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Figure 1 Carrier concentrations for metals, semimetals, and semiconductors. The semiconductor 
range may be  extended upward by increasing the impurity concentration, and the range can be ex- 
tended downward to merge eventually with the insulator range. 



CHAPTER 8: SEMICONDUCTOR CRYSTALS 

Carrier conccntrations representative of metals, semimetals, and semicon- 
ductors arc shown in Fig. 1. Semiconductors are generally classified by their 
clcctrical resistivity at room temperature, with values in the range of lo-' to 
10"hm-cm, and strongly dependent "11 temperature. At absolutc zcro a pnre, 
perfect crystal of most serr~icor~ductors will be an insulator, if we arbitrarily de- 
fine an insulator as having a resistivity above 1014 ohm-cm. 

Uevices based on semiconductors include transistors, switches, diodes, 
photovoltaic cclls, detectors, and thermistors. These may be used as single 
circuit elemcnts or as components of integrated circuits. \Ye discuss in this 
chapter the central physical features of the classical semiconductor crystals, 
particularly silicon, germanium, and galliuni arsenide. 

Some useful no~r~enclature: the se~niconductor componnds of chemical 
formula AB, where A is a trivalent elemcnt and B is a pentavalent element, are 
called II1-V (three-five) compounds. Examples are indium antimonide and 
galliuni arsenide. il'herc A is divalent and B is hexavalent, the compound is 
called a 11-VJ compo~lnd; examples are zinc sulfide and cadmium sulfide. Silicon 
and germanium are sometimes called chamond-h-pe semiconductors, because 
they have the crystal structure of diamond. Diarriond itself is more an insulator 
rather than a semiconductor. Silicon carbide SiC is a IV-IV compound. 

A highly purified se~r~ico~iductor exhibits intrinsic conductivity, as distin- 
guisl~ed fro111 the impurity conductivity of lcss pnre specimens. In the intrln- 
sic temperature range thc clcctrical properties of a semiconductor are not 
essentially modificd by impnrities in the crystal. An electronic band scheme 
leading to intrinsic conductivity is indicated in Fig. 2. The coriduction band is 
vacant at absolute zero and is separated by am energy gap Eg from the filled 
valence band. 

The band gap is the difference in energy betwccn the lowest point of the 
conduction band and the highest point of the valence band. The lowest point 
in the conduction band is called the conduction band edge; the highest 
point in the valencc band is called the valence band edge. 

As thc temperatlire is increased, electrons are thermally excited from the 
valence band to the conduction band (Fig. 3). Both the electrons in the con- 
duction band and the vacant orbitals or holes left behind in the valcnce band 
contribute to the electrical conductivity. 

BAND GAP 

Thc intrinsic condiictivity and intrinsic carrier concentrations are largely 
controlled by Edk,T, the ratio of the band gap to the temperature. When this 
ratio is large, the concentration of intrinsic carriers will be low and the 
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Figure 2 Band scheme for intrinsic conductivity in a semiconductor. At 0 K the conductivity is 
zero because all states in the valence band are filled and all states in the conduction band are va- 
cant. As the temperature is increased, electrons are thermally excited from the valence band to the 
conduction band, where they become mobile. Such carriers are called 'intrinsic." 

Temperature, K Temperature, K 

(a) (b) 

Figure 3 Intrinsic electron concentration as a function of temperature for (a) germanium and 
(b) silicon. Under intrinsic conditions the hole concentration is equal to the electron concentra- 
tion. The intrinsic concentration at a given temperature is higher in Ge than in Si because the 
energy gap is narrower in Ge (0.66 eV) than in Si (1 11 eV). (After W. C. Dnnlap.) 

conductivity will be low. Band gaps of representative semiconductors are given 
in Table 1. The best values of the band gap are obtained by optical absorption. 

In a direct absorption process the threshold of continuous optical ab- 
sorption at frequency wg measures the band gap Eg = hwg as shown in Figs. 4a 
and 5a. A photon is absorbed by the crystal with the creation of an electron 
and a hole. 

In the indirect absorption process in Figs. 4b and 5b the minimum 
energy gap of the band structure involves electrons and holes separated by a 
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CRYSTAL WITH DIRECT GAP CRYSTAL WITH INDIRECT GAP 

Onset of indirect 

fiwg E~ + fin E, .~ ,  
Photon energy Q o  -+ Photon energy fio -+ 

(a) (h) 

Figure 4 Optical absorption in pure insulators at absolute zero. In (a) the threshold determines 
the energy gap as E,:= nop. In (h) the optical absorption is weaker near the threshold: at 
Qo = E, + fin a photon is absorbed with the creation of three particles: a free electron, a free 
hole, and a phonon of energy ha. In (b) the energy E,,, marks the threshold for the creation of a 
free electron and a free hole, with no phonon involved. Such a transition is called vertical; it is 
similar to the direct transition in (a). These plots do not show absorption lines that sometimes are 
seen lying just to the low energy side of the threshold. Such lines are due to the creation of a 
hound electron-hole pair, called an exciton. 

Conduhon 
band edge band edge 

/Valence band edge Valence hand edge 

Figure 5 In (a) the lowest point of the conduction hand occurs at the same value of k as the highest 
point of the valence band. A direct optical transition is drawn vertically with no significant change of 
k, because the absorbed photon has a very small wavevector. The threshold frequency og for absorp- 
tion by the direct transition determines the energy gap E,  = fiw,. The indirect transition in (h) in- 
volves both aphoton and aphonon because the hand edges of the conduction and valence bands are 
widely separated in k space. The threshold energy for the indirect process in (h) is greater than the 
true band gap. The absorption threshold for the indirect transition between the hand edges is at 
fiw = E, + fin, where n is the frequency of an emitted phonon of wavevector K - -kc At higher 
temperatures phonons are already present; if a phonon is absorbed along with a photon, the thresh- 
old energy is fiw = Eg - fin. Note: The figure shows only the threshold transitions. Transitions occur 
generally between almost all points of the two hands for which the wavevectors and energy can he 
conserved. 



Table 1 Energy gap between the valence and conduction bands 

(i = indirect gap; d = direct gap) 

E, eV 
- -  - - 

E,, eV 
- - - 

Crystal Gap 0 K 300 K C~ystal Gap 0 K 300 K 

Diamond i j .4 
Si i 1.17 1.11 
Ge i 0.744 0.66 
aSn d 0.00 0.00 
InSb d 0.23 0.17 
1114s d 0.43 0.36 
InP d 1.42 1.27 
Gap i 2.32 2.25 
GaAs d 1.52 1.43 
GaSb d 0.81 0.68 
AlSb i 1.65 1.6 

SiC(11rx) i 3.0 
Tc d 0.33 
HgTea d 0 . 3 0  
PbS d 0.286 
PbSe i 0.165 
PhTr i 0.190 
CdS d 2.582 
CdSe d 1.840 
C dTe d 1.607 
SnTe d 0.3 
Co2O d 2.172 

'HgTe is a semimetal: the bands overlap 

substantial wavevector kc. Here a direct photon transition at the energy of the 
minimum gap cannot satisfy the requirement of conservation of wavevector, 
because photon wavevectors are negligible at the energy range of interest. But 
if a phonon of wa\~evector K and frequency Cl is created in the process, then 
we can have 

as required hy the conservation laws. The phonon energy fin will generally he 
much less than E,: a phonon even of high wavevector is an easily accessible 
source of crystal momentum because the phonon energes are characteristi- 
cally small (-0.01 to 0.03 eV) in comparison with the energy gap. If the tem- 
perature is high ellough that the necessary p l ~ o ~ ~ o ~ l  is already tl~errr~ally excited 
in the crystal, it is possible also to have a photon absorption process in which 
thc phonon is absorbcd. 

