
Arithmetic Progressions

Multiple Choice Questions :

1.	. The n th term of an arithmetic progression is $a_n = 4n + 5$ then the 3rd term is :				
	A) 5	B) 9	C) 13	D) 17	
2.	2, <i>x</i> , 14 are in Ari	ithmetic progressi	ion, then the value	e of x is:	
	A) 28	B) 16	C) 7	D) 8	
3.	If the n^{th} term of	an arithmetic pro	gression $a_n = 3r$	n-2, then its 9 th term	
	A) -25	B) 5	C) -5	D) 25	
4.	The sum of first	20 natural numbe	rs is		
	A) 142	B) 210	C) 254	D) 310	
5.	In an arithmetic	progression, if a	n = 2n + 1, then	the common difference of	
	the given progre	ssion is			
	A) 0	B) 1	C) 2	D) 3	
6.	If the <i>n</i> -th term	of an arithmetic	progression is 5 <i>r</i>	n + 3, then 3rd term of the	
	arithmetic progr	ession is			
	A) 11	B) 18	C) 12	D) 13	
7.	If the n^{th} term of	an arithmetic pro	ogression $a_n = 24$	$4-3n$, then its 2^{nd} term is	
	A) 18	B) 15	C) 0	D) 2	
8.	Sum of all the fir	rst 'n' terms of eve	en natural number	r is	
	A) $n(n + 1)$	B) $n(n + 2)$	C) n ²	D) $2n^2$	
9.	In a sequence if a	$a_n = 4n^2 - 1 \text{ and}$	$1 a_n = 35 \text{ then th}$	te value of n is	
	A) 9	B) 5	C) 6	D) 3	

10. The value of $\sum 18 + \sum 19$ is					
A) 324	B) 361	C) 703	D) 743		
11.If n^{th} term of a se	equence is $\frac{n}{n+1}$, the	en the 2 nd term of	the sequence is		
A) $\frac{3}{2}$	B) $\frac{2}{3}$	C) $\frac{1}{3}$	D) $\frac{1}{2}$		
12.If $a_n = n^2 + 3$ th	en the value of a_3	is			
A) 6	B) 9	C) 12	D) 27		
13.Arithmetic mean	n of 2 and 8 is				
A) 5	B) 10	C) 16	D) 3.2		
14.If a , b and c are	in Arithmetic prog	gression then $\frac{b-a}{c-b}$	is equal to		
A) $\frac{b}{a}$	B) 0	C) 1	D) 2 <i>a</i>		
15. In an AP <i>a</i> , <i>a</i> +	d, a + 2d, a + 3d,	,what is 'a' calle	ed?		
A) common diff	erence	B) common ratio			
C) first term		D) last term			
16.In an AP a , $a + a$	$d, a + 2d, a + 3d, \dots$,what is $'d$ called	1?		
A) common diff	erence	B) common ratio			
C) first term		D) last term			
17.The next term of	f the AP: $3,1,-1,-1$	-3is			
A) 5	B) -4	C) -5	D) 0		
18.The next term of	f the AP: $\sqrt{2}$, $\sqrt{8}$, $\sqrt{8}$	$\sqrt{18}$, $\sqrt{32}$,is			
A) $\sqrt{48}$	B) √54	C) $\sqrt{50}$	D) $\sqrt{60}$		

28. What is the last term of the AP a , $a + d$, $a + 2d$, $a + 3d$, containing m terms?							
A) a + (m-1)d	A) a + (m-1)d		B) $a + md$				
C) a + (m+1)d			D) $a + (2n)$	(n + 1)	d		
29.The 30 th term of	f 10,7,4,is						
A) -87	B) 87		C) 77		D) -77		
$30.$ The 10^{th} term of	f 11,15,19,	is					
A) 40	B) 47		C) 50		D) -47		
31. The 10^{th} term of	31. The 10^{th} term of $\sqrt{2}$, $\sqrt{8}$, $\sqrt{18}$, is						
A) $\sqrt{162}$	B) √200		C) √242		D) √288		
32.The 37 th term of	f \sqrt{x} , $3\sqrt{x}$, $5\sqrt{x}$	\sqrt{x} , is	5				
A) $37\sqrt{x}$	B) $39\sqrt{x}$		C) $73\sqrt{x}$		D) $75\sqrt{x}$		
33.If the first term of	of an AP is p	and	the commor	diffe	rence is q , its 10^{th} term is		
A) $p + 9q$	B) $p + q$		C) $p + 10q$,	D) $9p + q$		
34.The 21 th term of	f the AP who	ose fir	st terms are	−3 aı	nd 4 respectively , is :		
A) 77	B) 137		C) 143		D) -143		
35.Which term of the	he AP : 92,88	8,84,8	0,is 0 ?				
A) 23	B) 32		C) 22		D) 24		
36.Which term of tl	he AP : 27,24	4,21, .	is 0 ?				
A) 8	B) 10	C) 9		D) 1	1		
37.Which term of the	he AP : 5,2, -	-1,i	s –49 ?				
A) 19	B) 15	C) 1	6	D) 20	0		

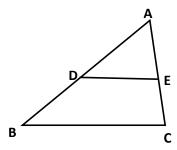
38	38.Which term of the AP : 21,42,63,84,is 210 ?							
	A) 9	B) 10 C) 13	D)	12				
39	.The 6 th term from	m the end of the A	AP: 5,2, -1, -4,.	, -31 is				
	A) -25	B) -22	C) -19	D) -16				
40	40 . The 10^{th} term from the end of the AP: 4,9,14, 254 is							
	A) 214	B) 209	C) 208	D) 204				
41	11.How many two-digit numbers are divisible by 3?							
	A) 10	B) 20	C) 30	D) 40				
42	.What is the sum	of first <i>n</i> terms of	the AP a , $a + d$	$a+2d, a+3d, \dots$?				
	$A)\frac{n}{2}[2a + (n+1)$)d]	$B) \frac{n}{2} [2a + (n-1)d]$					
	$C)^{\frac{n}{2}}[a+(n-1)a$	d]	$D)\frac{n}{2}[a+(n+1)d]$					
43	.What is the sum	of first n terms of	the AP a , $a + d$	a+2d, $a+3d$, l ?				
	$A)\frac{n}{2}[a+l]$		$B)\frac{n}{2}[2a+l]$					
	C) $n[a+l]$		D) $n[2a+l]$					
44	Find the sum of t	first 20 terms of t	ne AP 3,3,3,3					
	A)30	B) 60	C) 90	D) 120				
45	Find the sum of t	first 10 terms of t	ne AP 2,7,12					
	A)245	B) 255	C) 250	D) 235				
46	.The sum of first '	n' terms of the se	ries <i>a,</i> 3 <i>a,</i> 5 <i>a,</i> i	s				
	A)na	B) $(2n - 1)a$	C) n^2a	D) n^2a^2				

A) 5050	B) 10100	C) 15150	D) 20200					
48.What is the	48.What is the sum of first n natural numbers							
$A)\frac{n(n+1)}{2}$	B) <i>n</i> ²	C) $\frac{n(n-1)}{2}$	D) $\frac{n(n+2)}{2}$					
49.If the first t	erm of an AP is –5 a	nd common differ	rence is 2, then the sum of					
the first 6 to	erms is :							
<i>A</i>)5	B) 0	C) 6	D) -10					
50.The <i>nth</i> ter	m of an AP, the sum	of whose n terms	is S_n , is					
$A)S_n + S_{n-1}$	B) $S_n - S_{n-1}$	$C) S_n + S_{n+1}$	D) $S_n - S_{n+1}$					
51.In a flower	bed, there are 23 ro	se plants in the firs	st row, 21 in the second ,19					
in the third	, and so on. There ar	re 5 rose plants in	the last row. How many					
rows are th	ere in the flower bed	1?						
A) 4	B) 6	C) 8	D) 10					
52.In an AP, if	f(a) = 28, d = -4, n =	7, then a_n is:						
A)4	B) 5	C) 3	D) 7					
53. If $a = 10$ and $d = 10$, then first four terms will be								

