All we need to do now is simply to interchange the positions of the numbers (scalars) n m

and m A n :

Tr A
m

m A
n

n n m
m

m A m (2.250)

From (2.249) and (2.250) we see that

Tr A
n

n A n
n

n A n (2.251)

2.5.3 Matrix Representation of the Eigenvalue Problem

At issue here is to work out the matrix representation of the eigenvalue problem (2.126) and

then solve it. That is, we want to find the eigenvalues a and the eigenvectors of an operator

A such that
A a (2.252)
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where a is a complex number. Inserting the unit operator between A and and multiplying

by m , we can cast the eigenvalue equation in the form

m A
n

n n a m
n

n n (2.253)

or

n

Amn n a
n

n nm (2.254)

which can be rewritten as

n

[Amn a nm] n 0 (2.255)

with Amn m A n .

This equation represents an infinite, homogeneous system of equations for the coefficients

n , since the basis n is made of an infinite number of base kets. This system of

equations can have nonzero solutions only if its determinant vanishes:

det Amn a nm 0 (2.256)

The problem that arises here is that this determinant corresponds to a matrix with an infinite

number of columns and rows. To solve (2.256) we need to truncate the basis n and assume

that it contains only N terms, where N must be large enough to guarantee convergence. In this
case we can reduce (2.256) to the following N th degree determinant:

A11 a A12 A13 A1N
A21 A22 a A23 A2N
A31 A32 A33 a A3N

AN1 AN2 AN3 ANN a

0 (2.257)

This is known as the secular or characteristic equation. The solutions of this equation yield
the N eigenvalues a1, a2, a3, , aN , since it is an N th order equation in a. The set of these
N eigenvalues is called the spectrum of A. Knowing the set of eigenvalues a1, a2, a3, , aN ,
we can easily determine the corresponding set of eigenvectors 1 , 2 , , N . For

each eigenvalue am of A, we can obtain from the “secular” equation (2.257) the N components

1 , 2 , 3 , , N of the corresponding eigenvector m .

If a number of different eigenvectors (two or more) have the same eigenvalue, this eigen-

value is said to be degenerate. The order of degeneracy is determined by the number of linearly
independent eigenvectors that have the same eigenvalue. For instance, if an eigenvalue has five

different eigenvectors, it is said to be fivefold degenerate.

In the case where the set of eigenvectors n of A is complete and orthonormal, this set
can be used as a basis. In this basis the matrix representing the operator A is diagonal,

A

a1 0 0

0 a2 0

0 0 a3 (2.258)
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the diagonal elements being the eigenvalues an of A, since

m A n an m n an mn (2.259)

Note that the trace and determinant of a matrix are given, respectively, by the sum and product

of the eigenvalues:

Tr A
n

an a1 a2 a3 (2.260)

det A
n

an a1a2a3 (2.261)

Properties of determinants

Let us mention several useful properties that pertain to determinants. The determinant of a

product of matrices is equal to the product of their determinants:

det ABCD det A det B det C det D (2.262)

det A det A det A† det A (2.263)

det AT det A det A eTr ln A (2.264)

Some theorems pertaining to the eigenvalue problem

Here is a list of useful theorems (the proofs are left as exercises):

The eigenvalues of a symmetric matrix are real; the eigenvectors form an orthonormal

basis.

The eigenvalues of an antisymmetric matrix are purely imaginary or zero.

The eigenvalues of a Hermitian matrix are real; the eigenvectors form an orthonormal

basis.

The eigenvalues of a skew-Hermitian matrix are purely imaginary or zero.

The eigenvalues of a unitary matrix have absolute value equal to one.

If the eigenvalues of a square matrix are not degenerate (distinct), the corresponding

eigenvectors form a basis (i.e., they form a linearly independent set).

Example 2.19 (Eigenvalues and eigenvectors of a matrix)

Find the eigenvalues and the normalized eigenvectors of the matrix

A
7 0 0

0 1 i
0 i 1
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Solution

To find the eigenvalues of A, we simply need to solve the secular equation det A aI 0:

0

7 a 0 0

0 1 a i
0 i 1 a

7 a 1 a 1 a i2 7 a a2 2

(2.265)

The eigenvalues of A are thus given by

a1 7 a2 2 a3 2 (2.266)

Let us now calculate the eigenvectors of A. To find the eigenvector corresponding to the first
eigenvalue, a1 7, we need to solve the matrix equation

7 0 0

0 1 i
0 i 1

x
y
z

7

x
y
z

7x 7x
y iz 7y
iy z 7z

(2.267)

this yields x 1 (because the eigenvector is normalized) and y z 0. So the eigenvector

corresponding to a1 7 is given by the column matrix

a1

1

0

0

(2.268)

This eigenvector is normalized since a1 a1 1.

The eigenvector corresponding to the second eigenvalue, a2 2, can be obtained from

the matrix equation

7 0 0

0 1 i
0 i 1

x
y
z

2

x
y
z

7 2 x 0

1 2 y i z 0

iy 1 2 z 0

(2.269)

this yields x 0 and z i 2 1 y. So the eigenvector corresponding to a2 2 is given

by the column matrix

a2

0

y
i 2 1 y

(2.270)

The value of the variable y can be obtained from the normalization condition of a2 :

1 a2 a2 0 y i 2 1 y
0

y
i 2 1 y

2 2 2 y 2

(2.271)

Taking only the positive value of y (a similar calculation can be performed easily if one is

interested in the negative value of y), we have y 1 2 2 2 ; hence the eigenvector

(2.270) becomes

a2

0
1

2 2 2

i 2 1

2 2 2

(2.272)
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Following the same procedure that led to (2.272), we can show that the third eigenvector is

given by

a3

0

y
i 1 2 y

(2.273)

its normalization leads to y 1 2 2 2 (we have considered only the positive value of

y); hence

a3

0
1

2 2 2

i 1 2

2 2 2

(2.274)

2.6 Representation in Continuous Bases

In this section we are going to consider the representation of state vectors, bras, and operators

in continuous bases. After presenting the general formalism, we will consider two important
applications: representations in the position and momentum spaces.
In the previous section we saw that the representations of kets, bras, and operators in a

discrete basis are given by discrete matrices. We will show here that these quantities are repre-

sented in a continuous basis by continuous matrices, that is, by noncountable infinite matrices.

2.6.1 General Treatment

The orthonormality condition of the base kets of the continuous basis k is expressed not by

the usual discrete Kronecker delta as in (2.170) but by Dirac’s continuous delta function:

k k k k (2.275)

where k and k are continuous parameters and where k k is the Dirac delta function (see
Appendix A), which is defined by

x
1

2
eikxdk (2.276)

As for the completeness condition of this continuous basis, it is not given by a discrete sum as

in (2.172), but by an integral over the continuous variable

dk k k I (2.277)

where I is the unit operator.
Every state vector can be expanded in terms of the complete set of basis kets k :

I dk k k dk b k k (2.278)
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where b k , which is equal to k , represents the projection of on k .

The norm of the discrete base kets is finite ( n n 1), but the norm of the continuous

base kets is infinite; a combination of (2.275) and (2.276) leads to

k k 0
1

2
dk (2.279)

This implies that the kets k are not square integrable and hence are not elements of the

Hilbert space; recall that the space spanned by square-integrable functions is a Hilbert space.

Despite the divergence of the norm of k , the set k does constitute a valid basis of vectors

that span the Hilbert space, since for any state vector , the scalar product k is finite.

The Dirac delta function

Before dealing with the representation of kets, bras, and operators, let us make a short detour

to list some of the most important properties of the Dirac delta function (for a more detailed

presentation, see Appendix A):

x 0 for x 0 (2.280)

b

a
f x x x0 dx

f x0 if a x0 b
0 elsewhere

(2.281)

f x
dn x a

dxn
dx 1 n

dn f x

dxn x a
(2.282)

r r x x y y z z
1

r2 sin
r r (2.283)

Representation of kets, bras, and operators

The representation of kets, bras, and operators can be easily inferred from the study that was

carried out in the previous section, for the case of a discrete basis. For instance, the ket

is represented by a single column matrix which has a continuous (noncountable) and infinite

number of components (rows) b k :

k (2.284)

The bra is represented by a single row matrix which has a continuous (noncountable)

and infinite number of components (columns):

k (2.285)

Operators are represented by square continuous matrices whose rows and columns have

continuous and infinite numbers of components:

A
A k k

(2.286)

As an application, we are going to consider the representations in the position and momentum

bases.
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2.6.2 Position Representation

In the position representation, the basis consists of an infinite set of vectors r which are

eigenkets to the position operator R:

R r r r (2.287)

where r (without a hat), the position vector, is the eigenvalue of the operator R. The orthonor-
mality and completeness conditions are respectively given by

r r r r x x y y z z (2.288)

d3 r r r I (2.289)

since, as discussed in Appendix A, the three-dimensional delta function is given by

r r
1

2 3
d3k eik r r (2.290)

So every state vector can be expanded as follows:

d3 r r r d3r r r (2.291)

where r denotes the components of in the r basis:

r r (2.292)

This is known as the wave function for the state vector . Recall that, according to the

probabilistic interpretation of Born, the quantity r 2 d3r represents the probability of
finding the system in the volume element d3r .
The scalar product between two state vectors, and , can be expressed in this form:

d3r r r d3r r r (2.293)

Since R r r r we have

r R n r r n r r (2.294)

Note that the operator R is Hermitian, since

R d3r r r r d3r r r r

R (2.295)
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2.6.3 Momentum Representation

The basis p of the momentum representation is obtained from the eigenkets of the momen-

tum operator P:

P p p p (2.296)

where p is the momentum vector. The algebra relevant to this representation can be easily
inferred from the position representation. The orthonormality and completeness conditions of

the momentum space basis p are given by

p p p p and d3p p p I (2.297)

Expanding in this basis, we obtain

d3 p p p d3 p p p (2.298)

where the expansion coefficient p represents the momentum space wave function. The
quantity p 2 d3 p is the probability of finding the system’s momentum in the volume
element d3 p located between p and p d p.
By analogy with (2.293) the scalar product between two states is given in the momentum

space by

d3 p p p d3 p p p (2.299)

Since P p p p we have

p P n p p n p p (2.300)

2.6.4 Connecting the Position and Momentum Representations

Let us now study how to establish a connection between the position and the momentum rep-

resentations. By analogy with the foregoing study, when changing from the r basis to the

p basis, we encounter the transformation function r p .
To find the expression for the transformation function r p , let us establish a connection

between the position and momentum representations of the state vector :

r r d3 p p p d3 p r p p (2.301)

that is,

r d3 p r p p (2.302)

Similarly, we can write

p p p d3r r r d3r p r r (2.303)
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The last two relations imply that r and p are to be viewed as Fourier transforms of each
other. In quantum mechanics the Fourier transform of a function f r is given by

f r
1

2 h 3 2
d3 p ei p r hg p (2.304)

notice the presence of Planck’s constant. Hence the function r p is given by

r p
1

2 h 3 2
ei p r h (2.305)

This function transforms from the momentum to the position representation. The function

corresponding to the inverse transformation, p r , is given by

p r r p
1

2 h 3 2
e i p r h (2.306)

The quantity r p 2 represents the probability density of finding the particle in a region

around r where its momentum is equal to p.

