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Conduction electron concentration, cm™

Figure 1 Carrier concentrations for metals, semimetals, and semiconductors. The semiconductor
range may be extended upward by increasing the impurity concentration, and the range can be ex-
tended downward to merge eventually with the insulator range.
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CHAPTER 8: SEMICONDUCTOR CRYSTALS

Carrier concentrations representative of metals, semimetals, and semicon-
ductors are shown in Fig. 1. Semiconductors are generally classified by their
clectrical resistivity at room temperature, with values in the range of 1072 to
10° ohm-cm, and strongly dependent on temperature. At absalute zcro a pure,
perfect crystal of most semiconductors will be an insulator, if we arbitrarily de-
fine an insulator as having a resistivity above 10'* ohm-cm.

Devices based on scmiconductors include transistors, switches, diodes,
photovoltaic cclls, detectors, and thermistors. These may be used as single
circuit elements or as components of integrated circuits. We discuss in this
chapter the central physical features of the classical semiconductor crystals,
particularly silicon, germanium, and gallium arsenide.

Some useful nomenclature: the semiconductor compounds of chemical
formula AB, where A is a trivalent element and B is a pentavalent element, are
called 111-V (three-five) compounds. Examples are indium antimonide and
gallium arsenide. Wherc A is divalent and B is hexavalent, the compound is
called a II-VI compound; examples are zinc sulfide and cadmium sulfide. Silicon
and germanium are sometimes called diamond-type semiconductors, because
they have the crystal structure of diamond. Diamond itself is more an insulator
rather than a semiconductor. Silicon carbide SiC is a IV-IV compound.

A highly purified semiconductor exhibits intrinsic conductivity, as distin-
guished from the impurity conductivity of less pure specimens. In the intrin-
sic temperature range the clectrical properties of a semiconductor are not
essentially modified by impurities in the crystal. An electronic band scheme
leading to intrinsic conductivity is indicated in Fig. 2. The conduction band is
vacant at absolute zero and is separated by an energy gap E, from the filled
valence band.

The band gap is the difference in energy between the lowest point of the
conduction band and the highest point of the valence band. The lowest point
in the conduction band is called the conduction band edge; the highest
point in the valencc band is called the valence band edge.

As the temperature is increased, electrons are thermally excited from the
valence band to the conduction band (Fig. 3). Both the electrons in the con-
duction band and the vacant orbitals or holes left behind in the valence band
contribute to the electrical conductivity.

BAND GAP

The intrinsic conductivity and intrinsic carrier concentrations are largely
controlled by E./kyT, the ratio of the band gap to the temperature. When this
ratio is large, the concentration of intrinsic carriers will be low and the
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Figure 2 Band scheme for intrinsic conductivity in a semiconductor. At 0 K the conductivity is
zero because all states in the valence band are filled and all states in the conduction band are va-
cant. As the temperature is increased, electrons are thermally excited from the valence band to the
conduction band, where they become mobile. Such carriers are called “intrinsic.”
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Figure 3 Intrinsic electron concentration as a function of temperature for (a) germanium and
(b) silicon. Under intrinsic conditions the hole concentration is equal to the electron concentra-
tion. The intrinsic concentration at a given temperature is higher in Ge than in Si because the
energy gap is narrower in Ge (0.66 eV) than in Si (1.11 eV). (After W. C. Dunlap.)

conductivity will be Jow. Band gaps of representative semiconductors are given
in Table 1. The best values of the band gap are obtained by optical absorption.

In a direct absorption process the threshold of continuous optical ab-
sorption at frequency w, measures the band gap E, = #iw, as shown in Figs. 4a
and 5a. A photon is absorbed by the crystal with the creation of an electron
and a hole.

In the indirect absorption process in Figs. 4b and 5b the minimum
energy gap of the band structure involves electrons and holes separated by a
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CRYSTAL WITH DIRECT GAP CRYSTAL WITH INDIRECT GAP
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Figure 4 Optical absorption in pure insulators at absolute zero. In (a) the threshold determines
the energy gap as E = hwg. In (b) the optical absorption is weaker near the threshold: at
hw = E, + h{) a photon is absorbed with the creation of three particles: a free electron, a free
hole, and a phonon of energy #Q. In (b) the energy E,,, marks the threshold for the creation of a
free electron and a free hole, with no phonon involved. Such a transition is called vertical; it is
similar to the direct transition in (a). These plots do not show absorption lines that sometimes are
seen lying just to the low energy side of the threshold. Such lines are due to the creation of a
bound electron-hole pair, called an exciton.

Conduction Conduction
band edge band edge
Valence band edge Valence band edge

(@) (b)

Figure 5 In (a) the lowest point of the conduction band occurs at the same value of k as the highest
point of the valence band. A direct optical transition is drawn vertically with no significant change of
k, because the absorbed photon has a very small wavevector. The threshold frequency , for absorp-
tion by the direct transition determines the energy gap E, = fiw,. The indirect transition in (b) in-
volves both a photon and a phonon because the band edges of the conduction and valence bands are
widely separated in k space. The threshold energy for the indirect process in (b) is greater than the
true band gap. The absorption threshold for the indirect transition between the band edges is at
fiw = E, + KQ, where Q is the frequency of an emitted phonon of wavevector K = —kg_ At higher
temperatures phonons are already present; if a phonon is absorbed along with a photon, the thresh-
old energy is iw = E, — #i{). Note: The figure shows only the threshold transitions. Transitions occur
generally between almost all points of the two bands for which the wavevectors and energy can be
conserved.
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Table 1 Energy gap between the valence and conduction bands
(i = indirect gap; d = direct gap)

E, eV E, eV
Crystal Gap 0K 300 K Crystal Gap 0K 300K
S S S S eSS e
Diamond i 5.4 SiC(hex) i 3.0 —
Si i 1.17 1.11 Te d 0.33 —
Ge i 0.744  0.66 HgTe® d —0.30
aSn d 0.00 0.00 PbS d 0.286 0.34-0.37
InSb d 0.23 0.17 PbSe i 0.165 0.27
InAs d 0.43 0.36 PbTe i 0.190 0.29
InP d 1.42 1.27 Cds d 2.582 2.42
GaPl i 2.32 2.25 CdSe d 1.840 1.74
GaAs d 1.52 1.43 CdTe d 1.607 1.44
GaSh d 0.81 0.68 SnTe d 0.3 0.18
AlSb i 1.65 1.6 Cu,O d 2.172 —

Lo S R R T e e S e
*HgTe is a semimetal; the bands overlap.

substantial wavevector k,. Here a direct photon transition at the energy of the
minimum gap cannot satisfy the requirement of conservation of wavevector,
because photon wavevectors are negligible at the energy range of interest. But
if a phonon of wavevector K and frequency () is created in the process, then
we can have

k(photon) =k, + K=0 ; fio = E, + £ ,

as required by the conservation laws. The phonon energy £} will generally be
much less than E,: a phonon even of high wavevector is an easily accessible
source of crystal momentum because the phonon energies are characteristi-
cally small (~0.01 to 0.03 eV) in comparison with the energy gap. If the tem-
perature is high enough that the necessary phonon is already thermally excited
in the crystal, it is possible also to have a photon absorption process in which
the phonon is absorbed.