The band gap may also he dediiced from the temperatnre dependence 
of the conductivity or of the carrier concentration in the intrinsic range. The 
carrier concentration is obtained from measurements of the Hall voltage 
(Chapter 6), sometimes supplemented by conductivity measurements. Optical 
~neasurements determine whether the gap is direct or indirect. The band 
edges in Ge and in Si are connected by indirect transitions; the band edges in 
InSb and GaAs are connected by a direct transition (Fig. 6). The gap in aSn is 
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Figure 6 Optical absorption in pure indium antimonide, InSb. The transition is direct because 
both ronrlnction and valencc band edges are at the center of the Brilloilin zone, k = 0. Noticc the 
sharp threshold. (After 6. W Coheli and H. Y. Fan.) 

direct and is exactly zero; HgTe and IIgSe are semi~netals and have negative 
gaps-the conduction and valence bands overlap. 

EQUATIONS OF MOTION 

We derive the equation of motion of an electron in an energy band. We 
look at the  notion of a wave packet in an applied electric field. Suppose that 
the wave packet is made up of wavefunctions assembled near a particular 
wavevector k. The group velocity by definition is cr = d d d k .  The frequency as- 
sociated with a wavefiinction of energy E by quantum theoly is o = dii, and so 

The eflects of the crystal on the electron rnotion are contained in the disper- 
sion relation ~ ( k ) .  



The work S E  done on the electron by the electric field E in the time 
interval 6t is 

S E  = -eEvg 6t . 

We observe that 

S E  = (de/dk)Sk = fivg 6k , 

using (1). On comparing (2) with (3 )  we have 

whence fidkldt = -eE.  
We may write (4) in terms of the external force F as 

This is an important relation: in a crystal fidkldt is equal to the external force 
on the electron. In free space d(mv)/dt is equal to the force. We have not over- 
thrown Newton's second law of motion: the electron in the crystal is subject to 
forces from the crystal lattice as well as from external sources. 

The force term in ( 5 )  also includes the electric field and the Lorentz force 
on an electron in a magnetic field, under ordinary conditions where the mag- 
netic field is not so strong that it breaks down the band structure. Thus the 
equation of motion of an electron of group velocity v in a constant magnetic 
field B is 

dk 
(CGS) fi- = -sv x B ; 

dt 

where the right-hand side of each equation is the Lorentz force on the electron. 
With the group velocity v = C1gradp, the rate of change of the wavevector is 

dk e 
(CGS) - = -- Vkc X B ; 

dt fizc 

where now both sides of the equation refer to the coordinates in k space. 
We see from the vector cross-product in (7) that in a magnetic field 

an electron moves in k space in a direction normal to the direction of the gra- 
dient of the energy E ,  so that the electron moves on a surface of constant 
energy. The value of the projection kB of k on B is constant during the 
motion. The motion in k space is on a plane normal to the direction of B, and 
the orbit is defined by the intersection of this plane with a surface of constant 
energy. 
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Physical Deriuation of hk = F 

\'t! cons~der the Bloch eigenfunction $k belonging to thc cncrg): cigcn- 
value ek and wavevector k: 

The expectation valuc of the momentum of an electron in the Bloch state k is 

using Z IC(k + 6 )  j2 = 1. 
We examine the transfer of momentum between the electron and the lat- 

tice when the state k of the electron is changed to k + Ak by the application 
of an external force. We imagine an insulating crystal electrostatically neutral 
except for a single electron in the state k or an othemise empty band. 

We suppose that a wreak external force is applied for a time interval such 
that the total impulsc givcn to the entire crystal system is J = SF dt. If the 
cond~lction electron were free (mh = m), the total momentum imparted to 
the crystal system by the impulse would appear in the change of momentum of 
the conduction electron: 

The neutral cqystal suffers no net interaction with the electric field, either 
directly or indirectly through the free electron. 

If the conduction electron interacts with thc pcriodic potential of the crys- 
tal lattice, wc must have 

From the result (9) for pel we have 

Ap,, = fi,Ak + hG[(VkIC(k + G)I2) . Ak] . 
G 

(12) 

The change Apl,, in the lattice ~rlornentunr resulting from the change of 
state of the electron may be derived by an elementary physical consideration. 
An electron reflected by the lattice transfers momentum to thc lattice. If an 
incident electron with plane wave componcnt of momentum hk is reflected 
with momant~~m h(k + G), the lattice acquires the momentum -hG, as re- 
quired by momentum conservation. The momentum transfer to the lattice 
when the state $k goes over to $k+hk is 

Aplat = -fix G[(Vk/C(k + G)I2 . Ak] , 
G 

(13) 



because the portion 

Vk C(k + 6) 1' . Ak 

of each individual component of the initial state is reflected during the state 
change Ak. 

The total momentum change is therefore 

Apa + Ap~,t = J = fiAk , (15) 

exactly as for free electrons, Eq. (10). Thus from the definition of J,  we have 

* /d t  = F , (16) 

derived in (5) by a different method. A rigorous derivation of (16) by an en- 
tirely different method is given in Appendix E.  

Holes 

The properties of vacant orbitals in an othenvise filled band are important 
in semiconductor physics and in solid state electronics. Vacant orbitals in a 
band are commonly called holes, and without holes there would be no transis- 
tors. A hole acts in applied electric and magnetic fields as if it has a positive 
charge + e .  The reason is given in five stcps in the boxes that follow. 

1. k,,= -k, . 0 7 )  

The total wavevector of the electrons in a filled band is zero: Zk = 0, 
where the sum is over all states in a Brillouin zone. This result follows 
from the geometrical syrn~rletry of the Brillouin zone: every fundamental 
lattice type has symmetly under the inversion operation r+ -r about 
any lattice point; it follows that the Brillouin none of the latticc also has 
inversion symmetry. If the band is filled all pairs of orhitals k and -k are 
filled, and the total wavevector is zero. 

If an electron is missing from an orbital of wavevector k,, the total 
wavevector of the system is -k, and is attributed to the hole. This result 
is surprising: the electron is missing fro~ri k, and tllt: position of the hole 
is usually indicated graphically as situated at ke, as in Fig. 7. But the true 
wavevector of the hole is -k,, which is the wavevector of the point G 
if the hole is at E. The wavevector -k, cntcrs into sclcction rtilcs for 
photon absorption. 

