CBSE Test Paper 03 Chapter 10 Vector Algebra

- 1. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}| = 3$ and $|b| = \frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector if the angle between vectors \vec{a} and \vec{b} is
 - a. $\frac{\pi}{4}$ b. $\frac{\pi}{3}$ c. $\frac{\pi}{6}$ d. $\frac{\pi}{2}$
- 2. Negative of a Vecto $\mathbf{r}\vec{a}$ is a
 - a. A vector whose magnitude is the same as that \vec{a} of but direction is opposite to that of \vec{a}
 - b. A vector whose magnitude is the same as that \vec{a} of but direction is perpendicular to that of \vec{a}
 - c. A vector whose magnitude is the same as that \vec{a} of but direction is 120° to that of \vec{a}
 - d. A scalar whose magnitude is the same as that \vec{a}
- 3. If $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ are any two points, then the vector joining P₁

and P₂ is the vector P₁P₂. Magnitude of the vector $P_1P_2^{'}$ is

a.
$$\sqrt{(x_2 - x_1)^2 + (y_2 + y_1)^2 + (z_2 - z_1)^2}$$

b. $\sqrt{(x_2 + x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
c. $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
d. $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 + z_1)^2}$

- 4. If λ is a real number $\lambda \vec{a}$ is a
 - a. vector
 - b. unit vector
 - c. scalar
 - d. inner product

5. If
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
 and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ then the dot product $\vec{a}.\vec{b} =$.
a. $a_1b_1 - a_2b_2 + a_3b_3$
b. $a_1b_1 + a_2b_2 + a_3b_3$

- c. $a_1b_1 a_2b_2 a_3b_3$
- d. $a_1b_1 + a_2b_2 a_3b_3$
- 6. The magnitude of the vector $6\hat{i} + 2\hat{j} + 3\hat{k}$ is _____
- 7. The number of vectors of unit length perpendicular to the vectors $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{j} + \hat{k}$ is _____. 8. If $\left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 + \left| \overrightarrow{a} \cdot \overrightarrow{b} \right|^2 = 144$ and $\left| \overrightarrow{a} \right| = 4$, then $\left| \overrightarrow{b} \right|$ is equal to _____.
- 9. If A, B and C are the vertices of a $\triangle ABC$, then what is the value of $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$?
- 10. If $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 3$, then find the projection of \vec{b} on \vec{a} .
- 11. Find the angle between \vec{a} and \vec{b} with magnitudes 1 and 2 respectively, when $|\vec{a} \times \vec{b}| = \sqrt{3}$.
- 12. Find the vector in the direction of vector $5\,\hat{i}-\hat{j}+2\hat{k}$ which has magnitude 8 units.
- 13. Find the sum of the vectors: $ec{a}=\hat{i}-2\hat{j}+\hat{k}, ec{b}=-2\hat{i}+4\hat{j}+5\hat{k}$ and $ec{c}=\hat{i}-6\hat{j}-7\hat{k}.$
- 14. Find $|\vec{a} \vec{b}|$ if $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 4$.
- 15. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, find $(\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) + xy$.
- 16. Show that the points A (1, 2, 7), B (2, 6, 3) and C(3,10, -1) are collinear.
- 17. If \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$ find the angle between \vec{a} and \vec{b} .
- 18. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular vectors of the same magnitude, then prove that $\vec{a} + \vec{b} + \vec{c}$ is equally inclined with the vectors \vec{a}, \vec{b} and \vec{c} .

CBSE Test Paper 03 Chapter 10 Vector Algebra

Solution

1. a. $\frac{\pi}{4}$, **Explanation:** It is given that $\overrightarrow{a} \times \overrightarrow{b}$ is a unit vector, then: $\Rightarrow |\vec{a} \times \vec{b}| = 1 \Rightarrow |\vec{a}| |\vec{b}| sin\theta = 1$ $\Rightarrow 3. \frac{\sqrt{2}}{3} sin\theta = 1 \Rightarrow sin\theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}$

2. a. A vector whose magnitude is the same as that \vec{a} of but direction is opposite to that of \vec{a}

Explanation: Negative of \vec{a} is equal to \vec{a} , i.e. A vector whose magnitude is the same as that of \vec{a} , but direction is opposite to that of \vec{a} .

3. c.
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
,
Explanation: If $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ are any two points, then
the vector joining P_1 and P_2 is the vector P_1P_2 , then : $|\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$.

4. a. vector, **Explanation:** If a vector is multiplied by any scalar then , the result is always a vector.