The band gap may also he deduced from the temperature dependence
of the conductivity or of the carrier concentration in the intrinsic range. The
carrier concentration is obtained from measurements of the Hall voltage
(Chapter 6), sometimes supplemented by conductivity measurements. Optical
measurements determine whether the gap is direct or indirect. The band
edges in Ge and in Si are connected by indirect transitions; the band edges in
InSb and GaAs are connected by a direct transition (Fig. 6). The gap in aSn is
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Figure 6 Optical absorption in pure indium antimonide, InSb. The transition is direct because
both condnction and valence band edges are at the center of the Brillonin zone, k = 0. Notice the
sharp threshold. (After G. W. Gobeli and H. Y. Fan.)

direct and is exactly zero; HgTe and HgSe are semimetals and have negative
gaps—the conduction and valence bands overlap.

EQUATIONS OF MOTION

We derive the equation of motion of an electron in an energy band. We
look at the motion of a wave packet in an applied electric field. Suppose that
the wave packet is made up of wavefunctions assembled near a particular
wavevector k. The group velocity by definition is v, = dw/dk. The frequency as-
sociated with a wavefunction of energy € by quantum theory is w = €/f, and so

v, = A" de/dk or v=h""V,ek) . (1)

The effects of the crystal on the electron motion are contained in the disper-
sion relation e(k).
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The work 8¢ done on the electron by the electric field E in the time
interval 8¢ is

8e = —ekv, 8t . (2)
We observe that
Se = (de/dk)8k = fiv, 8k | (3)
using (1). On comparing (2) with (3) we have
8k = —(eE/h)st (4)

whence #dk/dt = —eE.
We may write (4) in terms of the external force F as

dk _
R =F . (5)

This is an important relation: in a crystal fidk/dt is equal to the external force
on the electron. In free space d(mv)/dt is equal to the force. We have not over-
thrown Newton’s second law of motion: the electron in the crystal is subject to
forces from the crystal lattice as well as from external sources.

The force term in (5) also includes the electric field and the Lorentz force
on an electron in a magnetic field, under ordinary conditions where the mag-
netic field is not so strong that it breaks down the band structure. Thus the
equation of motion of an electron of group velocity v in a constant magnetic
field B is

(CCS) #%E=-LvxB

where the right-hand side of each equation is the Lorentz force on the electron.
With the group velocity v = A7 'grad,e, the rate of change of the wavevector is

dk _ _ e

CO8) & =

VkEXB;

where now both sides of the equation refer to the coordinates in k space.

We see from the vector cross-product in (7) that in a magnetic field
an electron moves in k space in a direction normal to the direction of the gra-
dient of the energy e, so that the electron moves on a surface of constant
energy. The value of the projection kg of k on B is constant during the
motion. The motion in k space is on a plane normal to the direction of B, and
the orbit is defined by the intersection of this plane with a surface of constant
energy.
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Physical Derivation of ik=F

We consider the Bloch eigenfunction iy belonging to the cnergy cigen-
value €, and wavevector k:

=2, Ck + G)esplilk + G) - r] . (8)

G

The expectation valuc of the momentum of an electron in the Bloch state k is

P, = (k|-inV|k) = X Ak + G)|Ck + G2 =fik + 3, G|Ck + G)[) ,
G G
(9)

using 2|C(k + G) P=1

We examine the transfer of momentum between the electron and the lat-
tice when the state k of the electron is changed to k + Ak by the application
of an external force. We imagine an insulating crystal electrostatically neutral
except for a single electron in the state k of an otherwise empty band.

We suppose that a weak external forcc is applied for a time interval such
that the total impulsc given to the entire crystal system is J = [F dt. If the
conduction electron were free (m* = m), the total momentum imparted to
the crystal system by the impulse would appear in the change of momentum of
the conduction electron:

J = Aptot = APUI = hAk . (10)

The neutral crystal suffers no net interaction with the electric field, either
directly or indirectly through the free electron.

If the conduction electron interacts with the periodic potential of the crys-
tal lattice, we must have

J = Ap,, = Api, + Ap,; . (11)

From the result (9) for p, we have
Ap, = hAk + Y AG(Vi[Ck + G)P) - AK] . (12)
G

The change Apy,, in the lattice momentum resulting from the change of
state of the electron may be derived by an elementary physical consideration.
An electron rellected by the lattice transfers momentum to the lattice. If an
incident electron with plane wave component of momentum 7k is reflected
with momentum #(k + G), the lattice acquires the momentum —#G, as re-
quired by momentum conservation. The momentum transfer to the lattice
when the state yy, goes over to ¢ Ay is

Ap, = =42, G[(Vi|C(k + G)[* - AK] , (13)
G
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because the portion
VilCk + G)|* - Ak (14)

of each individual component of the initial state is reflected during the state
change Ak.

The total momentum change is therefore
Ap, + Apy,, =J = hAk | (15)
exactly as for free electrons, Eq. (10). Thus from the definition of §, we have

fidk /di = F | (16)

derived in (5) by a different method. A rigorous derivation of (16) by an en-
tirely different method is given in Appendix E.

Holes

The properties of vacant orbitals in an otherwise filled band are important
in semiconductor physics and in solid state electronics. Vacant orbitals in a
band are commonly called holes, and without holes there would be no transis-
tors. A hole acts in applied electric and magnetic fields as if it has a positive
charge +e. The reason is given in five steps in the boxes that follow.

1. k.= -k . (17)

The total wavevector of the electrons in a filled band is zero: 2k = 0,
where the sum is over all states in a Brillouin zone. This result follows
from the geometrical symmetry of the Brillouin zone: every fundamental
lattice type has symmetry under the inversion operation r— —r about
any lattice point; it follows that the Brillouin zone of the lattice also has
inversion symmetry. If the band is filled all pairs of orbitals k and —k are
filled, and the total wavevector is zero.

If an electron is missing from an orbital of wavevector k,, the total
wavevector of the system is —k, and is attributed to the hole. This result
is surprising: the electron is missing from k, and the position of the hole
is usually indicated graphically as situated at k,, as in Fig. 7. But the true
wavevector k; of the hole is —k,, which is the wavevector of the point G
if the hole is at E. The wavevector —k, cnters into sclection rules for
photon absorption.

The hole is an alternate description of a band with one missing elec-
tron, and we either say that the hole has wavevector —k, or that the band
with one missing electron has total wavevector —k,.




