
# **OBJECTIVE - I**

**1.** Which of the following plots may represent the thermal energy produced in a resistor in a given time as a function of the electric current ?



2. A constant current i is passed through a resistor. Taking the temperature coefficient of resistance into account, indicate which of the plots shown in fig. best represents the rate of production of thermal energy in the resistor.



- (a) The neutral temperature does not depend on the temperature of the cold junction.
  - (b) The inversion temperature does not depend on the temperature of the cold junction.
  - (A) Both a and b are correct. (B\*) a is correct but b is worng
  - (C) b is correct but a is wrong
- (D) Both a and b are wrong

| Sol. B           |    |
|------------------|----|
| At cold function | :- |

 $Q_n - Q_c = Q_i - Q_n$ 

where  $Q_n P$  neutral temperture

- $Q_i$  P inversion temperature
- $Q_{a}$  P thermo-couple temperature.
- P The neutral temperature does not depend on the temperature of the cold function.
- P The inversion temperature does depend on the temperature of the cold function.
- 4. The heat developed in a system is propertional to the current through it.
  (A) It cannot be Thomson heat
  (B) It cannot be Peltier heat
  (C\*) It cannot be Joule heat
  (D) It can be any of the three heats mentioned above

## Sol. C

| 5. | Consider the following two statements                        |                                   |  |
|----|--------------------------------------------------------------|-----------------------------------|--|
|    | (a) Free-electron density is different in different metals.  |                                   |  |
|    | (b) Free-electron density in a metal depends on temperature. |                                   |  |
|    | Seebeck effect is caused                                     |                                   |  |
|    | $(A^*)$ due to both a and b                                  | (B) due to a but not due to b     |  |
|    | (C) due to b but not due to a                                | (D) neither due to a nor due to b |  |

## Ans. A

See back effect is caused due to free electron density is different in different metals or free-electron density in a metal depends on temperature.

| 6. | Consider the statement a and b in the previous question. Peltier effect is caused |                                   |  |
|----|-----------------------------------------------------------------------------------|-----------------------------------|--|
|    | (A) due to both a and b                                                           | $(B^*)$ due to a but not due to b |  |
|    | (C) due to b but not due to a                                                     | (D) neither due to a nor due to b |  |

## Sol. B

Pelties effect is caused due to free electron density is different in different metals.

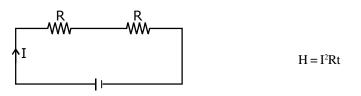
| 7. | Consider the statements a and b in question 5. Thomson effect is caused |                                   |  |
|----|-------------------------------------------------------------------------|-----------------------------------|--|
|    | (A) due to both a and b                                                 | (B) due to a but not due to b     |  |
|    | (C*) due to b but not due to a                                          | (D) neither due to a nor due to b |  |

## Sol. C

Thomson effect is caused due to free electron density in a metal depends on temperature.

## **8.** Faraday constant :

- (A) depends on the amount of the electrolyte
- (B) depends on the current in the electrolyte
- (C\*) is a universal constant
- (D) depends on the amount of charge passed through the electrolyte.


## Sol. C

Faraday constant is universal constant.

# **OBJECTIVE - II**

- 1. Two resistors having equal resistance are joined in series and current is passed through the combination. Negect any variation is resistance as the temperature changes. In a given time interval,
  - (A\*) equal amounts of thermal energy must be produced in the resistors
  - (B) unequal amounts of thermal energy may be produced
  - (C) the temperature must rise equally in the resistors
  - (D\*) the tepmerature may rise equally in the resistors

Sol. AD



Þ Equal amount of thermal energy must be produced in the resistors.

- The temperature may rise equally in the resistors.
- 2. A copper strip AB and an iron strip AC are joined at A. The junction A is maintained at 0°C and the free ends B and C are maintained at 100°C. There is potential different between

(A\*) the two ends of the copper strip(C\*) the two ends of the iron strip

(B\*) the copper end and the iron end at the junction (D\*) the free ends B and C

### Sol. ABCD

In steady state the rate of flow of that in both rods in the same.

$$\mathbf{P} \qquad \left(\frac{\mathbf{Q}}{\mathbf{t}}\right)_{1} = \left(\frac{\mathbf{Q}}{\mathbf{t}}\right)_{2}$$
$$\frac{\mathbf{K}_{1}\mathbf{A}\left(\mathbf{T}_{1} - \mathbf{T}\right)}{\mathbf{K}_{2}\mathbf{A}\left(\mathbf{T}_{1} - \mathbf{T}\right)} = \frac{\mathbf{K}_{2}\mathbf{A}\left(\mathbf{T}_{1} - \mathbf{T}\right)}{\mathbf{K}_{2}\mathbf{A}\left(\mathbf{T}_{2} - \mathbf{T}\right)}$$

$$\frac{A(T_1 - T)}{L_1} = \frac{K_2A(T - T_2)}{L_2}$$

 $\begin{array}{c} B \xleftarrow{L_1} A \xleftarrow{L_2} C \\ K_1 & K_2 \\ Copper & Iron \\ T_1 = 100^{\circ}C & T_2 = 100^{\circ}C \end{array}$ 

"K, K, is the conductivity of the metals."

So potential is different in different end (Because conductivity of metals are different)

3. The constance a and b for the pair silver-lead are 2.50 mV/°C and 0.012 mV/°(C)<sup>2</sup> respectively. For a silver-lead thermocouple with colder junction at 0°C,

(A\*) there will be no neutral temperature

(B\*) there will be no inversion temperature

(C) there will not be any thermo-emf even if the junctions are kept at different temperatures

(D) there will no current in the thermocouple even if the junction are kept at different temperature.

## Sol. AB

There will be no neutral temperature.

There will be no inversion temperature.

- 4. An electrolysis experiment is stopped and the battery terminals are reversed.
  - (A) The electrolysis will stop
  - (B) The rate of liberation of material at the electrodes will increased.
  - $(\mathbf{C}^*)$  The rate of liberation of material will remain the same
  - (D) Heat will be produce at a greater rate

#### Sol. C

An electrolysis experiment is stopped and the battery terminals are reversed. But the rate of liberation of meterial will remain the same.

5.

- The electrochemical equivalent of a material depends on
  - (A\*) the nature of the material
  - (B) the current through the electrolyte containing the material
  - (C) the amount of charge passed through the electrolyte
  - (D) the amount of this material present in the electrolyte.

## Sol. A

The electro chemical equivalent of a material depends on the nature of the material.

Electro chemical equivalent of a substance is equal to its relative atomic mass divided by its valency.