C) 10,15,20,25 D) 10,18,20,30

47. Find the sum $, 2 + 4 + 6 + \dots + 200$

A)10,30,50,60 B) 10,20,30,40


54. The missing terms in AP:,13,3 are								
A)11 and 9	B) 17 and 9	C) 18 and 8	D) 18 and 9					
55.If the sum of thr	ee numbers in an	AP is 9 and th	eir product is 24, Then					
numbers are								
A)2,4,6	B) 1,3,5	C) 2,4,8	D) 2,3,4					
56.If the sum of thr	56.If the sum of three numbers in an AP is 24 and their product is 480, Then							
numbers are								
A)6,8,10	B) 6,7,11	C) 4,8,12	D) 8,8,8					
57.The sum of first	n odd natural nui	mbers is						
$A)2n^2$	B) 2n + 1	C) 2n – 1	D) n^2					
58.Find the next tw	o terms of the AP	: -10, -6, -2,						
A)4,8	B) -4,-8	C) 2,6	D) 6,10					
59.The fourth term	of the AP is 4. The	e the sum of th	ne first 7 terms is					
A)4	B) 28	C) 16 D	9) 40					
60.The common dis	fference of the AP	for which 20 ^t	^h term is 10 more than the					
18 th term is								
A)2	B) 3	C) 5 D	0) 10					

Answers							
1	2	3	4	5	6		
D	D	D	В	С	В		
7	8	9	10	11	12		
A	A	D	В	В	С		
13	14	15	16	17	18		
A	С	С	A	С	С		
19	20	21	22	23	24		
С	A	В	A	В	В		
25	26	27	28	29	30		
В	С	С	A	D	В		
31	32	33	34	35	36		
В	С	A	A	D	В		
37	38	39	40	41	42		
A	В	D	В	С	В		
43	44	45	46	47	48		
A	В	A	С	В	A		
49	50	51	52	53	54		
В	В	D	A	В	С		
55	56	57	58	59	60		
D	A	D	С	В	С		

TRIANGLES

Multiple Choice Questions:

1) D and E are the midpoints of side AB and AC of a triangle ABC, respectively and BC = 6cm. If $DE \parallel BC$, then the length of DE is

- A) 2.5 *cm*
- B) 3 cm
- C) 5 cm
- D)6 *cm*

2) The diagonals of a rhombus are 16 *cm* and 12*cm* in length. The side of rhombus in length is

- A) 20 cm
- B) 8 *cm*
- C) 10 cm
- D) 9cm

3) Corresponding sides of two similar triangles are in the ratio of 2:3. If the area of small triangle is 48 sq.cm, then the area of large triangle is:

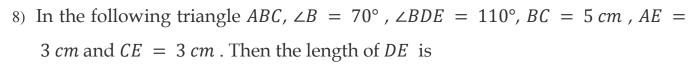
- A) 230 sq. cm
- B) 106 sq. cm
- C) 107 sq. cm
- D) 108 sq. cm

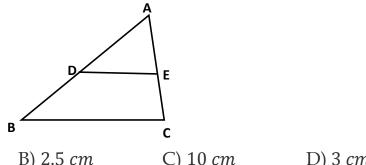
4) If triangles ABC and DEF are similar and AB = 4 cm, DE = 6 cm, EF = 9 cm and FD = 12 cm, the perimeter of triangle ABC is:

- A) 22 cm
- B) 20 cm
- C) 21 cm
- D) 18 cm

5) The height of an equilateral triangle of side 5 cm is:

- A) 4.33 cm
- B) 3.9 *cm*
- C) 5 *cm*
- D) 4 *cm*

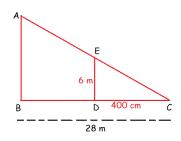

6) If ABC and DEF are two triangles and $\frac{AB}{DE} = \frac{BC}{FD}$, then the two triangles are similar if


- A) $\angle A = \angle F$
- B) $\angle B = \angle D$ C) $\angle A = \angle D$ D) $\angle B = \angle E$

7) Sides of two similar triangles are in the ratio 4: 9. Areas of these triangles are in the ratio

A) 2:3

- B) 4:9
- C) 81: 16
- D) 16:81


A) 5 cm

B) 2.5 cm

C) 10 cm

D) 3 cm

9) A vertical stick of length 6 m casts a shadow 400 cm long on the ground and at the same time a tower casts a shadow 28 *m* long. The height of the tower is.

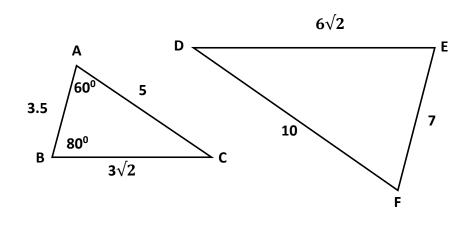
A)
$$\frac{6}{7}$$
 m

B)
$$\frac{56}{3}$$
 m

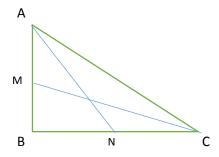
10) The area of two similar triangles are $25 cm^2$ and $81 cm^2$ respectively. The ratio of their corresponding sides is

- 11) If triangles ABC and DEF are similar 2AB = DE and BC = 8cm, then EF is equal to
 - A) 4 cm

- B) 8 *cm*
- C) 12 cm
- D) 16 cm
- 12) If ABC is an equilateral triangle such that AD is perpendicular to BC, then AD^2 is equal to
 - A) $4 CD^2$


- B) 3 CD^{2}
- C) 2 CD^2
- D) 1 CD^{2}

- 13) Two circles are always
 - A) similar but may not be congruent
- B) congruent
- C) neither similar nor congruent
- D) none of these


14) All squares are

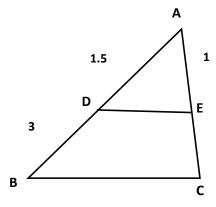
- A) similar but may not be congruent
- B) congruent
- C) neither similar nor congruent
- D) none of these

15) In the below figure, the value of $\angle D$ is

- A) 40°
- B) 60°
- C) 80°
- D) 140°
- 16) A girl of height 90 cm is walking away from the base of lamp post at a speed of $1.2 \, m/s$. If the lamp is 3.6 m above the ground, then length of her shadow after 4 seconds is
 - A) 1.2 cm
- B) 1.6 cm
- C) 1.8 cm
- D) 2 cm
- 17) If ABC is a triangle right angled at B and M, N are the mid points of AB and BC respectively, then $4(AN^2 + CM^2)$ is equal to

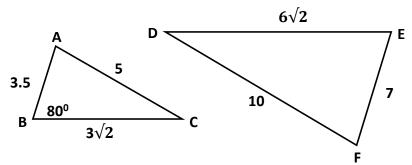
- A) $2 AC^{2}$
- B) 3 AC²
- C) $4 AC^2$
- D) $5 AC^2$

18) In the following figure *QA* and *PB* are perpendicular to *AB*. Then the length of