5. b.
$$a_1b_1 + a_2b_2 + a_3b_3$$
, **Explanation:** If $\vec{a} = a_1i + a_2j + a_3k$ and
 $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$
then $\vec{a}.\vec{b} = a_1b_1 + a_2b_2 + a_3b_3$
 $(\because \hat{i}.\hat{i} = \hat{j}.\hat{j} = \hat{k}.\hat{k} = 1 \text{ and } \hat{i}.\hat{j} = \hat{j}.\hat{k} = \hat{k}.\hat{i} = 0)$

- 6. 7
- 7. two
- 8. 3
- 9. Let ABC be the given triangle.

By law of vectors, we have $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

- $\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AC}$(1) [adding \overrightarrow{CA} on both sides] (using (1)) $\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{CA} - \overrightarrow{CA}$ [$\because \overrightarrow{AC} = -\overrightarrow{CA}$] $\therefore \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$
- 10. If $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 3$, then we have to find the projection of \vec{b} on \vec{a} . Projection of \vec{b} on $\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} = \frac{3}{2}$
- 11. Here we are given that, $|\vec{a}| = 1$, $|\vec{b}| = 2$ and $|\vec{a} \times \vec{b}| = \sqrt{3}$ $\Rightarrow |\vec{a}| |\vec{b}| \sin \theta = \sqrt{3} [\because \vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ and $|\hat{n}| = 1]$ $\Rightarrow 1 \times 2 \times \sin \theta = \sqrt{3}$ $\Rightarrow \sin \theta = \frac{\sqrt{3}}{2} = \sin \frac{\pi}{3} \Rightarrow \theta = \frac{\pi}{3}$ Hence, the angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$.

12. Let $ec{a}=5\hat{i}-\hat{j}+2\hat{k}$

A vector in the direction of vector $ec{a}$ which has magnitude 8 units $= 8 \hat{a}$

$$egin{aligned} &=8.rac{ec{a}}{ec{ec{a}}ec{ec{a}}ec{ec{a}}ec{ec{b}}ec{b}}ec{ec{b}}ec{ec{b}}ec{ec{b}}ec$$

13. Given: $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}, \vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{c} = \hat{i} - 6\hat{j} - 7\hat{k}$ Adding, $\vec{a} + \vec{b} + \vec{c} = \hat{i} - 2\hat{j} + \hat{k} - 2\hat{i} + 4\hat{j} + 5\hat{k} + \hat{i} - 6\hat{j} - 7\hat{k}$ $= 0\hat{i} - 4\hat{j} - \hat{k} = -4\hat{j} - \hat{k}$

14.
$$\left| \vec{a} - \vec{b} \right|^2 = \left(\vec{a} - \vec{b} \right) \cdot \left(\vec{a} - \vec{b} \right)$$

 $= \vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b}$
 $= \left| \vec{a} \right|^2 - 2\vec{a} \cdot \vec{b} + \left| \vec{b} \right|^2 \cdot [\because \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}]$
 $= 4 - 2 \times 4 + 9 = 5$
Therefore, $\left| \vec{a} - \vec{b} \right| = \sqrt{5}$

15. According to the question,

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
Now, $\vec{r} \times \hat{i} = (x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{i}$

$$= x(\hat{i} \times \hat{i}) + y(\hat{j} \times \hat{i}) + z(\hat{k} \times \hat{i})$$

$$= x(0) + y(-\hat{k}) + z(\hat{j})$$

$$= -y\hat{k} + z\hat{j}$$
Now, $(\vec{r} \times \hat{j}) = (x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{j}$

$$= x(\hat{i} \times \hat{j}) + y(\hat{j} \times \hat{j}) + z(\hat{k} \times \hat{j})$$

$$= x\hat{k} + y(0) + z(-\hat{i}) = x\hat{k} - z\hat{i}$$

$$\therefore \quad (\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) = (-y\hat{k} + z\hat{j}) \cdot (x\hat{k} - z\hat{i})$$

$$= -yx + 0 + 0 + 0 = -xy$$

$$\therefore \quad (\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) + xy = 0$$

16. The given points are A (1, 2, 7), B (2, 6, 3) and C(3,10, - 1) respectively.

$$\therefore \text{ Position vector of point } A = \overrightarrow{OA} = \hat{i} + 2\hat{j} + 7\hat{k}$$