The hole is an alternate description of a band with one missing elec- 
tron, and we either say that the hole has wavevector k ,  or that the band 
with one missing electron has total wavevector -k,. 
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Figure 7 Absorption of a photon of energy fio and negligible wavevector takes an electron from 
E in the filled valence band to Q in the conduction band. If k, was the wavevector of the electron 
at E, it becomes the wavevector of the electron at Q. The total wavevector of the valence band 
after the absorption is -+, and this is the wavevector we must ascribe to the hole if we describe 
the valence band as occupied by one hole. Thus kh = -k,; the wavevector of the hole is the same 
as the wavevector of the electron which remains at 6. For the entire system the total wavevector 
after the absorption of the photon is k, + = 0, so that the total wavevector is unchanged by the 
absorption of the photon and the creation of a free electron and free hole. 

2 .  = - ~ , ( k , )  . (18) 

Here the zero of energy of the valence band is at the top of the band. 
The lower in the band the missing electron lies, the higher the energy of 
the system. The energy of the hole is opposite in sign to the energy of 
the missing electron, because it takes more work to remove an electron 
from a low orbital than from a high orbital. Thus if the band is symmet- 
ric,' e,(k,) = € @ ( - k g )  = - e h ( - k ) =  -ch(kh). We construct in Fig. 8 a 
band scheme to represent the properties of a hole. This hole band is a 
helpful representation because it appears right side up. 

3. vh = v, . (19) 

The velocity of the hole is equal to the velocity of the missing electron. 
From Fig. 8 we see that Veh(kh) = Ve,(ke), SO that vh(kh) = v,(k,). 

'Bands are always symmetric under the inversion k + -k if the spin-orbit interaction is 
neglected. Even with spin-orbit interaction, bands are always symmetric if the crystal structure 
permits the inversion operation. Without a center of symmetry, but with spin-orbit interaction, the 
bands are symmetric if we compare subbands for which the spin direction is reversed. ~ ( k ,  T) = 

E(-k ,  J). See QTS, Chapter 9. 



Hole band constructed 

k 

Figure 8 The upper half of the figure shows the hole band that simulates the dynamics of a hole, 
constructed by inversion of the valence band in the origin. The wavevector and energy of the hole 
are equal, but opposite in sign, to the wavevector and energy of the empty electron orbital in the va- 
lence band. We do not show the disposition of the electron removed from the valence band at k,. 

4. rnh = -me . (20)  

We show below that the effective mass is inversely proportional to the 
curvature d2e/dk2, and for the hole band this has the opposite sign to that 
for an electron in the valence band. Near the top of the valence band m, 
is negative, so that mh is positive. 

mc, 1  
5.  f i - = e ( E + ? v h X B )  dt . (21)  

This comes from the equation of motion 

(CGS) 
mc, f i-  = - 1 
dt 

e(E X B )  (22)  

that applies to the missing electron when we substitute -kh for k, and vh 
for v,. The equation of motion for a hole is that of a particle of 
positive charge e. The positive charge is consistent with the electric 
current carried by the valence band of Fig. 9: the current is carried by 
the unpaired electron in the orbital 6: 

j = ( - e )v (G)  = ( - e ) [ - v ( E ) ]  = ev(E)  , (23)  

which is just the current of a positive charge moving with the velocity as- 
cribed to the missing electron at E. The current is shown in Fig. 10. 



8 Semiconductor Crystals 197 

Figure 9 (a) At t = 0 all states are filled except F at the top of the band; the velocity o, is zero at F 
because deldk, = 0. (b) An electric field E, is applied in the +x direction. The force on the elec- 
trons is in the -k, direction and all electrons make transitions together in the -k, direction, mov- 
ing the hole to the state E. (c) After a further interval the electrons move farther along ink space 
and the hole is now at D 

Figure 10 Motion of electrons in the conduction band and 
holes in the valence hand in the electric field E. The hole 
and electron drift velocities are in opposite directions, but their 
electric currents are in the same direction, the direction of the 
electric field. 

Effective Mass 

When we look at the energy-wavevector relation E = (h2/2m)k2 for free 
electrons, we see that the coefficient of k2 determines the curvature of E versus 
k. Turned about, we can say that llm, the reciprocal mass, determines the cur- 
vature. For electrons in a band there can be regions of unusually high curva- 
ture near the band gap at the zone boundary, as we see from the solutions in 
Chapter 7 of the wave equation near the zone boundary. If the energy gap is 
small in comparison with the free electron energy A at the boundary, the cur- 
vature is enhanced by the factor MEg. 

In semiconductors the band width, which is like the free electron energy, 
is of the order of 20 eV, while the band gap is of the order of 0.2 to 2 eV. Thus 
the reciprocal mass is enhanced by a factor 10 to 100, and the effective mass is 
reduced to 0.1-0.01 of the free electron mass. These values apply near the 
band gap; as we go away from the gap the curvatures and the masses are likely 
to approach those of free electrons. 

To summarize the solutions of Chapter 7 for U positive, an electron near 
the lower edge of the second band has an energy that may be written as 

E ( K )  = E, + (h212m,)l? ; m,lm = l/[(W/U)-11 . (24) 



Here K is the wavevector measured from the zone boundary, and me denotes 
the effective mass of the electron near the edge of the second band. An elac- 
tron near the top of the first band has the energy 

The curvature and hence the mass will bc ncgativc ncar thc top of the first 
band, hut we have introduced a mimls sign into (25) in order that the symbol 
m, for the hole mass will have a positive value-see (20) above. 

The crystal does not weigh any less if the effective mass of a carrier is less 
than the free electron mass, nor is Newton's secorld law violated for the crystal 
taken us n whole, ions plus carriers. The important point is that an electron in a 
periodic potential is accelerated relative to the lattice in an applicd clcctric or 
magnetic field as if the mass of the electron were equal to an effective mass 
which we now define. 

We differentiate the result (1) for the group velocity to obtain 

hie know from (5) that dkldt = F f i ,  whence 

If we identify fi2/(d2~/dk2) as a I I ~ ~ S S ,  the11 (27) ~ S S U I I I ~ S  the for111 of Newton's 
second law. \Ve define the effective mass m* by 

It is easy to generalize this to take account of an anisotropic clcctron cn- 
ergy surface, as for electrons in Si or Ge. Me introduce the components of the 
reciprocal effective mass tensor 

where p,  v are Cartesian coordinates. 

Physical Interpretation ofthe Effectke Mass 

How can an clrctron of mass m whcn put into a clystal respond to applicd 
fields as if the mass were m*'? It is helpfill to think of the process of Bragg re- 
flection of electron waves in a lattice. Consider the weak interaction approxi- 
mation treated in Chapter 7. Near the bottom of the lower band the orbital is 
represented quite adequately by a plar~e wave exp(ikx) with rrionielitn~ri hk; 
the wave component exp[i(k - G)r] with mome~ltum h(k-G) is sulall and 
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Beam 

v 

Figure 11 Explanation of negative effective masses which occur near, but below, a Brillouin zone 
boundary. In (a) the energy of the electron beam incident on a thin crystal is slightly too low to sat- 
isfy the condition for Bragg reflection and the beam is transmitted through the crystal. The appli- 
cation of a small voltage across the grid may, as in (b), cause the Bragg condition to be satisfied, 
and the electron beam will then he reflected from the appropriate set of crystal planes. 

increases only slowly as k is increased, and in this regon m* = m. An increase 
in the reflected component exp[i(k - G)x] as k is increased represents mo- 
mentum transfer to the electron from the lattice. 