8 Semiconductor Crystals

Conduction band

fw

k,

Electron removed

Figure 7 Absorption of a photon of energy % and negligible wavevector takes an electron from
E in the filled valence band to Q in the conduction band. If k, was the wavevector of the electron
at E, it becomes the wavevector of the electron at Q. The total wavevector of the valence band
after the absorption is —k,, and this is the wavevector we must ascribe to the hole if we describe
the valence band as occupied by one hole. Thus k, = —k,; the wavevector of the hole is the same
as the wavevector of the electron which remains at G. For the entire system the total wavevector
after the absorption of the photon is k, + k; = 0, so that the total wavevector is unchanged by the
absorption of the photon and the creation of a free electron and free hole.

2. Eh(kh) = _Ee(ke) . (18)

Here the zero of energy of the valence band is at the top of the band.
The lower in the band the missing electron lies, the higher the energy of
the system. The energy of the hole is opposite in sign to the energy of
the missing electron, because it takes more work to remove an electron
from a low orbital than from a high orbital. Thus if the band is symmet-
ric,' g,(k,) = €,(—=k,) = —&,(—k,)= —e,(k;). We construct in Fig. 8 a
band scheme to represent the properties of a hole. This hole band is a
helpful representation because it appears right side up.

3. v, =V, . (19)

The velocity of the hole is equal to the velocity of the missing electron.
From Fig. 8 we see that Ve, (k,) = Ve,(k,), so that v,(k;) = v,(k,).

'Bands are always symmetric under the inversion k — —k if the spin-orbit interaction is
neglected. Even with spin-orbit interaction, bands are always symmetric if the crystal structure
permits the inversion operation. Without a center of symmetry, but with spin-orbit interaction, the
bands are symmetric if we compare subbands for which the spin direction is reversed: ek, T) =

e(—k, L) See QTS, Chapter 9.
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Hole band constructed
Wlth kh = —l(g and
6,k - —,(k,), to
simulate dynamics
of a hole.

Figure 8 The upper half of the figure shows the hole band that simulates the dynamics of a hole,
constructed by inversion of the valence band in the origin. The wavevector and energy of the hole
are equal, but opposite in sign, to the wavevector and energy of the empty electron orbital in the va-
lence band. We do not show the disposition of the electron removed from the valence band at k,.

4. ' my = —m, . (20)

We show below that the effective mass is inversely proportional to the
curvature d%/dk?, and for the hole band this has the opposite sign to that
for an electron in the valence band. Near the top of the valence band m,
is negative, so that my, is positive.

dkh
dt

5 A= (B + 1y, xB) . (21)

This comes from the equation of motion

% = —¢(E +2v, X B) (22)

that applies to the missing electron when we substitute —k; for k, and v,
for v,. The equation of motion for a hole is that of a particle of
positive charge e. The positive charge is consistent with the electric
current carried by the valence band of Fig. 9: the current is carried by
the unpaired electron in the orbital G:

(CGS)

j = (=e)v(G) =(=e)[-V(E)] = ev(E) , (23)

which is just the current of a positive charge moving with the velocity as-
cribed to the missing electron at E. The current is shown in Fig. 10.
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Figure 9 (a) Att = 0 all states are filled except F at the top of the band; the velocity v, is zero at F
because de/dk, = 0. (b) An electric field E, is applied in the +x direction. The force on the elec-
trons is in the —k, direction and all electrons make transitions together in the —k, direction, mov-
ing the hole to the state E. (c) After a further interval the electrons move farther along in k space
and the hole is now at D.

Figure 10 Motion of electrons in the conduction band and
holes in the valence band in the electric field E. The hole
and electron drift velocities are in opposite directions, but their
electric currents are in the same direction, the direction of the
electric field.

Effective Mass

When we look at the energy-wavevector relation € = (A%2m)k* for free
electrons, we see that the coefficient of k? determines the curvature of € versus
k. Turned about, we can say that 1/m, the reciprocal mass, determines the cur-
vature. For electrons in a band there can be regions of unusually bhigh curva-
ture near the band gap at the zone boundary, as we see from the solutions in
Chapter 7 of the wave equation near the zone boundary. If the energy gap is
small in comparison with the free electron energy A at the boundary, the cur-
vature is enhanced by the factor A/E,.

In semiconductors the band width, which is like the free electron energy,
is of the order of 20 eV, while the band gap is of the order of 0.2 to 2 eV. Thus
the reciprocal mass is enhanced by a factor 10 to 100, and the effective mass is
reduced to 0.1-0.01 of the free electron mass. These values apply near the
band gap; as we go away from the gap the curvatures and the masses are likely
to approach those of free electrons.

To summarize the solutions of Chapter 7 for U positive, an electron near
the lower edge of the second band has an energy that may be written as

e(K) = €, + (h*2m,)K? , m,/m = 1/[(2A/U)—1] . (24)
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Here K is the wavevector measured from the zone boundary, and m, denotes -
the effective mass of the electron near the edge of the second band. An elec-
tron near the top of the first band has the energy

e(K) = €, — (B*2m;)K* ; my/m = L[(2AU) + 1] . (25)

The curvature and hence the mass will be negative near the top of the first
band, but we have introduced a minns sign into (25) in order that the symbol
my, for the hole mass will have a positive value—see (20) above.

The crystal does not weigh any less if the effective mass of a carrier is less
than the free electron mass, nor is Newton’s second law violated for the crystal
taken as a whole, ions plus carriers. The important point is that an electron in a
periodic potential is accelerated relative to the lattice in an applied clectric or
magnetic field as if the mass of the electron were equal to an effective mass
which we now define.

We differentiate the result (1) for the group velocity to obtain

dv 2 2
e _ o de _pofdedk)
dt h dk dt h (dk2 dt) (26)
We know from (5) that dk/dt = F/f, whence
du, 1 d2€> z2 du,
L B ;. = - o7
dt (ﬁ2 a2 )t P @0

If we identify #%/(d’e/dk”) as a mass, then (27) assumes the form of Newton’s
second law. We define the effective mass m* by '

= =2Le (28)

It is easy to generalize this to take account of an anisotropic clectron en-
ergy surface, as for electrons in Si or Ge. We introduce the components of the
reciprocal effective mass tensor

2 d
R . T R (29)
m* ). #dk,dk, dt m* )

where u, v are Cartesian coordinates.

Physical Interpretation of the Effective Mass

How can an clectron of mass m when put into a crystal respond to applicd
fields as if the mass were m*? It is helpful to think of the process of Bragg re-
flection of electron waves in a lattice. Consider the weak interaction approxi-
mation treated in Chapter 7. Near the bottom of the lower band the orbital is
represented quite adequately by a plane wave exp(ikx) with momentum #k;
the wave component expli(k — G)x] with momentum #A(k—G) is small and
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Crystal Grid Beam
\‘ / Bragg-reflected
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Figure 11 Explanation of negative effective masses which occur near, but below, a Brillouin zone
boundary. In (a) the energy of the electron beam incident on a thin crystal is slightly too low to sat-
isfy the condition for Bragg reflection and the beam is transmitted through the crystal. The appli-
cation of a small voltage across the grid may, as in (b), cause the Bragg condition to be satisfied,
and the electron beam will then be reflected from the appropriate set of crystal planes.

increases only slowly as k is increased, and in this region m* = m. An increase
in the reflected component exp[i(k — G)x] as k is increased represents mo-
mentum transfer to the electron from the lattice.