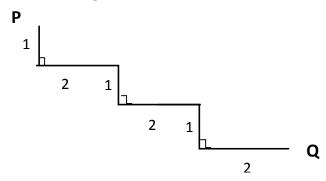

AQ is P 9 6 B

- A) 5 units
- B) 8 units

Q


- C) 9 units
- D) 15 *units*
- 19) In the triangle *ABC*, $AB = 6\sqrt{3}$ *cm*, AC = 12 *cm* and BC = 6 *cm*, then $\angle B$ is
 - A) 120°
- B) 60°
- C) 90°
- D) 45°
- 20) In the ΔABC , DE||BC, AD=1.5 cm, BD=3 cm and AE=1 cm, then the

length of *EC* is



- A) 2 cm
- B) 8 cm
- C) 12 cm
- D) 16 cm
- 21) Another name for Basic Proportionality theorem is
 - A) Pythagoras theorem
- B) Thales theorem
- C) AAA similarity criterion
- D) SAS similarity criterion

22) The similarity criterion used for the similarity of the given triangles shown below is

- A) AA
- B) SAS
- C) SSS
- D) AAA
- 23) The areas of similar triangles are $144 \ cm^2$ and $81 \ cm^2$ respectively. If the longest side of largest triangle is 36 cm, then the longest side of smaller triangle is
 - A) 9 cm
- B) 12 cm
- C) 27 cm
- D) 18 cm
- 24) In the following figure, the straight line distance between P and Q is

- A) $\sqrt{5}$
- C) $3\sqrt{5}$
- D) $3\sqrt{3}$
- 25) If \triangle ABC \sim \triangle PQR, area of \triangle ABC = 225 cm² and $\frac{AB}{PQ} = \frac{5}{3}$, then the area of \triangle PQR is

- A) $9 cm^2$ B) $45 cm^2$ C) $81 cm^2$ D) $100 cm^2$

Answers							
1	2	3	4	5			
В	С	D	D	A			
6	7	8	9	10			
В	D	В	С	A			
11	12	13	14	15			
D	В	A	A	A			
16	17	18	19	20			
В	D	D	С	A			
21	22	23	24	25			
В	С	С	С	С			

PAIR OF LINEAR EQUATION WITH TWO VARIABLES

Multiple Choice Questions:

A) 3

B) 6

1) The pair of linear equations x = 0 and y = 0 has

	A) one solution			B) two solu	tions			
	C) infinitely man	y solutions		D) no solut	ions			
2)	One equation of	a pair of depende	ent line	ear equation	is $x +$	+2y = 4. T	he secon	d
	equation can be							
	A) x + 3y = 5	B) 2x + 4y = 5	C) 2x	x + 4y = 8		D) $4x + 2$	y = 8	
3)	For what value o	f $'k'$, do the equa	ations.	x + 2y = 4 a	ind 32	x + ky = 1	2 represe	nt
	coincident lines?							
	A) 2	B) 3	C) 4		D) 6			
4)	If the pair of line	ear equations a_1x	$+ b_1 y$	$+ c_1 = 0$ an	$d a_2 x$	$+b_2y+c$	$c_2 = 0 \text{ has}$	a
	unique solution,	then						
	$A) \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$		B) $\frac{a_1}{a_2}$	$=\frac{b_1}{b_2} \neq \frac{c_1}{c_2}$				
	C) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$		D) $\frac{b_1}{b_2}$	$\neq \frac{c_1}{c_2}$				
5)	The solution of the	he pair of linear e	equatio	ons $x + y =$	5 an	dx - y =	1 is	
	A) $x = 2, y = 3$	B) $x = 3, y = 2$	C) x =	= 5, y = 1		D) $x = 3$,	y = 5	
6)	If a pair of linear	equations is inco	onsiste	ent , then the	lines	represent	ed by the	se
	equations will be							
	A) Parallel			B) coincide:	nt			
	C) intersecting or	r coincident		D) intersect	ting a	lways		
7)	The cost of 8 boo	ks and 5 pens is	Rs 370	. Represent	this li	near equa	tion in tw	O
	variables form.							
	A) $4x + 4y = 370$	0		B) $8x + 3y$	= 370)		
	C) $8x + 5y = 370$)		D) $8x + 13y$	y=3	70		
8)	If the pair of line	ar equations $x +$	2y=3	3 and $2x + 4$	y = k	are coinci	de then tl	ne
	value of <i>K</i> is							

C) - 3

D) -6

9)	9) In the equation $x + y = 7$, if $x = 3$, then the value of y is					
	A) 2	B) 4	C) 6	D) 7		
10	0) If 3x+y=10 and y	=4 ,then the valu	e of x			
	A) 0	B) 1	C) 2	D) 3		
1:	1) Which of the pai	r of linear equation	on has no solution	า		
	A) $x + 3y = 3$, 3.	x + 9y = 7	B) $2x + y = 5$, 3	x + 2y = 8		
	C) $3x + 5y = 20$,	6x + 10y = 40	D) x + y = 8, x - 3	-y=2		
12	2) For what value o	of p does the pair	of linear equation	ns given below have unique		
	solution? $4x + p$	y + 8 = 0 and $2x$	x + 2y + 2 = 0			
	A) $p \neq 8$	B) $p \neq 6$	C) $p = 4$	D) $p \neq 4$		
13	3)For what valu	p of p the s	ystem of equa	tions $4x + py + 8 = 0$ and		
	2x + 2y + 2 = 0	have no solution				
	A) p = 8	B) $p = 6$	C) $p = 4$	D) $p = 2$		
14	4) If the line given	by $x + y + 5 = 0$	= 0 and 3x + ky	y + 6 = 0 are parallel then		
	the value of <i>k</i>					
	A) 3	B) 6	C) 5	D) 1		
1!		_	rallel the equati	on of one of the lines is		
	A) 2x + 6y = 6	B) 3x + 4y = 6	C) 8x + 6y = 6	D) 2x + 3y = 5		
10	6) How many nur	mber of solution	as are there to t	he pair of linear equation		
	2x + 3y = 9 an A) one solution	d 4x + 6y = 18	B) infinite	ly many solutions		
	C) no solutions		D) two so			
	2) 110 001440110		2) 1110 30.			

- 17) The lines representing 2x + 3y 9 = 0 and 4x + 6y 18 = 0 are
 - A) Intersecting lines

B) perpendicular lines

C) parallel lines

- D) coincident lines
- 18) If $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are inconsistent pair then the ratio of their coefficients is

$$A)\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

B)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

C)
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

$$D)\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

- 19) One equation of a pair of consistent linear equation is 5x + 6y + 13 = 0, the second equation can be
 - A) 5x + 6y + 13 = 0

B)
$$10x + 12y + 16 = 0$$

C)
$$x + y + 1 = 0$$

D)
$$15x + 18y + 20 = 0$$

20)8 tables and 12 chairs together cost rupees 48000. Expressing the situation algebraically is

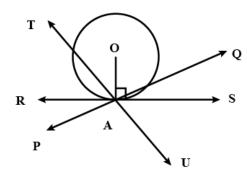
A)
$$8x + 12y + 48000 = 0$$

B)
$$8x + 12y = 48000$$

C)
$$4x + 6y = 36000$$

D)
$$4x + 4y = 12000$$

Answers						
1	2	3	4	5		
A	С	D	A	В		
6	7	8	9	10		
A	С	В	В	С		
11	12	13	14	15		
A	D	С	A	С		
16	17	18	19	20		
В	D	В	С	В		


Circles

1) Maximum number of tangents drawn to a circle from an external point is

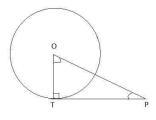
Multiple Choice Questions:

	A) 1	B) 2	C) 3	D) 4		
2)	A line which	intersects a circl	e at two points is	called		
	A) diamete	er	B) tangen	<u>.</u>		
	C) secant		D) chord			
3)	In the figure	TP and TQ are ta	angents to a circle	with centre '	O' . If $\angle POQ = 1$	10°
	then $\angle PTQ$ is	s equal to				
			110°	Q		
	A) 60°	B) 70°	C) 80°	0	D) 90°	
4)			wn to a circle fron			
	A) 7 cm	B) 12 cm	C) 15	cm	D) 24.5 <i>cm</i>	
5)	The length o	f the biggest cho	rd of a circle is 10	<i>cm</i> . The leng	th of the radius	is
	A) 10 cm		В) 5 с	cm		
	C) 20 cm		D) 25	cm		

6) In the figure the tangent is

- A) TU
- B) *PQ*

C) OA


D) RS

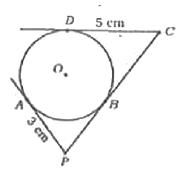
7) Number of tangents drawn to a circle at any point on the circle is

- A) 1
- B) 2

- C) 3
- D) 4

8) If the figure '0' is the centre of the circle . PT is the tangent. If $\angle TPO = 30^{\circ}$ then $\angle POT$ is

- A) 30°
- B) 60°

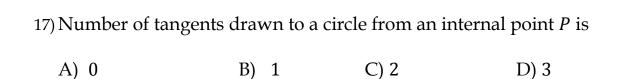

- C) 90°
- D) 120°

9) Angle between the radius and tangent at the point of intersect is

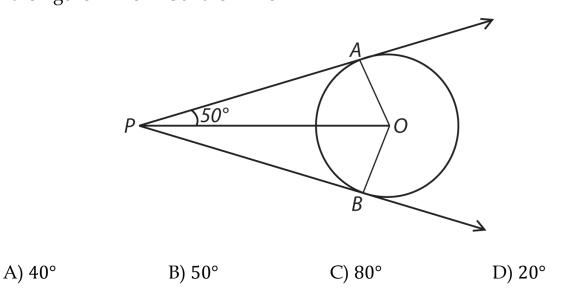
- A) 30°
- B) 60°

- C) 90°
- D) 180°

10) PA, PC and CD are tangents drawn to a circle with centre 'O'. $AP = 3 \, cm$, $CD = 5 \, cm$ then the length of PC is



- A) 3 cm
- B) 5 cm
- C) 8 cm
- D) 2 cm


11) A tangent is draw	n from a point 13	3 cm away from the co	entre of the circle whose
radius is 5 cm. th	en the length of t	he tangents is	
A) 3 cm	B) 8 <i>cm</i>	C) 12 cm	D) 17 cm
12) A tangent interse	ct the circle at	_point	
A) 1	B) 2	C) 3	D) 4
13) In the figure ∠ <i>AO</i>	$B = 120^{\circ}$ then $\angle A$	4 <i>PO</i>	
	0 0 12	A 20°	> P
A) 30°	B) 60°	C) 90°	D) 120°
14) A straight line pa	ssing through a p	point on a circle is	
A) a tangent	B) a sectant	C) a radius	D) a diameter
15) In the figure <i>BC</i> i	S		
		O C E	
A) radius	B) chord	d C) diameter	D) secant
16) Radii of two conc	entric circles are	5 <i>cm</i> and 3 <i>cm</i> respec	tively. The length of the

16) Radii of two concentric circles are 5 *cm* and 3 *cm* respectively. The length of the chord of the larger circle which touches the smaller circle is

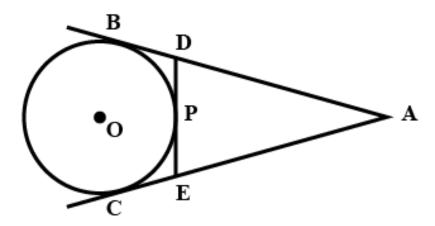
- A) 8 cm
- B) 2 cm
- C) 4 cm
- D) 16 cm

18) In the figure $\angle APO = 50^{\circ}$ then $\angle BOP =$

19) A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre at a point Q so that QQ = 12 cm, the length of PQ is

- A) 12 cm
- B) 13 cm
- C) 8.5 cm
- D) $\sqrt{119} \ cm$

20) The tangent at any point of a circle is _____to the radius through the point of contact.


A) parallel

B) perpendicular

C) tangential

D) sqaure

21) In the figure perimeter of $\triangle ADE$ is 20 cm, then the length of AB + AC is

A) 20 cm

B) 10 cm

C) 40 cm

D) 5 cm

22) If a par	allelogram circumscri	oes a circle then it is	a	
A) squ	A) square B) rectangle			
C) rho	mbus	D) none of the	e above	
23) Numb	er of parallel tangents	drawn to a circle is		
A) 3	B) 2	C) 1	D) infinite	
24) A tang	ent is drawn from a _l	point 5 <i>cm</i> away fro	m the centre of circle	whose
radius	is 3 <i>cm ,</i> then the lengtl	n of tangent is		
A) 7 c1	n B) 5 cm	C) 4 cn	D) 3 cm	
25) The ds	tance between the poi	nts of contact of para	allel tangents to a giver	ı circle
of radi	us 6 <i>cm</i> is			
A) 6 cr	n В) 12 ст	C) 9 cn	D) 18 cm	

Answers					
1	2	3	4	5	
В	С	В	A	В	
6	7	8	9	10	
D	A	В	С	С	
11	12	13	14	15	
С	A	В	A	В	
16	17	18	19	20	
A	A	A	D	В	
21	22	23	24	25	
A	С	D	С	В	

Constructions

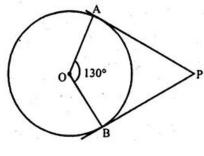
Multiple Choice Questions:

1)	To divide a line segment AB in the ratio 3:4, first a ray AX is drawn so that
	$\angle BAX$ is an acute angle and then at equal distance points are marked on the ray
	AX such that the minimum number of points. These points is

A) 3 B) 4 C) 7 D) 9

2) Two draw a pair of tangents to a circle which are inclined to each other at an angle of 60°, it is required to draw tangents at end points of those two radii of the circle. The angle between then shoud be

A) 135° B) 90° C) 60° D) 120°

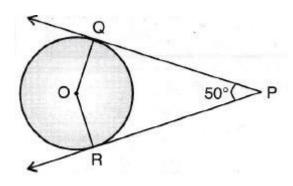

3) A pair of tangents can be constructed from a point *P* to a circle of radius 3.5 *cm* situated at a distance____from the centre

A) 5 cm B) 2 cm C) 3 cm D) 3.5 cm

4) To construct a triangle *ABC* and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle. A ray *AX* is drawn where multiple points at equal distances are located. The last point to which *B* will meet the ray *AX* will be

A) A_1 B) A_2 C) A_3 D) A_4

5) In the figure, if $\angle AOB = 130^{\circ}$, then $\angle APB =$


A) 90° B) 60° C) 50° D) 80°

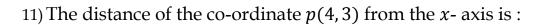
6) To divide the line segment AB of length 7.6 cm in the ratio 5:8. A ray AX is drawn first such that $\angle BAX$ forms an acute angle and then the points A_1, A_2, A_3 ...are located at equal distance on the ray AX. The point B is joined to

A) A_5 B) A_8 C) A_{10} D) A_{13}

- 7) To construct a triangle similar to given ΔPQR with it sides $\frac{9}{5}$ of the corresponding sides of a $\angle RQX$ is an acute angle . The minimum number of points to be located at equal distances on ray QX is
 - A) 5
- B) 9
- C) 10
- D) 14

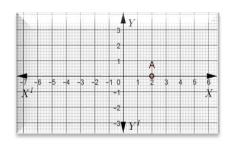
8) In the figure the measure of $\angle PQO$ is

