CHAPTER 11

MAGNETIC SYSTEMS

§11.01 Introduction

In order to apply thermodynamics to magnetic systems we have merely to
extend our previous formulae by including extra terms for the magnetic
work. In principle the procedure is straightforward and should cause no
difficulty. There is however a serious incidental difficulty, namely that of
finding the correct general expression for magnetic work. We should expect
to be able to discover such an expression by consulting any reputable text-
book on electromagnetism. Unfortunately this is far from the case. The
treatment given in most text-books is altogether inadequate. In most cases
the derivations of formulae for magnetic work assume either explicitly or
implicitly that the permeability of each piece of matter is a constant, whereas
from a thermodynamic viewpoint one of the questions of greatest interest
is how the permeability varies with the temperature. It is therefore desirable,
if not essential, to start from formulae which are not restricted to the assump-
tion that the permeability of each piece of matter is invariant. In many, if
not most, text-books on electromagnetism the treatment of magnetic work
suffers from other even more serious defects. In some text-books the treat-
ment is based on a discussion of permanent magnets imagined to be con-
structed by bringing together (reversibly?!) from infinity an infinite number
of infinitesimal magnetic elements. Actually a permanent magnet is an
idealization far from reality. It is true that magnets can be made which are
nearly permanent with respect to changes in position, but they are never
permanent with respect to changes of temperature. Increase of temperature
is usually accompanied by an irreversible loss of magnetization. Whatever
may be the use of the conception of a permanent magnet in the theory of such
instruments as compasses, galvanometers, and dynamos, it is not a useful
conception as a basis for the analysis of magnetic work when changes of
temperature may be important. The worst text-books give formulae for
magnetic work which not only are of restricted applicability, but even
338
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contain wrong signs. Others confuse the external magnetic field B, with the
local internal field B. Fortunately there are a few text-books* on electro-
magnetism which give a clear correct treatment of magnetic work. Here we
shall assume the correct formula for magnetic work after first recalling the
physical meaning of the several electromagnetic quantities involved and how
they are related to one another.

§11.02 Fundamental electromagnetic vectors

As elsewhere in this book we use the rationalized system of electromagnetic
quantities. We recall that the strength and direction of an electrostatic field
is described at each point by a vector E such that the force acting on a small
stationary test charge Q placed at this point is QE. This vector E is called
the electric field strength. The analogous magnetic vector describing the
force acting on a small test element of current is denoted by B and has the
property' that the force on each element ds of a linear conductor of current
i is given by the vector product ids x B. This vector B is called the magnetic
induction.

§11.03 Permittivity and permeability in a vacuum

In a vacuum the value of E at each point is determined by the distribution
of electric charges and is the sum of independent contributions from each
charge. The contribution to E of a charge Q at a distance r is directed along r
and is of magnitude

Q/4ne, r? 11.03.1

where ¢, is a universal constant called the rationalized permittivity of a
vacuum. Alternatively we may say that each charge Q makes an additive
contribution

Q/4ne,r 11.03.2

to the electrostatic potential ¢ and that E is then determined by
E= —grad y. 11.03.3

We turn now to the analogous magnetic formulae. Each element ds of a
linear conductor carrying a current i makes an additive contribution

U ids/4nr 11.03.4

* In particular Stratton, Electromagnetic Theory, McGraw-Hill 1941, hereafter referred
to as S., E.T.
t S., E.T. p. 96.
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to A, called the magnetic vector potential, and B is then determined by
B=curl A. 11.03.5

The quantity s, occurring in (4) is a universal constant called the rationalized
permeability of a vacuum.

Before proceeding further it is instructive to consider the physical dimen-
sions of the quantities occurring above in terms of the four independent
dimensions length L, time T, energy U, and electric charge Q. For the present
purpose it is more convenient to choose energy than mass as one of the four
independent dimensions. The dimensions of the most important quantities
are given in table 11.1.