Remark

If the position wave function

r
1

2 h 3 2
d3 p ei p r h p (2.307)

is normalized (i.e., d3r r r 1), its Fourier transform

p
1

2 h 3 2
d3r e i p r h r (2.308)

must also be normalized, since

d3 p p p d3 p p
1

2 h 3 2
d3r e i p r h r

d3r r
1

2 h 3 2
d3 p p e i p r h

d3r r r

1 (2.309)

This result is known as Parseval’s theorem.

2.6.4.1 Momentum Operator in the Position Representation

To determine the form of the momentum operator P in the position representation, let us cal-

culate r P :

r P r P p p d3 p p r p p d3 p

1

2 h 3 2
p ei p r h p d3 p (2.310)
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where we have used the relation p p d3 p I along with Eq. (2.305). Now, since

p ei p r h ih ei p r h , and using Eq. (2.305) again, we can rewrite (2.310) as

r P ih
1

2 h 3 2
ei p r h p d3 p

ih r p p d3 p

ih r (2.311)

Thus, P is given in the position representation by

P ih (2.312)

Its Cartesian components are

Px ih
x

Py ih
y

Pz ih
z

(2.313)

Note that the form of the momentum operator (2.312) can be derived by simply applying the

gradient operator on a plane wave function r t Aei p r Et h :

ih r t p r t P r t (2.314)

It is easy to verify that P is Hermitian (see equation (2.378)).

Now, since P ih , we can write the Hamiltonian operator H P 2 2m V in the
position representation as follows:

H
h2

2m
2 V r

h2

2m

2

x2

2

y2

2

z2
V r (2.315)

where 2 is the Laplacian operator; it is given in Cartesian coordinates by 2 2 x2
2 y2 2 z2.

2.6.4.2 Position Operator in the Momentum Representation

The form of the position operator R in the momentum representation can be easily inferred

from the representation of P in the position space. In momentum space the position operator
can be written as follows:

R j ih
p j

j x y z (2.316)

or

X ih
px

Y ih
py

Z ih
pz

(2.317)
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2.6.4.3 Important Commutation Relations

Let us now calculate the commutator [R j Pk] in the position representation. As the separate

actions of X Px and Px X on the wave function r are given by

X Px r ihx
r

x
(2.318)

Px X r ih
x
x r ih r ihx

r

x
(2.319)

we have

[X Px ] r X Px r Px X r ihx
r

x
ih r ihx

r

x
ih r (2.320)

or

[X Px ] ih (2.321)

Similar relations can be derived at once for the y and the z components:

[X Px ] ih [Y PY ] ih [Z PZ ] ih (2.322)

We can verify that

[X Py] [X Pz] [Y Px ] [Y Pz] [Z Px ] [Z Py] 0 (2.323)

since the x , y, z degrees of freedom are independent; the previous two relations can be grouped
into

[R j Pk] ih jk [R j Rk] 0 [Pj Pk] 0 j k x y z (2.324)

These relations are often called the canonical commutation relations.
Now, from (2.321) we can show that (for the proof see Problem 2.8 on page 139)

[Xn Px ] ihnXn 1 [X Pnx ] ihnPn 1
x (2.325)

Following the same procedure that led to (2.320), we can obtain a more general commutation

relation of Px with an arbitrary function f X :

[ f X Px ] ih
d f X

dX
P F R ih F R (2.326)

where F is a function of the operator R.
The explicit form of operators thus depends on the representation adopted. We have seen,

however, that the commutation relations for operators are representation independent. In par-
ticular, the commutator [R j Pk] is given by ih jk in the position and the momentum represen-

tations; see the next example.
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Example 2.20 (Commutators are representation independent)

Calculate the commutator [X P] in the momentum representation and verify that it is equal to
ih.

Solution

As the operator X is given in the momentum representation by X ih p, we have

[X P] p X P p PX p ih
p
p p ih p

p

p

ih p ih p
p

p
ih p

p

p
ih p (2.327)

Thus, the commutator [X P] is given in the momentum representation by

[X P] ih
p
P ih (2.328)

The commutator [X P] was also shown to be equal to ih in the position representation (see
equation (2.321):

[X P] X ih
px

ih (2.329)

2.6.5 Parity Operator

The space reflection about the origin of the coordinate system is called an inversion or a parity
operation. This transformation is discrete. The parity operator P is defined by its action on the
kets r of the position space:

P r r r P† r (2.330)

such that

P r r (2.331)

The parity operator is Hermitian, P† P , since

d3r r P r d3r r r d3r r r

d3r P r r (2.332)

From the definition (2.331), we have

P2 r P r r (2.333)

hence P2 is equal to the unity operator:

P2 I or P P 1 (2.334)
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The parity operator is therefore unitary, since its Hermitian adjoint is equal to its inverse:

P† P 1 (2.335)

Now, since P2 I , the eigenvalues of P are 1 or 1 with the corresponding eigenstates

P r r r P r r r (2.336)

The eigenstate is said to be even and is odd. Therefore, the eigenfunctions of the
parity operator have definite parity: they are either even or odd.
Since and are joint eigenstates of the same Hermitian operator P but with

different eigenvalues, these eigenstates must be orthogonal:

d3r r r d3r r r (2.337)

hence is zero. The states and form a complete set since any function

can be written as r r r , which leads to

r
1

2
r r r

1

2
r r (2.338)

Since P2 I we have

Pn
P when n is odd
I when n is even

(2.339)

Even and odd operators

An operator A is said to be even if it obeys the condition

PAP A (2.340)

and an operator B is odd if
PBP B (2.341)

We can easily verify that even operators commute with the parity operator P and that odd

operators anticommute with P:

AP PAP P PAP2 PA (2.342)

BP PBP P PBP2 PB (2.343)

The fact that even operators commute with the parity operator has very useful consequences.

Let us examine the following two important cases depending on whether an even operator has

nondegenerate or degenerate eigenvalues:

If an even operator is Hermitian and none of its eigenvalues is degenerate, then this oper-

ator has the same eigenvectors as those of the parity operator. And since the eigenvectors

of the parity operator are either even or odd, the eigenvectors of an even, Hermitian, and

nondegenerate operator must also be either even or odd; they are said to have a defi-
nite parity. This property will have useful applications when we solve the Schrödinger
equation for even Hamiltonians.
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If the even operator has a degenerate spectrum, its eigenvectors do not necessarily have a

definite parity.

What about the parity of the position and momentum operators, R and P? We can easily show
that both of them are odd, since they anticommute with the parity operator:

PR RP PP PP (2.344)

hence

PRP† R PPP† P (2.345)

since PP† 1. For instance, to show that R anticommutes with P , we need simply to look at
the following relations:

PR r rP r r r (2.346)

RP r R r r r (2.347)

If the operators A and B are even and odd, respectively, we can verify that

PA
n
P A

n
PBnP 1 nBn (2.348)

These relations can be shown as follows:

PA
n
P PAP PAP PAP A

n
(2.349)

PBnP PBP PBP PBP 1 nBn (2.350)

2.7 Matrix and Wave Mechanics

In this chapter we have so far worked out the mathematics pertaining to quantum mechanics in

two different representations: discrete basis systems and continuous basis systems. The theory
of quantum mechanics deals in essence with solving the following eigenvalue problem:

H E (2.351)

where H is the Hamiltonian of the system. This equation is general and does not depend on
any coordinate system or representation. But to solve it, we need to represent it in a given basis

system. The complexity associated with solving this eigenvalue equation will then vary from

one basis to another.

In what follows we are going to examine the representation of this eigenvalue equation in a

discrete basis and then in a continuous basis.

2.7.1 Matrix Mechanics

The representation of quantum mechanics in a discrete basis yields a matrix eigenvalue prob-
lem. That is, the representation of (2.351) in a discrete basis n yields the following matrix
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eigenvalue equation (see (2.257)):

H11 E H12 H13 H1N
H21 H22 E H23 H2N
H31 H32 H33 E H3N

HN1 HN2 HN3 HNN E

0 (2.352)

This is an N th order equation in E ; its solutions yield the energy spectrum of the system: E1,
E2, E3, , EN . Knowing the set of eigenvalues E1, E2, E3, , EN , we can easily determine
the corresponding set of eigenvectors 1 , 2 , , N .