- A) 130°
- B) 90°
- C) 65°
- D) 80°
- 9) To draw a pair of tangents to a circle which are inclined to each other at an angle of 135°, it is required to draw tangents at the end points of those two radii of the centre, the angle between which is
 - A) 45°
- B) 65°
- C) 55°
- D) 35°
- 10) A pair of tangents can be constructed from a point *P* to a circle of radius 5 *cm* situated at a distance of _____from the centre
 - A) 2.5 cm
- B) 3 *cm*
- C) 4 cm
- D) 8 cm


Answers					
1	2	3	4	5	
С	D	A	С	С	
6	7	8	9	10	
D	В	В	A	D	

Coordinate Geometry

Multiple Choice Questions:


1) The distance of the point P(3,4) from y-axis is

	A) 3 units	B) 4 units	C) 5 units	D) 7 units
2)	The distance of	the point $P(3,4)$	from <i>x</i> -axis is	
	A) 3 units	B) 4 units	C) 5 units	D) 7 units
3)	The distance bet	ween the origin a	nd co-ordinates o	of a point (x, y) is
	A) $x^2 + y^2$	$B)\sqrt{x^2-y^2}$	C) $x^2 - y^2$	$D)\sqrt{x^2+y^2}$
4)	The distance bet	ween the origin a	nd point (x, y) is	3
	$A) \sqrt{x^2 - y^2}$	$B)\sqrt{(x+y)^2}$	C) $\sqrt{(x-y)^2}$	$D)\sqrt{x^2+y^2}$
5)	If <i>P</i> is the mid-p	oint of the line se	gment joining A (1,4) and <i>B</i> (3,6) then the
	co-ordinates of I	Pis		
	A) (4,10)	B) (2,10)	C) (2,5)	D) (4,5)
6)	The co-ordinates	s of the mid-point	of the line segme	ent joining the points (2,3)
	and (4,7) are			
	A) $(-3, -5)$	B) (1,2)	C) (3,5)	D) (6,10)
7)	The distance bet	ween the co-ordi	nates of a point ()	(p,q) from the origin is
	A) $p^2 - q^2$	B) $\sqrt{p^2 - q^2}$	C) $\sqrt{p^2 + q^2}$	D) $q^2 - p^2$
8)	The distance bet	ween the origin a	nd the point (- 1	.2,5) is
	A) 13 units	B) – 12 units	C) 10 <i>units</i>	D) 5 units
9)	The distance bet	ween the origin a	nd the point (4,-	· 3) is
	A) 1 unit	B) 5 units	C) 7 units	D) −12 units
10)	The distance bet	tween the points (2, 3) and (6, 6) i	S
	A) 5 units	B) 7 units	C) 9 units	D) 10 units

- A) 2 units
- B) 3 units
- C) 4 units
- D) 5 units

12) In the given graph. The co-ordinate of point A is:

- A) (-1,0)
- B) (1,-1)
- C)(0,2)
- D) (2,0)

13) The coordinates of origin are

- A) (0,0)
- B) (0,1)
- (1,0)
- D) (1,1)

14) The coordinates of the point of intersection of x - axis and y - axis are

- A) (0,0)
- B) (0,1)
- (1,0)
- D) (1,1)

15) The distance of the point (3,4) from x - axis is

- A) 3 units
- B) 4 units
- C) 1 unit
- D) 7 units

16) The distance of the point (5, -2) from x - axis is

- A) 1 unit
- B) 2 units
- C) 3 units
- D) 4 units

17) The distance of the point (3,4) from y - axis is

- A) 3 units
- B) 4 units
- C)7 units
- D) 1 unit

18) The distance of the point (3,4) from *origin* is

- A) 3 units
- B)4 units
- C) 5 units
- D)1 unit

19) The distance of the point (α, β) from origin is

- A) $\alpha + \beta$

- B) $\alpha^2 + \beta^2$ C) $\sqrt{\alpha^2 \beta^2}$ D) $\sqrt{\alpha^2 + \beta^2}$

	20) The distance between the point (x_1 , y_1) and (x_2 , y_2) is					
A) $\sqrt{(x_2 - x_1)^2}$	$+(y_2-y_1)^2$	B) $\sqrt{(x_2 + x_1)^2}$	$+(y_2-y_1)^2$			
C) $\sqrt{(x_2 - x_1)^2}$	$+(y_2+y_1)^2$	D) $\sqrt{(x_2 + x_1)^2}$	$+(y_2+y_1)^2$			
21) If the points (0,	(0), (a, 0), (0, b) are	collinear, then				
A) a = b	B) $a + b = 0$	C) $ab = 0$	D) a \neq 0			
22) Find the ratio in	which the point (4,	8) divides the line s	egment joining the points (5,7)			
and (3,9)						
A) 1:1	B) 1:2	C) 1:2	D) 1:3			
23) Find the ratio in	which the point (4,	8) divides the line s	egment joining the points (8,6)			
and (0,10)						
A) 1:1	B) 1:2	C) 1:2	D) 1:3			
24) In which quadrant does the point $(3, -3)$ lie?						
24) In which quadi	rant does the poir	1 + (3, -3) lie?				
24) In which quada A) <i>I</i>	rant does the poir B) II	nt (3, -3) lie? C) <i>III</i>	D) IV			
	B) II	C) III	•			
A) <i>I</i> 25) The area of the	B) II triangle whose v	C) III	2,4) and (2,5) is			
A) <i>I</i> 25) The area of the A) 0 sq.units 26) The coordinate	B) II triangle whose v B) 2 sq.units s of the mid point	C) <i>III</i> ertices are (2,3), (2 C) 6 sq.units	2,4) and (2,5) is			
A) <i>I</i> 25) The area of the A) 0 sq.units	B) II triangle whose v B) 2 sq.units s of the mid point	C) <i>III</i> ertices are (2,3), (2 C) 6 sq.units	2,4) and (2,5) is D) 12 sq.units ent joining (-8,13) and (x, 7)			
A) <i>I</i> 25) The area of the A) 0 sq.units 26) The coordinate is (4,10). Find to A) 16 27) The coordinate	B) II triangle whose v B) 2 sq.units s of the mid point the value of x B) 10 s of the midpoint	C) <i>III</i> ertices are (2,3), (2 C) 6 sq.units t of the line segme	2,4) and (2,5) is D) 12 sq.units			
A) <i>I</i> 25) The area of the A) 0 sq.units 26) The coordinate is (4,10). Find to A) 16	B) II triangle whose v B) 2 sq.units s of the mid point the value of x B) 10 es of the midpoint	C) <i>III</i> ertices are (2,3), (2 C) 6 sq.units t of the line segme	2,4) and (2,5) is D) 12 sq.units ent joining ($-8,13$) and ($x,7$) D) 8 ent joining the points (x_1,y_1)			

28) The coordinates of the point which divides the join of (x_1, y_1) and (x_2, y_2) in the ratio m_1 : m_2 internally, are

A)
$$\left(\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2}\right)$$

B)
$$\left(\frac{m_1x_2-m_2x_1}{m_1-m_2}, \frac{m_1y_2-m_2y_1}{m_1-m_2}\right)$$

C)
$$\left(\frac{m_1x_2+m_2x_1}{m_1-m_2}, \frac{m_1y_2+m_2y_1}{m_1-m_2}\right)$$

D)
$$\left(\frac{m_1x_2-m_2x_1}{m_1+m_2}, \frac{m_1y_2-m_2y_1}{m_1+m_2}\right)$$

29) What is the area of triangle formed by the points (0,0), (3,0) and (0,4)?