Near the boundary the reflected component is quite large; at the bound- 
ary it becomes equal in amplitude to the forward component, at which point 
the eigenfunctions are standing waves, rather than running waves. Here the 
momentum component h(- k G )  cancels the momentum component fi($ G). 

A single electron in an energy band may have positive or negative effective 
mass: the states of positive effective mass occur near the bottom of a band be- 
cause positive effective mass means that the band has upward curvature 
(d2eldk2 is positive). States of negative effective mass occur near the top of the 
band. A negative effective mass means that on going from state k to state 
k + Ak, the momentum transfer to the lattice from the electron is larger than 
the momentum transfer from the applied force to the electron. Although k is 
increased by Ak by the applied electric field, the approach to Bragg reflection 
can gve  an overall decrease in the forward momentum of the electron; when 
this happens the effective mass is negative (Fig. 11). 

As we proceed in the second band away from the boundary, the amplitude 
of exp[i(k - G)x] decreases rapidly and m* assumes a small positive value. 
Here the increase in electron velocity resulting from a given external impulse 
is larger than that which a free electron would experience. The lattice makes 
up the difference through the reduced recoil it experiences when the ampli- 
tude of exp[i(k - G)x] is diminished. 

If the energy in a band depends only slightly on k, then the effective mass 
will be very large. That is, m*lm %- 1 when d2eldk2 is very small. The tight- 
binding approximation discussed in Chapter 9 gives quick insight into the for- 
mation of narrow bands. If the wavefunctions centered on neighboring atoms 
overlap very little, then the overlap integral is small; the width of the band 



narrow, and the effective mass large. The overlap of wavefunctions centered 
on neighboring atoms is small for the inner or core electrons. The 4f electrons 
of the rare earth metals, for example, overlap very little. 

EfJkctive Masses in Semiconductors 

In many semiconductors it has been possible to determine by cyclotron 
resonance the effective masses of carriers in the conduction and valence bands 
near the band edges. The determination of the energy surface is equivalent to 
a determination of the effective mass tensor (29). Cyclotron resonance in a 
semiconductor is carried out with centimeter wave or millimeter wave radia- 
tion at low carrier concentration. 

The current carriers are accelerated in helical orbits about the axis of a 
static magnetic field. The angular rotation frequency w, is 

eB (CGS) w = - m*c ' 

where m* is the appropriate cyclotron effective mass. Resonant absorption of 
energy from an rf electric field perpendicular to the static magnetic field 
(Fig. 12) occurs when the rf frequency is equal to the cyclotron frequency. 
Holes and electrons rotate in opposite senses in a magnetic field. 

We consider the experiment for m*/m = 0.1. At f, = 24 GHz, or w, = 

1.5 X 10" s-', we have B = 860 G at resonance. The line width is determined 
by the collision relaxation time T ,  and to obtain a distinctive resonance it is 
necessary that wcr 3 1. The mean free path must be long enough to permit the 
average carrier to get one radian around a circle between collisions. The re- 
quirements are met with the use of higher frequency radiation and higher 
magnetic fields, with high purity crystals in liquid helium. 

In direct-gap semiconductors with band edges at the center of the Bril- 
louin zone, the bands have the structure shown in Fig. 13. The conduction 
band edge is spherical with the effective mass mo: 

,,. , , , . . . , . . . . . . . . . .  
' 8 

. . 

A8 (shtiel 

- 
Figure 12 Arrangcmcnt of fields in Ef 

a cvclotron rrso~~ancr rxprrllrtrr!t 111  

a sr~~~icor~ductor. Tl~r srl!,t. oS the 
circulation is opposite for electrons 
and holes. 
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~ ~ l i t . ~ f f h ~ l ~ ~  Figure 13 Simplified view of the 
band edge structure of a direct-gap 

I semiconductor. 

Table 2 Effective masses of electrons and holes in direct-gap semiconductors 

Electron Heavy hole Light hole Split-off hole Spin-orhit 
Crystal m..Jm A. eV 

InSb 0.015 0.39 0.021 (0.11) 0.83 
InAs 0.026 0.41 0.025 0.08 0.43 
InP 0.073 0.4 (0.078) (0.15) 0.11 
GaSb 0.047 0.3 0.06 (0.14) 0.80 
GaAb 0.066 0.5 0.082 0.17 0.34 
Cu,O 0.99 - 0.58 0.69 0.13 

refcrred to the valence hand edge. The valence bands are characteristically 
threefold near the edge, with the heavy hole hh and light hole lh bands degen- 
erate at the center, and a band soh split off by the spin-orbit splitting A: 

Values of the mass parameters are given in Table 2. The forms (32)  are only 
approximate, because even close to k = O the heavy and light hole hands are 
not spherical-see the discussion below for Ge and Si. 

The perturbation theory of band edgcs (Problem 9.8) suggests that the 
electron effective mass should be proportional to the band gap, approximately, 



for a direct gap crystal. We use Tables 1 and 2 to find the fairly constant values 
mJ(mEg) = 0.063, 0.060, and 0.051 in (eV)-' for the series InSb, InAs, and 
In!?, in agreement with this suggestion. 

Silicon and Germanium 

The conduction amd valer~ce bands of ger~rlaniunl are shown in Fig. 14, 
based on a combination of theoretical and experime~ital results. The valence 
band edge in both Si and Ge is at k = 0 and is derivcd from p,, and pllz states 
of the frce atoms, as is clear from the tight-hinding approximation (Chapter 9)  
to the wa\~efiinctions. 

The p, level is fourfold degenerate as in the atom; the four states corre- 
spond to m, values & and & $. The p , ,  level is doubly degenerate, with 
mJ = ? i. The p31z states are higher in energy tllan tlie p , ,  states; the energy 
difference A is a measure of the spin-orbit interaction. 

The valence band edges are not simple. Holes ncar thc band edge are 
characterized by two cffrctivc masses, light and heavy These arise from the 
two hands formed from the p, ,  level of the atom. There is also a band formed 
from the p , ,  level, split off from the p,,, level by the spin-orbit interaction. 
The energy surfaces are not spherical, but warped (QTS, p. 271): 

~ ( k )  = ~k~ % [FI2k4 + C2(k:k; + k$: + kfki)J112 (33) 

The choice of sign distiriguishes the two Inasses. The split-off band has 
~ ( k )  = - A  + Ak2. The experiments give, in units h2/29ra, 

Si: A = -4.29 ; IBI = 0.68 ; ICI = 4.87 ; A = 0.044 eV 
Ge: A = -13.38 ; IBI = 8.48 ; ICI = 13.15 ; A = 0.29eV 

Roughly, the light and heavy holes in germanium have masses 0.043 m and 
0.34 m; in silicon 0.16 nL and 0.52 in; in diamond 0.7 rn and 2.12 rn. 