The diagonalization of the Hamiltonian matrix (2.352) of a system yields the energy spec-

trum as well as the state vectors of the system. This procedure, which was worked out by

Heisenberg, involves only matrix quantities and matrix eigenvalue equations. This formulation

of quantum mechanics is known as matrix mechanics.
The starting point of Heisenberg, in his attempt to find a theoretical foundation to Bohr’s

ideas, was the atomic transition relation, mn Em En h, which gives the frequencies of
the radiation associated with the electron’s transition from orbit m to orbit n. The frequencies

mn can be arranged in a square matrix, where the mn element corresponds to the transition
from the mth to the nth quantum state.
We can also construct matrices for other dynamical quantities related to the transition

m n. In this way, every physical quantity is represented by a matrix. For instance, we
represent the energy levels by an energy matrix, the position by a position matrix, the momen-

tum by a momentum matrix, the angular momentum by an angular momentum matrix, and so

on. In calculating the various physical magnitudes, one has thus to deal with the algebra of

matrix quantities. So, within the context of matrix mechanics, one deals with noncommuting

quantities, for the product of matrices does not commute. This is an essential feature that dis-

tinguishes matrix mechanics from classical mechanics, where all the quantities commute. Take,

for instance, the position and momentum quantities. While commuting in classical mechanics,

px xp, they do not commute within the context of matrix mechanics; they are related by
the commutation relation [X Px ] ih. The same thing applies for the components of an-
gular momentum. We should note that the role played by the commutation relations within

the context of matrix mechanics is similar to the role played by Bohr’s quantization condition

in atomic theory. Heisenberg’s matrix mechanics therefore requires the introduction of some

mathematical machinery—linear vector spaces, Hilbert space, commutator algebra, and matrix

algebra—that is entirely different from the mathematical machinery of classical mechanics.

Here lies the justification for having devoted a somewhat lengthy section, Section 2.5, to study

the matrix representation of quantum mechanics.

2.7.2 Wave Mechanics

Representing the formalism of quantum mechanics in a continuous basis yields an eigenvalue
problem not in the form of a matrix equation, as in Heisenberg’s formulation, but in the form

of a differential equation. The representation of the eigenvalue equation (2.351) in the position
space yields

r H E r (2.353)
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As shown in (2.315), the Hamiltonian is given in the position representation by h2 2 2m
V r , so we can rewrite (2.353) in a more familiar form:

h2

2m
2 r V r r E r (2.354)

where r r is the wave function of the system. This differential equation is known
as the Schrödinger equation (its origin will be discussed in Chapter 3). Its solutions yield
the energy spectrum of the system as well as its wave function. This formulation of quantum

mechanics in the position representation is called wave mechanics.
Unlike Heisenberg, Schödinger took an entirely different starting point in his quest to find

a theoretical justification for Bohr’s ideas. He started from the de Broglie particle–wave hy-

pothesis and extended it to the electrons orbiting around the nucleus. Schrödinger aimed at

finding an equation that describes the motion of the electron within an atom. Here the focus

is on the wave aspect of the electron. We can show, as we did in Chapter 1, that the Bohr
quantization condition, L nh, is equivalent to the de Broglie relation, 2 h p. To es-
tablish this connection, we need simply to make three assumptions: (a) the wavelength of the

wave associated with the orbiting electron is connected to the electron’s linear momentum p
by 2 h p, (b) the electron’s orbit is circular, and (c) the circumference of the electron’s
orbit is an integer multiple of the electron’s wavelength, i.e., 2 r n . This leads at once
to 2 r n 2 h p or nh rp L. This means that, for every orbit, there is only one
wavelength (or one wave) associated with the electron while revolving in that orbit. This wave

can be described by means of a wave function. So Bohr’s quantization condition implies, in
essence, a uniqueness of the wave function for each orbit of the electron. In Chapter 3 we will

show how Schrödinger obtained his differential equation (2.354) to describe the motion of an

electron in an atom.

2.8 Concluding Remarks

Historically, the matrix formulation of quantum mechanics was worked out by Heisenberg

shortly before Schrödinger introduced his wave theory. The equivalence between the matrix

and wave formulations was proved a few years later by using the theory of unitary transfor-

mations. Different in form, yet identical in contents, wave mechanics and matrix mechanics

achieve the same goal: finding the energy spectrum and the states of quantum systems.

The matrix formulation has the advantage of greater (formal) generality, yet it suffers from

a number of disadvantages. On the conceptual side, it offers no visual idea about the structure

of the atom; it is less intuitive than wave mechanics. On the technical side, it is difficult to

use in some problems of relative ease such as finding the stationary states of atoms. Matrix

mechanics, however, becomes powerful and practical in solving problems such as the harmonic

oscillator or in treating the formalism of angular momentum.

But most of the efforts of quantum mechanics focus on solving the Schrödinger equation,

not the Heisenberg matrix eigenvalue problem. So in the rest of this text we deal mostly with

wave mechanics. Matrix mechanics is used only in a few problems, such as the harmonic

oscillator, where it is more suitable than Schrödinger’s wave mechanics.

In wave mechanics we need only to specify the potential in which the particle moves; the

Schrödinger equation takes care of the rest. That is, knowing V r , we can in principle solve
equation (2.354) to obtain the various energy levels of the particle and their corresponding wave
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functions. The complexity we encounter in solving the differential equation depends entirely on

the form of the potential; the simpler the potential the easier the solution. Exact solutions of the

Schrödinger equation are possible only for a few idealized systems; we deal with such systems

in Chapters 4 and 6. However, exact solutions are generally not possible, for real systems do not

yield themselves to exact solutions. In such cases one has to resort to approximate solutions.

We deal with such approximate treatments in Chapters 9 and 10; Chapter 9 deals with time-

independent potentials and Chapter 10 with time-dependent potentials.

Before embarking on the applications of the Schrödinger equation, we need first to lay down

the theoretical foundations of quantum mechanics. We take up this task in Chapter 3, where

we deal with the postulates of the theory as well as their implications; the postulates are the

bedrock on which the theory is built.

2.9 Solved Problems

Problem 2.1

Consider the states 9i 1 2 2 and
i
2

1
1

2
2 , where the two

vectors 1 and 2 form a complete and orthonormal basis.

(a) Calculate the operators and . Are they equal?

(b) Find the Hermitian conjugates of , , , and .

(c) Calculate Tr and Tr . Are they equal?

(d) Calculate and and the traces Tr and Tr . Are they

projection operators?

Solution

(a) The bras corresponding to 9i 1 2 2 and i 1 2 2 2

are given by 9i 1 2 2 and i
2

1
1

2
2 , respectively. Hence we

have

1

2
9i 1 2 2 i 1 2

1

2
9 1 1 9i 1 2 2i 2 1 2 2 2

(2.355)

1

2
9 1 1 2i 1 2 9i 2 1 2 2 2 (2.356)

As expected, and are not equal; they would be equal only if the states

and were proportional and the proportionality constant real.

(b) To find the Hermitian conjugates of , , , and , we need simply

to replace the factors with their respective complex conjugates, the bras with kets, and the kets

with bras:

† 9i 1 2 2
† 1

2
i 1 2 (2.357)
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† 1

2
9 1 1 2i 1 2

9i 2 1 2 2 2 (2.358)

† 1

2
9 1 1 9i 1 2

2i 2 1 2 2 2 (2.359)

(c) Using the property Tr AB Tr BA and since 1 1 2 2 1 and

1 2 2 1 0, we obtain

Tr Tr

i

2
1

1

2
2 9i 1 2 2

7

2
(2.360)

Tr Tr

9i 1 2 2
i

2
1

1

2
2

7

2

Tr (2.361)

The traces Tr and Tr are equal only because the scalar product of and

is a real number. Were this product a complex number, the traces would be different; in

fact, they would be the complex conjugate of one another.

(d) The expressions and are

9i 1 2 2 9i 1 2 2

81 1 1 18i 1 2 18i 2 1 4 2 2

(2.362)

1

2
1 1 i 1 2 i 2 1 2 2

1

2
1 i 1 2 i 2 1 (2.363)

In deriving (2.363) we have used the fact that the basis is complete, 1 1 2 2 1.

The traces Tr and Tr can then be calculated immediately:

Tr 9i 1 2 2 9i 1 2 2 85 (2.364)

Tr
1

2
i 1 2 i 1 2 1 (2.365)

So is normalized but is not. Since is normalized, we can easily ascertain that

is a projection operator, because it is Hermitian, † , and equal to

its own square:

2 (2.366)

As for , although it is Hermitian, it cannot be a projection operator since is not

normalized. That is, is not equal to its own square:

2 85 (2.367)
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Problem 2.2

(a) Find a complete and orthonormal basis for a space of the trigonometric functions of the

form N
n 0 an cos n .

(b) Illustrate the results derived in (a) for the case N 5; find the basis vectors.

Solution

(a) Since cos n 1
2
ein e in , we can write

N
n 0 an cos n as

1

2

N

n 0

an ein e in 1

2

N

n 0

ane
in

0

n N

a ne
in

N

n N

Cne
in (2.368)

where Cn an 2 for n 0, Cn a n 2 for n 0, and C0 a0. Since any trigonometric
function of the form x N

n 0 an cos n can be expressed in terms of the functions

n ein 2 , we can try to take the set n as a basis. As this set is complete, let us

see if it is orthonormal. The various functions n are indeed orthonormal, since their scalar

products are given by

m n m n d
1

2
ei n m d nm (2.369)

In deriving this result, we have considered two cases: n m and n m. First, the case n m
is obvious, since n n

1
2

d 1. On the other hand, when n m we have

m n
1

2
ei n m d

1

2

ei n m e i n m

i n m

2i sin n m

2i n m
0

(2.370)

since sin n m 0. So the functions n ein 2 form a complete and orthonor-

mal basis. From (2.368) we see that the basis has 2N 1 functions n ; hence the dimension

of this space of functions is equal to 2N 1.

(b) In the case where N 5, the dimension of the space is equal to 11, for the basis

has 11 vectors: 5 e 5i 2 , 4 e 4i 2 , , 0 1 2 , ,

4 e4i 2 , 5 e5i 2 .

Problem 2.3

(a) Show that the sum of two projection operators cannot be a projection operator unless

their product is zero.

(b) Show that the product of two projection operators cannot be a projection operator unless

they commute.