- A) 6
- B) 12

- C) 3
- D) 24

30) The perimeter of the triangle with vertices (0,0), (3,0) and (0,4) is

A)
$$7 + \sqrt{5}$$

- B) 5
- C) 10
- D) 12

Answers 1 2 3 4 5 6 \mathbf{A} B D D \mathbf{C} \mathbf{C} **11** 7 8 9 10 **12** \mathbf{C} A B A B D **13 14 15** 16 **17** 18 \mathbf{C} \mathbf{C} A A В A 19 20 21 23 22 24 D A A A A D 25 **26** 27 28 29 30 B A A A A D

Quadratic equations

A) $\frac{1}{2}$, 4 B) 4, $-\frac{1}{2}$ C) -4, $-\frac{1}{2}$ D) $\frac{1}{2}$, -4

2) The sum of the the squares of consecutive natural numbers is 13. The quadratic

1) The roots of quadratic equation (x-4)(2x-1) = 0 are

Multiple Choice Questions:

equation of	this statement is		
A) $x^2 + x - 1$	+ 13 = 0	B) $x^2 - x - 6 =$	= 0
C) $x^2 + x -$	6 = 0	D) $x^2 - x + 2$	5 = 0
3) Standard for	rm of a quadratic equa	tion is	
A) $ax + bx^2$	-c=0	$B) ax^2 + by +$	c = 0
C) $ax^2 + bx$	+c=0	$D) bx^2 + c = 0$	а
4) The discrim	inant of the quadratic	equation $3x^2 - 5x + 2$	= 0 is
A) 1	B) 2	C) 3	D) 4
5) The factors of	of the quadratic equati	on $x^2 - 5x + 6 = 0$ are	9
A) $(x + 2)(x + 2)$	(x + 3)	B) $(x - 5)(x -$	- 6)
C) $(x-3)(x-3)$	(x-2)	D) $(x + 3)(x - 3)$	- 2)
6) One of the r	oots of the quadratic e	quation $x^2 - 81 = 0$ is	1
A) 7	B) 8	C) 9	D) 10
7) The values o	of a, b, c when the qua	dratic equation $7x^2$ –	5x = 3 is written in the
standard for	rm, are respectively,		
A) 7,3,5	B) 3, -5, 7	C) 7,3,-5	D) 7, -5, -3

A) 4	B) 3	C) 2	D) 1			
9) Which of the following	ing statement is v	wrong regarding the	quadratic equation			
$ax^2 + bx + c = 0:$						
A) Roots are equal i	$f, b^2 - 4ac = 0$					
B) Roots are not rea	$1 \text{ if, } b^2 - 4ac < 0$)				
C) Roots are real and	d different if, b^2 –	-4ac > 0				
D) Roots are equal if	$b^2 - 4ac < 0$					
10) The degree of a quad	lratic equation is					
A) 1	B) 2	C) 3	D) 4			
11) Roots of the quadrati	11) Roots of the quadratic equation $m^2 + 2m - 3 = 0$ are					
A) $-3, 1$	B) 2, -3	C) 3,-1	D) 3, –2			
12) The discriminant of a	a quadratic equati	ion is				
A) $b^2 - 2ac$	B) $b^2 - ac$	C) $b^2 - 4ac$	D) $a^2 - 4bc$			
13) Choose the quadratic	equation among	these				
A) $x(x+1) = 0$	B)	2x + 7 = y				
C) $x^2 - x(x+4) = 0$	D)	2(x-3)=0				
14) If the quadratic equa	tion $x^2 + px + 4$	= 0 has two equal roo	ts, then the value of			
'p' is						
A) 3	B) 4	C) 5	D) 6			
15) The discriminant of t	he quadratic equa	ation $5x^2 - 3x + 1 =$	0 is			
A) - 5	B) - 7	C) -9	D) -11			

8) The maximum number of roots, that a quadratic equation can have

16) If the		quadratic eq	uation $x^2 - 8$	3x + m = 0 a	re equal, then	the value
A) 4	Ŀ	B) 8		C) 12	D) 10	6
17) The standard form of a pure quadratic equation						
A) (ax + c = 0			B) $ax^{2} +$	bx = 0	
C) ($ax^2 + c = 0$			D) $ax^2 =$	bx	
18) One	of the roots of	of the equation	on $2x^2 = 50$ is			
A)	2	B) 3		C) 4	D) :	5
19) Disc	riminant of t	he quadratic	equation $3x^2$	$-2x + \frac{1}{3} =$	0 is	
A)	0	B) 1		C) 2		D) 3
20) The	standard for	m of the equa	ation $8x = -$	$-7x^2 + 3$ is		
A) 8x -	$+7x^2 - 3 = 0$)		B) $7x^2 +$	8x - 3 = 0	
C) $7x^2$	-8x-3=0)		D) $7x^2 +$	8x + 3 = 0	
			Answers			
	1	2	3	4	5	
	_					

Answers					
1	2	3	4	5	
A	С	С	A	С	
6	7	8	9	10	
С	D	С	D	В	
11	12	13	14	15	
A	С	A	В	D	
16	17	18	19	20	
D	С	D	A	В	

Introduction to Trigonmetry

Multiple Choice Questions:

1. If $13 \sin \theta = 12$ then the value of *cosec* θ is

A) $\frac{12}{5}$ B) $\frac{13}{5}$

C) $\frac{12}{13}$

D) $\frac{13}{12}$

2. Value of $\frac{1-tan^245^{\circ}}{1+tan^245^{\circ}}$ is

A) tan 90°

B) 1

C) sin 45°

D) 0

3. Value of $\cos 48^{\circ} - \sin 42^{\circ}$ is

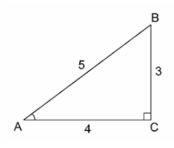
A) 1

B) 0

C) 2

D) -1

4. $10sec^2A - 10tan^2A$ is equal to


A) 1

B) 9

C) 10

D) -10

5. In the adjoining figure, the value of cos A

A) $\frac{3}{4}$

B) $\frac{4}{5}$

D) $\frac{5}{4}$

6. Value of $\tan \theta - \cot(90^{\circ} - \theta)$ is equal to

A) 1

B) 0

C) 2

D) -1

7. $1 + \cot^2(90^{\circ} - \theta)$ is equal to

A) $cos^2\theta$

B) $tan^2\theta$

C) $sec^2\theta$

D) $cose^2\theta$

8. The value of $\sin 90^{\circ} - \tan 45^{\circ}$ is

A) $\frac{1}{2}$

B) 0

C) 1

D) 2

- 9. If $\tan A = \frac{4}{3}$ then the value of cosA is
 - A) $\frac{3}{4}$
- B) $\frac{5}{3}$
- C) $\frac{3}{5}$
- D) $\frac{4}{5}$

10. The value of $\sin 90^{\circ} + \tan 45^{\circ}$ is

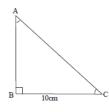
- A) 1
- B) 0
- C) 2
- D) 3

 $11.15 \cot A = 8 \text{ then } \tan A \text{ value is}$

- A) $\frac{8}{17}$ B) $\frac{15}{8}$
- C) $\frac{8}{15}$
- D) $\frac{15}{17}$

 $12.cosec^2\theta - cot^2\theta$ is equal to

- A) -1
- B) 1
- C) 0
- D) 2


13.If $5 \cos A = 3$ then the value of $\sec A$ is

- A) $\frac{3}{5}$
- B) $\frac{5}{3}$
- C) $\frac{4}{3}$
- D) $\frac{4}{5}$

 $14.\sin 60^{\circ} \times \cos 30^{\circ}$ is equal to

- A) $\frac{1}{4}$ B) $\frac{\sqrt{3}}{4}$ C) $\frac{3}{4}$
- D) $\frac{1}{2}$

15.In the figure $\angle B = 90^{\circ}$, $\angle A = \angle C$ and BC = 10 cm then the value of tan 45° is