The conduction band edges in Ge are at the equivalent points L of the 
Brillouin zone, Fig. 15a. Each band edge has a spheroidal energy surfacc ori- 
ented along a (111) crystal axis, with a longitudinal mass ml = 1.59 nl and a 
transverse mass m, = 0.082 m. For a static magnetic field at an angle 0 with 
the longitudinal axis of a spheroid, the effective cyclotron mass m, is 

Results for Ce are shown in Fig. 16. 
111 silicor~ the conduction band edges are spheroids oriented along the 

equivalent (100) directions in the Brillouin zone, with mass parameters 
ml = 0.92 m and m, = 0.19 m, as in Fig. 17a. The hand edges lie along the lines 
laheled A in the zone of Fig. 15a, a little way in from the boundary points X. 

In GaAs we have A = -6.98, B = -4.5, ICI = 6.2, A = 0.341 eV. The 
band structure is shown in Fig. 1%. It has a mrect band gap with an isotropic 
conduction electron mass of 0.067 in. 



Figure 14 Calculated band structure of germanium, after C. Y. Fong. The general features are in 
good agreement with experiment. The four valence bands are shown in gray The fine structure of 
the valence band edge is caused by spin-orbit splitting. The energy gap is indirect; the conduction 
band edge is at the point (2.rr/a)(: i). The constant energy surfaces around this point are ellipsoidal. 



Figure 15 Sta~~dard labels of the symmetry points and awes of the Rrillouin zones of the fcc and 
hcc lattices. The zone centers are T. In (a) the boundary point at (2m/a)(100) is X; the houndary 
point at (2w/a)(; i f)  is L; the line 4 runs between I' and X. In (b) the corresponding sy~ribals are 
H, P, and A. 

Figure 16 Effective cyclotron mass of electrons in germa- 
nium at 4 K for magnetic field directions in a (110) planc. 
Thcrc are four independent m a s  spheroids in Ge, one 
along each [ I l l ]  axis, but viewed in the (110) plane hvo 
spheroids always appear equivalent. (After Drcssclhaus, 
Kip, and Kittel.) .4ngle in degrees in (110) plane from [001] axis 
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(a) 

Figure 17a Constant energy ellipsoids for 
electrons in silicon, drawn for mllm, = 5. 
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(b) 
Figure 17b Band structure of GaAs, after S. 6. Louie. 

INTRINSIC CARRIER CONCENTRATION 

We want the concentration of intrinsic carriers as a function of tempera- 
ture, in terms of the band gap. We do the calculation for simple parabolic band 
edges. We first calculate in terms of the chemical potential p the number of 
electrons excited to the conduction band at temperature T .  In semiconductor 
physics p is called the Fermi level. At the temperatures of interest we may 
suppose for the conduction band of a semiconductor that E - jt k,T, so that 
the Fermi-Dirac distribution function reduces to 

This is the probability that a conduction electron orbital is occupied, in an 
approximation valid when f, < 1. 

The energy of an electron in the conduction band is 

where E,  is the energy at the conduction band edge, as in Fig. 18. Here 
me is the effective mass of an electron. Thus from (6.20) the density of states 
at E is 



The concentration of electrons in the conduction band is 

whicl~ integrates to give 

The probleln is solved for when y  is known. It is useful to calculate the 
equilibrium concentration of holes p. The distribution functionfi, for lloles is 
rclatcd to the electron distribution functionf, byfh = 1 -f,, because a hole is 
the absence of an electron. Iic: have 

provided (y  - E )  % k,T. 
If the holes near the top of the valence band behave as particles with 

effcctivc mass mh, the density of hole states is given by 

where E, is the energy at the valence band edge. Proceeding as in (38) we obtain 

for the concentration p of holes in the valence band. 
Wc multiply together the expressions for n and p to obtain the equilibrium 

relation, with the energy gap E,  = E ,  - E, as in Fig. 18, 

This useful result does not involve the Ferrrii level p. At 300 K the value of rrp 
is 2.10 X 10'%m-" 2.89 x 10'%m-" and 6.53 X 10'\1n-" for the actual 
band structures or Si, Ge, and GaAs, respectively. 

Lic haw nowhcre assumed in the derivation that the material is intrinsic: 
the result holds for impnrity ionization as well. The only asslimption made is 
that the distance of the Fermi level from the edge of both bands is large in 
comparison with kBT. 

A simple kinetic argument shows why the product n p  is constant at a given 
te~nperature. Suppose that the equilibrium population of electrons and lloles 
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Figure 18 Energy scale for statistical calcula- 
tions. The Fermi distribution function is shown 
on the same scale, for a temperature kgT < Eg. 
The Fermi level p is taken to lie well within the 
band gap, as for an intrinsic semiconductor. If 
E = p, then f = i. 

is maintained by black-body photon radiation at temperature T.  The photons 
generate electron-hole pairs at a rate A(T) ,  while B(T)np is the rate of the re- 
combination reaction e + h = photon. Then 

dnldt = A(T) - B(T)np = dpldt . (44)  

In equilibrium dnldt = 0, dpldt = 0, whence np = A(T)IB(T). 
Because the product of the electron and hole concentrations is a constant 

independent of impurity concentration at a given temperature, the introduction 
of a small proportion of a suitable impurity to increase n, say, must decrease p. 
This result is important in practice-we can reduce the total canier concentra- 
tion n + p in an impure crystal, sometimes enormously, by the controlled intro- 
duction of suitable impurities. Such a reduction is  called compensation. 

In an intrinsic semiconductor the number of electrons is equal to the 
number of holes, because the thermal excitation of an electron leaves behind a 
hole in the valence band. Thus from (43)  we have, letting the subscript i de- 
note intrinsic and E,  = E, - E,, 

The intrinsic carrier concentration depends exponentially on Ep12kBT, 
where Eg is the energy gap. We set (39) equal to (42)  to obtain, for the Fermi 
level as measured from the top of the valence band, 



If m,, = m,, then p = Eg and the Fermi level is in the middle of the forbid- 
den gap. 

Intrinsic Mobility 

The mobility is the magnitude of the drift velocity of a charge carrier per 
unit electric field: 

p = ~ u I / E  . (48) 

The mobility is defined to he positive for both electrons and holes, although 
their drift velocities are opposite in a given field. By writing pe or p,, with 
subscripts for the electron or hole mobility we can avoid any confusion be- 
tween p as the chemical potential and a s  the mobility. 

The electrical conductivity is the sum of the electron and hole contributions: 

where n and p are the concentrations of electrons and holes. In Chapter 6 the 
drift velocity of a charge q was found to be u = q ~ E / m ,  whence 

where T is the collision time. 
The mobilities depend om temperature as a modest power law. The tem- 

perature dependence of the conductivity in the intrinsic region will be 
dominated by the exponential dependence exp(-Epk,T) of the carrier con- 
centration, Eq. (45). 