Solution

Recall that an operator P is a projection operator if it satisfies P† P and P2 P .
(a) If two operators A and B are projection operators and if AB BA, we want to show

that A B † A B and that A B 2 A B. First, the hermiticity is easy to ascertain

since A and B are both Hermitian: A B † A B. Let us now look at the square of

A B ; since A
2

A and B2 B, we can write

A B 2 A
2

B2 AB BA A B AB BA (2.371)



136 CHAPTER 2. MATHEMATICAL TOOLS OF QUANTUM MECHANICS

Clearly, only when the product of A and B is zero will their sum be a projection operator.
(b) At issue here is to show that if two operators A and B are projection operators and if

they commute, [A B] 0, their product is a projection operator. That is, we need to show that

AB † AB and AB 2 AB. Again, since A and B are Hermitian and since they commute,

we see that AB † BA AB. As for the square of AB, we have

AB 2 AB AB A BA B A AB B A
2
B2 AB (2.372)

hence the product AB is a projection operator.

Problem 2.4

Consider a state 1

2
1

1

5
2

1

10
3 which is given in terms of three orthonormal

eigenstates 1 , 2 and 3 of an operator B such that B n n2 n . Find the expectation

value of B for the state .

Solution

Using Eq (2.58), we can write the expectation value of B for the state as B B
where

1

2
1

1

5
2

1

10
3

1

2
1

1

5
2

1

10
3

8

10
(2.373)

and

B
1

2
1

1

5
2

1

10
3 B

1

2
1

1

5
2

1

10
3

1

2

22

5

32

10
22

10
(2.374)

Hence, the expectation value of B is given by

B
B 22 10

8 10

11

4
(2.375)

Problem 2.5

(a) Study the hermiticity of these operators: X , d dx , and id dx . What about the complex
conjugate of these operators? Are the Hermitian conjugates of the position and momentum

operators equal to their complex conjugates?

(b) Use the results of (a) to discuss the hermiticity of the operators eX , ed dx , and eid dx .
(c) Find the Hermitian conjugate of the operator Xd dx .
(d) Use the results of (a) to discuss the hermiticity of the components of the angular mo-

mentum operator (Chapter 5): Lx ih Y z Z y , L y ih Z x X z ,

L z ih X y Y x .
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Solution

(a) Using (2.69) and (2.70), and using the fact that the eigenvalues of X are real (i.e., X

X or x x), we can verify that X is Hermitian (i.e., X† X) since

X x x x dx x x x dx

x x x dx X (2.376)

Now, since x vanishes as x , an integration by parts leads to

d

dx
x

d x

dx
dx x x

x

x

d x

dx
x dx

d x

dx
x dx

d

dx
(2.377)

So, d dx is anti-Hermitian: d dx † d dx . Since d dx is anti-Hermitian, id dx must be

Hermitian, since id dx † i d dx id dx . The results derived above are

X† X
d

dx

† d

dx
i
d

dx

†

i
d

dx
(2.378)

From this relation we see that the momentum operator P ihd dx is Hermitian: P† P .
We can also infer that, although the momentum operator is Hermitian, its complex conjugate is

not equal to P , since P ihd dx ihd dx P . We may group these results into
the following relation:

X† X X X P† P P P (2.379)

(b) Using the relations eA † eA
†
and ei A † e i A

†
derived in (2.113), we infer

eX † eX ed dx † e d dx eid dx † eid dx (2.380)

(c) Since X is Hermitian and d dx is anti-Hermitian, we have

X
d

dx

† d

dx

†
X †

d

dx
X (2.381)

where dX dx is given by

d

dx
X x 1 x

d

dx
x (2.382)

hence

X
d

dx

†
X
d

dx
1 (2.383)
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(d) From the results derived in (a), we infer that the operators Y , Z , i x , and i y are
Hermitian. We can verify that Lx is also Hermitian:

L
†
x ih

z
Y

y
Z ih Y

z
Z
y

Lx (2.384)

in deriving this relation, we used the fact that the y and z degrees of freedom commute (i.e.,
Y z Y z and Z y Z y), for they are independent. Similarly, the hermiticity of

L y ih Z x X z and L z ih X y Y x is obvious.

Problem 2.6

(a) Show that the operator A i X2 1 d dx i X is Hermitian.
(b) Find the state x for which A x 0 and normalize it.

(c) Calculate the probability of finding the particle (represented by x ) in the region:
1 x 1.

Solution

(a) From the previous problem we know that X† X and d dx † d dx . We can thus
infer the Hermitian conjugate of A:

A
†

i
d

dx

†
X2 † i

d

dx

†
i X† i

d

dx
X2 i

d

dx
i X

i X2
d

dx
i
d

dx
X2 i

d

dx
i X (2.385)

Using the relation [B C2] C[B C] [B C]C along with [d dx X] 1, we can easily

evaluate the commutator [d dx X2]:

d

dx
X2 X

d

dx
X

d

dx
X X 2X (2.386)

A combination of (2.385) and (2.386) shows that A is Hermitian:

A
†

i X2 1
d

dx
i X A (2.387)

(b) The state x for which A x 0, i.e.,

i X2 1
d x

dx
i X x 0 (2.388)

corresponds to
d x

dx

x

x2 1
x (2.389)

The solution to this equation is given by

x
B

x2 1
(2.390)
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Since dx x2 1 we have

1 x 2 dx B2
dx

x2 1
B2 (2.391)

which leads to B 1 and hence x 1

x2 1
.

(c) Using the integral
1
1 dx x2 1 2, we can obtain the probability immediately:

P
1

1

x 2 dx
1 1

1

dx

x2 1

1

2
(2.392)

Problem 2.7

Discuss the conditions for these operators to be unitary: (a) 1 i A 1 i A ,

(b) A i B A
2

B2 .

Solution

An operator U is unitary if UU† U†U I (see (2.122)).
(a) Since

1 i A

1 i A

†
1 i A

†

1 i A
†

(2.393)

we see that if A is Hermitian, the expression 1 i A 1 i A is unitary:

1 i A

1 i A

†
1 i A

1 i A

1 i A

1 i A

1 i A

1 i A
I (2.394)

(b) Similarly, if A and B are Hermitian and commute, the expression A i B A
2

B2

is unitary:

A i B

A
2

B2

†
A i B

A
2

B2

A i B

A
2

B2

A i B

A
2

B2

A
2

B2 i AB BA

A
2

B2

A
2

B2

A
2

B2
I (2.395)

Problem 2.8

(a) Using the commutator [X p] ih, show that [Xm P] imhXm 1, with m 1. Can

you think of a direct way to get to the same result?

(b) Use the result of (a) to show the general relation [F X P] ihdF X dX , where
F X is a differentiable operator function of X .
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Solution

(a) Let us attempt a proof by induction. Assuming that [Xm P] imhXm 1 is valid for

m k (note that it holds for n 1; i.e., [X P] ih),

[Xk P] ikhXk 1 (2.396)

let us show that it holds for m k 1:

[X k 1 P] [XkX P] X k[X P] [X k P]X (2.397)

where we have used the relation [AB C] A[B C] [A C]B. Now, since [X P] ih
and [X k P] ikhX k 1, we rewrite (2.397) as

[Xk 1 P] ihXk ikhXk 1 X ih k 1 X k (2.398)

So this relation is valid for any value of k, notably for k m 1:

[Xm P] imhXm 1 (2.399)

In fact, it is easy to arrive at this result directly through brute force as follows. Using the relation

[A
n
B] A

n 1
[A B] [A

n 1
B]A along with [X Px ] ih, we can obtain

[X2 Px ] X[X Px ] [X Px ]X 2ihX (2.400)

which leads to

[X3 Px ] X2[X Px ] [X2 Px ]X 3i X2h (2.401)

this in turn leads to

[X4 Px ] X3[X Px ] [X3 Px ]X 4i X3h (2.402)

Continuing in this way, we can get to any power of X : [Xm P] imhXm 1.

A more direct and simpler method is to apply the commutator [Xm P] on some wave
function x :

[Xm Px ] x XmPx Px X
m x

xm ih
d x

dx
ih
d

dx
xm x

xm ih
d x

dx
imhxm 1 x xm ih

d x

dx

imhxm 1 x (2.403)

Since [Xm Px ] x imhxm 1 x we see that [Xm P] imhXm 1.

(b) Let us Taylor expand F X in powers of X , F X k akX
k , and insert this expres-

sion into [F X P]:

F X P
k

akX
k P

k

ak[X
k P] (2.404)
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where the commutator [Xk P] is given by (2.396). Thus, we have

F X P ih
k

kakX
k 1 ih

d k akX
k

dX
ih
dF X

dX
(2.405)

A much simpler method again consists in applying the commutator F X P on some

wave function x . Since F X x F x x , we have

F X P x F X P x ih
d

dx
F x x

F X P x ih
d x

dx
F x ih

dF x

dx
x

F X P x F X P x ih
dF x

dx
x

ih
dF x

dx
x (2.406)

Since F X P x ih dF xdx x we see that F X P ih dF X
dX

.

Problem 2.9

Consider the matrices A
7 0 0

0 1 i
0 i 1

and B
1 0 3

0 2i 0

i 0 5i
.

(a) Are A and B Hermitian? Calculate AB and BA and verify that Tr AB Tr BA ; then
calculate [A B] and verify that Tr [A B] 0.

(b) Find the eigenvalues and the normalized eigenvectors of A. Verify that the sum of the
eigenvalues of A is equal to the value of Tr A calculated in (a) and that the three eigenvectors

form a basis.

(c) Verify thatU†AU is diagonal and thatU 1 U†, whereU is the matrix formed by the
normalized eigenvectors of A.

(d) Calculate the inverse of A U†AU and verify that A 1
is a diagonal matrix whose

eigenvalues are the inverse of those of A .