Position vector of point $B = \overrightarrow{OC} = 2\hat{i} + 6\hat{j} + 3\hat{k}$
Position vector of point $C = \overrightarrow{OC} = 3\hat{i} + 10\hat{j} - \hat{k}$
Now $\overrightarrow{AB} = \text{Position vector of point B - Position vector of point A}$
 $= 2\hat{i} + 6\hat{j} + 3\hat{k} - (\hat{i} + 2\hat{j} + 7\hat{k})$
 $= 2\hat{i} + 6\hat{j} + 3\hat{k} - \hat{i} - 2\hat{j} - 7\hat{k} = \hat{i} + 4\hat{j} - 4\hat{k}...(i)$
And \overrightarrow{AC} = Position vector of point C - Position vector of point A
 $= 3\hat{i} + 10\hat{j} - \hat{k} - (\hat{i} + 2\hat{j} + 7\hat{k})$
 $= 3\hat{i} + 10\hat{j} - \hat{k} - (\hat{i} - 2\hat{j} - 7\hat{k} = 2\hat{i} + 8\hat{j} - 8\hat{k} = 2(\hat{i} + 4\hat{j} - 4\hat{k})...(ii)$
 $\Rightarrow \overrightarrow{AC} = 2.\overrightarrow{AB}$ [Using eq. (i)]
 $\Rightarrow \text{ Vectors } \overrightarrow{AB} \text{ and } \overrightarrow{AC} \text{ are parallel. } [\because \vec{a} = mb]$
But \overrightarrow{AB} and \overrightarrow{AC} have a common point A and hence they can't be parallel. Thus, the points A,B,C are collinear.

17.
$$\vec{a} + \vec{b} + \vec{c} = 0$$

 $\vec{a} + \vec{b} = -\vec{c}$
 $\left(\vec{a} + \vec{b}\right) \cdot (-\vec{c}) = -\vec{c} \cdot (-\vec{c})$

$$\begin{split} & \left(\vec{a} + \vec{b}\right) \cdot \left(\vec{a} + \vec{b}\right) = \vec{c} \cdot \vec{c} \\ & \left|\vec{a}\right|^2 + 2ab + \left|\vec{b}\right| = \left|\vec{c}\right|^2 \\ & \vec{a} \cdot \vec{b} = \frac{\left|\vec{c}\right|^2 - \left|\vec{a}\right|^2 - \left|\vec{b}\right|^2}{2} \\ & \vec{a} \cdot \vec{b} = \frac{49 - 9 - 25}{2} = \frac{15}{2} \\ & \cos \theta = \frac{\left|\vec{a} \cdot \vec{b}\right|}{\left|\vec{a}\right| \left|\vec{b}\right|} = \frac{1}{2} \\ & \theta = 60 \end{split}$$

18. According to the question,
$$|\vec{a}| = |\vec{b}| = |\vec{c}| = \lambda(\text{say}) \dots (i)$$

and $\vec{a} \cdot \vec{b} = 0, \vec{b}, \vec{c} = 0$ and $\vec{a}, \vec{c} = 0 \dots (ii)$
Now, $|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = \lambda^2 + \lambda^2 + \lambda^2 + 2(0 + 0 + 0) = 3\lambda^2$
 $\Rightarrow |\vec{a} + \vec{b} + \vec{c}| = \sqrt{3}\lambda$ [length cannot be negative]
Let $(\vec{a} + \vec{b} + \vec{c})$ is inclined at angles θ_1, θ_2
and θ_3 respectively with vector \vec{a}, \vec{b} and $\vec{c},$
 $(\vec{a} + \vec{b} + \vec{c}) \cdot \vec{a} = |\vec{a} + \vec{b} + \vec{c}| |\vec{a}| \cos \theta_1$
 $[\because \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta]$
 $\Rightarrow |\vec{a}|^2 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = \sqrt{3}\lambda \times \lambda \cos \theta_1$
 $\Rightarrow \lambda^2 + 0 + 0 = \sqrt{3}\lambda^2 \cos \theta_1$
[from Equations (i) and (ii)]
 $\therefore \cos \theta_1 = \frac{1}{\sqrt{3}}$
 $(\vec{a} + \vec{b} + \vec{c}) \cdot \vec{b} = |\vec{a} + \vec{b} + \vec{c}| |\vec{b}| \cos \theta_2$
 $\Rightarrow \vec{a} \cdot \vec{b} + |\vec{b}|^2 + \vec{c} \cdot \vec{b} = \sqrt{3}\lambda \cdot \lambda \cos \theta_2$
 $\Rightarrow \theta + \lambda + \theta = \sqrt{3}\lambda_2 \cos \theta_2$
[from Equation. (i) and (ii)]
 $\Rightarrow \cos \theta_2 = \frac{1}{\sqrt{3}}$
Similarly, $(a + \vec{b} + \vec{c}) \cdot \vec{c} = |\vec{a} + \vec{b} + \vec{c}| \vec{c}| \cos \theta_3|$.
 $\Rightarrow \cos \theta_1 = \frac{1}{\sqrt{3}}$
Thus, $\cos \theta_1 = \cos \theta_2 = \cos \theta_3 = \frac{1}{\sqrt{3}}$
 $\therefore (\vec{a} + \vec{b} + \vec{c})$ is equally inclined with the vectors \vec{a}, \vec{b} and \vec{c} .