Table 3 gives experimental values of the mobility at room temperature. 
The mobility in SI units is expressed in m2N-s and is lo-' of the mobility in 
practical units. For most substances the values quoted are limited by the scat- 
tering of carriers by thermal phonons. The hole mohilities typically are smaller 
than the electron mobilities because of the occurrence of band degeneracy at 
the valence band edge at the zone center, thereby making possible interband 
scattering processes that reduce the mobility considerably. 

Table 3 Carrier mobilities at room temperature, in cm2N-s 

Crystal Electrons Hohs Crystal Electrons Holm 

Diamond 
Si 
Ge 
InSb 
InAs 
InP 
A1 As 
AlSb 

GaAs 
GaSb 
PbS 
PhSe 
PbTe 
AgCl 
KBr (100 K) 
SIC 
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In some crystals, particularly in ionic crystals, the holes are essentially 
immobile and get about only by thermally-activated hopping from ion to ion. 
The principal cause of this "self-trapping" is the lattice distortion associated 
with the Jahn-Teller cf'fect of degenerate states. The orbital degeneracy neces- 
sary for self-trapping is much more frequent for holcs than for electrons. 

There is a tendency for crystals with small cncrgy gaps at direct barid edges 
to havc high values of the electron mobility. Small gaps lead to small effcctive 
masses, which favor high mobilities. The highest mobility observed in a bulk 
semiconductor is 5 X lo6 cm2117-s in PbTe at 4 K, where the gap is 0.19 eV. 

IMPURITY CONDUCTIVITY 

Certain impurities and imperfections drastically affect the rlectrical prop- 
erties of a se~niconductor. The addition of boron to silicon in the proportion of 
1 boron atom to lo5 silicon atoms increases the conductivity of pure silicorl at 
room temperature by a factor of 10'. I11 a componnd semiconductor a stoichio- 
~netric deficiency of one constituent will act as an impurity; such semiconduc- 
tors are known as deficit semiconductors. The deliberate additioil of impuri- 
ties to a semiconductor is called doping. 

We consider the affect of impurities in silicon and germanium. These ele- 
ments crystallize in the diamond structure. Eacli atom lorms f'oiir covalent 
bonds, one with each of its nearest neighbors, corresponding to the chemical 
valence four. II an impurity atom of valence five, such as phosphorus, arsenic, 
or antimony, is slibstituted in the lattice in place of a normal atom, there will 
be one valcnce electron from the impurity atom left over after the four cova- 
lent bonds are establislied with the ncarest neighbors, that is, after the impii- 
rity atom has been acco~nmodated in the structure wit11 as little disturbance as 
possible. Impurity atoms that can give up an electron are called donors. 

Donor States. The structure in Fig. 19 has a positive charge on the impurity 
atom (which has lost one electron). Lattice constant studies have verified that 
the pentavalent impurities enter the lattice by substitution for normal atorns, 
and not in interstitial positions. The crystal as a wholc remains neutral because 
the electron remains in the crystal. 

The extra electron moves in the coulomb potential e / ~ r  of the impurity 
ion, where E in a co\~alent crystal is the static dielectric constant of the 
medium. The factor l / e  takes account of the reduction in the coulomb force 
between charges caused by thc electronic polarization of the mcdi~im. This 
treatment is valid for orbits large in compariso~l with the distance between 
atoms, a id  for slow motions of the electron such that thc orbital frequency is 
low in comparison with the frequency wg corrcsponding to the energy gap. 
These conditions are satisfied quite well in Ge and Si by the donor electron of 
P, As, or Sb. 



Figure 19 Charges associated with an arsenic ~mpurity atom in silicon. Arsenic has five valence 
electrons, but silicon has only four valence electrons. Thus four electrons on the arsenic form tetra- 
hedral covalent bonds similar to silicon, and the fifth electron is available for conduction. The 
arsenic atom is called a donor because when ionized it donates an electron to the conduction band. 

We estimate the ionization energy of the donor impurity. The Bohr theory 
of the hydrogen atom may be modified to take into account the dielectric 
constant of the medium and the effective mass of an electron in the periodic 
potential of the crystal. The ionization energy of atomic hydrogen is -e4m/2fi2 
in CGS and -e4m/2(4wc0fi)' in SI. 

In the semiconductor with dielectric constant E we replace e2 by e% and 
m by the effective mass me to obtain 

e4% - (13.6 
m e )  ev ; 

(CGS) Ed =-- -- 
2c2A2 € 2  

as the donor ionization energy of the semiconductor. 
The Bohr radius of the ground state of hydrogen is ti2/me2 in CGS or 

4wc0A2/me2 in SI. Thus the Bohr radius of the donor is 

€ti2 - ( 0 . 5 3 ~ )  ; (CGS) ad = -- - - 
m,e2 m$m 

The application of impurity state theory to germanium and silicon is com- 
plicated by the anisotropic effective mass of the conduction electrons. But the 
dielectric constant has the more important effect on the donor energy because 
it enters as the square, whereas the effective mass enters only as the first power. 

To obtain a general impression of the impurity levels we use me = 0.1 m 
for electrons in germanium and m, = 0.2 m in silicon. The static dielectric 
constant is given in Table 4.  The ionization energy of the free hydrogen atom is 
13.6 eV. For germanium the donor ionization energy Ed on our model is 5 meV, 
reduced with respect to hydrogen by the factor m$me2 = 4 x The 
corresponding result for silicon is 20 meV. Calculations using the correct 
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Table 4 Static relative dielectric constant of semiconductors 

Crystal Crystal E 

Diamond 
Si 
c:c 
I11SI-r 

InAs 
InP 

GaS b 
GaAs 
AlAs 
AlSb 
S i c  
c u , o  

Table 5 Donor ionization energies Ed of pentavalent 
impurities in germanium and silicon, in meV 

anisotropic niass tensor predict 9.05 meV for germanium and 29.8 meV for 
silico~i. Observed values of donor ionizatioli energics in Si and Ge are given in 
Table 5. In GaAs donors have Ed = 6 meV. 

The radius of the first Bohr orbit is increased by em/rr~, over the value 
0.53 A For the free hydrogen atom. Thc corresponding radius is (160)(0.53) = 

80 in germanium and (60)(0.,53) = 30 A in silicon. These arc large radii, so 
that donor orbits overlap at relatively low donor concentrations, compared to 
the number of host atoms. With appreciable orbit overlap, an "impurity band" 
is formed from the donor states: see the discussion of the metal-insulator tran- 
sition in Chaptcr 14. 

The semiconductor can conduct in the impurity band by electrons hop- 
pi~lg from donor to donor. The process of impurity band conduction sets in at 
lowcr donor concentratiori levels if there are also some acceptor atoms pre- 
sent, so that some of the donors are always ionized. It is easier for a donor 
electron to hop to an ionized (unoccupied) donor than to an occupied donor 
atom, in order that two electrons will not have to occnpy the same site during 
charge transport. 

Acceptor States. A hole may be bound to a trivalent impurity in germanium 
or silicon (Fig. 20), just as an electron is hound to a pentavalent impurity. 
Trivalent impurities such as B, Al, Ga, and In are called acceptors because 
they accept electrons from thc valence band i11 order to complete the covalent 
bonds with neighbor atoms, leaving holes in the band. 