Solution

(a) Taking the Hermitian adjoints of the matrices A and B (see (2.188))

A†
7 0 0

0 1 i
0 i 1

B†
1 0 i
0 2i 0

3 0 5i
(2.407)

we see that A is Hermitian and B is not. Using the products

AB
7 0 21

1 2i 5

i 2 5i
BA

7 3i 3

0 2i 2

7i 5 5i
(2.408)
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we can obtain the commutator

[A B]
0 3i 24

1 0 7

8i 7 0

(2.409)

From (2.408) we see that

Tr AB 7 2i 5i 7 7i Tr BA (2.410)

That is, the cyclic permutation of matrices leaves the trace unchanged; see (2.206). On the other

hand, (2.409) shows that the trace of the commutator [A B] is zero: Tr [A B] 0 0 0

0.

(b) The eigenvalues and eigenvectors of A were calculated in Example 2.19 (see (2.266),
(2.268), (2.272), (2.274)). We have a1 7, a2 2, and a3 2:

a1

1

0

0

a2

0
1

2 2 2

i 2 1

2 2 2

a3

0
1

2 2 2

i 1 2

2 2 2

(2.411)

One can easily verify that the eigenvectors a1 , a2 , and a3 are mutually orthogonal:

ai a j i j where i j 1 2 3. Since the set of a1 , a2 , and a3 satisfy the

completeness condition

3

j 1

a j a j

1 0 0

0 1 0

0 0 1

(2.412)

and since they are orthonormal, they form a complete and orthonormal basis.

(c) The columns of the matrix U are given by the eigenvectors (2.411):

U

1 0 0

0 1

2 2 2

1

2 2 2

0 i 2 1

2 2 2

i 1 2

2 2 2

(2.413)

We can show that the productU†AU is diagonal where the diagonal elements are the eigenval-

ues of the matrix A; U†AU is given by

1 0 0

0 1

2 2 2

i 2 1

2 2 2

0 1

2 2 2

i 1 2

2 2 2

7 0 0

0 1 i
0 i 1

1 0 0

0 1

2 2 2

1

2 2 2

0 i 2 1

2 2 2

i 1 2

2 2 2

7 0 0

0 2 0

0 0 2

(2.414)
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We can also show that U†U 1:

1 0 0

0 1

2 2 2

i 2 1

2 2 2

0 1

2 2 2

i 1 2

2 2 2

1 0 0

0 1

2 2 2

1

2 2 2

0 i 2 1

2 2 2

i 1 2

2 2 2

1 0 0

0 1 0

0 0 1

(2.415)

This implies that the matrix U is unitary: U† U 1. Note that, from (2.413), we have

det U i 1.

(d) Using (2.414) we can verify that the inverse of A U†AU is a diagonal matrix whose
elements are given by the inverse of the diagonal elements of A :

A
7 0 0

0 2 0

0 0 2

A 1

1
7

0 0

0 1

2
0

0 0 1

2

(2.416)

Problem 2.10

Consider a particle whose Hamiltonian matrix is H
2 i 0

i 1 1

0 1 0

.

(a) Is

i
7i
2

an eigenstate of H? Is H Hermitian?

(b) Find the energy eigenvalues, a1, a2, and a3, and the normalized energy eigenvectors,
a1 , a2 , and a3 , of H .
(c) Find the matrix corresponding to the operator obtained from the ket-bra product of the

first eigenvector P a1 a1 . Is P a projection operator? Calculate the commutator [P H ]
firstly by using commutator algebra and then by using matrix products.

Solution

(a) The ket is an eigenstate of H only if the action of the Hamiltonian on is of the

form H b , where b is constant. This is not the case here:

H
2 i 0

i 1 1

0 1 0

i
7i
2

7 2i
1 7i
7i

(2.417)

Using the definition of the Hermitian adjoint of matrices (2.188), it is easy to ascertain that H
is Hermitian:

H†
2 i 0

i 1 1

0 1 0

H (2.418)

(b) The energy eigenvalues can be obtained by solving the secular equation

0

2 a i 0

i 1 a 1

0 1 a
2 a [ 1 a a 1] i i a

a 1 a 1 3 a 1 3 (2.419)
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which leads to

a1 1 a2 1 3 a3 1 3 (2.420)

To find the eigenvector corresponding to the first eigenvalue, a1 1, we need to solve the

matrix equation

2 i 0

i 1 1

0 1 0

x
y
z

x
y
z

x iy 0

i x z 0

y z 0

(2.421)

which yields x 1, y z i . So the eigenvector corresponding to a1 1 is

a1

1

i
i

(2.422)

This eigenvector is not normalized since a1 a1 1 i i i i 3. The normalized

a1 is therefore

a1
1

3

1

i
i

(2.423)

Solving (2.421) for the other two energy eigenvalues, a2 1 3, a3 1 3, and

normalizing, we end up with

a2
1

6 2 3

i 2 3

1 3

1

a3
1

6 2 3

i 2 3

1 3

1

(2.424)

(c) The operator P is given by

P a1 a1
1

3

1

i
i

1 i i
1

3

1 i i
i 1 1

i 1 1

(2.425)

Since this matrix is Hermitian and since the square of P is equal to P ,

P2
1

9

1 i i
i 1 1

i 1 1

1 i i
i 1 1

i 1 1

1

3

1 i i
i 1 1

i 1 1

P (2.426)

so P is a projection operator. Using the relations H a1 a1 and a1 H a1 (because

H is Hermitian), and since P a1 a1 , we can evaluate algebraically the commutator

[P H ] as follows:

[P H ] PH HP a1 a1 H H a1 a1 a1 a1 a1 a1 0 (2.427)

We can reach the same result by using the matrices of H and P:

[P H ]
1

3

1 i i
i 1 1

i 1 1

2 i 0

i 1 1

0 1 0

1

3

2 i 0

i 1 1

0 1 0

1 i i
i 1 1

i 1 1

0 0 0

0 0 0

0 0 0

(2.428)
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Problem 2.11

Consider the matrices A
0 0 i
0 1 0

i 0 0

and B
2 i 0

3 1 5

0 i 2

.

(a) Check if A and B are Hermitian and find the eigenvalues and eigenvectors of A. Any
degeneracies?

(b) Verify that Tr AB Tr BA , det AB det A det B , and det B† det B .

(c) Calculate the commutator [A B] and the anticommutator A B .
(d) Calculate the inverses A 1, B 1, and AB 1. Verify that AB 1 B 1A 1.

(e) Calculate A2 and infer the expressions of A2n and A2n 1. Use these results to calculate

the matrix of ex A.

Solution

(a) The matrix A is Hermitian but B is not. The eigenvalues of A are a1 1 and a2
a3 1 and its normalized eigenvectors are

a1
1

2

1

0

i
a2

1

2

1

0

i
a3

0

1

0

(2.429)

Note that the eigenvalue 1 is doubly degenerate, since the two eigenvectors a2 and a3
correspond to the same eigenvalue a2 a3 1.

(b) A calculation of the products AB and BA reveals that the traces Tr AB and Tr BA
are equal:

Tr AB Tr

0 1 2i
3 1 5

2i 1 0

1

Tr BA Tr

0 i 2i
5i 1 3i
2i i 0

1 Tr AB (2.430)

From the matrices A and B, we have det A i i 1, det B 4 16i . We can thus
write

det AB det

0 1 2i
3 1 5

2i 1 0

4 16i 1 4 16i det A det B (2.431)

On the other hand, since det B 4 16i and det B† 4 16i , we see that det B†

4 16i 4 16i det B .

(c) The commutator [A B] is given by

AB BA
0 1 2i
3 1 5

2i 1 0

0 i 2i
5i 1 3i
2i i 0

0 1 i 4i
3 5i 0 5 3i
4i 1 i 0

(2.432)
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and the anticommutator A B by

AB BA
0 1 2i
3 1 5

2i 1 0

0 i 2i
5i 1 3i
2i i 0

0 1 i 0

3 5i 2 5 3i
0 1 i 0

(2.433)

(d) A calculation similar to (2.200) leads to the inverses of A, B, and AB:

A 1
0 0 i
0 1 0

i 0 0

B 1 1

68

22 3i 8 2i 20 5i
6 24i 4 16i 10 40i
12 3i 8 2i 14 5i

(2.434)

AB 1 1

68

5 20i 8 2i 3 22i
40 10i 4 16i 24 6i
5 14i 8 2i 3 12i

(2.435)

From (2.434) it is now easy to verify that the product B 1A 1 is equal to AB 1:

B 1A 1 1

68

5 20i 8 2i 3 22i
40 10i 4 16i 24 6i
5 14i 8 2i 3 12i

AB 1 (2.436)

(e) Since

A2
0 0 i
0 1 0

i 0 0

0 0 i
0 1 0

i 0 0

1 0 0

0 1 0

0 0 1

I (2.437)

we can write A3 A, A4 I , A5 A, and so on. We can generalize these relations to any
value of n: A2n I and A2n 1 A:

A2n
1 0 0

0 1 0

0 0 1

I A2n 1
0 0 i
0 1 0

i 0 0

A (2.438)

Since A2n I and A2n 1 A, we can write

ex A

n 0

xnAn

n!
n 0

x2nA2n

2n !
n 0

x2n 1A2n 1

2n 1 !
I
n 0

x2n

2n !
A
n 0

x2n 1

2n 1 !

(2.439)

The relations

n 0

x2n

2n !
cosh x

n 0

x2n 1

2n 1 !
sinh x (2.440)

lead to

ex A I cosh x A sinh x
1 0 0

0 1 0

0 0 1

cosh x
0 0 i
0 1 0

i 0 0

sinh x

cosh x 0 i sinh x
0 cosh x sinh x 0

i sinh x 0 cosh x
(2.441)
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Problem 2.12

Consider two matrices: A
0 i 2

0 1 0

i 0 0

and B
2 i 0

3 1 5

0 i 2

. Calculate A 1 B

and B A 1. Are they equal?