TABLE 11.1
Dimensions of electromagnetic quantities
L denotes length, T time, U energy, and Q electric charge

Symbol Name Dimensions
Q Electric charge Q
i Current QT
ds Element of length L
ids Element of current QLT
y Electrostatic potential vo—
A Magnetic vector potential UL'TQ
E Electric field strength ULQ*
B Magnetic induction UL™*TQ™!
&E QL™?
u7'B QLT
& QLU
Ho vo—L-'T?
”;1 QLT-:U-!
Eolby L-T?
&E? UL
uy'B? UL

The following points are worthy of note.

1. Inasmuch as an element of current is the analogue in a magnetic system of
an element of electric charge in an electrostatic system, it is clear* that
Uo !, not g, is the analogue of &.

2. (eotto)~* has the dimensions of a velocity; it is well known that this
quantity is equal to the speed of propagation of electromagnetic waves in
a vacuum.

* Sommerfeld, ‘Electrodynamics’, translated by Ramberg, Academic Press 1952 p. 21.
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3. The quantities e, E* and pg 'B* both have the dimensions of energy
density or pressure.

The values of ¢, and p, and related quantities in the rational system are as
follows:

€,=8.854x10"'2C*j"im™!
Ho=4nx1077 Js*C"2m™1=1.2566x10"°Js>C " *m™!
oplo=1.1126x10"17s2 m™2=(2.9979 x 10* m s~ )~ 2.

§11.04 Simplest examples of fields in a vacuum

The formulae of the previous section are sufficient to specify completely the
E field due to any given distribution of charges in a vacuum or the B
field due to any given distribution of currents in a vacuum. The quantita-
tive application of these formulae is however complicated and tedious except
for systems having a high degree of symmetry. We shall consider briefly
one such electrostatic system and one such magnetic system.

As the electrostatic system we choose the parallel-plate capacitor, already
discussed in the previous chapter, neglecting edge effects. If charges Q and
— Qare distributed uniformly over the two plates each of area 4 at a distance
d apart, then in the absence of any matter between the plates the electric
field is uniform, normal to the plates, and has the value

|E|=Q/eo A. 11.04.1

As an example of a magnetic system having simple symmetry we choose a
long uniform solenoid and we ignore end effects. The magnetic induction
inside the empty solenoid is then uniform, parallel to the axis, and has the
value

|B|=po i/l 11.04.2

when the current is i and there is one turn per length /.
For reasons which will appear later it is instructive to rewrite (1) and (2)
in somewhat different forms. We rewrite (1) as

eolE|=0d]V, 11.04.3

where d is the distance between the plates so that V,=d4 is the volume in-
cluded between the plates of the capacitor. The product Qd of the charge ona
plate and the distance between the plates may be called the electric moment
of the charged capacitor. Thus according to (3) we observe that in this
system with simple symmetry &o|E| is equal to the electric moment per unit
volume.
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We likewise rewrite (2) in the form
uo Y |Bl=nid]V, 11.04.4

where n denotes the total number of turns, A denotes the cross-section of the
solznoid, and V,=nlA denotes the volume contained by the solenoid.
We may regard the solenoid as an electromagnet and we call the product
niA its magnetic moment. We see then according to (4) that ug !|B| is equal
to the magnetic moment per unit volume of the solenoid.

From these relations we again perceive that po !, not y,, is the analogue
of ¢,.

§11.05 Presence of matter

We shall now discuss briefly the effect of filling the parallel-plate capacitor
and the solenoid respectively with uniform matter,

When the space between the plates of the capacitor is filled with uniform
matter, this matter becomes electrically polarized as a result of the field
due to the charges on the plates. The electric polarization P is defined as
the electric moment per unit volume induced in the matter. Owing to the
symmetry of the system under consideration P is in this case uniform and
normal to the plates. It is not difficult to see what will be the resultant
effect on the field E. We interpreted formula (11.04.3) to mean that ¢y|E|
is equal to the electric moment per unit volume of the charged capacitor.
It is evident that ¢,|E| will now be equal to the resultant electric moment per
unit volume due partly to the charges + Q on the plates and partly to the
polarization of the matter between the plates. Thus in place of (11.04.3)
we shall have