Figure 20 Boron has only three valence electrons; it can complete its tetrahedral bonds only by 
taking an electron from a Si-Si bond, leaving behind a hole in the silicon valence band. The positive 
hole is then available for conduction. The boron atom is called an acceptor because when ionized 
it accepts an electron from the valence band. At 0 K the hole is hound. 

Table 6 Acceptor ionization energies E ,  of trivalent 
impurities in germanium and silicon, in meV 

When an acceptor is ionized a hole is freed, which requires an input 
of energy. On the usual energy band diagram, an electron rises when it gains 
energy, whereas a hole sinks in gaining energy. 

Experimental ionization energies of acceptors in germanium and silicon 
are given in Table 6. The Bohr model applies qualitatively for holes just as for 
electrons, but the degeneracy at the top of the valence band complicates the 
effective mass problem. 

The tables show that donor and acceptor ionization energies in Si are com- 
parable with k,T at room temperature (26 meV), so that the thermal ionization 
of donors and acceptors is important in the electrical conductivity of silicon at 
room temperature. If donor atoms are present in considerably greater num- 
bers than acceptors, the thermal ionization of donors will release electrons 
into the conduction band. The conductivity of the specimen then will be con- 
trolled by electrons (negative charges), and the material is said to be n type. 

If acceptors are dominant, holes will be released into the valence band 
and the conductivity will be controlled by holes (positive charges): the mater- 
ial is p type. The sign of the Hall voltage (6.53) is a rough test for n or p type. 
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A-type annealed 

1000/T 

Figure 21 Temperature dependence of the free carrier concentration in ultrapure Ge, after 
R. N .  Hall. The net cuncentration of electrically active irnpuritics is 2 X 10" ~ r n - ~ ,  as determined 
by Hall coefficient measurements. The rapid onset of intrinsic excitation as tlic temperature is in- 
creasrd is evident at low values of 1/T. The carrier corrccntration is closely constant between 20 K 
and 200 K. 

Another handy laboratory test is the sign of the thermoelectric potential, dis- 
cussed below. 

The numbers of holes and electrons arc equal in the intrinsic regime. The 
intrinsic electron concentration ni at 300 K is 1.7 X loi3 cm-3 in germanium 
and 4.6 X 10' cm-3 in silicon. Thc electrical resistivity of intrinsic material is 
43 ohm-cm for germanium and 2.6 X 10' ohm-crn for silicon. 

Germanium has 4.42 x 10" atoms per cm! The pi~rification of Ge has 
been carried further than any other element. The concentration of the 
comIrlon electrically active impurities-the shallow donor and acceptor 
impurities-has been reduced below 1 impurity atom in 10" Ge atoms 
(Fig. 21). For example, the concentration of I' in Ge can be reduced below 
4 X 10'' cm-! There are irnpuritics (H, 0; Si, C) whose conccntrations in Ge 
cannot usually be reduced below 10"- loL4 ~ r n - ~  , but these do not affect elec- 
trical measure~nents and therefore may be hard to detect. 

Thermal Ionization of Donors and Acceptors 

The calcl~lation of the equilibrium concentration of conduction electrons 
from ionized donors is identical with thc standard calculatio~l in statistical me- 
chanics of the thermal ionization of hydrogen atoms (TP, p. 369). If there are 
no acceptors present, the result in the low temperature limit kBT 4 Ed is 



Electron concentration, cm-3 

Figure 22 Electrical conductivity and hole concentration p calculated as a function of electron 
co~ice~~tration n for a semicondnctor at a temperature such that np = l V U  c m P  The conductivity 
is symmetrical about n = 10'" cm-! For n > lO"', the specimen is n type; for n < lo"', it is p hFe. 
We have taken p, = ph, for the niobilities. 

with no = 2 ( r n J ~ , T / 2 d ~ ) ~ / ~ ;  here Nd is the concentration of donors. To obtain 
(53) we apply the laws of chemical eqililibria to the concentration ratio 
[e][@]/[Nd], and then set [ N i l  = [el = n. Identical reslllts hold for acceptors, 
under the assumption of no donor atoms. 

If the donor and acceptor concentrations are comparable, affairs are com- 
plicated and the equations are solved by numerical methods. However, the law 
of mass action (43) requires the n p  product to be constant at a given tempera- 
ture. An excess of donors will increase the electron concentration and de- 
crease the hole concentration; the sum n + p will increase. The conductivity 
will increase as n + p if the mobilities are equal, as in Fig. 22. 

THERMOELECTRIC EFFECTS 

Consider a selniconductor maintained at a constant temperature while an 
electric field drives through it an electric current density j,. If the current is 
carried only by electrons, the charge flux is 

where p, is the electron mobility. The average energy transported by an elec- 
tron is referred to the Fermi level p, 
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where E, is the energy at the conduction band cdge. R7e refer the energy to 
the Fermi level because different conductors in contact have the saIne Fermi 
level. The energy flux that acco~npanies the charge flux is 

The Peltier coefficient II is defined hy j, = IIjy; or the energy carried 
per unit charge. For electrons, 

II,= - ( ~ , - p + $ k ~ ~ ) l e  (56)  

and is negative because the energy flux is opposite to the charge flux. For 
holes 

jq = p e p ~ E  ; j ~ ,  = p ( p  - E ,  + $kBT)phE , (57) 

where E ,  is thc energy at the valence band edge. Thus 

and is positive. Equations (56)  and (58)  are the result of our simple drift veloc- 
ity t b e o ~ ~ ;  a trcatment by the Boltzn~ann transport cqliation gives minor nu- 
merical d i f k r e n c e ~ . ~  

The absolute thermoelectric power Q is defined from the open circuit 
electric field created by a temperature gradient: 

E = Q grad T . (59)  

The Peltier coefficient II is related to the thcrmoelectric power Q by 

This is thc famous Kelvin relation of irreversible thermodjmamics. A measure- 
ment of the sign of the voltage across a scrniconductor specirr~en, one end of 
which is heated, is a rough and ready uray to tell if the speci~nen is n typc or p 
type (Fig. 23). 

SEMIMETALS 

In semimetals the conduction band edge is very slightly lower in energy 
than the valence band edge. A small overlap in energy of the cor~duction and 
valence bands leads to small concentration of holes in the valence band and of 
electrons in the conduction band (Tahle 7). Three of the semimetals, arsenic, 
antimony, and bismuth, are in group V of the periodic table. 

Their atoms associate in pairs in the crystal lattice, with two ions and ten 
valence electrons per primitive cell. The even number of valence electrons 

'A si111ple discussion of Uoltzmann transport theory is given in Appendix I?.'. 



Figure 23 Peltier coclficient of 
n and p silicon as a function uf 
ternperaturc. Above 600 K the spec- 
imens act as intlirrsic scmiconduc- 
tors. The curves are ralci~lated and 
tlre points are experimentd. (After 
T H. Gehalle and G. \V, Hull.) 

Table 7 Electron and hole concentrations in semimetals 

Semimetal n,, in ern? 