- A) 0
- B) 1
- C) 2
- D) $\frac{1}{2}$

16.(secA + tanA)(1 - sinA) is equal to

- A) $\sec A$
- B) $\sin A$
- C) cosec A
- D) $\cos A$

 $17.\sin(90^{\circ} - \theta)$ is equal to

- A) $\sec \theta$
- B) $\cos \theta$
- C) cosec θ
- D) $\tan \theta$

18. If $sin A = \frac{1}{\sqrt{2}}$ then the magnitude of $\angle A$

- A) 90°
- B) 60°
- C) 30°
- D) 45°

19. The value of $\sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ}$ is

- A) 2
- B) 0
- C) 1
- D) -1

20. If $\tan \theta = \frac{7}{8}$ then the value of $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$ is

- A) $\frac{7}{8}$
- B) $\frac{8}{7}$
- C) $\frac{64}{49}$
- D) $\frac{49}{64}$

		Answers		
1	2	3	4	5
D	D	В	C	В
6	7	8	9	10
В	C	В	C	C
11	12	13	14	15
В	В	В	C	В
16	17	15	19	20
D	В	D	C	C

Some Applications of Trigonmetry

Multiple Choice Questions:

1)	The shadow of a	tower is equal to	its height. The su	n's altitude is	
	A) 30°	B) 45°	C) 60°	D) 90°	
2)	The angle of elev	ration of the top	of a tower from a	point on the ground which	
	is 30 m away from	m the foot of the	tower is 30° . The	length of the tower is	
	A) $\sqrt{3} m$	B) $2\sqrt{3}m$	C) $5\sqrt{3}m$	D) $10\sqrt{3}m$	
3)	The upper part o	f a tree is broken	by the wind and	makes an angle of 30° with	
	the ground. The	distance from th	e the foot of the p	point where the top touches	
	the ground is 5 <i>n</i>	The height of t	he tree is		
	A) $\sqrt{3} m$	B) $\frac{5}{\sqrt{3}}m$	C) $\frac{10}{\sqrt{3}}$ m	D) $\frac{15}{\sqrt{3}}m$	
4)	The angle forme	d by the line of	sight with the ho	orizontal when the object is	
	above the the horizontal level, that is when we raise our head to look at the				
	object is				
	A) angle of eleva	tion	B) angle of depre	ession	
	C) line of sight		D) horizontal lev	vel	
5)	A circus artist cli	mbing a 20 <i>m</i> rop	pe which is tightly	stretched and tied from the	
	top of a vertical pole to the ground. If the angle made by the rope with the				
	ground level is 3	0°. The height of	the pole is		
	A) 10 m	B) 20 m	C) 40 m	D) $\frac{20}{\sqrt{3}}$	

		В	D	D	A	A	
		1	2	3	4	5	
				Answers			

	A) 1	$0\sqrt{3} m$	B) $15\sqrt{3} \ m$	C) $12\sqrt{3}$	<i>m</i> D)	$20\sqrt{3} m$	
	is						
	angl	e of elevatior	of the top of	the tower is f	found to 60°.	The height of	the tower
10)	Fron	n a point on t	the ground w	hich is 15 m	away from tl	he foot of the	tower the
	ŕ	ne of sight		,	of the above		
	A) aı	ngle of eleva	tion	B) angle	of depressio	n	
	belo	w the horizon	ntal level is ca	alled			
9)	The angle formed by the line of sight with the horizontal when the point				ne point is		
	A) 6	0°	B) 45°	C) 30°	D)	90°	
	eleva	ation is					
8)	If a t	ower 6 <i>m</i> hig	gh casts a sha	dow of $2\sqrt{3} r$	n long on the	ground, ther	n the sun's
	A) 1	0 <i>m</i>	B) $\frac{30}{\sqrt{3}}$ m	$C)\frac{\sqrt{3}}{10} m$	D)	$30\sqrt{3} m$	
	from	the foot of t	he buildind is	s 30°. The he	ight of the bu	ilding is	
7)	The	angle of leva	ntion of the to	op of a point	on the groun	nd which is 3	30 m away
	C) re	emains same		D) none	of the above		
	A) ir	acreasing		B) decre	easing		
6)	If the length of the shadow of a tree is decreasing then the angle of elevation				evation		

7

D

6

A

8

A

9

B

10

В

Statistics

Multiple Choice Questions:

- 1) The empirical relationship between the three measures of central tendency is
 - A) 2 Median = Mode + 3 Mean
 - B) 3 Median = Mode + 2 Mean
 - C) Median = Mode + Mean
 - D) Median = Mode Mean
- 2) The median of the scores 5,8,14,16,19 and 20 is
 - A) 14
- B) 16
- C) 15
- D) 8
- 3) The modal class in the following frequency distribution is

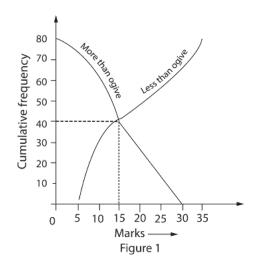
Class Interval	Frequency
5 – 15	2
15 – 25	3
25 - 35	6
35 – 45	5
45 – 55	4

- A) 15 25

- B) 25 35 C) 35 45 D) 45 55
- 4) The mean of 5,15,8,12,13,7 is
 - A) 60

- B) 70
- C) 10
- D) 30
- 5) Using this formula to find the mode of grouped data
 - A) $l \left[\frac{f_1 f_0}{2f_1 f_0 f_2} \right] \times h$

B) $l + \left[\frac{f_1 + f_0}{2f_1 - f_0 - f_0} \right] \times h$


C) $l + \left[\frac{f_1 - f_0}{2f_1 + f_0 - f_2} \right] \times h$

- D) $l + \left[\frac{f_1 f_0}{2f_1 f_0 f_2} \right] \times h$
- 6) The mode and mean of given data are 9 and 6 respectively, then the median is
 - A) 6.5
- B) 7

C) 7.5

D) 8

7) If the following figure represents "less than type" and "more than type" of ogive graph, then the median is

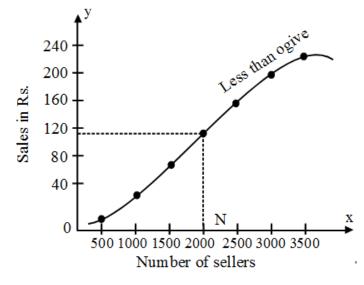
- A) 5
- B) 15
- C) 30
- D) 35

8) $\sum f_i x_i = 325$ and $\sum f_i = 25$ then the mean is

- A) 13
- B) 15

C) 10

D) 25


9) The mode of the scores 12,11,10,8,11,13,11,15,12 is

- A) 10
- B) 15

C) 11

D) 12

10) If the following figure represents less than type of ogive graph then the median is

- A) 1500
- B) 3500
- C) 3000
- D) 2000

11) The size of class intervals of 20 - 40,40 - 60,60 - 80 is

A) 10

B) 20

- C) 30
- D) 40

12) The	e mean and median of given data are 20 and 22 repectively, then the mode is					
A)	20	B) 26	C	2) 22	D) 21	
13) In a	distribution	"more than t	ype" and "le	ess than type	e" ogive are ir	itersecting
at a j	point (15,20)) then the val	ue of mediar	is		
A) 1	0	B) 20	C) 15		D) 35	
14) The	class mark o	f 30 - 45 is				
A) 3	7.5	B) 27.5	C	() 40	D) 35	
15) In th	e following	below the me	asures of cer	tral tendenc	cies are	
A)	Mean, Mode	e, standard de	eviation			
B)	Range, Med	ian, Mode				
C)	Range, Mea	n, Mode				
D)	Mean Mode,	Median				
			Answers			
	1	2	3	4	5	

Answers					
1	2	3	4	5	
В	С	В	A	D	
6	7	8	9	10	
В	В	A	С	D	
11	12	13	14	15	
В	В	С	A	D	

. . .