&l|E|l=0Qd/[V,.—|P| 11.05.1
or
golE|+|P|=0Qd|V,=Q/A. 11.05.2

Thus ¢, E + P is now related to the charge on the capacitor plates in precisely
the same manner as ¢, E was related to it when the capacitor was empty.
In other systems having lower symmetry the situation is less simple because
E and P vary from place to place. The composite vector gq E + P still how-
ever plays an important role. It is called by the curious name electric dis-
placement and is denoted by D. Thus by definition

=g, E+P. 11.05.3

From the identity (3) it is evident that any two of the vectors E, P, D
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completely determine the remaining one. It is however a fundamental
assumption of electrostatics, borne out by experiment, that at any point
in a piece of matter of given composition, given temperature, and given
pressure any one of the vectors E, P, D completely determines the other
two. If moreover the matter is isotropic, then E, P, and D have the same
direction. If then we write

D=¢E 11.05.4

the coefficient ¢ is a scalar quantity, provided the matter is isotropic. (Other-
wise € would be a tensor of rank two.) The quantity ¢ defined by (4) is called
the permittivity of the matter. Its value in general depends on the composition
of the matter, the temperature, the pressure, and the field strength. The ratio

D/80E=8/80 11.05.5

is called the relative permittivity or the dielectric coefficient or, when its value
is independent of E, the dielectric constant. It is evident from (3) that P and D
have the same dimensions as &, E, namely that of charge/area. It is likewise
evident from (3) and (4) that ¢ has the same dimensions as ¢,, so that the
dielectric coefficient e, is a dimensionless number.

Much of the above was implicitly assumed in the previous chapter, is
moreover well known, and is seemingly irrelevant to magnetic systems.
It is however convenient to have these relations before us for comparison
with analogous but less understood magnetic relations.

We turn now to consider the effect of filling the uniform solenoid with
uniform matter. As a result of the current in the solenoid the matter will
behave as if it contained induced microscopic molecular current circuits or
elementary magnets. According to (11.04.4) their contribution to ug'B
will be equal to the magnetic moment per unit volume; this quantity is
called the magnetization and is denoted by M. Owing to the symmetry of the
solenoid, M will be parallel to the axis and so (11.04.4) has to be replaced by

Uo '|Bl=niA|V,+ M| 11.05.6
or
uo Y |Bl— M| =nid|V,=i/l. 11.05.7

Thus the composite vector uy B —M is now related to the current through
the solenoid in precisely the same manner as p ' B was related to it when the
inside of the solenoid was empty. In other systems having lower symmetry
the situation is less simple because B and M vary from place to place.
The composite vector g 'B—M still however plays an important role. It is
denoted by H and is called by the misleading name magnetic field intensity.
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Thus

H=u;'B—M. 11.05.8
The names generally used for E, B, D, and H are extremely confusing.
A few of the better authorities use better names. In particular Sommerfeld*
uses the names

E electric field strength B magnetic field strength
D electric excitation H magnetic excitation

while Stratton! uses the names

E electric force vector B magnetic force vector
D electric derived vector H magnetic derived vector.

From the identity (8) it is evident that any two of the vectors B, M, H
completely determine the remaining one. It is however a fundamental
assumption of electromagnetic theory that at any point in a piece of matter
of given composition, given temperature, and given pressure any one of
the vectors B, M, H completely determines the other two. The phenomenon
known as hysteresis contradicts the assumption; such phenomena are here
expressly excluded from consideration. With this proviso we write

H=u"'B 11.05.9

and the coefficient p is called the permeability of the matter. Provided the
matter is isotropic u is a scalar, (Otherwise u would be a tensor of rank
two.) The value of p in general depends on the composition, the temperature,
the pressure, and the field strength. The ratio u/p, is called the relative
permeability of the substance and is denoted by ;.

§11.06 Electric and magnetic work

Having completed our elementary review of the physical significance of the
vectors E, D and B, H we shall quote without proof general formulae for
electric and magnetic work.