Arsenic 
Antirrrony 
Bismuth 
Graphite 

could allow these elements to be insulators. Like semiconductors, the serni- 
metals may be doped with suitable impurities to vary the relative numbers of 
holes and electrons. Their concentrations may also be varied with pressure, for 
the band edge overlap varies with pressure. 

SUPERLATTICES 

Consider a multilayer crystal of alternating thin layers of different composi- 
tions. Coherent layers on a nanometer thickness scale may be deposited by 
moleciilar-beam epitaxy or metal-organic vapor deposition, thus building up a 
sriperperio&c structure on a large scale. Systems of alternate lay.ers of GaAs and 
GaAlAs have been studied to 50 periods or more, wit11 lattice spacing A of per- 
haps 5 nm (50 A). A superperiodic crystal potential arises from the sulperperiodic 
structure and acts on the conduction electrons and holes to create new (small) 
Brillouin zoncs and mini energy bands superposed on the hand structures of the 
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constitnent layers. Here we treat the motion of an electron in a superlatticc in an 
applied electric field. 

Bloch Oscillator 

Consider a collisionless electrori in a periodic lattice in one dimension, 
with motion normal to the planes of the superlattice. The equation of motion 
in a constant electric field parallel to k is fidkldt = -eE or, for motion 
across a Brillouin zone with reciprocal lattice vector G = 27r/A, we have 
fLG = fi2?r/A = eET, where T is the period of the motion. Thc Bloch 
frequency of the motion is o, = 2v/T = eEA/fi. The electron accelerates from 
k = 0 towarcl the zonc hoiinda~y; when it reaches k = ?r/A it reappears (as by 
an Unrklapp proccss) at the zone boundaly at the identical point - d A ,  using 
the argument of Chapter 2. 

\Ve consider the motion in a rnodel systcm in real space. We suppose that 
the clcctron lies in a simple energy band of width 6,: 

The velocity in k-space (momentum space) is 

v = fi-'de/tlk = (AedfL) sin kA , (62) 

and the position or  the clectron in real space, with the initial condition z = 0 
at t = 0, is given by 

z = $0 d t  = Jclk v(k)(dtldk) = (Aedfi) Jdk(-fileE) sin kA 

=(-~~leE)(coa kA - 1) = (-e,leE)(cos(-eEAtlTc) -1) . (63) 

This confirins that the Bloch oscillation frequency in real space is w, = eEAfi.  
The motion in the periodic lattice is quite different from the motion in free 
space, for which the acceleration is constant. 

Zener Tunneling 

Thus far we have considered the effect of the electrostatic potential -eEz 
(or -eEnA) on onc energy band; the potential tilts the urhole band. Higher 
bands will also he tilted similarly, creating the possibility of crossing between 
ladder levcls of different bands. The interaction hctween different band levels at 
thc same energy opens the possibility for an electron in one band at n to cross to 
another band at n'.  This field-indnced interband tunneling is an example of 
Zener breakdown, met most often at a single junction as in the Zener diode. 

SUMMARY 

The motion of a wave packet centered at wavevector k is described by 
F = f&dt, where F is the applied force. The motion in real space is ob- 
tained from the group vclocity vg = fi"Vkc(k). 



The smaller the energy gap, the smaller is the effective mass Im* ncar thc  

A crystal with one hole has one empty electron state in an otherwise filled 
bald. The properties of the hole are those of the N - 1 electrons in this 
band. 
(a) If the  electron is lnissilig from the state of wavevector k, ,  then the 
wavevector of the hole is k,, = -k,. 
(h)  The rate of change of kh In an applied ficld rcquirrs thc assignmrnt of a 
positive charge to the hole: eh = e = -e,. 
(c) If u, is the  velocity an electron would have in the state k,, then the veloc- 
ity to be  ascribed to  the hole of wavevector kh = - k, is uh = u,. 
(d)  The energy of the hole referred to  zero for a filled band is positive and is 

eh(kh)= - 4 , ) .  
(e)  The effective mass of a hole is opposite to  the effective mass of an elec- 
tron at  the  same point on thc e n e r g  hand: mh = -me. 

Problems 

1. Impurity orbits. Indium antilnonidc has Eg = 0.23 eV; rlielectric constant E = 18; 
electron cffcctivc mass 7n, = 0.015 m. (:alcnlate (a) the donor ioniratiorr enerc;  
(b) thc radius of thc ground state orbit. (c) At what miriimilnr donor corrcer~tratior~ 
will appreciable overlap effects hetween the orbits of acljacerrt impurity atorrls 
occur? This overlap tends to prodllce an in~pnrity band-a havrd of energy levels 
which permit cond~~ctivity presi~mabl~ by a hopI>ing rr~ecl~ariisrn in u r l~ id~  electroris 
iiiove froin one inipurity site to a neighboring ionized impurity site. 

2 .  Ionization of donors. Irr a particular semiconductor there are 1013 donors/cm3 
wit11 a11 iomizatio~r energy Ed of 1 meV and an effective mass 0.01 m. (a) Estimate the 
coricrrrtratio~l of curlduction electrons at 4 K. (b) What is the value of the Hall coeff- 
icelit? Assurne no acceptor atoms are present and that Eg % kgT.  

3 .  Hall effect with two carrier types. Assuming concentration n; p; relaxation times 
T,, .rjb; and masses m,, mi,, show that the Hall coefficient in the drift velocity approxi- 
mation is 

where b = p,/CLI, is the mobility ratio. In the derivation neglect terms of order B2. In 
SI we drop the c. Hint: In the presence of a longitudinal electric field, find the 
transverse electric field such that the transverse current vanishes. The algebra may 
seem tedious, but the result is worth the trouble. Use (6.64), but for two carrier 
types; neglect (w,:~)' in comparison with w,:~. 
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4 .  Cyclotron resonance for a spheroidal energy surface. Consider the energy 
surface 

whcrc m, is the transverse mass parameter and rrLl is the longitudinal mass parame- 
ter. A surface on which c(k) is constant will be a spheroid. Use the equation of mo- 
tion (6). with v = fi- lVkc. to show that w, = eBl(mlm,)'"c when the static magnetic 
field B lics in the xy plane. This result agrees with (34) when 0 = d 2 .  The rcsult is 
in CGS: to obtain SI, omit the c. 

5.  Magnetoresistance with two carrier types. Problerri 6.9 shows thal in the drift 
velocity approximation the motion of charge carriers in electric and magnetic ficlds 
does not lead to transverse magnetoresistance, The result is different with two car- 
rier types. Considcr a conductor with a concentration n of electro~is of effective 
n ~ w s  me anrl rclaxation time 7,; and a concentration p of holes of effective 
rnws 7nh and relaxation time rh. Treat the limit of \rely strong magnetic fields, w , ~  * 1. 
(a) Slrow in this limit that uyr = (n  - p)ec/B. (h) Show that the Hall field is given by, 
with Q = wc7, 

which vanishes if n = p. (c) Show that the effective conductivity in the x direction is 

If n = p, u B-'. If 71 + p ,  u saturatcs in strong fields; that is, it approaches a limit 
independent ofB as B + m. 