Solution

As mentioned above, a calculation similar to (2.200) leads to the inverse of A:

A 1
0 0 i
0 1 0

1 2 i 2 0

(2.442)

The products A 1 B and B A 1 are given by

A 1B
0 0 i
0 1 0

1 2 i 2 0

2 i 0

3 1 5

0 i 2

0 1 2i
3 1 5

1 3i 2 0 5i 2
(2.443)

BA 1
2 i 0

3 1 5

0 i 2

0 0 i
0 1 0

1 2 i 2 0

0 i 2i
5 2 1 5i 2 3i
1 0 0

(2.444)

We see that A 1 B and B A 1 are not equal.

Remark

We should note that the quotient B A of two matrices A and B is equal to the product BA 1

and not A 1B; that is:

B

A
BA 1

2 i 0

3 1 5

0 i 2

0 i 2

0 1 0

i 0 0

0 i 2i
5 2 1 5i 2 3i
1 0 0

(2.445)

Problem 2.13

Consider the matrices A
0 1 0

1 0 1

0 1 0

and B
1 0 0

0 0 0

0 0 1

.

(a) Find the eigenvalues and normalized eigenvectors of A and B. Denote the eigenvectors
of A by a1 , a2 , a3 and those of B by b1 , b2 , b3 . Are there any degenerate
eigenvalues?

(b) Show that each of the sets a1 , a2 , a3 and b1 , b2 , b3 forms an orthonormal
and complete basis, i.e., show that a j ak jk and

3
j 1 a j a j I , where I is the

3 3 unit matrix; then show that the same holds for b1 , b2 , b3 .
(c) Find the matrix U of the transformation from the basis a to b . Show that

U 1 U†. Verify that U†U I . Calculate how the matrix A transforms under U , i.e.,

calculate A U AU†.
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Solution

(a) It is easy to verify that the eigenvalues of A are a1 0, a2 2, a3 2 and their

corresponding normalized eigenvectors are

a1
1

2

1

0

1

a2
1

2

1

2

1

a3
1

2

1

2

1

(2.446)

The eigenvalues of B are b1 1, b2 0, b3 1 and their corresponding normalized

eigenvectors are

b1

1

0

0

b2

0

1

0

b3

0

0

1

(2.447)

None of the eigenvalues of A and B are degenerate.
(b) The set a1 , a2 , a3 is indeed complete because the sum of a1 a1 , a2 a2 ,

and a3 a3 as given by

a1 a1
1

2

1

0

1

1 0 1
1

2

1 0 1

0 0 0

1 0 1

(2.448)

a2 a2
1

4

1

2

1

1 2 1
1

4

1 2 1

2 2 2

1 2 1

(2.449)

a3 a3
1

4

1

2

1

1 2 1
1

4

1 2 1

2 2 2

1 2 1

(2.450)

is equal to unity:

3

j 1

a j a j
1

2

1 0 1

0 0 0

1 0 1

1

4

1 2 1

2 2 2

1 2 1

1

4

1 2 1

2 2 2

1 2 1

1 0 0

0 1 0

0 0 1

(2.451)

The states a1 , a2 , a3 are orthonormal, since a1 a2 a1 a3 a3 a2 0 and

a1 a1 a2 a2 a3 a3 1. Following the same procedure, we can ascertain that

b1 b1 b2 b2 b3 b3

1 0 0

0 1 0

0 0 1

(2.452)
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We can verify that the states b1 , b2 , b3 are orthonormal, since b1 b2 b1 b3
b3 b2 0 and b1 b1 b2 b2 b3 b3 1.

(c) The elements of the matrix U , corresponding to the transformation from the basis a
to b , are given by U jk b j ak where j k 1 2 3:

U
b1 a1 b1 a2 b1 a3
b2 a1 b2 a2 b2 a3
b3 a1 b3 a2 b3 a3

(2.453)

where the elements b j ak can be calculated from (2.446) and (2.447):

U11 b1 a1
1

2
1 0 0

1

0

1

2

2
(2.454)

U12 b1 a2
1
2

1 0 0

1

2

1

1

2
(2.455)

U13 b1 a3
1
2

1 0 0

1

2

1

1

2
(2.456)

U21 b2 a1
1

2
0 1 0

1

0

1

0 (2.457)

U22 b2 a2
1
2

0 1 0

1

2

1

2

2
(2.458)

U23 b2 a3
1
2

0 1 0

1

2

1

2

2
(2.459)

U31 b3 a1
1

2
0 0 1

1

0

1

2

2
(2.460)

U32 b3 a2
1
2

0 0 1

1

2

1

1

2
(2.461)

U33 b3 a3
1
2

0 0 1

1

2

1

1

2
(2.462)

Collecting these elements, we obtain

U
1

2

2 1 1

0 2 2

2 1 1

(2.463)
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Calculating the inverse ofU as we did in (2.200), we see that it is equal to its Hermitian adjoint:

U 1 1

2

2 0 2

1 2 1

1 2 1

U† (2.464)

This implies that the matrix U is unitary. The matrix A transforms as follows:

A U AU†
1

4

2 1 1

0 2 2

2 1 1

0 1 0

1 0 1

0 1 0

2 0 2

1 2 1

1 2 1

1

2

1 2 1 1

1 2 1

1 1 1 2

(2.465)

Problem 2.14

Calculate the following expressions involving Dirac’s delta function:

(a)
5
5 cos 3x x 3 dx

(b)
10
0 e2x 7 4 x 3 dx

(c) 2 cos2 3x sin x 2 x
(d) 0 cos 3 2 d

(e)
9
2 x2 5x 2 [2 x 4 ] dx .

Solution

(a) Since x 3 lies within the interval ( 5 5), equation (2.281) yields

5

5

cos 3x x 3 dx cos 3
3

1 (2.466)

(b) Since x 3 lies outside the interval (0 10), Eq (2.281) yields at once

10

0

e2x 7 4 x 3 dx 0 (2.467)

(c) Using the relation f x x a f a x a which is listed in Appendix A, we

have

2 cos2 3x sin x 2 x 2 cos2 3 sin 2 x

3 x (2.468)

(d) Inserting n 3 into Eq (2.282) and since cos 3 27 sin 3 , we obtain

0

cos 3 2 d 1 3 cos 3 2 1 3 27 sin 3 2

27 (2.469)



2.9. SOLVED PROBLEMS 151

(e) Since [2 x 4 ] 1 2 x 4 , we have

9

2

x2 5x 2 [2 x 4 ] dx
1

2

9

2

x2 5x 2 x 4 dx

1

2
42 5 4 2 1 (2.470)

Problem 2.15

Consider a system whose Hamiltonian is given by H 1 2 2 1 , where is

a real number having the dimensions of energy and 1 , 2 are normalized eigenstates of a

Hermitian operator A that has no degenerate eigenvalues.
(a) Is H a projection operator? What about 2H2?
(b) Show that 1 and 2 are not eigenstates of H .
(c) Calculate the commutators [H 1 1 ] and [H 2 2 ] then find the relation

that may exist between them.

(d) Find the normalized eigenstates of H and their corresponding energy eigenvalues.
(e) Assuming that 1 and 2 form a complete and orthonormal basis, find the matrix

representing H in the basis. Find the eigenvalues and eigenvectors of the matrix and compare
the results with those derived in (d).

Solution

(a) Since 1 and 2 are eigenstates of A and since A is Hermitian, they must be
orthogonal, 1 2 0 (instance of Theorem 2.1). Now, since 1 and 2 are both

normalized and since 1 2 0, we can reduce H2 to

H2 2
1 2 2 1 1 1 2 2

2
1 2 2 1 (2.471)

which is different from H ; hence H is not a projection operator. The operator 2H2 is a
projection operator since it is both Hermitian and equal to its own square. Using (2.471) we

can write

2H2 2 1 2 2 1 1 2 2 1

1 1 2 2
2H2 (2.472)

(b) Since 1 and 2 are both normalized, and since 1 2 0, we have

H 1 1 2 1 2 1 1 2 (2.473)

H 2 1 (2.474)

hence 1 and 2 are not eigenstates of H . In addition, we have

1 H 1 2 H 2 0 (2.475)

(c) Using the relations derived above, H 1 2 and H 2 1 , we can

write

[H 1 1 ] 2 1 1 2 (2.476)
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[H 2 2 ] 1 2 2 1 (2.477)

hence

[H 1 1 ] [H 2 2 ] (2.478)

(d) Consider a general state 1 1 2 2 . Applying H to this state, we get

H 1 2 2 1 1 1 2 2

2 1 1 2 (2.479)

Now, since is normalized, we have

1
2

2
2 1 (2.480)

The previous two equations show that 1 2 1 2 and that 1 2. Hence the

eigenstates of the system are:

1

2
1 2 (2.481)

The corresponding eigenvalues are :

H (2.482)

(e) Since 1 2 2 1 0 and 1 1 2 2 1, we can verify

that H11 1 H 1 0, H22 2 H 2 0, H12 1 H 2 ,

H21 2 H 1 . The matrix of H is thus given by

H
0 1

1 0
(2.483)

The eigenvalues of this matrix are equal to and the corresponding eigenvectors are 1

2

1

1
.

These results are indeed similar to those derived in (d).

Problem 2.16

Consider the matrices A
1 0 0

0 7 3i
0 3i 5

and B
0 i 3i
i 0 i
3i i 0

.

(a) Check the hermiticity of A and B.
(b) Find the eigenvalues of A and B; denote the eigenvalues of A by a1, a2, and a3. Explain

why the eigenvalues of A are real and those of B are imaginary.
(c) Calculate Tr A and det A . Verify Tr A a1 a2 a3, det A a1a2a3.

Solution

(a) Matrix A is Hermitian but B is anti-Hermitian:

A†
1 0 0

0 7 3i
0 3i 5

A B†
0 i 3i
i 0 i
3i i 0

B (2.484)
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(b) The eigenvalues of A are a1 6 10, a2 1, and a3 6 10 and those of B

are b1 i 3 17 2, b2 3i , and b3 i 3 17 2. The eigenvalues of A are

real and those of B are imaginary. This is expected since, as shown in (2.74) and (2.75), the
expectation values of Hermitian operators are real and those of anti-Hermitian operators are

imaginary.