We first consider an electrostatic system consisting of charged conductors
and dielectrics. For any infinitesimal change in the system, produced by
moving either an electric charge or a conductor or a dielectric, the electric
work w done on the system is given byt

w=deEdD 11.06.1

* Sommerfeld, ‘Electrodynamics’, translated by Ramberg, Academic Press 1952 Part 1§2.
t's., ET. p. 12.
t s, ET. p. 108.
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where dD denotes the increment of D in the element of volume dV and the
integration extends over all space, or that part of space where the electric
field does not vanish.

In the simplest case of a parallel-plate capacitor containing a uniform
dielectric, if we neglect edge effects, E and D vanish outside the capacitor,
while between the plates they are uniform having the values

ID|=Q/A 11.06.2
|E|=Q/eA 11.06.3

where + Q denotes the charge on either plate of area 4. If then d denotes
the distance between the plates and ¥, the volume contained between them,
formula (1) reduces to

w=V,0dQ/eA*=(Qd[eA)dQ 11.06.4

in agreement with formula (10.04.2).

We turn now to a magnetic system consisting of current circuits and
magnetic matter, concerning which our only restrictive assumption is the
absence of hysteresis. For any infinitesimal change in the system either by
changing the current in any circuit or by moving any conductor carrying a
current, the magnetic work done on the system is*

w=deHdB 11.06.5

where dB is the increment of B in the element of volume dV and the integra-
tion extends over all space, or that part of space where the magnetic field
does not vanish.

Since we have been at pains to emphasize that B is the analogue of the
force vector E, while H is the analogue of the derived vector D, the reader
may justifiably express surprise that formula (5) contains as integrand
HdB, not BdH. The explanation of this paradox is that the analogy must
not be pushed too far, because, whereas the electrostatic energy due to fixed
charges is potential energy, the magnetic energy due to electric currents
is kinetic energy. More precisely* while the Hamiltonian contains as
integrands EdD and HdB, the Lagrangian contains as integrands — EdD
and BdH.

In the simplest case of a long solenoid filled with a uniform isotropic
substance, if we neglect end effects, B and H vanish outside the solenoid,

* Guggenheim, Proc. Roy. Soc. A 1936 155 63; Broer, Physica 1946 12 49.
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while inside they are uniform having the values
|H|=i/l 11.06.6
|B| = pifl 11.06.7

where i denotes the current and / the length per turn. If then ¥, denotes the
internal volume of the solenoid, L its length, A its cross-section, and n the
total number of turns, formula (5) becomes

w=V,(i/l)d(ui)/1=(A/L)nid(wi). 11.06.8

§11.07 Formula for Helmholtz function

Once we know the general formula for magnetic work it is, as already
mentioned in§11.01, a straightforward matter to write down thermodynamic
formulae of general validity. For the sake of brevity and simplicity we shall
neglect changes of volume whether due to change of temperature (expan-
sivity) or to change of pressure (compressibility) or change of magnetic
field (magnetostriction). The formulae may be applied to solid and liquid
phases at constant pressure as an approximation.

Consider now a system consisting of linear conductors and magnetic
matter and suppose the currents gradually increased from zero to final values
corresponding to final values of B and H at each point of the system. Then
the magnetic work w done on the system when the field is thus built up is

B
w=JdVJ HdB 11.07.1
0

where the first integration extends over all space. The second integral will
depend on the relation between B and H which in turn depends on the tem-
perature at each stage. Let us now specify that the path of integration shall
be isothermal. Then the work w is equal to the increase in the Helmholtz
function & of the system. We accordingly have

B
Av=i°+def HdB 11.07.2
0

(T const.)
where the superscript © denotes the value when B is everywhere zero, that
is to say when no currents are flowing.
In the simplest case of a uniform field, as when a long solenoid of volume
V is filled with a uniform substance, (2) can be written as
B

B
(/F—,«F°)/V=f Hd8=f u~'BdB. 11.07.3
(/] 0

(T const.) (T const.)
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§11.08 Other thermodynamic functions

From the formula for the Helmholtz function we can immediately derive
formulae for the entropy S and the total energy U by differentation with
respect to T. For the sake of brevity and simplicity we shall confine ourselves
to the formulae valid in a region of volume ¥ where composition and field
are uniform. Using the superscript ° to denote values of a function when B
is zero, we derive from (11.07.3)

_ O B B
5= __ 0% (gap-— [ H g
v 3T J, o 0T
(T const.) (T const.)
B
=_f UK gap 11.08.1
0
(T const.)
779 B
v-v =J :i— Ta—(—l/ﬁ)} BdB. 11.08.2
vV o \u oT
(T const.)