Near the boundary the reflected component is quite large; at the bound-
ary it becomes equal in amplitude to the forward component, at which point
the eigenfunctions are standing waves, rather than running waves. Here the
momentum component A(— 3 G) cancels the momentum component i G).

A single electron in an energy band may have positive or negative effective
mass: the states of positive effective mass occur near the bottom of a band be-
cause positive effective mass means that the band has upward curvature
(de/dk? is positive). States of negative effective mass occur near the top of the
band. A negative effective mass means that on going from state k to state
k + Ak, the momentum transfer to the lattice from the electron is larger than
the momentum transfer from the applied force to the electron. Although k is
increased by Ak by the applied electric field, the approach to Bragg reflection
can give an overall decrease in the forward momentum of the electron; when
this happens the effective mass is negative (Fig. 11).

As we proceed in the second band away from the boundary, the amplitude
of expli(k — G)x] decreases rapidly and m* assumes a small positive value.
Here the increase in electron velocity resulting from a given external impulse
is larger than that which a free electron would experience. The lattice makes
up the difference through the reduced recoil it experiences when the ampli-
tude of expli(k — G)x] is diminished.

If the energy in a band depends only slightly on k, then the effective mass
will be very large. That is, m*/m > 1 when d’¢/dk® is very small. The tight-
binding approximation discussed in Chapter 9 gives quick insight into the for-
mation of narrow bands. If the wavefunctions centered on neighboring atoms
overlap very little, then the overlap integral is small; the width of the band
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narrow, and the effective mass large. The overlap of wavefunctions centered
on neighboring atoms is small for the inner or core electrons. The 4f electrons
of the rare earth metals, for example, overlap very little.

Effective Masses in Semiconductors

In many semiconductors it has been possible to determine by cyclotron
resonance the effective masses of carriers in the conduction and valence bands
near the band edges. The determination of the energy surface is equivalent to
a determination of the effective mass tensor (29). Cyclotron resonance in a
semiconductor is carried out with centimeter wave or millimeter wave radia-
tion at low carrier concentration.

The current carriers are accelerated in helical orbits about the axis of a
static magnetic field. The angular rotation frequency o, is

(CGS) w, =B
m'c

where m* is the appropriate cyclotron effective mass. Resonant absorption of
energy from an rf electric field perpendicular to the static magnetic field
(Fig. 12) occurs when the rf frequency is equal to the cyclotron frequency.
Holes and electrons rotate in opposite senses in a magnetic field.

We consider the experiment for m*/m = 0.1. At f, = 24 GHz, or », =
1.5 X 10! s7!, we have B = 860 G at resonance. The line width is determined
by the collision relaxation time 7, and to obtain a distinctive resonance it is
necessary that ,7 = 1. The mean free path must be long enough to permit the
average carrier to get one radian around a circle between collisions. The re-
quirements are met with the use of higher frequency radiation and higher
magnetic fields, with high purity crystals in liquid helium.

In direct-gap semiconductors with band edges at the center of the Bril-
louin zone, the bands have the structure shown in Fig. 13. The conduction
band edge is spherical with the effective mass m:

e, = E, + 7%%/2m (31)

e >

Figure 12 Arrangement of fields in
a cyclotron resonance experiment in
a semiconductor. The sense of the
circulation is opposite for electrons
and holes.
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/ Heuvy holes
Light holes
A
/ \ Split-off holes Figure 13 Simplified view of the

band edge structure of a direct-gap
semiconductor.

Table 2 Effective masses of electrons and holes in direct-gap semiconductors

Electron Heavy hole Light hole Split-off hole Spin-orhit
Crystal m/m my/m my/m Myop/m A eV
InSb 0.015 0.39 0.021 (0.11) 0.82
InAs 0.026 0.41 0.025 0.08 0.43
InP 0.073 0.4 (0.078) (0.15) 0.11
GaSb 0.047 0.3 0.06 (0.14) 0.80
GaAs 0.066 0.5 0.082 0.17 0.34
Cu,0 0.99 — 0.58 0.69 0.13

referred to the valence band edge. The valence bands are characteristically
threefold near the edge, with the heavy hole hh and light hole Ik bands degen-
erate at the center, and a band soh split off by the spin-orbit splitting A:

€,(hh) = —k%>/2m,, ; €,(lh) = —A%*2my, ;

32
€,(s0h) = —A — #%omg,, . (32)

Values of the mass parameters are given in Table 2. The forms (32) are only
approximate, because even close to & = 0 the heavy and light hole bands are
not spherical-—see the discussion below for Ge and Si.

The perturbation theory of band edges (Problem 9.8) suggests that the
electron effective mass should be proportional to the band gap, approximately,
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for a direct gap crystal. We use Tables 1 and 2 to find the fairly constant values
m,/(mE,) = 0.063, 0.060, and 0.051 in (eV)™! for the series InSb, InAs, and
InP, in agreement with this suggestion.

Silicon and Germanium

The conduction and valence bands of germanium are shown in Fig. 14,
based on a combination of theoretical and experimental results. The valence
band edge in both Si and Ge is at k = 0 and is derived from pgy,y and p,, states
of the free atoms, as is clear from the tight-binding approximation (Chapter 9)
to the wavefunctions.

The pj;; level is fourfold degenerate as in the atom; the four states corre-
spond to m; values + 3 and *;. The p,p level is doubly degenerate, with
my=* 5. The pype states are higher in energy than the p,, states; the energy
difference A is a measure of the spin-orbit interaction.

The valence band edges are not simple. Holes ncar the band edge are
characterized by two cffective masses, light and heavy. These arise from the
two bands formed from the pj; level of the atom. There is also a band formed
from the py, level, split off from the py, level by the spin-orbit interaction.
The energy surfaces are not spherical, but warped (QTS, p. 271):

e(k) = AK* = [B%* + C*(kGk; + kok2 + k2k2)|"® (33)
The choice of sign distinguishes the two masses. The split-off band has
elk) = —A + Ak% The experiments give, in units K%2m,
Si: A= -—429; Bl = 0.68 ; ICl = 4.87 ; A=0044ev
Ge: A= -13.38; 1Bl = 8.48 ; ICl=13.15 ; A=029eV

Roughly, the light and heavy holes in germanium have masses 0.043 m and
0.34 m; in silicon 0.16 m and 0.52 m; in diamond 0.7 m and 2.12 m.