(c) A direct calculation of the trace and the determinant of A yields Tr A 1 7 5 13

and det A 7 5 3i 3i 26. Adding and multiplying the eigenvalues a1 6 10,

a2 1, a3 6 10, we have a1 a2 a3 6 10 1 6 10 13 and

a1a2a3 6 10 1 6 10 26. This confirms the results (2.260) and (2.261):

Tr A a1 a2 a3 13 det A a1a2a3 26 (2.485)

Problem 2.17

Consider a one-dimensional particle which moves along the x-axis and whose Hamiltonian is
H Ed2 dx2 16EX2, where E is a real constant having the dimensions of energy.

(a) Is x Ae 2x2 , where A is a normalization constant that needs to be found, an
eigenfunction of H? If yes, find the energy eigenvalue.
(b) Calculate the probability of finding the particle anywhere along the negative x-axis.
(c) Find the energy eigenvalue corresponding to the wave function x 2x x .
(d) Specify the parities of x and x . Are x and x orthogonal?

Solution

(a) The integral e 4x2dx 2 allows us to find the normalization constant:

1 x 2 dx A2 e 4x2dx A2
2

(2.486)

this leads to A 2 and hence x 2 e 2x2 . Since the first and second

derivatives of x are given by

x
d x

dx
4x x x

d2 x

dx2
16x2 4 x (2.487)

we see that x is an eigenfunction of H with an energy eigenvalue equal to 4E :

H x E
d2 x

dx2
16Ex2 x E 16x2 4 x 16Ex2 x 4E x (2.488)

(b) Since
0 e 4x2dx 4, the probability of finding the particle anywhere along the

negative x-axis is equal to 1
2
:

0

x 2 dx
2 0

e 4x2dx
1

2
(2.489)

This is expected, since this probability is half the total probability, which in turn is equal to one.
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(c) Since the second derivative of x 2x x is x 4 x 2x x
8x 3 4x2 x 4 3 4x2 x , we see that x is an eigenfunction of H with an
energy eigenvalue equal to 12E :

H x E
d2 x

dx2
16Ex2 x 4E 3 4x2 x 16Ex2 x 12E x

(2.490)

(d) The wave functions x and x are even and odd, respectively, since x x
and x x ; hence their product is an odd function. Therefore, they are orthogonal,
since the symmetric integration of an odd function is zero:

x x dx x x dx x x dx

x x dx 0 (2.491)

Problem 2.18

(a) Find the eigenvalues and the eigenfunctions of the operator A d2 dx2; restrict the
search for the eigenfunctions to those complex functions that vanish everywhere except in the

region 0 x a.
(b) Normalize the eigenfunction and find the probability in the region 0 x a 2.

Solution

(a) The eigenvalue problem for d2 dx2 consists of solving the differential equation

d2 x

dx2
x (2.492)

and finding the eigenvalues and the eigenfunction x . The most general solution to this
equation is

x Aeibx Be ibx (2.493)

with b2. Using the boundary conditions of x at x 0 and x a, we have

0 A B 0 B A a Aeiba Be iba 0 (2.494)

A substitution of B A into the second equation leads to A eiba e iba 0 or eiba

e iba which leads to e2iba 1. Thus, we have sin 2ba 0 and cos 2ba 1, so ba n . The

eigenvalues are then given by n n2 2 a2 and the corresponding eigenvectors by n x
A ein x a e in x a ; that is,

n
n2 2

a2
n x Cn sin

n x

a
(2.495)

So the eigenvalue spectrum of the operator A d2 dx2 is discrete, because the eigenvalues
and eigenfunctions depend on a discrete number n.
(b) The normalization of n x ,

1 C2n

a

0

sin2
n x

a
dx

C2n
2

a

0

1 cos
2n x

a
dx

C2n
2
a (2.496)
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yields Cn 2 a and hence n x 2 a sin n x a . The probability in the region
0 x a 2 is given by

2

a

a 2

0

sin2
n x

a
dx

1

a

a 2

0

1 cos
2n x

a
dx

1

2
(2.497)

This is expected since the total probability is 1:
a
0 n x 2 dx 1.

2.10 Exercises

Exercise 2.1

Consider the two states i 1 3i 2 3 and 1 i 2 5i 3 ,

where 1 , 2 and 3 are orthonormal.

(a) Calculate , , , , and infer . Are the scalar

products and equal?

(b) Calculate and . Are they equal? Calculate their traces and compare

them.

(c) Find the Hermitian conjugates of , , , and .

Exercise 2.2

Consider two states 1 1 4i 2 5 3 and 2 b 1 4 2 3i 3 , where

1 , 2 , and 3 are orthonormal kets, and where b is a constant. Find the value of b so that

1 and 2 are orthogonal.

Exercise 2.3

If 1 , 2 , and 3 are orthonormal, show that the states i 1 3i 2 3

and 1 i 2 5i 3 satisfy

(a) the triangle inequality and

(b) the Schwarz inequality.

Exercise 2.4

Find the constant so that the states 1 5 2 and 3 1 4 2

are orthogonal; consider 1 and 2 to be orthonormal.

Exercise 2.5

If 1 2 and 1 2 , prove the following relations (note that 1

and 2 are not orthonormal):

(a) 2 1 1 2 2 2 ,

(b) 2 1 2 2 2 1 .

Exercise 2.6

Consider a state which is given in terms of three orthonormal vectors 1 , 2 , and 3 as

follows:
1

15
1

1

3
2

1

5
3

where n are eigenstates to an operator B such that: B n 3n2 1 n with n 1 2 3.

(a) Find the norm of the state .

(b) Find the expectation value of B for the state .

(c) Find the expectation value of B2 for the state .
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Exercise 2.7

Are the following sets of functions linearly independent or dependent?

(a) 4ex , ex , 5ex

(b) cos x , ei x , 3 sin x
(c) 7, x2, 9x4, e x

Exercise 2.8

Are the following sets of functions linearly independent or dependent on the positive x-axis?
(a) x , x 2, x 5

(b) cos x , cos 2x , cos 3x
(c) sin2 x , cos2 x , sin 2x
(d) x , x 1 2, x 1 2

(e) sinh2 x , cosh2 x , 1

Exercise 2.9

Are the following sets of vectors linearly independent or dependent over the complex field?

(a) 2 3 0 , 0 0 1 , 2i i i
(b) 0 4 0 , i 3i i , 2 0 1
(c) i 1 2 , 3 i 1 , i 3i 5i

Exercise 2.10

Are the following sets of vectors (in the three-dimensional Euclidean space) linearly indepen-

dent or dependent?

(a) 4 5 6 , 1 2 3 , 7 8 9

(b) 1 0 0 , 0 5 0 , 0 0 7

(c) 5 4 1 , 2 0 2 , 0 6 1

Exercise 2.11

Show that if A is a projection operator, the operator 1 A is also a projection operator.

Exercise 2.12

Show that is a projection operator, regardless of whether is normalized

or not.

Exercise 2.13

In the following expressions, where A is an operator, specify the nature of each expression (i.e.,
specify whether it is an operator, a bra, or a ket); then find its Hermitian conjugate.

(a) A
(b) A
(c) A A
(d) A i A

(e) A i A

Exercise 2.14

Consider a two-dimensional space where a Hermitian operator A is defined by A 1 1

and A 2 2 ; 1 and 2 are orthonormal.

(a) Do the states 1 and 2 form a basis?

(b) Consider the operator B 1 2 . Is B Hermitian? Show that B2 0.
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(c) Show that the products BB† and B†B are projection operators.

(d) Show that the operator BB† B†B is unitary.

(e) Consider C BB† B†B. Show that C 1 1 and C 2 2 .

Exercise 2.15

Prove the following two relations:

(a) eAeB eA Be[A B] 2,

(b) eABe A B [A B] 1
2!
[A [A B]] 1

3!
[A [A [A B]]] .

Hint: To prove the first relation, you may consider defining an operator function F t eAteBt ,
where t is a parameter, A and B are t-independent operators, and then make use of [A G B ]
[A B]dG B dB, where G B is a function depending on the operator B.

Exercise 2.16

(a) Verify that the matrix

cos sin

sin cos

is unitary.

(b) Find its eigenvalues and the corresponding normalized eigenvectors.

Exercise 2.17

Consider the following three matrices:

A
0 1 0

1 0 1

0 1 0

B
0 i 0

i 0 i
0 i 0

C
1 0 0

0 0 0

0 0 1

(a) Calculate the commutators [A B], [B C], and [C A].
(b) Show that A2 B2 2C2 4I , where I is the unity matrix.
(c) Verify that Tr ABC Tr BCA Tr CAB .

Exercise 2.18

Consider the following two matrices:

A
3 i 1

1 i 2

4 3i 1

B
2i 5 3

i 3 0

7i 1 i

Verify the following relations:

(a) det AB det A det B ,
(b) det AT det A ,

(c) det A† det A , and

(d) det A det A .

Exercise 2.19

Consider the matrix

A
0 i
i 0

(a) Find the eigenvalues and the normalized eigenvectors for the matrix A.
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(b) Do these eigenvectors form a basis (i.e., is this basis complete and orthonormal)?

(c) Consider the matrix U which is formed from the normalized eigenvectors of A. Verify
that U is unitary and that it satisfies

U†AU 1 0

0 2

where 1 and 2 are the eigenvalues of A.
(d) Show that ex A cosh x A sinh x .

Exercise 2.20

Using the bra-ket algebra, show that Tr ABC Tr CAB Tr BCA where A B C are
operators.

Exercise 2.21

For any two kets and that have finite norm, show that Tr .

Exercise 2.22

Consider the matrix A
0 0 1 i
0 3 0

1 i 0 0

.

(a) Find the eigenvalues and normalized eigenvectors of A. Denote the eigenvectors of A
by a1 , a2 , a3 . Any degenerate eigenvalues?
(b) Show that the eigenvectors a1 , a2 , a3 form an orthonormal and complete basis,

i.e., show that
3
j 1 a j a j I , where I is the 3 3 unit matrix, and that a j ak jk .