We can introduce other characteristic functions in particular 4 defined by
* H

(T, H)=A~‘—J dVHB=AF°—def BdH. 11.08.3
o]

In the absence of permanent magnets, when B =0 implies H =0 throughout
space, J4 has the property

d:I=—SdT—fHdVBdH. 11.08.4
From (4) we derive ’
(0S/oH) ;= f dV(0B/oT)y 11.08.5
and consequently
5=5°+ de J :(aB/aT),,dH 11.08.6
(T const.)

or in the case of a uniform field

H H
(S=S8%)v =f (0B/oT)udH = f (6u/oT)HAH. 11.08.7
(T conost.) (T cor?sc.)

At first sight formulae (1) and (7) may seem to disagree but in fact their
equivalence follows from
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- f" (0B/OT)ydH = — JB(GB/GT),,(GH/E?B)T dB =fx(aH/aT),dB. 11.08.8
0 0 0

(T const.) (T const.) (T const.)

§11.09 Case of linear induction

Hitherto we have imposed no restriction on the relation between H and B.
The permeability x4 was defined by

u=B/H 11.09.1

and in general u depends on B (or H) as well as on the temperature. For most
materials, other than those exhibiting hysteresis, at the field strengths ordi-
narily used in the laboratory and at ordinary temperatures, it is found that
W is, at a given temperature, independent of B. Under these conditions the
integrations in the formulae of the previous two sections can be performed
explicitly. Thus formulae (11.07.3), (11.08.1), and (11.08.2) reduce respec-
tively to

(F— &)V =3B*|u=4HB=3uH* 11.09.2
(S—S°)/V =4B*(dp/dT)/u* =4H?*du/dT 11.09.3
(U=-UV =$H*(u+ Tdp/dT). 11.09.4

Although a variation of u with B at constant temperature is the exception,
it does occur especially at low temperatures. In particular this phenomenon
of magnetic saturation has been observed for hydrated gadolinium sul-
phate.* The formulae of the present section are then not applicable.

§11.10 Specimen in uniform external field

The relations developed so far involve integration over all space or that
part of space where the field does not vanish. These integrations are usually
too complicated to be practicable except in the case of a long solenoid
completely filled with a uniform material. Unfortunately this example is of
little practical interest. The experimenter is more interested in the behaviour
of a specimen of matter introduced into a magnetic field which was uniform
before the introduction of the specimen. We shall therefore transform our
formulae to describe the behaviour of a specimen of magnetic material
in a magnetic field which before the introduction of the specimen was
uniform and of magnitude defined by B=B,. We call this the external

* Woltjer and Onnes, Comm. Phys. Lab. Leiden 1923 no. 167c.
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field. In contrast to B, the force vector (induction) of the uniform field
before the specimen was introduced, we continue to use B, H, M to refer
to the state with the specimen present. M of course vanishes outside the
specimen. We define H,., B;, H,, respectively by

B.=pu,H. 11.10.1
B=Be+Bi=u0(He+Hi+M)' 11.10.2

By virtue of Maxwell’s electromagnetic equations the following conditions
are obeyed
divB=0 divB.=0 divB;=0 11.10.3

curl H;=0  curl (dH,)=0. 11.10.4
We now have

JdVHdB— JdVHedBe
=deHidB+deHedBi

=J.dVHidB+deBedHi+deB,dM. 11.10.5
But as a consequence of (3) and (4)
deHidB=0 deB,dHi=0. 11.10.6
Using (6) in (5) we obtain
deHdB—deH,dB,:deB,dM. 11.10.7

This relation and its elegant derivation are due to Casimir.*

If we integrate (7) at constant temperature the left side is the Helmholtz
function with the specimen present less the Helmholtz function with the
specimen absent. We call this the Helmholtz function of the interaction
between the external field and the specimen and we use the superscript ' to
denote this. We have then

F'= defB,dM: fB,dm 11.10.8
(T const.) (T const.)

where m={dV'M is the magnetic moment of the specimen.