SURFACE AREAS AND VOLUMES

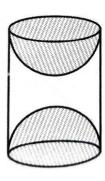
Multiple choice questions:

1.	The formula	to find total	surface area	of a cylinder is

A) $2\pi rh$

B) $2\pi r(r+h)$ C) $2\pi r^2$ D) $2\pi r^2 h$

2. The volume of two cubes is in the ratio 64: 125. The ratio of their total surface areas is


A) 16:25

B) 4: 5

C) 4: 6

D) 8:25

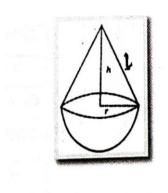
3. A wooden article is made by scooping out hemisphere from each end of the solid cylinder. The total surface area of the article is

A) $2\pi rh + 4\pi r^2$ B) $2\pi rh + \pi r^2$ C) $2\pi rh + 2\pi r^2$ D) $2\pi r(r+h)$

4. If the volume of a cone is $72 cm^3$ then the volume of a cylinder with same base and height as that of the cone is

A) 524 cm³ B) 616 cm³ C) 144 cm³ D) 216 cm³

5. Surface area of a sphere of radius 7 cm is


A) $616 cm^2$ B) $161 cm^2$ C) $49 cm^2$ D) $132 cm^2$

6. The formula to find the lateral surface area of a frustum of a cone is

A) $\pi(r_1 + r_2)h$ B) $\pi(r_1 - r_2)h$ C) $\pi(r_1 + r_2)l$ D) $\pi(r_1 - r_2)l$

- 7. If the volume of a cube is $64 cm^3$ then the length of its edges is
 - A) 8 cm
- B) 16 cm
- C) 4 cm
- D) 32 cm
- 8. If the area of the base of a cylinder is $38 cm^2$ and height 4cm, then the volume of the cylinder is
 - A) $152 cm^3$

- B) $9.5 cm^3$ C) $132 cm^3$ D) $144 cm^3$
- 9. The total surface area of the article in the given figure is

- A) $3\pi r^2 + \pi r l$ B) $2\pi r^2 + \pi r l$ C) $2\pi r h + \frac{2}{3}\pi r^3$ D) $\pi r^2 h + \pi r l$
- 10. If the volume of two spheres is in the ratio 27: 64, then the ratio of their radii is
 - A) 3:4
- B) 4:32
- C) 1:4
- D) 3:8
- 11. The formula to find volume of a sphere is

- A) $\frac{2}{3}\pi r^3$ B) $\frac{4}{3}\pi r^3$ C) $\pi r^2 h$ D) $\frac{1}{3}\pi r^3$
- 12. A cylinder of volume $156 cm^3$ is melted to form three cones with equal base and height, then the volume of each cone is
 - A) $78 cm^3$

- B) $56 cm^3$ C) $52 cm^3$ D) $156 cm^3$
- 13. The lateral surface area of a cone with base radius 5cm and slant height 7cm is
 - A) $110 cm^2$

- B) $220 cm^2$ C) $330 cm^2$ D) $440 cm^2$

	surface area of tl	he vessel is		
	A) $2\pi r^2 + \pi r l$	B) $2\pi r^2 + \pi r^2 h$	C) $2\pi r^2 + 2\pi rh$	D) $\pi r^2 + 2\pi rh$
15	5.The circumferen	ce of a circle is 88	cm, then its radiu	s is
	A) 7 cm	B) 14 cm	C) 21 cm	D) 28 cm
16	6.If the volume of	The state of a cylinder with hemisphere attached to both the electron to the shape of a cylinder with hemisphere attached to both the electron to the capsule $+2\pi rh$ B) $4\pi r^2 + \pi r^2 h$ C) $4\pi r^2 + 2\pi rh$ D) $\pi r^2 + 2\pi rh$ and of a sphere whose surface area is $616 \ cm^2$ B) $7 \ cm$ C) $9 \ cm$ D) $6 \ cm$ is in the shape of a cone mounted on a cylinder with both their radii 4cm. If the total height of the solid is 8cm and height of the cylinder is the slant height of the cone is		
	radius and heigh	nt as that of the cy	linder is	
	A) $900 \ cm^3$	B) 600 cm ³	C) 150 cm ³	D) $100 cm^3$
17	7.The formula to f	ind the volume of	a frustum of a co	one is
	A) $\frac{1}{3}\pi h(r_1^2 + r_2^2)$	$+ r_1 r_2$)	B) $\frac{1}{3}\pi h(r_1 + r_2 +$	r_1r_2)
	C) $\frac{1}{3}\pi h(r_1 + r_2 +$	$2r_1r_2$)	D) $\frac{1}{3}\pi h(r_1^2 + r_2^2)$	$r^2 + 2r_1r_2$
C) $\frac{1}{3}\pi h(r_1+r_2+2r_1r_2)$ D) $\frac{1}{3}\pi h(r_1^2+r_2^2+2r_1r_2)$ 18. A capsule is in the shape of a cylinder with hemisphere attached to both the				
	base. The total s	urface area of the	capsule	
	A) $2\pi r^2 + 2\pi rh$	B) $4\pi r^2 + \pi r^2 h$	C) $4\pi r^2 + 2\pi rh$	D) $\pi r^2 + 2\pi rh$
19	7.The radius of a s	sphere whose surf	ace area is 616 <i>cm</i>	ι^2
	A) 8 cm	B) 7 cm	C) 9 cm	D) 6 cm
20	O.A solid is in the	shape of a cone m	ounted on a cylin	der with both their radii
	equal to 4cm.If t	he total height of	the solid is 8cm ar	nd height of the cylinder is
	5cm, then the sla	ant height of the co	one is	
	A) 3 cm	B) 4 cm	C) 5 cm	D) 6 cm

14.A vessel is in the shape of a cylinder surmounted on a hemisphere. The

21. The formula to find the total surface area of a cone is					
A) 2πrl	B) $2\pi r(r+l)$	C) $\pi r^2 l$	D) $\pi r(r+l)$		
22.The slant hei	ight of a frustum of a co	one of height 8 <i>cm</i>	and base radii 10 cm		

and

- 4cm is
 A) 10 cm
 B) 8 cm
 C) 4 cm
 D) 12 cm
- 23.Two cubes with edges measuring 'a'units is placed one over the other. The total surface area of the solid is
 - A) $12a^2$ B) $10a^2$ C) $8a^2$ D) $6a^2$
- 24. The total surface area of a hemisphere with radius 7cm is
 - A) $462 cm^2$ B) $490 cm^2$ C) $420 cm^2$ D) $700 cm^2$
- 25. Three metallic spheres of radii 3cm, 4cm, 5cm are melted to form a single solid sphere. The radii of the resulting sphere is
 - A) 6 cm B) 7 cm C) 8 cm D) 12 cm

Answers					
1	2	3	4	5	
В	A	A	D	A	
6	7	8	9	10	
С	С	A	В	A	
11	12	13	14	15	
В	С	A	С	В	
16	17	15	19	20	
D	A	С	В	С	
21	22	23	24	25	
D	A	В	A	A	