The conduction band edges in Ge are at the equivalent points L of the
Brillouin zone, Fig. 15a. Each band edge has a spheroidal energy surface ori-
ented along a (111) crystal axis, with a longitudinal mass m; = 1.59 m and a
transverse mass m, = 0.082 m. For a static magnetic field at an angle 8 with
the longitudinal axis of a spheroid, the effective cyclotron mass m, is

1 _ cos?6 | sin®f
Results for Ge are shown in Fig. 16.

In silicon the conduction band edges are spheroids oriented along the
equivalent (100) directions in the Brillonin zone, with mass parameters
my = 0.92 m and m, = 0.19 m, as in Fig. 17a. The band edges lie along the lines
labeled A in the zone of Fig. 15a, a little way in from the boundary points X.

In GaAs we have A = —6.98, B = —4.5, ICl = 6.2, A = 0.341 eV. The
band structure is shown in Fig. 17b. It has a direct band gap with an isotropic
conduction electron mass of 0.067 m.
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k= 2_’"'<l 1 l) k=0
aN\222 [111] ———F—— [100]
Figure 14 Calculated band structure of germanium, after C. Y. Fong. The general features are in
good agreement with experiment. The four valence bands are shown in gray. The fine structure of
the valence band edge is caused by spin-orbit splitting. The energy gap is indirect; the conduction

band edge is at the point (277/a)(3 5 5). The constant energy surfaces around this point are ellipsoidal.
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(@) (b)

Figure 15 Standard labels of the symmetry points and axes of the Brillouin zones of the fec and
bece lattices. The zone centers are I'. In (a) the boundary point at (27/2)(100) is X; the boundary
point at (27T/a)(§%;1;_) is L; the line A runs between I" and X. In (b) the corresponding symbaols are

H, P, and A.
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Figure 17a Constant energy ellipsoids for Figure 17b Band structure of GaAs, after S. G. Louie.

electrons in silicon, drawn for mym, = 5.

INTRINSIC CARRIER CONCENTRATION

We want the concentration of intrinsic carriers as a function of tempera-
ture, in terms of the band gap. We do the calculation for simple parabolic band
edges. We first calculate in terms of the chemical potential x the number of
electrons excited to the conduction band at temperature T. In semiconductor
physics w is called the Fermi level. At the temperatures of interest we may
suppose for the conduction band of a semiconductor that € — u > kT, so that
the Fermi-Dirac distribution function reduces to

fo=expl{pn—e)ksT] . (35)

This is the probability that a conduction electron orbital is occupied, in an
approximation valid when f, < 1.
The energy of an electron in the conduction band is

& = E, + h%%2m, (36)

where E, is the energy at the conduction band edge, as in Fig. 18. Here
m, is the effective mass of an electron. Thus from (6.20) the density of states
at € is

om, \¥2 )
De<e)=—21;< ﬁ2> (e—E)” . (37)
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The concentration of electrons in the conduction band is

n= f:Dﬂ(e)ﬂ(e)de -k (2;—’2‘)% expljulksT)
LJU (e — E)" exp(—e/kgT)de | .
which integrates to give
n= 2( ”21:;5 )M expl( — EVk,T] . (39)

The problem is solved for n when u is known. It is useful to calculate the
equilibrium concentration of holes p. The distribution function f;, for holes is
related to the electron distribution function f, by f, = 1 — f,, because a hole is

the absence of an electron. We have
fi=1- 1 - 1
g exple — w/kyT1 +1  expl(p — €)/kpT] + 1 (40)

= expl(e — p)/kT] ,

provided (u — €) > kgT.
If the holes near the top of the valence band behave as particles with
effective mass my, the density of hole states is given by

1 [ 2my \2
Dyle) = 2772( ﬁg) (E,— e, (41)
where E, is the energy at the valence band edge. Proceeding as in (38) we obtain
E, Jeo T \32
p= f Dy(e)fy(€)de = 2(2’;;2 ) expl(E,— p)/kyT] (42)

for the concentration p of holes in the valence band.
We multiply together the expressions for n and p to obtain the equilibrium
relation, with the energy gap E, = E, — E, as in Fig. 18,

" 3
np = 4(;;;) (m,my,)*” exp(—EkT) . (43)
This useful result does not involve the Fermi level p. At 300 K the value of np
is 2.10 X 10" cm™f, 2.89 X 10* em ™, and 6.55 X 10'? cmm™®, for the actual
band structures of Si, Ge, and GaAs, respectively.

We have nowhere assumed in the derivation that the material is intrinsic:
the result holds for impurity ionization as well. The only assumption made is
that the distance of the Fermi level from the edge of both bands is large in
comparison with k7.

A simple kinetic argument shows why the product np is constant at a given
temperature. Suppose that the equilibrium population of electrons and holes



8 Semiconductor Crystals 207

e

Figure 18 Energy scale for statistical calcula-
tions. The Fermi distribution function is shown
on the same scale, for a temperature k57 < E,.
The Fermi level u is taken to lie well within the
band gap, as for an intrinsic semiconductor. If
€= p,,thenf=§

is maintained by black-body photon radiation at temperature T. The photons
generate electron-hole pairs at a rate A(T), while B(T)np is the rate of the re-
combination reaction ¢ + h = photon. Then

dn/dt = A(T) — B(T)np = dp/dt - (44)

In equilibrium dn/d¢ = 0, dp/dt = 0, whence np = A(T)/B(T).

Because the product of the electron and hole concentrations is a constant
independent of impurity concentration at a given temperature, the introduction
of a small proportion of a suitable impurity to increase n, say, must decrease p.
This result is important in practice—we can reduce the total carrier concentra-
tion n + p in an impure crystal, sometimes enormously, by the controlled intro-
duction of suitable impurities. Such a reduction is called compensation.

In an intrinsic semiconductor the number of electrons is equal to the
number of holes, because the thermal excitation of an electron leaves behind a
hole in the valence band. Thus from (43) we have, letting the subscript i de-
note intrinsic and E, = E, — E,,

3/2
TR 2(277152 ) (m,m)** exp(— Eg/2ksT) . (45)

The intrinsic carrier concentration depends exponentially on E,/2k;T,
where E, is the energy gap. We set (39) equal to (42) to obtain, for the Fermi
level as measured from the top of the valence band,

exp(2u/kpT) = (my/m,)** exp(EJksT) ; (46)
=3 Ep + TkaT In (my/m,) (47)
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If my, = m,, then p =§Eg and the Fermi level is in the middle of the forbid-
den gap.

Intrinsic Mobility

The mobility is the magnitude of the drift velocity of a charge carrier per
unit electric field:

w=[o|/E . (48)

The mobility is defined to be positive for both electrons and holes, although
their drift velocitics are opposite in a given field. By writing u, or w;, with
subscripts for the electron or hole mobility we can avoid any confusion be-
tween u as the chemical potential and as the mobility.

The electrical conductivity is the sum of the electron and hole contributions:

o = (nep, + peps) , (49)

where n and p are the concentrations of electrons and holes. In Chapter 6 the
drift velocity of a charge ¢ was found to be v = g7E/m, whence

e = eTJm'g ’ M = eTh/mh > (50)

where 7 is the collision time.