* Casimir, private communication, 1951 ; Heine, Proc. Cambridge Phil. Soc. 1955 52 546.
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§11.11 Other thermodynamic functions

It is clear from (11.10.8) that 4 is the characteristic function of interaction
for the independent variables T, m. For most purposes a more useful
function is the characteristic function of interaction for the independent varia-
bles T, B, denoted by 4' and defined by

d'=#—-B.m 11.11.1

and obeying the relation

dd'=—-S'dT—mdB,. 11.11.2
From (2) we derive the Maxwell-type relation

(05°/0B.)r =(0m/0T)s, 11.11.3
and consequently

S'= f:e(am/aT),edBe. 1.11.4

(T const.)

§11.12 Specimens of simple shape

The relations containing B, and M, while formally correct, are not of much
use unless we know the relationship between B, and M. This relationship
is complicated unless the magnetic specimen has the shape of a spheroid
having its axis of symmetry parallel to the external field B, . For a spheroidal
specimen with semi-axes a, b, b the vectors B., B, M are parallel throughout
the specimen and obey the linear relation

B./B={uo+D(u—po)} /1 11.12.1

where D is a constant determined by the ratio b/a. It has the curious name
demagnetizing coefficient.

When a/b—0 so that the specimen becomes a circular disc with its plane
normal to the field

D=1 B/B,=1 (circular disc). 11.12.2

When b/a—0 so that the specimen has the shape of a needle parallel to the
field
D=0  B/B.=pufp, (needle). 11.12.3

When b=a so that the specimen is spherical

D=1iB/B.=3u/(2uo+p)  (sphere). 11.12.4
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From (11.05.8) and (11.05.9) we deduce

M =B(1/uo—1/p). 11.12.5
Combining (5) with (1) we obtain
B./poM = po/(u—po)+D. 11.12.6

§11.13 Diamagnetic, paramagnetic, and ferromagnetic substances

Substances are divided into three classes according to their magnetic proper-
ties. These have the names diamagnetic, paramagnetic, and ferromagnetic.

In a diamagnetic substance y has a constant value less than u,, independent
of the field strength and of the temperature. For such a substance there is
no magnetic term in the entropy and consequently there is no distinction
between the energy and the Helmholtz function. Thus the thermo-
dynamics of diamagnetic substances is trivial.

In a paramagnetic substance y has a value greater than u, and varying
with the temperature. The value of p also depends on the field, but usually
varies but little with the field except in high fields or at low temperatures.
Paramagnetic substances form the class to which the application of thermo-
dynamics is most interesting and useful. The remaining sections of this chap-
ter will be devoted almost entirely to paramagnetic substances.

A characteristic of ferromagnetic substances is the occurrence of hysteresis.
This means that M is not a single-valued function of the field. When the
field is varied the changes in magnetization are usually not reversible. The
application of thermodynamics is accordingly difficult. Such attempts as
have been made to apply thermodynamics to ferromagnetic substances are
still controversial and nothing further will be said of them. Our only remarks
concerning ferromagnetic substances will be of a general qualitative nature.

In ferromagnetic substances u is greater than u, and usually considerably
greater than in paramagnetic substances. There can even be magnetization
in the absence of any external field. This is called permanent magnetization
or remanent magnetization.

When the temperature of a ferromagnetic substance is raised, the substance
eventually becomes paramagnetic. The temperature at which this change
occurs is called the Curie temperature. The change is a transition of higher
order as defined in chapter 6. Thus the Curie temperature is a lambda point,
in fact the first example of a lambda point to be discovered.