(c) Find the matrix corresponding to the operator obtained from the ket-bra product of the

first eigenvector P a1 a1 . Is P a projection operator?

Exercise 2.23

In a three-dimensional vector space, consider the operator whose matrix, in an orthonormal

basis 1 2 3 , is

A
0 0 1

0 1 0

1 0 0

(a) Is A Hermitian? Calculate its eigenvalues and the corresponding normalized eigen-
vectors. Verify that the eigenvectors corresponding to the two nondegenerate eigenvalues are

orthonormal.

(b) Calculate the matrices representing the projection operators for the two nondegenerate

eigenvectors found in part (a).

Exercise 2.24

Consider two operators A and B whose matrices are

A
1 3 0

1 0 1

0 1 1

B
1 0 2

0 0 0

2 0 4

(a) Are A and B Hermitian?
(b) Do A and B commute?
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(c) Find the eigenvalues and eigenvectors of A and B.
(d) Are the eigenvectors of each operator orthonormal?

(e) Verify that U†BU is diagonal, U being the matrix of the normalized eigenvectors of B.

(f) Verify that U 1 U†.

Exercise 2.25

Consider an operator A so that [A A
†
] 1.

(a) Evaluate the commutators [A
†
A A] and [A

†
A A

†
].

(b) If the actions of A and A
†
on the states a are given by A a a a 1 and

A
†
a a 1 a 1 and if a a a a , calculate a A a 1 , a 1 A

†
a

and a A
†
A a and a AA

†
a .

(c) Calculate a A A
† 2 a and a A A

† 2 a .

Exercise 2.26

Consider a 4 4 matrix

A

0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

(a) Find the matrices of A†, N A†A, H N 1
2
I (where I is the unit matrix), B

A A†, and C i A A† .

(b) Find the matrices corresponding to the commutators [A† A], [B C], [N B], and
[N C].
(c) Find the matrices corresponding to B2, C2, [N B2 C2], [H A†], [H A], and

[H N ].
(d) Verify that det ABC det A det B det C and det C† det C .

Exercise 2.27

If A and B commute, and if 1 and 2 are two eigenvectors of A with different eigenvalues
(A is Hermitian), show that
(a) 1 B 2 is zero and

(b) B 1 is also an eigenvector to A with the same eigenvalue as 1 ; i.e., if A 1

a1 1 , show that A B 1 a1B 1 .

Exercise 2.28

Let A and B be two n n matrices. Assuming that B 1 exists, show that [A B 1]

B 1[A B]B 1.

Exercise 2.29

Consider a physical system whose Hamiltonian H and an operator A are given, in a three-
dimensional space, by the matrices

H h
1 0 0

0 1 0

0 0 1

A a
1 0 0

0 0 1

0 1 0
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(a) Are H and A Hermitian?
(b) Show that H and A commute. Give a basis of eigenvectors common to H and A.

Exercise 2.30

(a) Using [X P] ih, show that [X2 P] 2ihX and [X P2] 2ihP .
(b) Show that [X2 P2] 2ih ih 2PX .
(c) Calculate the commutator [X2 P3].

Exercise 2.31

Discuss the hermiticity of the commutators [X P], [X2 P] and [X P2].

Exercise 2.32

(a) Evaluate the commutator [X2 d dx] by operating it on a wave function.
(b) Using [X P] ih, evaluate the commutator [X P2 PX2] in terms of a linear combi-

nation of X2P2 and X P .

Exercise 2.33

Show that [X Pn] ihX Pn 1.

Exercise 2.34

Evaluate the commutators [ei X P], [ei X
2
P], and [ei X P2].

Exercise 2.35

Consider the matrix

A
0 0 1

0 1 0

1 0 0

(a) Find the eigenvalues and the normalized eigenvectors of A.
(b) Do these eigenvectors form a basis (i.e., is this basis complete and orthonormal)?

(c) Consider the matrix U which is formed from the normalized eigenvectors of A. Verify
that U is unitary and that it satisfies the relation

U†AU
1 0 0

0 2 0

0 0 3

where 1, 2, and 3 are the eigenvalues of A.
(d) Show that ex A cosh x A sinh x .
Hint: cosh x n 0 x

2n 2n ! and sinh x n 0 x
2n 1 2n 1 !.

Exercise 2.36

(a) If [A B] c, where c is a number, prove the following two relations: eABe A B c

and eA B eAeBe c 2.

(b) Now if [A B] cB, where c is again a number, show that eABe A ecB.

Exercise 2.37

Consider the matrix

A
1

2

2 0 0

0 3 1

0 1 3



2.10. EXERCISES 161

(a) Find the eigenvalues of A and their corresponding eigenvectors.
(b) Consider the basis which is constructed from the three eigenvectors of A. Using matrix

algebra, verify that this basis is both orthonormal and complete.

Exercise 2.38

(a) Specify the condition that must be satisfied by a matrix A so that it is both unitary and
Hermitian.

(b) Consider the three matrices

M1
0 1

1 0
M2

0 i
i 0

M3
1 0

0 1

Calculate the inverse of each matrix. Do they satisfy the condition derived in (a)?

Exercise 2.39

Consider the two matrices

A
1

2

1 i
i 1

B
1

2

1 i 1 i
1 i 1 i

(a) Are these matrices Hermitian?

(b) Calculate the inverses of these matrices.

(c) Are these matrices unitary?

(d) Verify that the determinants of A and B are of the form ei . Find the corresponding
values of .

Exercise 2.40

Show that the transformation matrix representing a 90 counterclockwise rotation about the

z-axis of the basis vectors i j k is given by

U
0 1 0

1 0 0

0 0 1

Exercise 2.41

Show that the transformation matrix representing a 90 clockwise rotation about the y-axis of
the basis vectors i j k is given by

U
0 0 1

0 1 0

1 0 0

Exercise 2.42

Show that the operator X P PX 2 is equal to X2P2 P2X2 plus a term of the order of h2.

Exercise 2.43

Consider the two matrices A
4 i 7

1 0 1

0 1 i
and B

1 1 1

0 i 0

i 0 i
. Calculate the

products B 1 A and A B 1. Are they equal? What is the significance of this result?
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Exercise 2.44

Use the relations listed in Appendix A to evaluate the following integrals involving Dirac’s

delta function:

(a) 0 sin 3x cos
2 4x x 2 dx .

(b)
2
2 e
7x 2 5x dx .

(c)
2
2 sin 2 d .

(d)
2
0 cos2 [ 4] d .

Exercise 2.45

Use the relations listed in Appendix A to evaluate the following expressions:

(a)
5
0 3x

2 2 x 1 dx .

(b) 2x5 4x3 1 x 2 .

(c) 0 5x3 7x2 3 x2 4 dx .

Exercise 2.46

Use the relations listed in Appendix A to evaluate the following expressions:

(a)
7
3 e

6x 2 4x dx .

(b) cos 2 sin 2 2 4 .

(c)
1
1 e
5x 1 x dx .

Exercise 2.47

If the position and momentum operators are denoted by R and P , respectively, show that

P†R nP 1 nR n and P†P nP 1 nP n , where P is the parity operator and n is
an integer.

Exercise 2.48

Consider an operator

A 1 1 2 2 3 3 i 1 2

1 3 i 2 1 3 1

where 1 , 2 , and 3 form a complete and orthonormal basis.

(a) Is A Hermitian? Calculate A
2
; is it a projection operator?

(b) Find the 3 3 matrix representing A in the 1 , 2 , 3 basis.

(c) Find the eigenvalues and the eigenvectors of the matrix.

Exercise 2.49

The Hamiltonian of a two-state system is given by

H E 1 1 2 2 i 1 2 i 2 1

where 1 , 2 form a complete and orthonormal basis; E is a real constant having the
dimensions of energy.

(a) Is H Hermitian? Calculate the trace of H .
(b) Find the matrix representing H in the 1 , 2 basis and calculate the eigenvalues

and the eigenvectors of the matrix. Calculate the trace of the matrix and compare it with the

result you obtained in (a).

(c) Calculate [H 1 1 ], [H 2 2 ], and [H 1 2 ].
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Exercise 2.50

Consider a particle which is confined to move along the positive x-axis and whose Hamiltonian
is H Ed2 dx2, where E is a positive real constant having the dimensions of energy.
(a) Find the wave function that corresponds to an energy eigenvalue of 9E (make sure that

the function you find is finite everywhere along the positive x-axis and is square integrable).
Normalize this wave function.

(b) Calculate the probability of finding the particle in the region 0 x 15.

(c) Is the wave function derived in (a) an eigenfunction of the operator A d dx 7?

(d) Calculate the commutator [H A].

Exercise 2.51

Consider the wave functions:

x y sin 2x cos 5x x y e 2 x2 y2 x y e i x y

(a) Verify if any of the wave functions is an eigenfunction of A x y.
(b) Find out if any of the wave functions is an eigenfunction of B 2 x2 2 y2 1.

(c) Calculate the actions of AB and BA on each one of the wave functions and infer [A B].

Exercise 2.52

(a) Is the state e 3i cos an eigenfunction of A or of B ?

(b) Are A and B Hermitian?

(c) Evaluate the expressions A and B .

(d) Find the commutator [A B ].

Exercise 2.53

Consider an operator A Xd dx 2 .

(a) Find the eigenfunction of A corresponding to a zero eigenvalue. Is this function normal-
izable?

(b) Is the operator A Hermitian?
(c) Calculate [A X ], [A d dx], [A d2 dx2], [X [A X]], and [d dx [A d dx]].

Exercise 2.54

If A and B are two Hermitian operators, find their respective eigenvalues such that A
2

2I
and B4 I , where I is the unit operator.

Exercise 2.55

Consider the Hilbert space of two-variable complex functions x y . A permutation operator
is defined by its action on x y as follows: x y y x .
(a) Verify that the operator is linear and Hermitian.

(b) Show that 2 I . Find the eigenvalues and show that the eigenfunctions of are given

by

x y
1

2
x y y x and x y

1

2
x y y x