The mobilities depend on temperature as a modest power law. The tem-
perature dependence of the conductivity in the intrinsic region will be
dominated by the exponential dependence exp(—E,/2k5T) of the carrier con-
centration, Eq. (45).

Table 3 gives experimental values of the mobility at room temperature.
The mobility in ST units is expressed in m*V-s and is 107 of the mobility in
practical units. For most substances the values quoted are limited by the scat-
tering of carriers by thermal phonons. The hole mobilities typically are smaller
than the electron mobilities because of the occurrence of band degeneracy at
the valence band edge at the zone center, thereby making possible interband
scattering processes that reduce the mobility considerably.

Table 3 Carrier mobilities at room temperature, in cm*/V-s

Crystal Elcctrons Holes Crystal Electrons Holes
Diamond 1800 1200 GaAs 8000 300
Si 1350 480 GaSb 5000 1000
Ge 3600 1800 PbS 550 600
InSb 800 450 PhSe 1020 930
InAs 30000 450 PbTe 2500 1000
InP 4500 100 AgCl 50 —

AlAs 280 — KBr (100 K) 100 —

AlSb 900 400 SiC 100 1020
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In some crystals, particularly in ionic crystals, the holes are essentially
immobile and get about only by thermally-activated hopping from ion to ion.
The principal cause of this “self-trapping” is the lattice distortion associated
with the Jahn-Teller effect of degenerate states. The orbital degeneracy neces-
sary for self-trapping is much more frequent for hales than for electrons.

There is a tendency for crystals with small energy gaps at direct band edges
to have high values of the electron mobility. Small gaps lead to small effective
masses, which favor high mobilities. The highest mobility observed in a bulk
semiconductor is 5 X 10° cm?V-s in PbTe at 4 K, where the gap is 0.19 eV.

IMPURITY CONDUCTIVITY

Certain impurities and imperfections drastically atfect the clectrical prop-
erties of a semiconductor. The addition of boron to silicon in the proportion of
1 boron atom to 10° silicon atoms increases the conductivity of pure silicon at
room temperature by a factor of 10*. In a compound semiconductor a stoichio-
metric deficiency of one constituent will act as an impurity; such semiconduc-
tors are known as deficit semiconductors. The deliberate addition of impuri-
ties to a semiconductor is called doping.

We consider the effect of impurities in silicon and germanium. These ele-
ments crystallize in the diamond structure. Each atom forms four covalent
bonds, one with each of its nearest neighbors, corresponding to the chemical
valence four. If an impurity atom of valence five, such as phosphorus, arsenic,
or antimony, is substituted in the lattice in place of a normal atom, there will
be one valence electron from the impurity atom left over after the four cova-
lent bonds are established with the ncarest neighbors, that is, after the impu-
rity atom has been accommodated in the structure with as little disturbance as
possible. Impurity atoms that can give up an electron are called donors.

Donor States. The structure in Fig. 19 has a positive charge on the impurity
atom (which has lost one electron). Lattice constant studies have verified that
the pentavalent impurities enter the lattice by substitution for normal atoms,
and not in interstitial positions. The crystal as a wholc remains neutral because
the electron remains in the crystal.

The extra electron moves in the coulomb potential ¢/er of the impurity
ion, where € in a covalent crystal is the static dielectric constant of the
medium. The factor 1/e takes account of the reduction in the coulomb force
hetween charges caused by the electronic polarization of the medium. This
treatment is valid for orbits large in comparison with the distance between
atoms, and for slow motions of the electron such that the orbital frequency is
low in comparison with the frequency o, corresponding to the energy gap.
These conditions are satisfied quite well in Ge and Si by the donor electron of
P, As, or Sh.

209



210

Donor bound level

Figure 19 Charges associated with an arsenic impurity atom in silicon. Arsenic has five valence
electrons, but silicon has only four valence electrons. Thus four electrons on the arsenic form tetra-
hedral covalent bonds similar to silicon, and the fifth electron is available for conduction. The
arsenic atom is called a donor because when ionized it donates an electron to the conduction band.

We estimate the ionization energy of the donor impurity. The Bohr theory
of the hydrogen atom may be modified to take into account the dielectric
constant of the medium and the effective mass of an electron in the periodic
potential of the crystal. The ionization energy of atomic hydrogen is —e*m/2#>
in CGS and —e*m/2(4megh)? in SI.

In the semiconductor with dielectric constant € we replace ¢® by ¢”€ and
m by the effective mass m, to obtain

e'm, _(13.6m,
262ﬁ2 62 m

(CGS) E;= eV ;

as the donor ionization energy of the semiconductor.
The Bobr radius of the ground state of hydrogen is £¥me® in CGS or
4mefi¥me? in SI. Thus the Bohr radius of the donor is

_ eh® _ (053€) 5
(CGS) ag = m,e’* ~ \mgm A

The application of impurity state theory to germanium and silicon is com-
plicated by the anisotropic effective mass of the conduction electrons. But the
dielectric constant has the more important effect on the donor energy because
it enters as the square, whereas the effective mass enters only as the first power.

To obtain a general impression of the impurity levels we use m, =~ 0.1 m
for electrons in germanium and m, = 0.2 m in silicon. The static dielectric
constant is given in Table 4. The ionization energy of the free hydrogen atom is
13.6 eV. For germanium the donor ionization energy E; on our model is 5 meV,
reduced with respect to hydrogen by the factor m/me* = 4 X 107*. The
corresponding result for silicon is 20 meV. Calculations using the correct
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Table 4 Static relative dielectric constant of semiconductors

Crystal

Diamond 5.5 GaSb 15.69
Si 11.7 GaAs 13.13
Ge 15.8 AlAs 10.1
InSb 17.88 AlSb 10.3
InAs 14.55 SiC 10.2
InP 12.37 Cu,0 7.1

Table 5 Donor ionization energies E; of pentavalent
impurities in germanium and silicon, in meV

Ge 12.0 12.7 9.6

anisotropic mass tensor predict 9.05 meV for germanium and 29.8 meV for
silicon. Observed values of donor ionization energics in Si and Ge are given in
Table 5. In GaAs donors have E; = 6 meV.

The radius of the first Bohr orbit is increased by em/m, over the value
0.53 A for the free hydrogen atom. The corresponding radius is (160)(0.53) =
80 A in germanium and (60)(0.53) = 30 A in silicon. These are large radii, so
that donor orbits overlap at rclatively low donor concentrations, compared to
the number of host atoms. With appreciable orbit overlap, an “impurity band”
is formed from the donor states: see the discussion of the metal-insulator tran-
sition in Chapter 14.