§11.14 Simple paramagnetic behaviour

We shall describe in some detail the behaviour of those paramagnetic
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substances whose magnetic properties are entirely due to electron spin.
The behaviour of the larger class whose magnetic properties are due, partly
or entirely, to orbital angular momentum is qualitatively similar but quanti-
tatively more complicated. A description of these will not be attempted here
as it would require too much space. The reader interested will have to turn
to a more specialized source of information.*

The fundamental unit of magnetic moment in electron theory is Bohr’s
magneton and all magnetic moments will be expressed in terms of this unit.
Bohr’s magneton is denoted by B and is defined by

B=eh/dnm, 11.14.1

where —e denotes the charge and m, the mass of an electron while 4, as
usual, denotes the Planck constant. If we multiply (1) by the Avogadro con-
stant L, we obtain the corresponding proper unit

LB=Fhl/4mm, 11.14.2
where F denotes the Faraday constant. Inserting the numerical values

F=9.649 x 10* C mole™*
m,=9.109x 1073! kg
h=6.626x10"3* kgm?s~*

we obtain

LB=5.586 A m? mole™". 11.14.3
Correspondingly for B we have

B=5.586x1.6601 x 10 "2* A m?
=9.272x10"2* A m2, 11.14.4

Following standard spectroscopic notation we shall denote the resultant
spin quantum number by S, so that the multiplicity is 25 + 1. Examples of va-
lues of § for some typical paramagnetic ions of transition elements are
given in table 11.2. The first and last ions in the table, having $=0, are dia-
magnetic.

We now consider a substance such as ammonium ferric alum
NH, Fe(SO,),"12H,0 each molecule of which contains a considerable
number of atoms, in this example 52, only one of which, in this case Fe,
is paramagnetic. In such a substance the paramagnetic ions, in this case

* Van Vleck, Electric and Magnetic Susceptibilities, Clarendon Press 1932 p. 259.
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Fe®*, may usually be considered as mutually independent, each making
its own contribution to the paramagnetism of the substance. We shall
denote the proper volume as usual by ¥,,, this being the volume which
contains L paramagnetic ions.

TABLE 11.2

Multiplicities of typical paramagnetic ions of transition elements

Number of 3d

Ions S 25+1
electrons
Sc3+ 0 0 1
Scit, Tid+, Vi+ 1 % 2
Ti+, v+ 2 1 3
Vet Cr3+ 3 13 4
Cr?t, Mn3+ 4 2 5
Mn?+, Fedt 5 2% 6
Fe?+ 6 2 5
Co?t 7 14 4
Nij2+ 8 1 3
Cu?t 9 b 2
Cut, Zn?t+ 10 0 1

We consider a small spherical specimen of such a substance placed in a
uniform external magnetic field with induction B,. Then for the independent
variables T, B, the characteristic function 4’ of the interaction between the
specimen and the field is given by

g Vi — —RTIn sinh{(2S +1)LBB./RT}
sinh{LBB./RT}

S

where V, denotes the volume of the specimen. Formula (5) is essentially
due* to Brillouin.

From formula (5) we can derive all the thermodynamic formulae relating
to the magnetic properties of the specimen. The magnetic moment m
of the specimen is determined by

m=—0.1'/0B, 11.14.6

11.14.5

and the magnetization M by
MYV,=-381'/3B,. 11.14.7

* Van Vleck, Electric and Magnetic Susceptibilities, Clarendon Press 1932; Stoner, Mag-
netism and Matter 1934.
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From (5) and (7) we derive
MV, =(2S +1)LB coth{(2S+ 1)LBB./RT} —Lp coth{LBB./RT}. 11.14.8

We shall study the particular case S=4 before continuing with the general
case. When S=1%, formula (8) reduces to the simple form

MV, =Lp tanh{LBB/RT}. 11.14.9

We see at once that for sufficiently small field strengths we may replace (9)
by the approximation

MV, =(LB)*B./JRT  (LBB.<RT) 11.14.10

so that M is directly proportional to B, and inversely proportional to 7.
This behaviour is known as Curie’s law. At the opposite extreme of sufficient-
ly high values of B, we may replace (9) by the approximation

MV,=LB  (LBB.>RT) 11.14.11

so that M is independent of B, and of T. This behaviour is called magnetic
saturation. We shall soon see that for all values of S Curie’s law holds in
sufficiently low fields and saturation occurs in sufficiently high fields.