The semiconductor can conduct in the impurity band by electrons hop-
ping from donor to donor. The process of impurity band conduction sets in at
lower donor concentration levels if there are also some acceptor atoms pre-
sent, so that some of the donors are always ionized. It is easier for a donor
electron to hop to an ionized (unoccupied) donor than to an occupied donor
atom, in order that two electrons will not have to oceupy the same site during
charge transport.

Acceptor States. A hole may be bound to a trivalent impurity in germanium
or silicon (Fig. 20), just as an electron is bound to a pentavalent impurity.
Trivalent impurities such as B, Al, Ga, and In are called acceptors because
they accept electrons from the valence band in order to complete the covalent
bonds with neighbor atoms, leaving holes in the band.
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Acceptor bound level

taking an electron from a Si-Si bond, leaving behind a hole in the silicon valence band. The positive
hole is then available for conduction. The boron atom is called an acceptor because when ionized
it accepts an electron from the valence band. At 0 K the hole is bound.

Table 6 Acceptor ionization energies E, of trivalent
impurities in germanium and silicon, in meV

Si 45. 57, 65. 157.
Ge 10.4 10.2 10.8 11.2

When an acceptor is ionized a hole is freed, which requires an input
of energy. On the usual energy band diagram, an electron rises when it gains
energy, whereas a hole sinks in gaining energy.

Experimental ionization energies of acceptors in germanium and silicon
are given in Table 6. The Bohr model applies qualitatively for holes just as for
electrons, but the degeneracy at the top of the valence band complicates the
effective mass problem.

The tables show that donor and acceptor ionization energies in Si are com-
parable with kT at room temperature (26 meV), so that the thermal ionization
of donors and acceptors is important in the electrical conductivity of silicon at
room temperature. If donor atoms are present in considerably greater num-
bers than acceptors, the thermal ionization of donors will release electrons
into the conduction band. The conductivity of the specimen then will be con-
trolled by electrons (negative charges), and the material is said to be n type.

If acceptors are dominant, holes will be released into the valence band
and the conductivity will be controlled by holes (positive charges): the mater-
ial is p type. The sign of the Hall voltage (6.53) is a rough test for n or p type.
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Figure 21 Temperature dependence of the free carrier concentration in ultrapurc Ge, after
R. N. Hall. The net concentration of electrically active impuritics is 2 X 10" cm™>, as determined
by Hall coefficient measurements. The rapid onset of intrinsic excitation as the temperature is in-
creased is evident at low values of 1/T. The carrier concentration is closely constant between 20 K
and 200 K.

Another handy laboratory test is the sign of the thermoelectric potential, dis-
cussed below.

The numbers of holes and electrons arc equal in the intrinsic regime. The
intrinsic electron concentration n; at 300 K is 1.7 X 10** ¢cm™ in germanium
and 4.6 X 10° cm™ in silicon. The electrical resistivity of intrinsic material is
43 ohm-cm for germanium and 2.6 X 10° ochm-cm for silicon.

Germanium has 4.42 X 10?* atoms per cm®. The purification of Ge has
been carried further than any other element. The concentration of the
common electrically active impurities—the shallow donor and acceptor
impurities—has been reduced below 1 impurity atom in 10" Ge atoms
(Fig. 21). For example, the concentration of P in Ge can be reduced below
4 X 10" em ™, There are impuritics (H, O, Si, C) whose concentrations in Ge
cannot usually be reduced below 10*2—~10" cm™, but these do not affect elec-
trical measurements and therefore may be hard to deteet.

Thermal Ionization of Donors and Acceptors

The calculation of the equilibrium concentration of conduction electrons
from ionized donors is identical with the standard calculation in statistical me-
chanics of the thermal ionization of hydrogen atoms (TP, p. 369). If there are
no acceptors present, the result in the low temperature limit k3T < E, is

n= (TtONll)l/z EXP( —Ed/Q-kBT) N (53)
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Figure 22 Electrical conductivity and hole concentration p calculated as a function of electron
concentration n for a semiconductor at a temperature such that np = 10* cm™°. The conductivity
is symmetrical about n = 10" em ™. For n > 10", the specimen is n type; for n < 10', it is p type.
We have taken p, = p;, for the mobilities.

with ng = 2(mk,T/2wh*)>% here N, is the concentration of donors. To obtain
(53) we apply the laws of chemical equilibria to the concentration ratio
[e][N7VIN,], and then set [Nf] = [e] = n. Identical results hold for acceptors,
under the assumption of no donor atoms.

If the donor and acceptor concentrations are comparable, affairs are com-
plicated and the equations are solved by numerical methods. However, the law
of mass action (43) requires the np product to be constant at a given tempera-
ture. An excess of donors will increase the electron concentration and de-
crease the hole concentration; the sum n + p will increase. The conductivity
will increase asn + p if the mobilities are equal, as in Fig. 22.

THERMOELECTRIC EFFECTS

Consider a semiconductor maintained at a constant temperature while an
electric field drives through it an electric current density j,. If the current is
carried only by electrons, the charge flux is

Jq=n(—e)(—p)E = neu E , (54)

where p, is the electron mobility. The average energy transported by an elec-
tron is referred to the Fermi level u,

(Ec_ﬂ') + ngT 3
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where E, is the energy at the conduction band edge. We refer the energy to
the Fermi level because different conductors in contact have the samne Fermi
level. The energy flux that accompanies the charge flux is

Ju=nE, = p+53kTN—u,)E . (55)

The Peltier coefficient II is defined by j; = [lj,; or the energy carried
per unit charge. For electrons,

O,=—(E,—pu+3kT)e (56)

and is negative because the energy flux is opposite to the charge flux. For
holes

Jo=pemE i ju=plp—E, +5kT)mE (57)
where E, is the energy at the valence band edge. Thus
I, =(u—E, + kzT)e (58)

and is positive. Equations (56) and (58) are the result of our simple drift veloc-
ity theory; a trcatment by the Boltzmann transport cquation gives minor nu-
merical differences.?

The absolute thermoelectric power Q is defined from the open circuit
electric field created by a temperature gradient:

E=QgradT . (59)
The Peltier coefficient I1 is related to the thermoelectric power Q by
II=0QT . (60)

This is the famous Kelvin relation of irreversible thermodynamics. A measure-
ment of the sign of the voltage across a scmiconductor specimen, one end of
which is heated, is a rough and ready way to tell if the specimen is n type or p

type (Fig. 23).

SEMIMETALS

In semimetals the conduction band edge is very slightly lower in energy
than the valence band edge. A small overlap in energy of the conduction and
valence bands leads to small concentration of holes in the valence band and of
electrons in the conduction band (Table 7). Three of the semimetals, arsenic,
antimony, and bismuth, are in group V of the periodic table.

Their atoms associate in pairs in the crystal lattice, with two ions and ten
valence electrons per primitive cell. The even number of valence electrons

2A simple discussion of Boltzmann transport theory is given in Appendix 1%,
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Table 7 Electron and hole concentrations in semimetals

Semimtal n,, in cm™3 ny,, in e ™

Arsenic (2.12 * 0.01) x 10% (2.12 + 0.01) x 10%
Antimony (5.5¢ = 0.05) x 10" (549 = 0.03) x 10"
Bismuth 9.88 x 10Y7 3.00 X 10"
Graphite 2.72 X 10'8 2.04 x 10

could allow these elements to be insulators. Like semiconductors, the semi-
metals may be doped with suitable impurities to vary the relative numbers of
holes and electrons. Their concentrations may also be varied with pressure, for
the band edge overlap varies with pressure.

SUPERLATTICES

Consider a multilayer crystal of alternating thin layers of different composi-
tions. Coherent layers on a nanometer thickness scale may be deposited by
molecular-beam epitaxy or metal-organic vapor deposition, thus building up a
superperiodic structure on a large scale. Systems of alternate layers of GaAs and
GaAlAs have been studied to 50 periods or more, with lattice spacing A of per-
haps 5 nm (50 A). A superperiodic crystal potential arises from the superperiodic
structure and acts on the conduction electrons and holes to create new (small)
Brillouin zoncs and mini energy bands superposed on the band structures of the
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constituent layers. Here we treat the motion of an electron in a superlattice in an

applied electric field.

Bloch Oscillator

Consider a collisionless electron in a periodic lattice in one dimension,
with motion normal to the planes of the superlattice. The equation of motion
in a constant electric field parallel to k is Adk/dt = —eE or, for motion
across a Brillouin zone with reciprocal lattice vector G = 27/A, we have
AG = h2m/A = ¢ET, where T is the period of the motion. The Bloch
frequency of the motion is wp = 27/T = ¢EA/A. The electron accelerates from
k = 0 toward the zonc boundary; when it reaches k = /A it reappears (as by
an Umklapp process) at the zone boundary at the identical point — /A, using
the argument of Chapter 2.

We consider the motion in a model systcm in real space. We suppose that
the clectron lies in a simple energy band of width €:

€ =¢y{1—coskA). (61)
The velocity in k-space (momentum space) is
v=~A"'de/dk = (Aeyh) sin kA , (62)
and the position of the clectron in real space, with the initial condition z =
att = 0, is given by
z = Jodt = [dk v(k)(di/dk) = (Aeyh) [dk(—Fi/eE) sin kA
=(—¢€y/eE)(cos kA — 1) = (—¢y/eE) cos(—eEAt/R) —1) . (63)
This confirms that the Bloch oscillation frequency in real space is wg = ¢EA/A.

The motion in the periodic lattice is quite different from the motion in free
space, tor which the acceleration is constant.

Zener Tunneling

Thus far we have considered the effect of the electrostatic potential —¢Ez
(or —eEnA) on onc energy band; the potential tilts the whole band. Higher
bands will also be tilted similarly, creating the possibility of crossing between
ladder levels of different bands. The interaction between different band levels at
the same energy opens the possibility for an electron in one band at n to cross to
another band at n’. This field-induced interband tunneling is an example of
Zener breakdown, met most often at a single junction as in the Zencr diode.

SUMMARY

* The motion of a wave packet centered at wavevector k is described by
F = #idk/dt, where F is the applied force. The motion in real space is ob-
tained from the group velocity v, = A7 'Vye(k).
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The smaller the energy gap, the smaller is the effective mass Im*| ncar the
gap.

A crystal with one hole has one empty electron state in an otherwise filled
band. The properties of the hole are those of the N — 1 electrons in this
band.

(a) If the electron is missing from the state of wavevector k,, then the
wavevector of the hole is k, = —k,.

(b) The rate of change of k;, in an applicd ficld requires the assignment of a

positive charge to the hole: e, = ¢ = —e,.
(¢) If v, is the velocity an electron would have in the state k,, then the veloc-
ity to be ascribed to the hole of wavevector k;, = — k, isv;, = v,.

(d) The energy of the hole referred to zero for a filled band is positive and is
(k)= —e(k,).

(e) The effective mass of a hole is opposite to the effective mass of an elee-
tron at the same point on the energy band: m;, = —m,,.

Problems

. Impurity orbits. Indium antimonide has E, = 0.23 eV; dielectric constant € = 18;

electron cffcctive mass m, = 0.015 m. Calculate (a) the donor ionization energy;
(b) the radius of the ground state orbit. (c) At what minimum donor concentration
will appreciable overlap effects hetween the orbits of adjacent impurity atoms
occur? This overlap tends to produce an impurity band—a band of energy levels
which permit conductivity presumably by a hopping mechanism in which electrons
move {rom one impurity site to a neighboring ionized impurity site.

. Ionization of donors. In a particular semiconductor there are 10" donors/cm?

with an ionization energy E; of 1 meV and an effective mass 0.01 m. (a) Estimate the
concentration of conduction electrons at 4 K. (b) What is the value of the Hall coeft-
icent? Assume no acceptor atoms are present and that Eg > kpT.

Hall effect with two carrier types. Assuming concentration n, p; relaxation times
7,, T; and masses m,, m;, show that the Hall coefticient in the drift velocity approxi-
mation is

1 p-nb

(CGS) H=E.(p+_nb)2’

where b = p,/p,, is the mobility ratio. In the derivation neglect terms of order B2 In
SI we drop the c. Hint: In the presence of a longitudinal electric field, find the
transverse electric field such that the transverse current vanishes. The algebra may
seem tedious, but the result is worth the trouble. Use (6.64), but for two carrier
types; neglect (w,7)* in comparison with w,7.
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4. Cyclotron resonance for a spheroidal energy surface. Consider the energy

surface
K+k k2
— = Yy
«tk) ﬁ( 2m, +2m1) ’

where m, is the transverse mass parameter and m; is the longitudinal mass parame-
ter. A surface on which e(k) is constant will be a spheroid. Use the equation of mo-
tion (6), with v = i~ 'V,¢, to show that w, = eB/(mm,)"?c when the static magnetic
field B lics in the xy plane. This result agrees with (34) when 6 = #/2. The result is
in CGS: to obtain SI, omit the ¢.

5. Magnetoresistance with two carrier types. Problem 6.9 shows that in the drift
velocity approximation the motion of charge carriers in electric and magnetic ficlds
does not lead to transverse magnetoresistance. The result is different with two car-
rier types. Consider a conductor with a concentration n of electrons of effective
mass m, and rclaxation time 7,; and a concentration p of holes of effective
mass my, and relaxation time 7. Treat the limit of very strong magnetic fields, w7 > 1.
{a) Show in this limit that 0, = (n — plec/B. (b) Show that the Hall field is given by,
with Q = &7,

. n, PY!
by:_(ﬂ_p)@‘F@ Ex,

which vanishes if n = p. (¢) Show that the effective conductivity in the x direction is

_ PY, .. ofn_ PY!
co-illgg) e Aa)

Ifn = p, o < B2 If n # p, o saturates in strong fields; that is, it approaches a limit
independent of B as B — o,