We now return to the general formula (5) and consider its simplification
in the two extremes of large and of small B,. Considering first large values
of B, we replace each sinh by 4 exp and obtain immediately

AV, |V,= —2SLBB, (LBB.>RT). 11.14.12
From (7) and (12) we derive
MV, =2SLp (LBB.>RT) 11.14.13

representing saturation.

We turn now to the opposite extreme of small B,. We expand each sinh
as a power series retaining the first two terms. We then expand the logarithm,
again retaining the first two terms. We thus obtain

d'V,|V,= —RT In(2S+1)—4S(S+ 1)(LBB,)*/6RT  (LPB.<RT).
11.14.14
From (7) and (14) we derive

MV, =45(S+1)(LB)*B./3RT  (LBB.<RT) 11.14.15

so that M is directly proportional to B, and inversely proportional to T
in accordance with Curie’s law.

Formula (15) has been verified experimentally for numerous substances.
The more general theoretical relation (8) between M and B, extending from
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the extreme of Curie’s law to the opposite extreme of saturation has been
quantitatively verified* for hydrated gadolinium sulphate, in which the
paramagnetic Gd3* ion is in an 8§ state with S=31.

§11.15 Entropy of simple paramagnetic substances

We continue to restrict our discussion to substances whose paramagretism
is due entirely to electron spin. The behaviour of other paramagnetic sub-
stances is qualitatively similar but more complicated.

By differentiating (11.14.5) with respect to T we can obtain a general
formula for S, the entropy of interaction between the field and the specimen.
For the sake of brevity we shall however confine ourselves to the two extreme
cases of B, large and of B, small

At magnetic saturation according to (11.14.12) the function ' is inde-
pendent of the temperature and the entropy S' vanishes.

Under the opposite conditions of small field we derive from (11.14.14)

V,

N 2
TR =In(2S+1)- ‘%ﬂ? (ﬁ) (LBB.<RT).  1L.15.1

s
R RT

§11.16 Adiabatic demagnetization

In a system whose state can be completely defined by the temperature T
and the external magnetic field B, (all other degrees of freedom such as
pressure and composition being either irrelevant or held constant), the
equation for a reversible adiabatic process is

S(T, B.))=const.  (adiabatic). 11.16.1

In a sample of a paramagnetic substance, such as ferric alum, in the temper-
ature range 2 K to 4 K all contributions to the entropy from translational,
rotational, intramolecular, and vibrational degrees of freedom are effectively
zero, while any contributions from intranuclear degrees of freedom remain
constant. Hence for adiabatic variations of the field B, we have

ST, B.)=const.  (adiabatic). 11.16.2

Provided B, is not too great, we may use formula (11.15.1) for S', so that
(2) leads to
B./T=const. (adiabatic). 11.16.3

* Woltjer and Onnes, Comm. Phys. Lab. Leiden 1923 no. 167c.
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Thus when the field is reduced the temperature drops proportionally. This
is the principle of cooling by adiabatic demagnetization.

§11.17 Unattainability of zero temperature

By means of adiabatic demagnetization temperatures as low as 1073 K
have been reached. It would appear from formula (11.16.3) that by reducing
the external field to zero, we should reach 7=0 in contradiction of Nernst’s
heat theorem. The resolution of this paradox is that before T=0 is reached,
usually in the region T~ 10~ 2K, the formulae of §11.14 and §11.15 cease
to be applicable. In other words, at some such temperature the substance
ceases to be paramagnetic but becomes eventually either diamagnetic or
ferromagnetic.

In the change from the paramagnetic to the diamagnetic or ferromagnetic
state, the proper entropy in zero magnetic field is reduced by an amount

RIn(2S+1). 11.17.1

Hence by comparison with (11.15.1), we see that the value of S for zero
field falls to zero. This is in agreement with the third principle of thermo-
dynamics as expounded in chapter 3. The reader must turn elsewhere*
for details of such changes.

* For example Debye, Ann. Phys. Lpz. 1938 32 85. An excellent elemzntary account is
given by Simon, Very Low Temperatures, Science Museum Handbook 1937 No. 3 p. 58.



